1
|
Idahosa SO, Diarra R, Ranu HK, Nasiri RH, Higuchi S. Evidence and Mechanism of Bile Acid-Mediated Gut-Brain Axis in Anxiety and Depression. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:163-173. [PMID: 39566821 DOI: 10.1016/j.ajpath.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/19/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
Bidirectional communication between the brain and gastrointestinal tract, called the gut-brain axis, is linked with our emotions. Intestinal lipids, hormones, and molecules, such as bile acids (BAs), impact our mood, motivation, and emotions via the gut-brain axis. BAs are synthesized from cholesterol in the liver and serve as a regulator of lipid metabolism and hormonal secretion in the intestine. Human studies have indicated that the alteration of plasma BA levels is associated with depression and anxiety. Several possible mechanisms, such as BA receptor-dependent and receptor-independent mechanisms, have been reported for emotional control. Animal studies have indicated that the deletion of BA receptors shows behavioral abnormalities. BAs regulate gut hormones, glucagon-like peptide-1 secretion, bioactive lipids, oleoylethanolamide, and the immune system function, which influences neural activities. Thus, BAs act as an emotional regulator. This review aims to summarize the following: clinical evidence of BA concentration linked to mental disorders, including depression and anxiety; and animal studies of BA-related signaling correlated with its neurobehavioral effect supporting its mechanism. We will also discuss future research required for further neurobehavioral treatment.
Collapse
Affiliation(s)
- Sydney O Idahosa
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Rokia Diarra
- Department of Biology, St. John's University, Queens, New York
| | - Hernoor K Ranu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Raidah H Nasiri
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Sei Higuchi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York.
| |
Collapse
|
2
|
Squire E, Lee HL, Jeong W, Lee S, Ravichandiran V, Limoli CL, Piomelli D, Parihar VK, Jung KM. Targeting dysfunctional endocannabinoid signaling in a mouse model of Gulf War illness. Neuropharmacology 2024; 261:110142. [PMID: 39241906 DOI: 10.1016/j.neuropharm.2024.110142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/30/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Gulf War Illness (GWI) is a chronic disorder characterized by a heterogeneous set of symptoms that include pain, fatigue, anxiety, and cognitive impairment. These are thought to stem from damage caused by exposure under unpredictable stress to toxic Gulf War (GW) chemicals, which include pesticides, nerve agents, and prophylactic drugs. We hypothesized that GWI pathogenesis might be rooted in long-lasting disruption of the endocannabinoid (ECB) system, a signaling complex that serves important protective functions in the brain. Using a mouse model of GWI, we found that tissue levels of the ECB messenger, anandamide, were significantly reduced in the brain of diseased mice, compared to healthy controls. In addition, transcription of the Faah gene, which encodes for fatty acid amide hydrolase (FAAH), the enzyme that deactivates anandamide, was significant elevated in prefrontal cortex of GWI mice and brain microglia. Behavioral deficits exhibited by these animals, including heightened anxiety-like and depression-like behaviors, and defective extinction of fearful memories, were corrected by administration of the FAAH inhibitor, URB597, which normalized brain anandamide levels. Furthermore, GWI mice displayed unexpected changes in the microglial transcriptome, implying persistent dampening of homeostatic surveillance genes and abnormal expression of pro-inflammatory genes upon immune stimulation. Together, these results suggest that exposure to GW chemicals produce a deficit in brain ECB signaling which is associated with persistent alterations in microglial function. Pharmacological normalization of anandamide-mediated ECB signaling may offer an effective therapeutic strategy for ameliorating GWI symptomology.
Collapse
Affiliation(s)
- Erica Squire
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Hye-Lim Lee
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Woojin Jeong
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Sumin Lee
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, 92697, USA
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, 844102, India
| | - Charles L Limoli
- Radiation Oncology, University of California, Irvine, CA 92697, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, 92697, USA; Department of Biological Chemistry, University of California, Irvine, CA, 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Vipan Kumar Parihar
- National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, 844102, India; Radiation Oncology, University of California, Irvine, CA 92697, USA.
| | - Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
3
|
Kodali M, Madhu LN, Kolla VSV, Attaluri S, Huard C, Somayaji Y, Shuai B, Jordan C, Rao X, Shetty S, Shetty AK. FDA-approved cannabidiol [Epidiolex ®] alleviates Gulf War Illness-linked cognitive and mood dysfunction, hyperalgesia, neuroinflammatory signaling, and declined neurogenesis. Mil Med Res 2024; 11:61. [PMID: 39169440 PMCID: PMC11340098 DOI: 10.1186/s40779-024-00563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Chronic Gulf War Illness (GWI) is characterized by cognitive and mood impairments, as well as persistent neuroinflammation and oxidative stress. This study aimed to investigate the efficacy of Epidiolex®, a Food and Drug Administration (FDA)-approved cannabidiol (CBD), in improving brain function in a rat model of chronic GWI. METHODS Six months after exposure to low doses of GWI-related chemicals [pyridostigmine bromide, N,N-diethyl-meta-toluamide (DEET), and permethrin (PER)] along with moderate stress, rats with chronic GWI were administered either vehicle (VEH) or CBD (20 mg/kg, oral) for 16 weeks. Neurobehavioral tests were conducted on 11 weeks after treatment initiation to evaluate the performance of rats in tasks related to associative recognition memory, object location memory, pattern separation, and sucrose preference. The effect of CBD on hyperalgesia was also examined. The brain tissues were processed for immunohistochemical and molecular studies following behavioral tests. RESULTS GWI rats treated with VEH exhibited impairments in all cognitive tasks and anhedonia, whereas CBD-treated GWI rats showed improvements in all cognitive tasks and no anhedonia. Additionally, CBD treatment alleviated hyperalgesia in GWI rats. Analysis of hippocampal tissues from VEH-treated rats revealed astrocyte hypertrophy and increased percentages of activated microglia presenting NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) complexes as well as elevated levels of proteins involved in NLRP3 inflammasome activation and Janus kinase/signal transducers and activators of the transcription (JAK/STAT) signaling. Furthermore, there were increased concentrations of proinflammatory and oxidative stress markers along with decreased neurogenesis. In contrast, the hippocampus from CBD-treated GWI rats displayed reduced levels of proteins mediating the activation of NLRP3 inflammasomes and JAK/STAT signaling, normalized concentrations of proinflammatory cytokines and oxidative stress markers, and improved neurogenesis. Notably, CBD treatment did not alter the concentration of endogenous cannabinoid anandamide in the hippocampus. CONCLUSIONS The use of an FDA-approved CBD (Epidiolex®) has been shown to effectively alleviate cognitive and mood impairments as well as hyperalgesia associated with chronic GWI. Importantly, the improvements observed in rats with chronic GWI in this study were attributed to the ability of CBD to significantly suppress signaling pathways that perpetuate chronic neuroinflammation.
Collapse
Affiliation(s)
- Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Venkata Sai Vashishta Kolla
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Charles Huard
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Yogish Somayaji
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Chase Jordan
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Xiaolan Rao
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Sanath Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA.
| |
Collapse
|
4
|
Burzynski HE, Reagan LP. Exposing the latent phenotype of Gulf War Illness: examination of the mechanistic mediators of cognitive dysfunction. Front Immunol 2024; 15:1403574. [PMID: 38919622 PMCID: PMC11196646 DOI: 10.3389/fimmu.2024.1403574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Though it has been over 30 years since the 1990-1991 Gulf War (GW), the pathophysiology of Gulf War Illness (GWI), the complex, progressive illness affecting approximately 30% of GW Veterans, has not been fully characterized. While the symptomology of GWI is broad, many symptoms can be attributed to immune and endocrine dysfunction as these critical responses appear to be dysregulated in many GWI patients. Since such dysregulation emerges in response to immune threats or stressful situations, it is unsurprising that clinical studies suggest that GWI may present with a latent phenotype. This is most often observed in studies that include an exercise challenge during which many GWI patients experience an exacerbation of symptoms. Unfortunately, very few preclinical studies include such physiological stressors when assessing their experimental models of GWI, which creates variable results that hinder the elucidation of the mechanisms mediating GWI. Thus, the purpose of this review is to highlight the clinical and preclinical findings that investigate the inflammatory component of GWI and support the concept that GWI may be characterized as having a latent phenotype. We will mainly focus on studies assessing the progressive cognitive impairments associated with GWI and emphasize the need for physiological stressors in future work to create a more unified hypothesis that can identify potential therapeutics for this patient population.
Collapse
Affiliation(s)
- Hannah E. Burzynski
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - Lawrence P. Reagan
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia Veterans Affairs (VA) Health Care System, Columbia, SC, United States
| |
Collapse
|
5
|
González-Portilla M, Montagud-Romero S, Rodríguez de Fonseca F, Rodríguez-Arias M. Oleoylethanolamide restores stress-induced prepulse inhibition deficits and modulates inflammatory signaling in a sex-dependent manner. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06403-w. [PMID: 37314479 DOI: 10.1007/s00213-023-06403-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
RATIONALE Social stress contributes to the development of depressive and anxiety symptomatology and promotes pro-inflammatory signaling in the central nervous system. In this study, we explored the effects of a lipid messenger with anti-inflammatory properties - oleoylethanolamide (OEA) - on the behavioral deficits caused by social stress in both male and female mice. METHODS Adult mice were assigned to an experimental group according to the stress condition (control or stress) and treatment (vehicle or OEA, 10 mg/kg, i.p.). Male mice in the stress condition underwent a protocol consisting of four social defeat (SD) encounters. In the case of female mice, we employed a procedure of vicarious SD. After the stress protocol resumed, anxiety, depressive-like behavior, social interaction, and prepulse inhibition (PPI) were assessed. In addition, we characterized the stress-induced inflammatory profile by measuring IL-6 and CX3CL1 levels in the striatum and hippocampus. RESULTS Our results showed that both SD and VSD induced behavioral alterations. We found that OEA treatment restored PPI deficits in socially defeated mice. Also, OEA affected differently stress-induced anxiety and depressive-like behavior in male and female mice. Biochemical analyses showed that both male and female stressed mice showed increased levels of IL-6 in the striatum compared to control mice. Similarly, VSD female mice exhibited increased striatal CX3CL1 levels. These neuroinflammation-associated signals were not affected by OEA treatment. CONCLUSIONS In summary, our results confirm that SD and VSD induced behavioral deficits together with inflammatory signaling in the striatum and hippocampus. We observed that OEA treatment reverses stress-induced PPI alterations in male and female mice. These data suggest that OEA can exert a buffering effect on stress-related sensorimotor gating behavioral processing.
Collapse
Affiliation(s)
- Macarena González-Portilla
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain
| | - Sandra Montagud-Romero
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad Clínica de Neurología, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
- Atención Primaria, Cronicidad Y Promoción de La Salud. Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005, Málaga, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain.
- Atención Primaria, Cronicidad Y Promoción de La Salud. Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005, Málaga, Spain.
| |
Collapse
|
6
|
González-Portilla M, Moya M, Montagud-Romero S, de Fonseca FR, Orio L, Rodríguez-Arias M. Oleoylethanolamide attenuates the stress-mediated potentiation of rewarding properties of cocaine associated with an increased TLR4 proinflammatory response. Prog Neuropsychopharmacol Biol Psychiatry 2023; 124:110722. [PMID: 36724838 DOI: 10.1016/j.pnpbp.2023.110722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
The lipid-derived messenger oleoylethanolamide (OEA) has been involved in multiple physiological functions including metabolism and the immune response. More recently, OEA has been observed to affect reward-related behavior. Stress is a major risk factor for drug use and a predictor of drug relapse. In the laboratory, social stress has been largely studied using the social defeat (SD) model. Here, we explored the effects of different OEA administration schedules on the increased rewarding properties of cocaine induced by SD. In addition, we evaluated the anti-inflammatory action of OEA pretreatment in TLR4 expression caused by SD in the cerebellum, a novel brain structure that has been involved in the development of cocaine addiction. Adult OF1 mice were assigned to an experimental group according to the stress condition (exploration or SD) and treatment (OEA before SD, OEA before conditioning or subchronic OEA treatment). Mice were administered with OEA i.p (10 mg/kg) 10 min previously to the corresponding event. Three weeks after the last SD encounter, conditioned place preference (CPP) was induced by a subthreshold cocaine dose (1 mg/kg). As expected, socially defeated mice presented greater vulnerability to the cocaine reinforcing effects and expressed CPP. Conversely, this effect was not observed under a non-stressed condition. Most importantly, we observed that OEA pretreatment before SD or before conditioning prevented cocaine CPP in defeated mice. Biochemical analysis showed that OEA administration before SD decreased proinflammatory TLR4 upregulation in the cerebellum caused by social stress. In summary, our results suggest that OEA may have a protective effect on stress-induced increased cocaine sensitivity by exerting an anti-inflammatory action.
Collapse
Affiliation(s)
- Macarena González-Portilla
- Department of Psychobiology, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez 21, 46010 Valencia, Spain.
| | - Marta Moya
- Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid (UCM), 28223 Pozuelo de Alarcón, Spain
| | - Sandra Montagud-Romero
- Department of Psychobiology, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez 21, 46010 Valencia, Spain
| | - Fernando Rodríguez de Fonseca
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain; Atención Primaria, Cronicidad y Promoción de la Salud. Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005, Spain
| | - Laura Orio
- Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid (UCM), 28223 Pozuelo de Alarcón, Spain; Atención Primaria, Cronicidad y Promoción de la Salud. Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez 21, 46010 Valencia, Spain; Atención Primaria, Cronicidad y Promoción de la Salud. Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005, Spain.
| |
Collapse
|
7
|
Pérez-Martín E, Pérez-Revuelta L, Barahona-López C, Pérez-Boyero D, Alonso JR, Díaz D, Weruaga E. Oleoylethanolamide Treatment Modulates Both Neuroinflammation and Microgliosis, and Prevents Massive Leukocyte Infiltration to the Cerebellum in a Mouse Model of Neuronal Degeneration. Int J Mol Sci 2023; 24:ijms24119691. [PMID: 37298639 DOI: 10.3390/ijms24119691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Neurodegenerative diseases involve an exacerbated neuroinflammatory response led by microglia that triggers cytokine storm and leukocyte infiltration into the brain. PPARα agonists partially dampen this neuroinflammation in some models of brain insult, but neuronal loss was not the triggering cause in any of them. This study examines the anti-inflammatory and immunomodulatory properties of the PPARα agonist oleoylethanolamide (OEA) in the Purkinje Cell Degeneration (PCD) mouse, which exhibits striking neuroinflammation caused by aggressive loss of cerebellar Purkinje neurons. Using real-time quantitative polymerase chain reaction and immunostaining, we quantified changes in pro- and anti-inflammatory markers, microglial density and marker-based phenotype, and overall leukocyte recruitment at different time points after OEA administration. OEA was found to modulate cerebellar neuroinflammation by increasing the gene expression of proinflammatory mediators at the onset of neurodegeneration and decreasing it over time. OEA also enhanced the expression of anti-inflammatory and neuroprotective factors and the Pparα gene. Regarding microgliosis, OEA reduced microglial density-especially in regions where it is preferentially located in PCD mice-and shifted the microglial phenotype towards an anti-inflammatory state. Finally, OEA prevented massive leukocyte infiltration into the cerebellum. Overall, our findings suggest that OEA may change the environment to protect neurons from degeneration caused by exacerbated inflammation.
Collapse
Affiliation(s)
- Ester Pérez-Martín
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Laura Pérez-Revuelta
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Cristina Barahona-López
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
| | - David Pérez-Boyero
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José R Alonso
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - David Díaz
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Eduardo Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
8
|
Kodali M, Jankay T, Shetty AK, Reddy DS. Pathophysiological basis and promise of experimental therapies for Gulf War Illness, a chronic neuropsychiatric syndrome in veterans. Psychopharmacology (Berl) 2023; 240:673-697. [PMID: 36790443 DOI: 10.1007/s00213-023-06319-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023]
Abstract
This article describes the pathophysiology and potential treatments for Gulf War Illness (GWI), which is a chronic neuropsychiatric illness linked to a combination of chemical exposures experienced by service personnel during the first Gulf War in 1991. However, there is currently no effective treatment for veterans with GWI. The article focuses on the current status and efficacy of existing therapeutic interventions in preclinical models of GWI, as well as potential perspectives of promising therapies. GWI stems from changes in brain and peripheral systems in veterans, leading to neurocognitive deficits, as well as physiological and psychological effects resulting from multifaceted changes such as neuroinflammation, oxidative stress, and neuronal damage. Aging not only renders veterans more susceptible to GWI symptoms, but also attenuates their immune capabilities and response to therapies. A variety of experimental models are being used to investigate the pathophysiology and develop therapies that have the ability to alleviate devastating symptoms. Over two dozen therapeutic interventions targeting neuroinflammation, mitochondrial dysfunction, neuronal injury, and neurogenesis are being tested, including agents such as curcumin, curcumin nanoparticles, monosodium luminol, melatonin, resveratrol, fluoxetine, rolipram, oleoylethanolamide, ketamine, levetiracetam, nicotinamide riboside, minocycline, pyridazine derivatives, and neurosteroids. Preclinical outcomes show that some agents have promise, including curcumin, resveratrol, and ketamine, which are being tested in clinical trials in GWI veterans. Neuroprotectants and other compounds such as monosodium luminol, melatonin, levetiracetam, oleoylethanolamide, and nicotinamide riboside appear promising for future clinical trials. Neurosteroids have been shown to have neuroprotective and disease-modifying properties, which makes them a promising medicine for GWI. Therefore, accelerated clinical studies are urgently needed to evaluate and launch an effective therapy for veterans displaying GWI.
Collapse
Affiliation(s)
- Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University School of Medicine, College Station, TX, USA
| | - Tanvi Jankay
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University School of Medicine, College Station, TX, USA.,Texas A&M Health Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, USA. .,Texas A&M Health Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, 8447 Riverside Pkwy, Bryan, TX, 77807, USA.
| |
Collapse
|
9
|
Carpenter JM, Brown KA, Veltmaat L, Ludwig HD, Clay KB, Norberg T, Harn DA, Wagner JJ, Filipov NM. Evaluation of delayed LNFPIII treatment initiation protocol on improving long-term behavioral and neuroinflammatory pathology in a mouse model of Gulf War Illness. Brain Behav Immun Health 2022; 26:100553. [DOI: 10.1016/j.bbih.2022.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/29/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
|
10
|
Ferguson S, McCartan R, Browning M, Hahn-Townsend C, Gratkowski A, Morin A, Abdullah L, Ait-Ghezala G, Ojo J, Sullivan K, Mullan M, Crawford F, Mouzon B. Impact of gulf war toxic exposures after mild traumatic brain injury. Acta Neuropathol Commun 2022; 10:147. [PMID: 36258255 PMCID: PMC9580120 DOI: 10.1186/s40478-022-01449-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/21/2022] [Indexed: 11/12/2022] Open
Abstract
Chemical and pharmaceutical exposures have been associated with the development of Gulf War Illness (GWI), but how these factors interact with the pathophysiology of traumatic brain injury (TBI) remains an area of study that has received little attention thus far. We studied the effects of pyridostigmine bromide (an anti-nerve agent) and permethrin (a pesticide) exposure in a mouse model of repetitive mild TBI (r-mTBI), with 5 impacts over a 9-day period, followed by Gulf War (GW) toxicant exposure for 10 days beginning 30 days after the last head injury. We then assessed the chronic behavioral and pathological sequelae 5 months after GW agent exposure. We observed that r-mTBI and GWI cumulatively affect the spatial memory of mice in the Barnes maze and result in a shift of search strategies employed by r-mTBI/GW exposed mice. GW exposure also produced anxiety-like behavior in sham animals, but r-mTBI produced disinhibition in both the vehicle and GW treated mice. Pathologically, GW exposure worsened r-mTBI dependent axonal degeneration and neuroinflammation, increased oligodendrocyte cell counts, and increased r-mTBI dependent phosphorylated tau, which was found to colocalize with oligodendrocytes in the corpus callosum. These results suggest that GW exposures may worsen TBI-related deficits. Veterans with a history of both GW chemical exposures as well as TBI may be at higher risk for worse symptoms and outcomes. Subsequent exposure to various toxic substances can influence the chronic nature of mTBI and should be considered as an etiological factor influencing mTBI recovery.
Collapse
Affiliation(s)
- Scott Ferguson
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Robyn McCartan
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | | | | | | | - Alexander Morin
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Laila Abdullah
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, Tampa, FL, USA
| | | | - Joseph Ojo
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Kimberly Sullivan
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St. T4W, Boston, MA, 02118, USA
| | - Michael Mullan
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Fiona Crawford
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Benoit Mouzon
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA. .,James A. Haley Veterans' Hospital, Tampa, FL, USA.
| |
Collapse
|
11
|
Attaluri S, Upadhya R, Kodali M, Madhu LN, Upadhya D, Shuai B, Shetty AK. Brain-Specific Increase in Leukotriene Signaling Accompanies Chronic Neuroinflammation and Cognitive Impairment in a Model of Gulf War Illness. Front Immunol 2022; 13:853000. [PMID: 35572589 PMCID: PMC9099214 DOI: 10.3389/fimmu.2022.853000] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Persistent cognitive impairment is a primary central nervous system-related symptom in veterans afflicted with chronic Gulf War Illness (GWI). Previous studies in a rat model have revealed that cognitive dysfunction in chronic GWI is associated with neuroinflammation, typified by astrocyte hypertrophy, activated microglia, and enhanced proinflammatory cytokine levels. Studies in a mouse model of GWI have also shown upregulation of several phospholipids that serve as reservoirs of arachidonic acid, a precursor of leukotrienes (LTs). However, it is unknown whether altered LT signaling is a component of chronic neuroinflammatory conditions in GWI. Therefore, this study investigated changes in LT signaling in the brain of rats displaying significant cognitive impairments six months after exposure to GWI-related chemicals and moderate stress. The concentration of cysteinyl LTs (CysLTs), LTB4, and 5-Lipoxygenase (5-LOX), the synthesizing enzyme of LTs, were evaluated. CysLT and LTB4 concentrations were elevated in the hippocampus and the cerebral cortex, along with enhanced 5-LOX expression in neurons and microglia. Such changes were also associated with increased proinflammatory cytokine levels in the hippocampus and the cerebral cortex. Enhanced CysLT and LTB4 levels in the brain could also be gleaned from their concentrations in brain-derived extracellular vesicles in the circulating blood. The circulating blood in GWI rats displayed elevated proinflammatory cytokines with no alterations in CysLT and LTB4 concentrations. The results provide new evidence that a brain-specific increase in LT signaling is another adverse alteration that potentially contributes to the maintenance of chronic neuroinflammation in GWI. Therefore, drugs capable of modulating LT signaling may reduce neuroinflammation and improve cognitive function in GWI. Additional findings demonstrate that altered LT levels in the brain could be tracked efficiently by analyzing brain-derived EVs in the circulating blood.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX, United States
| |
Collapse
|
12
|
Moya M, López-Valencia L, García-Bueno B, Orio L. Disinhibition-Like Behavior Correlates with Frontal Cortex Damage in an Animal Model of Chronic Alcohol Consumption and Thiamine Deficiency. Biomedicines 2022; 10:biomedicines10020260. [PMID: 35203470 PMCID: PMC8869694 DOI: 10.3390/biomedicines10020260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/08/2022] [Accepted: 01/18/2022] [Indexed: 12/23/2022] Open
Abstract
Wernicke-Korsakoff syndrome (WKS) is induced by thiamine deficiency (TD) and mainly related to alcohol consumption. Frontal cortex dysfunction has been associated with impulsivity and disinhibition in WKS patients. The pathophysiology involves oxidative stress, excitotoxicity and inflammatory responses leading to neuronal death, but the relative contributions of each factor (alcohol and TD, either isolated or in interaction) to these phenomena are still poorly understood. A rat model was used by forced consumption of 20% (w/v) alcohol for 9 months (CA), TD hit (TD diet + pyrithiamine 0.25 mg/kg, i.p. daily injections the last 12 days of experimentation (TDD)), and both combined treatments (CA+TDD). Motor and cognitive performance and cortical damage were examined. CA caused hyperlocomotion as a possible sensitization of ethanol-induced excitatory effects and recognition memory deficits. In addition, CA+TDD animals showed a disinhibited-like behavior which appeared to be dependent on TDD. Additionally, combined treatment led to more pronounced alterations in nitrosative stress, lipid peroxidation, apoptosis and cell damage markers. Correlations between injury signals and disinhibition suggest that CA+TDD disrupts behaviors dependent on the frontal cortex. Our study sheds light on the potential disease-specific mechanisms, reinforcing the need for neuroprotective therapeutic approaches along with preventive treatments for the nutritional deficiency in WKS.
Collapse
Affiliation(s)
- Marta Moya
- Department of Psychobiology and Methods in Behavioral Sciences, Faculty of Psychology, Complutense University of Madrid (UCM), 28223 Madrid, Spain; (M.M.); (L.L.-V.)
- Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Leticia López-Valencia
- Department of Psychobiology and Methods in Behavioral Sciences, Faculty of Psychology, Complutense University of Madrid (UCM), 28223 Madrid, Spain; (M.M.); (L.L.-V.)
| | - Borja García-Bueno
- Departament of Pharmacology and Toxicology, Faculty of Medicine, Complutense University of Madrid (UCM), 28040 Madrid, Spain;
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación en Neuroquímica IUIN-UCM, Avda. Complutense s/n, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Laura Orio
- Department of Psychobiology and Methods in Behavioral Sciences, Faculty of Psychology, Complutense University of Madrid (UCM), 28223 Madrid, Spain; (M.M.); (L.L.-V.)
- Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
13
|
Michalovicz LT, Kelly KA, Miller DB, Sullivan K, O'Callaghan JP. The β-adrenergic receptor blocker and anti-inflammatory drug propranolol mitigates brain cytokine expression in a long-term model of Gulf War Illness. Life Sci 2021; 285:119962. [PMID: 34563566 PMCID: PMC9047058 DOI: 10.1016/j.lfs.2021.119962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/03/2022]
Abstract
Aims: Growing evidence suggests that Gulf War Illness (GWI) is the result of underlying neuroimmune dysfunction. For example, previously we found that several GWI-relevant organophosphate acetylcholinesterase inhibitors produce heightened neuroinflammatory responses following subchronic exposure to stress hormone as a mimic of high physiological stress. The goal of the current study was to evaluate the potential for the β-adrenergic receptor inhibitor and anti-inflammatory drug, propranolol, to treat neuroinflammation in a novel long-term mouse model of GWI. Main methods: Adult male C57BL/6J mice received a subchronic exposure to corticosterone (CORT) at levels mimicking high physiological stress followed by exposure to the sarin surrogate, diisopropyl fluorophosphate (DFP). These mice were then re-exposed to CORT every other week for a total of five weeks, followed by a systemic immune challenge with lipopolysaccharide (LPS). Animals receiving the propranolol treatment were given a single dose (20 mg/kg, i.p.) either four or 11 days prior to the LPS challenge. The potential anti-neuroinflammatory effects of propranolol were interrogated by analysis of cytokine mRNA expression. Key findings: We found that our long-term GWI model produces a primed neuroinflammatory response to subsequent immune challenge that is dependent upon GWI-relevant organophosphate exposure. Propranolol treatment abrogated the elaboration of inflammatory cytokine mRNA expression in the brain instigated in our model, having no treatment effects in non-DFP exposed groups. Significance: Our results indicate that propranolol may be a promising therapy for GWI with the potential to treat the underlying neuroinflammation associated with the illness.
Collapse
Affiliation(s)
- Lindsay T Michalovicz
- Health Effects Laboratory Division, Centers for Disease Control and Prevention-National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Kimberly A Kelly
- Health Effects Laboratory Division, Centers for Disease Control and Prevention-National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Diane B Miller
- Health Effects Laboratory Division, Centers for Disease Control and Prevention-National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - James P O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention-National Institute for Occupational Safety and Health, Morgantown, WV, USA.
| |
Collapse
|
14
|
Ramirez-Sanchez I, Navarrete-Yañez V, Garate-Carrillo A, Lara-Hernandez M, Espinosa-Raya J, Moreno-Ulloa A, Gomez-Diaz B, Cedeño-Garcidueñas AL, Ceballos G, Villarreal F. Restorative potential of (-)-epicatechin in a rat model of Gulf War illness muscle atrophy and fatigue. Sci Rep 2021; 11:21861. [PMID: 34750405 PMCID: PMC8575952 DOI: 10.1038/s41598-021-01093-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/22/2021] [Indexed: 01/05/2023] Open
Abstract
We examined in a rat model of Gulf War illness (GWI), the potential of (-)-epicatechin (Epi) to reverse skeletal muscle (SkM) atrophy and dysfunction, decrease mediators of inflammation and normalize metabolic perturbations. Male Wistar rats (n = 15) were provided orally with pyridostigmine bromide (PB) 1.3 mg/kg/day, permethrin (PM) 0.13 mg/kg/day (skin), DEET 40 mg/kg/day (skin) and were physically restrained for 5 min/day for 3 weeks. A one-week period ensued to fully develop the GWI-like profile followed by 2 weeks of either Epi treatment at 1 mg/kg/day by gavage (n = 8) or water (n = 7) for controls. A normal, control group (n = 15) was given vehicle and not restrained. At 6 weeks, animals were subjected to treadmill and limb strength testing followed by euthanasia. SkM and blood sampling was used for histological, biochemical and plasma pro-inflammatory cytokine and metabolomics assessments. GWI animals developed an intoxication profile characterized SkM atrophy and loss of function accompanied by increases in modulators of muscle atrophy, degradation markers and plasma pro-inflammatory cytokine levels. Treatment of GWI animals with Epi yielded either a significant partial or full normalization of the above stated indicators relative to normal controls. Plasma metabolomics revealed that metabolites linked to inflammation and SkM waste pathways were dysregulated in the GWI group whereas Epi, attenuated such changes. In conclusion, in a rat model of GWI, Epi partially reverses detrimental changes in SkM structure including modulators of atrophy, inflammation and select plasma metabolites yielding improved function.
Collapse
Affiliation(s)
- Israel Ramirez-Sanchez
- UCSD School of Medicine, 9500 Gilman Dr. BSB4028, La Jolla, CA, 92093-0613J, USA.
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, IPN, Mexico City, Mexico.
| | - Viridiana Navarrete-Yañez
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, IPN, Mexico City, Mexico
| | - Alejandra Garate-Carrillo
- UCSD School of Medicine, 9500 Gilman Dr. BSB4028, La Jolla, CA, 92093-0613J, USA
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, IPN, Mexico City, Mexico
| | | | - Judith Espinosa-Raya
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, IPN, Mexico City, Mexico
| | - Aldo Moreno-Ulloa
- Laboratorio MS2, Departamento de Innovación Biomédica, CICESE, Ensenada, Mexico
- Laboratorio Especializado en Metabolómica y Proteómica (MetPro), CICESE, Ensenada, Mexico
| | | | | | - Guillermo Ceballos
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, IPN, Mexico City, Mexico
| | - Francisco Villarreal
- UCSD School of Medicine, 9500 Gilman Dr. BSB4028, La Jolla, CA, 92093-0613J, USA.
- VA San Diego Health Care, San Diego, CA, USA.
| |
Collapse
|
15
|
Keating D, Zundel CG, Abreu M, Krengel M, Aenlle K, Nichols MD, Toomey R, Chao LL, Golier J, Abdullah L, Quinn E, Heeren T, Groh JR, Koo BB, Killiany R, Loggia ML, Younger J, Baraniuk J, Janulewicz P, Ajama J, Quay M, Baas PW, Qiang L, Conboy L, Kokkotou E, O'Callaghan JP, Steele L, Klimas N, Sullivan K. Boston biorepository, recruitment and integrative network (BBRAIN): A resource for the Gulf War Illness scientific community. Life Sci 2021; 284:119903. [PMID: 34453948 DOI: 10.1016/j.lfs.2021.119903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/31/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022]
Abstract
AIMS Gulf War Illness (GWI), a chronic debilitating disorder characterized by fatigue, joint pain, cognitive, gastrointestinal, respiratory, and skin problems, is currently diagnosed by self-reported symptoms. The Boston Biorepository, Recruitment, and Integrative Network (BBRAIN) is the collaborative effort of expert Gulf War Illness (GWI) researchers who are creating objective diagnostic and pathobiological markers and recommend common data elements for GWI research. MAIN METHODS BBRAIN is recruiting 300 GWI cases and 200 GW veteran controls for the prospective study. Key data and biological samples from prior GWI studies are being merged and combined into retrospective datasets. They will be made available for data mining by the BBRAIN network and the GWI research community. Prospective questionnaire data include general health and chronic symptoms, demographics, measures of pain, fatigue, medical conditions, deployment and exposure histories. Available repository biospecimens include blood, plasma, serum, saliva, stool, urine, human induced pluripotent stem cells and cerebrospinal fluid. KEY FINDINGS To date, multiple datasets have been merged and combined from 15 participating study sites. These data and samples have been collated and an online request form for repository requests as well as recommended common data elements have been created. Data and biospecimen sample requests are reviewed by the BBRAIN steering committee members for approval as they are received. SIGNIFICANCE The BBRAIN repository network serves as a much needed resource for GWI researchers to utilize for identification and validation of objective diagnostic and pathobiological markers of the illness.
Collapse
Affiliation(s)
- D Keating
- Boston University School of Public Health, Department of Environmental Health, 715 Albany St. T4W, Boston, MA 02118, USA.
| | - C G Zundel
- Boston University School of Medicine, Behavioral Neuroscience Program, 72 East Concord St., Boston, MA 02118, USA.
| | - M Abreu
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuroimmune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; Geriatric Research Education and Clinical Center, Miami VA Medical Center, Miami, FL 33125, USA.
| | - M Krengel
- Boston University School of Medicine, Department of Neurology, 72 East Concord St., Boston, MA 02118, USA.
| | - K Aenlle
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuroimmune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; Geriatric Research Education and Clinical Center, Miami VA Medical Center, Miami, FL 33125, USA.
| | - M D Nichols
- Boston University School of Public Health, Department of Environmental Health, 715 Albany St. T4W, Boston, MA 02118, USA
| | - R Toomey
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Boston University, 900 Commonwealth Ave., Boston, MA, USA.
| | - L L Chao
- San Francisco Veterans Affairs Health Care System, University of California, San Francisco, CA 94143, USA.
| | - J Golier
- James J. Peters VA Medical Center, OOMH-526, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Psychiatry Department, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY 10029, USA.
| | - L Abdullah
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL 34243, USA; Open University, Milton Keynes, United Kingdom; James A. Haley Veterans' Hospital, Tampa, FL, USA.
| | - E Quinn
- Boston University School of Public Health, Department of Biostatistics, 715 Albany St., Boston, MA 02118, USA.
| | - T Heeren
- Boston University School of Public Health, Department of Biostatistics, 715 Albany St., Boston, MA 02118, USA.
| | - J R Groh
- Boston University School of Medicine, Behavioral Neuroscience Program, 72 East Concord St., Boston, MA 02118, USA.
| | - B B Koo
- Boston University School of Medicine, Department of Anatomy and Neurobiology, 72 East Concord St., Boston, MA 02118, USA.
| | - R Killiany
- Boston University School of Public Health, Department of Environmental Health, 715 Albany St. T4W, Boston, MA 02118, USA; Boston University School of Medicine, Department of Neurology, 72 East Concord St., Boston, MA 02118, USA; Boston University School of Medicine, Department of Anatomy and Neurobiology, 72 East Concord St., Boston, MA 02118, USA.
| | - M L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - J Younger
- Neuroinflammation, Pain & Fatigue Lab, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - J Baraniuk
- Department of Medicine, Georgetown University, Washington, DC, USA.
| | - P Janulewicz
- Boston University School of Public Health, Department of Environmental Health, 715 Albany St. T4W, Boston, MA 02118, USA.
| | - J Ajama
- Boston University School of Public Health, Department of Environmental Health, 715 Albany St. T4W, Boston, MA 02118, USA.
| | - M Quay
- Boston University School of Public Health, Department of Environmental Health, 715 Albany St. T4W, Boston, MA 02118, USA.
| | - P W Baas
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, 2900 Queen Lane, Philadelphia, PA 19129, USA.
| | - L Qiang
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, 2900 Queen Lane, Philadelphia, PA 19129, USA.
| | - L Conboy
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - E Kokkotou
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - J P O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, USA.
| | - L Steele
- Baylor College of Medicine Neuropsychiatry Division, Department of Psychiatry and Behavioral Sciences, Houston, TX 77030, USA.
| | - N Klimas
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuroimmune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; Geriatric Research Education and Clinical Center, Miami VA Medical Center, Miami, FL 33125, USA.
| | - K Sullivan
- Boston University School of Public Health, Department of Environmental Health, 715 Albany St. T4W, Boston, MA 02118, USA.
| |
Collapse
|
16
|
Bryant JD, Kodali M, Shuai B, Menissy SS, Graves PJ, Phan TT, Dantzer R, Shetty AK, Ciaccia West L, West AP. Neuroimmune mechanisms of cognitive impairment in a mouse model of Gulf War illness. Brain Behav Immun 2021; 97:204-218. [PMID: 34333111 PMCID: PMC8453129 DOI: 10.1016/j.bbi.2021.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 07/13/2021] [Accepted: 07/24/2021] [Indexed: 12/17/2022] Open
Abstract
Gulf War Illness (GWI) is a chronic, multi-symptom disorder affecting approximately 30 percent of the nearly 700,000 Veterans of the 1991 Persian Gulf War. GWI-related chemical (GWIC) exposure promotes immune activation that correlates with cognitive impairment and other symptoms of GWI. However, the molecular mechanisms and signaling pathways linking GWIC to inflammation and neurological symptoms remain unclear. Here we show that acute exposure of murine macrophages to GWIC potentiates innate immune signaling and inflammatory cytokine production. Using an established mouse model of GWI, we report that neurobehavioral changes and neuroinflammation are attenuated in mice lacking the cyclic GMP-AMP synthase (cGAS)-Stimulator of Interferon Genes (STING) and NOD-, LRR- or pyrin domain-containing protein 3 (NLRP3) innate immune pathways. In addition, we report sex differences in response to GWIC, with female mice showing more pronounced cognitive impairment and hippocampal astrocyte hypertrophy. In contrast, male mice display a GWIC-dependent upregulation of proinflammatory cytokines in the plasma that is not present in female mice. Our results indicate that STING and NLRP3 are key mediators of the cognitive impairment and inflammation observed in GWI and provide important new information on sex differences in this model.
Collapse
Affiliation(s)
- Joshua D. Bryant
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - Saeed S. Menissy
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Paige J. Graves
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Thien Trong Phan
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Dantzer
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - Laura Ciaccia West
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA.
| | - A. Phillip West
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA,Corresponding authors. (L. Ciaccia West), (A.P. West)
| |
Collapse
|
17
|
Kimono DA. Gastrointestinal problems, mechanisms and possible therapeutic directions in Gulf war illness: a mini review. Mil Med Res 2021; 8:50. [PMID: 34503577 PMCID: PMC8431926 DOI: 10.1186/s40779-021-00341-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022] Open
Abstract
By its nature, Gulf war illness (GWI) is multisymptomatic and affects several organ systems in the body. Along with other symptoms, veterans who suffer from GWI commonly report chronic gastrointestinal issues such as constipation, pain, indigestion, etc. However, until recently, most attention has been focused on neurological disturbances such as cognitive impairments, chronic fatigue, and chronic pain among affected veterans. With such high prevalence of gastrointestinal problems among Gulf war (GW) veterans, it is surprising that there is little research to investigate the mechanisms behind these issues. This review summarizes all the available works on the mechanisms behind gastrointestinal problems in GWI that have been published to date in various databases. Generally, these studies, which were done in rodent models, in vitro and human cohorts propose that an altered microbiome, a reactive enteric nervous system or a leaky gut among other possible mechanisms are the major drivers of gastrointestinal problems reported in GWI. This review aims to draw attention to the gastrointestinal tract as an important player in GWI disease pathology and a potential therapeutic target.
Collapse
|
18
|
Carpenter JM, Brown KA, Diaz AN, Dockman RL, Benbow RA, Harn DA, Norberg T, Wagner JJ, Filipov NM. Delayed treatment with the immunotherapeutic LNFPIII ameliorates multiple neurological deficits in a pesticide-nerve agent prophylactic mouse model of Gulf War Illness. Neurotoxicol Teratol 2021; 87:107012. [PMID: 34256162 DOI: 10.1016/j.ntt.2021.107012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022]
Abstract
Residual effects of the 1990-1991 Gulf War (GW) still plague veterans 30 years later as Gulf War Illness (GWI). Thought to stem mostly from deployment-related chemical overexposures, GWI is a disease with multiple neurological symptoms with likely immunological underpinnings. Currently, GWI remains untreatable, and the long-term neurological disease manifestation is not characterized fully. The present study sought to expand and evaluate the long-term implications of prior GW chemicals exposure on neurological function 6-8 months post GWI-like symptomatology induction. Additionally, the beneficial effects of delayed treatment with the glycan immunotherapeutic lacto-N-fucopentaose III (LNFPIII) were evaluated. Male C57BL/6J mice underwent a 10-day combinational exposure (i.p.) to GW chemicals, the nerve agent prophylactic pyridostigmine bromide (PB) and the insecticide permethrin (PM; 0.7 and 200 mg/kg, respectively). Beginning 4 months after PB/PM exposure, a subset of the mice were treated twice a week until study completion with LNFPIII. Evaluation of cognition/memory, motor function, and mood was performed beginning 1 month after LNFPIII treatment initiation. Prior exposure to PB/PM produced multiple locomotor, neuromuscular, and sensorimotor deficits across several motor tests. Subtle anxiety-like behavior was also present in PB/PM mice in mood tests. Further, PB/PM-exposed mice learned at a slower rate, mostly during early phases of the learning and memory tests employed. LNFPIII treatment restored or improved many of these behaviors, particularly in motor and cognition/memory domains. Electrophysiology data collected from hippocampal slices 8 months post PB/PM exposure revealed modest aberrations in basal synaptic transmission and long-term potentiation in the dorsal or ventral hippocampus that were improved by LNFPIII treatment. Immunohistochemical analysis of tyrosine hydroxylase (TH), a dopaminergic marker, did not detect major PB/PM effects along the nigrostriatal pathway, but LNFPIII increased striatal TH. Additionally, neuroinflammatory cells were increased in PB/PM mice, an effect reduced by LNFPIII. Collectively, long-term neurobehavioral and neurobiological dysfunction associated with prior PB/PM exposure was characterized; delayed LNFPIII treatment provided multiple behavioral and biological beneficial effects in the context of GWI, highlighting its potential as a GWI therapeutic.
Collapse
Affiliation(s)
- Jessica M Carpenter
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States; Neuroscience Program, University of Georgia, Athens, GA, United States
| | - Kyle A Brown
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States
| | - Alexa N Diaz
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States
| | - Rachel L Dockman
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Robert A Benbow
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States
| | - Donald A Harn
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States; Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Thomas Norberg
- Department of Chemistry, University of Uppsala, Uppsala, Sweden
| | - John J Wagner
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States; Neuroscience Program, University of Georgia, Athens, GA, United States; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States.
| | - Nikolay M Filipov
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States; Neuroscience Program, University of Georgia, Athens, GA, United States; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States.
| |
Collapse
|
19
|
Raju RP, Terry AV. Dysregulation of cellular energetics in Gulf War Illness. Toxicology 2021; 461:152894. [PMID: 34389359 DOI: 10.1016/j.tox.2021.152894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 01/15/2023]
Abstract
Gulf War Illness (GWI) is estimated to have affected about one third of the Veterans who participated in the first Persian Gulf War. The symptoms of GWI include chronic neurologic impairments, chronic fatigue syndrome, as well as fibromyalgia and immune system disorders, collectively referred to as chronic multi-symptom illness. Thirty years after the war, we still do not have an effective treatment for GWI. It is necessary to understand the molecular basis of the symptoms of GWI in order to develop appropriate therapeutic strategies. Cellular energetics are critical to the maintenance of cellular homeostasis, a process that is highly dependent on intact mitochondrial function and there is significant evidence from both human studies and animal models that mitochondrial impairments may lead to GWI symptoms. The available clinical and pre-clinical data suggest that agents that improve mitochondrial function have the potential to restore cellular energetics and treat GWI. To date, the experiments conducted in animal models of GWI have mainly focused on neurobehavioral aspects of the illness. Additional studies to address the fundamental biological processes that trigger the dysregulation of cellular energetics in GWI are warranted to better understand the underlying pathology and to develop new treatment methods. This review highlights studies related to mitochondrial dysfunction observed in both GW veterans and in animal models of GWI.
Collapse
Affiliation(s)
- Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States.
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| |
Collapse
|
20
|
Ribeiro ACR, Deshpande LS. A review of pre-clinical models for Gulf War Illness. Pharmacol Ther 2021; 228:107936. [PMID: 34171340 DOI: 10.1016/j.pharmthera.2021.107936] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 02/08/2023]
Abstract
Gulf War Illness (GWI) is a chronic multisymptomatic disorder that afflicts over 1/3rd of the 1991 GW veterans. It spans multiple bodily systems and presents itself as a syndrome exhibiting diverse symptoms including fatigue, depression, mood, and memory and concentration deficits, musculoskeletal pain and gastrointestinal distress in GW veterans. The etiology of GWI is complex and many factors, including chemical, physiological, and environmental stressors present in the GW arena, have been implicated for its development. It has been over 30 years since the end of the GW but, GWI has been persistent in suffering veterans who are also dealing with paucity of effective treatments. The multifactorial aspect of GWI along with genetic heterogeneity and lack of available data surrounding war-time exposures have proved to be challenging in developing pre-clinical models of GWI. Despite this, over a dozen GWI animal models exist in the literature. In this article, following a brief discussion of GW history, GWI definitions, and probable causes for its pathogenesis, we will expand upon various experimental models used in GWI laboratory research. These animal models will be discussed in the context of their attempts at mimicking GW-related exposures with regards to the variations in chemical combinations, doses, and frequency of exposures. We will discuss their advantages and limitations in modeling GWI followed by a discussion of behavioral and molecular findings in these models. The mechanistic data obtained from these preclinical studies have offered multiple molecular pathways including chronic inflammation, mitochondrial dysfunction, oxidative stress, lipid disturbances, calcium homeostatic alterations, changes in gut microbiota, and epigenetic modifications, amongst others for explaining GWI development and its persistence. Finally, these findings have also informed us on novel druggable targets in GWI. While, it has been difficult to conceive a single pre-clinical model that could express all the GWI signs and exhibit biological complexity reflective of the clinical presentation in GWI, animal models have been critical for identifying molecular underpinnings of GWI and evaluating treatment strategies for GWI.
Collapse
Affiliation(s)
- Ana C R Ribeiro
- Departments of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Laxmikant S Deshpande
- Departments of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA; Departments of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
21
|
Moya M, San Felipe D, Ballesta A, Alén F, Rodríguez de Fonseca F, García-Bueno B, Marco EM, Orio L. Cerebellar and cortical TLR4 activation and behavioral impairments in Wernicke-Korsakoff Syndrome: Pharmacological effects of oleoylethanolamide. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110190. [PMID: 33271211 DOI: 10.1016/j.pnpbp.2020.110190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 01/19/2023]
Abstract
Wernicke-Korsakoff Syndrome (WKS) is a neuropsychiatric disorder whose etiology is a thiamine deficiency (TD), with alcoholism being the main underlying cause. Previous evidence suggests the presence of initial neuroinflammation and oxidative/nitrosative stress in the physiopathology, although the specific molecular mechanisms underlying TD-induced brain damage and behavioral disabilities are unknown. We explored the specific role of the innate immune receptor TLR4 in three murine models of WKS, based on the combination of a thiamine-deficient diet and pyrithiamine injections (0.25 mg/kg, i.p.) over time. The Symptomatic Model (SM) allowed us to describe the complete neurological/neurobehavioral symptomatology over 16 days of TD. Animals showed an upregulation of the TLR4 signaling pathway both in the frontal cortex (FC) and cerebellum and clear motor impairments related with cerebellar dysfunction. However, in the Pre-Symptomatic Model (PSM), 12 days of TD induced the TLR4 pathway upregulation in the FC, which correlated with disinhibited-like behavior, but not in the cerebellum, and no motor impairments. In addition, we tested the effects of the biolipid oleoylethanolamide (OEA, 10 mg/kg, i.p., once daily, starting before any symptom of the pathology is manifested) through the Glucose-Precipitated Model (GPM), which was generated by glucose loading (5 g/kg, i.v., last day) in thiamine-deficient animals to accelerate damage. Pretreatment with OEA prevented the TLR4-induced signature in the FC, as well as an underlying incipient memory disability and disinhibited-like behavior. This study suggests a key role for TLR4 in TD-induced neuroinflammation in the FC and cerebellum, and it reveals different vulnerability of these brain regions in WKS over time. Pre-treatment with OEA counteracts TD-induced TLR4-associated neuroinflammation and may serve as co-adjuvant therapy to prevent WKS-induced neurobehavioral alterations.
Collapse
Affiliation(s)
- Marta Moya
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid (UCM), Madrid, Spain; Red de Trastornos Adictivos (RTA) del Instituto de Salud Carlos III (ISCIII), Spain
| | - Diego San Felipe
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, UCM, Spain
| | - Antonio Ballesta
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Francisco Alén
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid (UCM), Madrid, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental, Hospital Regional de Málaga, Spain; Red de Trastornos Adictivos (RTA) del Instituto de Salud Carlos III (ISCIII), Spain
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, Faculty of Medicine, UCM, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación en Neuroquímica UCM, Spain
| | - Eva M Marco
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, UCM, Spain; Red de Trastornos Adictivos (RTA) del Instituto de Salud Carlos III (ISCIII), Spain
| | - Laura Orio
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid (UCM), Madrid, Spain; Red de Trastornos Adictivos (RTA) del Instituto de Salud Carlos III (ISCIII), Spain.
| |
Collapse
|
22
|
Brown KA, Carpenter JM, Preston CJ, Ludwig HD, Clay KB, Harn DA, Norberg T, Wagner JJ, Filipov NM. Lacto-N-fucopentaose-III ameliorates acute and persisting hippocampal synaptic plasticity and transmission deficits in a Gulf War Illness mouse model. Life Sci 2021; 279:119707. [PMID: 34102195 DOI: 10.1016/j.lfs.2021.119707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/19/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
AIMS The present study investigated if treatment with the immunotherapeutic, lacto-N-fucopentaose-III (LNFPIII), resulted in amelioration of acute and persisting deficits in synaptic plasticity and transmission as well as trophic factor expression along the hippocampal dorsoventral axis in a mouse model of Gulf War Illness (GWI). MAIN METHODS Mice received either coadministered or delayed LNFPIII treatment throughout or following, respectively, exposure to a 15-day GWI induction paradigm. Subsets of animals were subsequently sacrificed 48 h, seven months, or 11 months post GWI-related (GWIR) exposure for hippocampal qPCR or in vitro electrophysiology experiments. KEY FINDINGS Progressively worsened impairments in hippocampal synaptic plasticity, as well as a biphasic effect on hippocampal synaptic transmission, were detected in GWIR-exposed animals. Dorsoventral-specific impairments in hippocampal synaptic responses became more pronounced over time, particularly in the dorsal hippocampus. Notably, delayed LNFPIII treatment ameliorated GWI-related aberrations in hippocampal synaptic plasticity and transmission seven and 11 months post-exposure, an effect that was consistent with enhanced hippocampal trophic factor expression and absence of increased interleukin 6 (IL-6) in animals treated with LNFPIII. SIGNIFICANCE Approximately a third of Gulf War Veterans have GWI; however, GWI therapeutics are presently limited to targeted and symptomatic treatments. As increasing evidence underscores the substantial role of persisting neuroimmune dysfunction in GWI, efficacious neuroactive immunotherapeutics hold substantial promise in yielding GWI remission. The findings in the present report indicate that LNFPIII may be an efficacious candidate for ameliorating persisting neurological abnormalities presented in GWI.
Collapse
Affiliation(s)
- Kyle A Brown
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States
| | - Jessica M Carpenter
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States; Neuroscience Program, University of Georgia, Athens, GA, United States
| | - Collin J Preston
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States
| | - Helaina D Ludwig
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States
| | - Kendall B Clay
- Neuroscience Program, University of Georgia, Athens, GA, United States
| | - Donald A Harn
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States; Center for Tropical and Emerging Diseases, University of Georgia, Athens, GA, United States
| | - Thomas Norberg
- Department of Chemistry, University of Uppsala, Uppsala, Sweden
| | - John J Wagner
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States; Neuroscience Program, University of Georgia, Athens, GA, United States.
| | - Nikolay M Filipov
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States; Neuroscience Program, University of Georgia, Athens, GA, United States.
| |
Collapse
|
23
|
Venkatasamy L, Nizamutdinov D, Jenkins J, Shapiro LA. Vagus Nerve Stimulation Ameliorates Cognitive Impairment and Increased Hippocampal Astrocytes in a Mouse Model of Gulf War Illness. Neurosci Insights 2021; 16:26331055211018456. [PMID: 34104886 PMCID: PMC8165814 DOI: 10.1177/26331055211018456] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/29/2021] [Indexed: 01/17/2023] Open
Abstract
Gulf war illness (GWI), is a chronic multi-symptom illness that has impacted approximately one-third of the veterans who served in the 1990 to 1991 Gulf War. GWI symptoms include cognitive impairments (eg, memory and concentration problems), headaches, migraines, fatigue, gastrointestinal and respiratory issues, as well as emotional deficits. The exposure to neurological chemicals such as the anti-nerve gas drug, pyridostigmine bromide (PB), and the insecticide permethrin (PER), may contribute to the etiologically related factors of GWI. Various studies utilizing mouse models of GWI have reported the interplay of these chemical agents in increasing neuroinflammation and cognitive dysfunction. Astrocytes are involved in the secretion of neuroinflammatory cytokines and chemokines in pathological conditions and have been implicated in GWI symptomology. We hypothesized that exposure to PB and PER causes lasting changes to hippocampal astrocytes, concurrent with chronic cognitive deficits that can be reversed by cervical vagus nerve stimulation (VNS). GWI was induced in CD1 mice by injecting the mixture of PER (200 mg/kg) and PB (2 mg/kg), i.p. for 10 consecutive days. VNS stimulators were implanted at 33 weeks after GWI induction. The results show age-related cognitive alterations at approximately 9 months after exposure to PB and PER. The results also showed an increased number of GFAP-labeled astrocytes in the hippocampus and dentate gyrus that was ameliorated by VNS.
Collapse
Affiliation(s)
- Lavanya Venkatasamy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University, Bryan, TX, USA
| | - Damir Nizamutdinov
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University, Bryan, TX, USA
| | - Jaclyn Jenkins
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University, Bryan, TX, USA
| | - Lee A Shapiro
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University, Bryan, TX, USA
| |
Collapse
|
24
|
Nkiliza A, Joshi U, Evans JE, Ait-Ghezala G, Parks M, Crawford F, Mullan M, Abdullah L. Adaptive Immune Responses Associated with the Central Nervous System Pathology of Gulf War Illness. Neurosci Insights 2021; 16:26331055211018458. [PMID: 34104887 PMCID: PMC8155779 DOI: 10.1177/26331055211018458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Gulf War Illness is a multisymptomatic condition which affects 30% of veterans
from the 1991 Gulf War. While there is evidence for a role of peripheral
cellular and humoral adaptive immune responses in Gulf War Illness, a potential
role of the adaptive immune system in the central nervous system pathology of
this condition remains unknown. Furthermore, many of the clinical features of
Gulf War Illness resembles those of autoimmune diseases, but the biological
processes are likely different as the etiology of Gulf War Illness is linked to
hazardous chemical exposures specific to the Gulf War theatre. This review
discusses Gulf War chemical–induced maladaptive immune responses and a potential
role of cellular and humoral immune responses that may be relevant to the
central nervous system symptoms and pathology of Gulf War Illness. The
discussion may stimulate investigations into adaptive immunity for developing
novel therapies for Gulf War Illness.
Collapse
|
25
|
Armeli F, Bonucci A, Maggi E, Pinto A, Businaro R. Mediterranean Diet and Neurodegenerative Diseases: The Neglected Role of Nutrition in the Modulation of the Endocannabinoid System. Biomolecules 2021; 11:biom11060790. [PMID: 34073983 PMCID: PMC8225112 DOI: 10.3390/biom11060790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative disorders are a widespread cause of morbidity and mortality worldwide, characterized by neuroinflammation, oxidative stress and neuronal depletion. The broad-spectrum neuroprotective activity of the Mediterranean diet is widely documented, but it is not yet known whether its nutritional and caloric balance can induce a modulation of the endocannabinoid system. In recent decades, many studies have shown how endocannabinoid tone enhancement may be a promising new therapeutic strategy to counteract the main hallmarks of neurodegeneration. From a phylogenetic point of view, the human co-evolution between the endocannabinoid system and dietary habits could play a key role in the pro-homeostatic activity of the Mediterranean lifestyle: this adaptive balance among our ancestors has been compromised by the modern Western diet, resulting in a “clinical endocannabinoid deficiency syndrome”. This review aims to evaluate the evidence accumulated in the literature on the neuroprotective, immunomodulatory and antioxidant properties of the Mediterranean diet related to the modulation of the endocannabinoid system, suggesting new prospects for research and clinical interventions against neurodegenerative diseases in light of a nutraceutical paradigm.
Collapse
Affiliation(s)
- Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Alessio Bonucci
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Elisa Maggi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Alessandro Pinto
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
- Correspondence:
| |
Collapse
|
26
|
Lacto-N-fucopentaose-III (LNFPIII) ameliorates acute aberrations in hippocampal synaptic transmission in a Gulf War Illness animal model. Brain Res 2021; 1766:147513. [PMID: 33961896 DOI: 10.1016/j.brainres.2021.147513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023]
Abstract
Approximately one-third of Persian Gulf War veterans are afflicted by Gulf War Illness (GWI), a chronic multisymptom condition that fundamentally presents with cognitive deficits (i.e., learning and memory impairments) and neuroimmune dysfunction (i.e., inflammation). Factors associated with GWI include overexposures to neurotoxic pesticides and nerve agent prophylactics such as permethrin (PM) and pyridostigmine bromide (PB), respectively. GWI-related neurological impairments associated with PB-PM overexposures have been recapitulated in animal models; however, there is a paucity of studies assessing PB-PM-related aberrations in hippocampal synaptic plasticity and transmission that may underlie behavioral impairments. Importantly, FDA-approved neuroactive treatments are currently unavailable for GWI. In the present study, we assessed the efficacy of an immunomodulatory therapeutic, lacto-N-fucopentaose-III (LNFPIII), on ameliorating acute effects of in vivo PB-PM exposure on synaptic plasticity and transmission as well as trophic factor/cytokine expression along the hippocampal dorsoventral axis. PB-PM exposure resulted in hippocampal synaptic transmission deficits 48 h post-exposure, a response that was ameliorated by LNFPIII coadministration, particularly in the dorsal hippocampus (dH). LNFPIII coadministration also enhanced synaptic transmission in the dH and the ventral hippocampus (vH). Notably, LNFPIII coadministration elevated long-term potentiation in the dH. Further, PB-PM exposure and LNFPIII coadministration uniquely altered key inflammatory cytokine and trophic factor production in the dH and the vH. Collectively, these findings demonstrate that PB-PM exposure impaired hippocampal synaptic responses 48 h post-exposure, impairments that differentially manifested along the dorsoventral axis. Importantly, LNFPIII ameliorated GWI-related electrophysiological deficits, a beneficial effect indicating the potential efficacy of LNFPIII for treating GWI.
Collapse
|
27
|
The peroxisome proliferator-activated receptor gamma (PPARγ) agonist, rosiglitazone, ameliorates neurofunctional and neuroinflammatory abnormalities in a rat model of Gulf War Illness. PLoS One 2020; 15:e0242427. [PMID: 33186383 PMCID: PMC7665704 DOI: 10.1371/journal.pone.0242427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background Gulf War (GW) Illness (GWI) is a debilitating condition with a complex constellation of immune, endocrine and neurological symptoms, including cognitive impairment, anxiety and depression. We studied a novel model of GWI based on 3 known common GW exposures (GWE): (i) intranasal lipopolysaccharide, to which personnel were exposed during desert sand storms; (ii) pyridostigmine bromide, used as prophylaxis against chemical warfare; and (iii) chronic unpredictable stress, an inescapable element of war. We used this model to evaluate prophylactic treatment with the PPARγ agonist, rosiglitazone (ROSI). Methods Rats were subjected to the three GWE for 33 days. In series 1 and 2, male and female GWE-rats were compared to naïve rats. In series 3, male rats with GWE were randomly assigned to prophylactic treatment with ROSI (GWE-ROSI) or vehicle. After the 33-day exposures, three neurofunctional domains were evaluated: cognition (novel object recognition), anxiety-like behaviors (elevated plus maze, open field) and depression-like behaviors (coat state, sucrose preference, splash test, tail suspension and forced swim). Brains were analyzed for astrocytic and microglial activation and neuroinflammation (GFAP, Iba1, tumor necrosis factor and translocator protein). Neurofunctional data from rats with similar exposures were pooled into 3 groups: naïve, GWE and GWE-ROSI. Results Compared to naïve rats, GWE-rats showed significant abnormalities in the three neurofunctional domains, along with significant neuroinflammation in amygdala and hippocampus. There were no differences between males and females with GWE. GWE-ROSI rats showed significant attenuation of neuroinflammation and of some of the neurofunctional abnormalities. Conclusion This novel GWI model recapitulates critical neurofunctional abnormalities reported by Veterans with GWI. Concurrent prophylactic treatment with ROSI was beneficial in this model.
Collapse
|
28
|
Dickey B, Madhu LN, Shetty AK. Gulf War Illness: Mechanisms Underlying Brain Dysfunction and Promising Therapeutic Strategies. Pharmacol Ther 2020; 220:107716. [PMID: 33164782 DOI: 10.1016/j.pharmthera.2020.107716] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
Gulf War Illness (GWI), a chronic multisymptom health problem, afflicts ~30% of veterans served in the first GW. Impaired brain function is among the most significant symptoms of GWI, which is typified by persistent cognitive and mood impairments, concentration problems, headaches, chronic fatigue, and musculoskeletal pain. This review aims to discuss findings from animal prototypes and veterans with GWI on mechanisms underlying its pathophysiology and emerging therapeutic strategies for alleviating brain dysfunction in GWI. Animal model studies have linked brain impairments to incessantly elevated oxidative stress, chronic inflammation, inhibitory interneuron loss, altered lipid metabolism and peroxisomes, mitochondrial dysfunction, modified expression of genes relevant to cognitive function, and waned hippocampal neurogenesis. Furthermore, the involvement of systemic alterations such as the increased intensity of reactive oxygen species and proinflammatory cytokines in the blood, transformed gut microbiome, and activation of the adaptive immune response have received consideration. Investigations in veterans have suggested that brain dysfunction in GWI is linked to chronic activation of the executive control network, impaired functional connectivity, altered blood flow, persistent inflammation, and changes in miRNA levels. Lack of protective alleles from Class II HLA genes, the altered concentration of phospholipid species and proinflammatory factors in the circulating blood have also been suggested as other aiding factors. While some drugs or combination therapies have shown promise for alleviating symptoms in clinical trials, larger double-blind, placebo-controlled trials are needed to validate such findings. Based on improvements seen in animal models of GWI, several antioxidants and anti-inflammatory compounds are currently being tested in clinical trials. However, reliable blood biomarkers that facilitate an appropriate screening of veterans for brain pathology need to be discovered. A liquid biopsy approach involving analysis of brain-derived extracellular vesicles in the blood appears efficient for discerning the extent of neuropathology both before and during clinical trials.
Collapse
Affiliation(s)
- Brandon Dickey
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX, USA; Texas A&M University Health Science Center College of Medicine, Temple, TX, USA
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX, USA.
| |
Collapse
|
29
|
Joshi U, Evans JE, Pearson A, Saltiel N, Cseresznye A, Darcey T, Ojo J, Keegan AP, Oberlin S, Mouzon B, Paris D, Klimas N, Sullivan K, Mullan M, Crawford F, Abdullah L. Targeting sirtuin activity with nicotinamide riboside reduces neuroinflammation in a GWI mouse model. Neurotoxicology 2020; 79:84-94. [PMID: 32343995 DOI: 10.1016/j.neuro.2020.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/26/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
Gulf War Illness (GWI) affects 30% of veterans from the 1991 Gulf War (GW), who suffer from symptoms that reflect ongoing mitochondria dysfunction. Brain mitochondria bioenergetics dysfunction in GWI animal models corresponds with astroglia activation and neuroinflammation. In a pilot study of GW veterans (n = 43), we observed that blood nicotinamide adenine dinucleotide (NAD) and sirtuin 1 (Sirt1) protein levels were decreased in the blood of veterans with GWI compared to healthy GW veterans. Since nicotinamide riboside (NR)-mediated targeting of Sirt1 is shown to improve mitochondria function, we tested whether NR can restore brain bioenergetics and reduce neuroinflammation in a GWI mouse model. We administered a mouse diet supplemented with NR at 100μg/kg daily for 2-months to GWI and control mice (n = 27). During treatment, mice were assessed for fatigue-type behavior using the Forced Swim Test (FST), followed by euthanasia for biochemistry and immunohistochemistry analyses. Fatigue-type behavior was elevated in GWI mice compared to control mice and lower in GWI mice treated with NR compared to untreated GWI mice. Levels of plasma NAD and brain Sirt1 were low in untreated GWI mice, while GWI mice treated with NR had higher levels, similar to those of control mice. Deacetylation of the nuclear-factor κB (NFκB) p65 subunit and peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) was an increase in the brains of NR-treated GWI mice. This corresponded with a decrease in pro-inflammatory cytokines and lipid peroxidation and an increase in markers of mitochondrial bioenergetics in the brains of GWI mice. These findings suggest that targeting NR mediated Sirt1 activation restores brain bioenergetics and reduces inflammation in GWI mice. Further evaluation of NR in GWI is warranted to determine its potential efficacy in treating GWI.
Collapse
Affiliation(s)
- Utsav Joshi
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, United States; Open University, Milton Keynes, United Kingdom; James A. Haley Veterans' Hospital, Tampa, Florida, United States
| | - James E Evans
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, United States; James A. Haley Veterans' Hospital, Tampa, Florida, United States
| | - Andrew Pearson
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, United States; Open University, Milton Keynes, United Kingdom; James A. Haley Veterans' Hospital, Tampa, Florida, United States
| | - Nicole Saltiel
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, United States; James A. Haley Veterans' Hospital, Tampa, Florida, United States
| | - Adam Cseresznye
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, United States; James A. Haley Veterans' Hospital, Tampa, Florida, United States
| | - Teresa Darcey
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, United States; James A. Haley Veterans' Hospital, Tampa, Florida, United States
| | - Joseph Ojo
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, United States; James A. Haley Veterans' Hospital, Tampa, Florida, United States
| | - Andrew P Keegan
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, United States; James A. Haley Veterans' Hospital, Tampa, Florida, United States
| | - Sarah Oberlin
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, United States
| | - Benoit Mouzon
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, United States; Open University, Milton Keynes, United Kingdom; James A. Haley Veterans' Hospital, Tampa, Florida, United States
| | - Daniel Paris
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, United States; Open University, Milton Keynes, United Kingdom; James A. Haley Veterans' Hospital, Tampa, Florida, United States
| | - Nancy Klimas
- Nova Southeastern University, Fort Lauderdale, United States
| | - Kimberly Sullivan
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, United States
| | - Michael Mullan
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, United States; Open University, Milton Keynes, United Kingdom
| | - Fiona Crawford
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, United States; Open University, Milton Keynes, United Kingdom; James A. Haley Veterans' Hospital, Tampa, Florida, United States
| | - Laila Abdullah
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, United States; Open University, Milton Keynes, United Kingdom; James A. Haley Veterans' Hospital, Tampa, Florida, United States.
| |
Collapse
|
30
|
Huguenard CJC, Cseresznye A, Evans JE, Oberlin S, Langlois H, Ferguson S, Darcey T, Nkiliza A, Dretsch M, Mullan M, Crawford F, Abdullah L. Plasma Lipidomic Analyses in Cohorts With mTBI and/or PTSD Reveal Lipids Differentially Associated With Diagnosis and APOE ε4 Carrier Status. Front Physiol 2020; 11:12. [PMID: 32082186 PMCID: PMC7005602 DOI: 10.3389/fphys.2020.00012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/13/2020] [Indexed: 01/05/2023] Open
Abstract
The differential diagnosis between mild Traumatic Brain Injury (mTBI) sequelae and Post-Traumatic Stress Disorder (PTSD) is challenging due to their symptomatic overlap and co-morbidity. As such, there is a need to develop biomarkers which can help with differential diagnosis of these two conditions. Studies from our group and others suggest that blood and brain lipids are chronically altered in both mTBI and PTSD. Therefore, examining blood lipids presents a minimally invasive and cost-effective approach to identify promising biomarkers of these conditions. Using liquid chromatography-mass spectrometry (LC-MS) we examined hundreds of lipid species in the blood of healthy active duty soldiers (n = 52) and soldiers with mTBI (n = 21), PTSD (n = 34) as well as co-morbid mTBI and PTSD (n = 13) to test whether lipid levels were differentially altered with each. We also examined if the apolipoprotein E (APOE) ε4 allele can affect the association between diagnosis and peripheral lipid levels in this cohort. We show that several lipid classes are altered with diagnosis and that there is an interaction between diagnosis and the ε4 carrier status on these lipids. Indeed, total lipid levels as well as both the degree of unsaturation and chain lengths are differentially altered with diagnosis and ε4 status, specifically long chain unsaturated triglycerides (TG) and both saturated and mono-unsaturated diglycerides (DG). Additionally, an examination of lipid species reveals distinct profiles in each diagnostic group stratified by ε4 status, mainly in TG, saturated DG species and polyunsaturated phosphatidylserines. In summary, we show that peripheral lipids are promising biomarker candidates to assist with the differential diagnosis of mTBI and PTSD. Further, ε4 carrier status alone and in interaction with diagnosis has a strong influence on peripheral lipid levels. Therefore, examining ε4 status along with peripheral lipid levels could help with differential diagnosis of mTBI and PTSD.
Collapse
Affiliation(s)
- Claire J C Huguenard
- The Roskamp Institute, Sarasota, FL, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Adam Cseresznye
- The Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - James E Evans
- The Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Sarah Oberlin
- The Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Heather Langlois
- The Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Scott Ferguson
- The Roskamp Institute, Sarasota, FL, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Teresa Darcey
- The Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Aurore Nkiliza
- The Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Michael Dretsch
- US Army Medical Research Directorate-West, Walter Reed Army Institute of Research, Joint Base Lewis-McChord, Tacoma, WA, United States.,U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL, United States
| | - Michael Mullan
- The Roskamp Institute, Sarasota, FL, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Fiona Crawford
- The Roskamp Institute, Sarasota, FL, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Laila Abdullah
- The Roskamp Institute, Sarasota, FL, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| |
Collapse
|
31
|
Trageser KJ, Sebastian-Valverde M, Naughton SX, Pasinetti GM. The Innate Immune System and Inflammatory Priming: Potential Mechanistic Factors in Mood Disorders and Gulf War Illness. Front Psychiatry 2020; 11:704. [PMID: 32848904 PMCID: PMC7396635 DOI: 10.3389/fpsyt.2020.00704] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022] Open
Abstract
Gulf War Illness is a chronic multisystem disorder affecting approximately a third of the Veterans of the Gulf War, manifesting with physical and mental health symptoms such as cognitive impairment, neurological abnormalities, and dysregulation of mood. Among the leading theories into the etiology of this multisystem disorder is environmental exposure to the various neurotoxins encountered in the Gulf Theatre, including organophosphates, nerve agents, pyridostigmine bromide, smoke from oil well fires, and depleted uranium. The relationship of toxin exposure and the pathogenesis of Gulf War Illness converges on the innate immune system: a nonspecific form of immunity ubiquitous in nature that acts to respond to both exogenous and endogenous insults. Activation of the innate immune system results in inflammation mediated by the release of cytokines. Cytokine mediated neuroinflammation has been demonstrated in a number of psychiatric conditions and may help explain the larger than expected population of Gulf War Veterans afflicted with a mood disorder. Several of the environmental toxins encountered by soldiers during the first Gulf War have been shown to cause upregulation of inflammatory mediators after chronic exposure, even at low levels. This act of inflammatory priming, by which repeated exposure to chronic subthreshold insults elicits robust responses, even after an extended period of latency, is integral in the connection of Gulf War Illness and comorbid mood disorders. Further developing the understanding of the relationship between environmental toxin exposure, innate immune activation, and pathogenesis of disease in the Gulf War Veterans population, may yield novel therapeutic targets, and a greater understanding of disease pathology and subsequently prevention.
Collapse
Affiliation(s)
- Kyle J Trageser
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, United States
| | | | - Sean X Naughton
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, United States
| | - Giulio Maria Pasinetti
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, United States.,Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States
| |
Collapse
|
32
|
Chester JE, Rowneki M, Van Doren W, Helmer DA. Progression of intervention-focused research for Gulf War illness. Mil Med Res 2019; 6:31. [PMID: 31627737 PMCID: PMC6798371 DOI: 10.1186/s40779-019-0221-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/11/2019] [Indexed: 01/06/2023] Open
Abstract
The Persian Gulf War of 1990 to 1991 involved the deployment of nearly 700,000 American troops to the Middle East. Deployment-related exposures to toxic substances such as pesticides, nerve agents, pyridostigmine bromide (PB), smoke from burning oil wells, and petrochemicals may have contributed to medical illness in as many as 250,000 of those American troops. The cluster of chronic symptoms, now referred to as Gulf War Illness (GWI), has been studied by many researchers over the past two decades. Although over $500 million has been spent on GWI research, to date, no cures or condition-specific treatments have been discovered, and the exact pathophysiology remains elusive.Using the 2007 National Institute of Health (NIH) Roadmap for Medical Research model as a reference framework, we reviewed studies of interventions involving GWI patients to assess the progress of treatment-related GWI research. All GWI clinical trial studies reviewed involved investigations of existing interventions that have shown efficacy in other diseases with analogous symptoms. After reviewing the published and ongoing registered clinical trials for cognitive-behavioral therapy, exercise therapy, acupuncture, coenzyme Q10, mifepristone, and carnosine in GWI patients, we identified only four treatments (cognitive-behavioral therapy, exercise therapy, CoQ10, and mifepristone) that have progressed beyond a phase II trial.We conclude that progress in the scientific study of therapies for GWI has not followed the NIH Roadmap for Medical Research model. Establishment of a standard case definition, prioritized GWI research funding for the characterization of the pathophysiology of the condition, and rapid replication and adaptation of early phase, single site clinical trials could substantially advance research progress and treatment discovery for this condition.
Collapse
Affiliation(s)
- Jeremy E Chester
- War Related Illness and Injury Study Center, Veterans Affairs New Jersey Healthcare System, 385 Tremont Avenue, East Orange, NJ, 07018, USA.
- War Related Illness and Injury Study Center, Veterans Affairs Medical Center, 50 Irving St., Washington, DC, NW, 20422, USA.
| | - Mazhgan Rowneki
- War Related Illness and Injury Study Center, Veterans Affairs New Jersey Healthcare System, 385 Tremont Avenue, East Orange, NJ, 07018, USA
| | - William Van Doren
- War Related Illness and Injury Study Center, Veterans Affairs New Jersey Healthcare System, 385 Tremont Avenue, East Orange, NJ, 07018, USA
| | - Drew A Helmer
- War Related Illness and Injury Study Center, Veterans Affairs New Jersey Healthcare System, 385 Tremont Avenue, East Orange, NJ, 07018, USA
- Rutgers University, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA
| |
Collapse
|
33
|
Joshi U, Pearson A, Evans JE, Langlois H, Saltiel N, Ojo J, Klimas N, Sullivan K, Keegan AP, Oberlin S, Darcey T, Cseresznye A, Raya B, Paris D, Hammock B, Vasylieva N, Hongsibsong S, Stern LJ, Crawford F, Mullan M, Abdullah L. A permethrin metabolite is associated with adaptive immune responses in Gulf War Illness. Brain Behav Immun 2019; 81:545-559. [PMID: 31325531 PMCID: PMC7155744 DOI: 10.1016/j.bbi.2019.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/17/2019] [Accepted: 07/11/2019] [Indexed: 10/31/2022] Open
Abstract
Gulf War Illness (GWI), affecting 30% of veterans from the 1991 Gulf War (GW), is a multi-symptom illness with features similar to those of patients with autoimmune diseases. The objective of the current work is to determine if exposure to GW-related pesticides, such as permethrin (PER), activates peripheral and central nervous system (CNS) adaptive immune responses. In the current study, we focused on a PER metabolite, 3-phenoxybenzoic acid (3-PBA), as this is a common metabolite previously shown to form adducts with endogenous proteins. We observed the presence of 3-PBA and 3-PBA modified lysine of protein peptides in the brain, blood and liver of pyridostigmine bromide (PB) and PER (PB+PER) exposed mice at acute and chronic post-exposure timepoints. We tested whether 3-PBA-haptenated albumin (3-PBA-albumin) can activate immune cells since it is known that chemically haptenated proteins can stimulate immune responses. We detected autoantibodies against 3-PBA-albumin in plasma from PB + PER exposed mice and veterans with GWI at chronic post-exposure timepoints. We also observed that in vitro treatment of blood with 3-PBA-albumin resulted in the activation of B- and T-helper lymphocytes and that these immune cells were also increased in blood of PB + PER exposed mice and veterans with GWI. These immune changes corresponded with elevated levels of infiltrating monocytes in the brain and blood of PB + PER exposed mice which coincided with alterations in the markers of blood-brain barrier disruption, brain macrophages and neuroinflammation. These studies suggest that pesticide exposure associated with GWI may have resulted in the activation of the peripheral and CNS adaptive immune responses, possibly contributing to an autoimmune-type phenotype in veterans with GWI.
Collapse
Affiliation(s)
- Utsav Joshi
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,Open University, Milton Keynes, UK,James A. Haley VA Hospital, Tampa, FL, USA
| | - Andrew Pearson
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,Open University, Milton Keynes, UK,James A. Haley VA Hospital, Tampa, FL, USA
| | - James E. Evans
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,James A. Haley VA Hospital, Tampa, FL, USA
| | - Heather Langlois
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,James A. Haley VA Hospital, Tampa, FL, USA
| | - Nicole Saltiel
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,James A. Haley VA Hospital, Tampa, FL, USA
| | - Joseph Ojo
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,Open University, Milton Keynes, UK,James A. Haley VA Hospital, Tampa, FL, USA
| | - Nancy Klimas
- NOVA Southeastern University, Ft. Lauderdale, FL, USA,Miami VAMC, Miami, FL, USA
| | | | | | - Sarah Oberlin
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,James A. Haley VA Hospital, Tampa, FL, USA
| | - Teresa Darcey
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,James A. Haley VA Hospital, Tampa, FL, USA
| | - Adam Cseresznye
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,James A. Haley VA Hospital, Tampa, FL, USA
| | - Balaram Raya
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,James A. Haley VA Hospital, Tampa, FL, USA
| | - Daniel Paris
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,Open University, Milton Keynes, UK,James A. Haley VA Hospital, Tampa, FL, USA
| | - Bruce Hammock
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Natalia Vasylieva
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Surat Hongsibsong
- Environment and Health Research Unit, Research Institute for Health Science, Chiang Mai University, Chiang, Thailand
| | - Lawrence J. Stern
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA,Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Fiona Crawford
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,Open University, Milton Keynes, UK,James A. Haley VA Hospital, Tampa, FL, USA
| | - Michael Mullan
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,Open University, Milton Keynes, UK,James A. Haley VA Hospital, Tampa, FL, USA
| | - Laila Abdullah
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA; Open University, Milton Keynes, UK; James A. Haley VA Hospital, Tampa, FL, USA.
| |
Collapse
|
34
|
Neuroinflammation in Gulf War Illness is linked with HMGB1 and complement activation, which can be discerned from brain-derived extracellular vesicles in the blood. Brain Behav Immun 2019; 81:430-443. [PMID: 31255677 DOI: 10.1016/j.bbi.2019.06.040] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 12/31/2022] Open
Abstract
Cognitive dysfunction and neuroinflammation are conspicuously observed in Gulf War Illness (GWI). We investigated whether brain inflammation in GWI is associated with activation of high mobility group box-1 (HMGB1) and complement-related proteins in neurons and astrocytes, and brain inflammation can be tracked through neuron-derived extracellular vesicles (NDEVs) and astrocyte-derived EVs (ADEVs) found in the circulating blood. We exposed animals to GWI-related chemicals pyridostigmine bromide, DEET and permethrin, and moderate stress for 28 days. We performed behavioral tests 10 months post-exposure and quantified activated microglia and reactive astrocytes in the cerebral cortex. Then, we measured the concentration of HMGB1, proinflammatory cytokines, and complement activation-related proteins in the cerebral cortex, and NDEVs and ADEVs in the circulating blood. Cognitive impairments persisted in GWI rats at 10 months post-exposure, which were associated with increased density of activated microglia and reactive astrocytes in the cerebral cortex. Moreover, the level of HMGB1 was elevated in the cerebral cortex with altered expression in the cytoplasm of neuronal soma and dendrites as well as the extracellular space. Also, higher levels of proinflammatory cytokines (TNFa, IL-1b, and IL-6), and complement activation-related proteins (C3 and TccC5b-9) were seen in the cerebral cortex. Remarkably, increased levels of HMGB1 and proinflammatory cytokines observed in the cerebral cortex of GWI rats could also be found in NDEVs isolated from the blood. Similarly, elevated levels of complement proteins seen in the cerebral cortex could be found in ADEVs. The results provide new evidence that persistent cognitive dysfunction and chronic neuroinflammation in a model of GWI are linked with elevated HMGB1 concentration and complement activation. Furthermore, the results demonstrated that multiple biomarkers of neuroinflammation could be tracked reliably via analyses of NDEVs and ADEVs in the circulating blood. Execution of such a liquid biopsy approach is especially useful in clinical trials for monitoring the remission, persistence or progression of brain inflammation in GWI patients with drug treatment.
Collapse
|
35
|
Oriolo G, Blanco-Hinojo L, Navines R, Mariño Z, Martín-Hernández D, Cavero M, Gimenez D, Caso J, Capuron L, Forns X, Pujol J, Sola R, Martin-Santos R. Association of chronic inflammation and perceived stress with abnormal functional connectivity in brain areas involved with interoception in hepatitis C patients. Brain Behav Immun 2019; 80:204-218. [PMID: 30872094 DOI: 10.1016/j.bbi.2019.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/06/2019] [Accepted: 03/09/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Sickness behavioral changes elicited by inflammation may become prolonged and dysfunctional in patients with chronic disease, such as chronic hepatitis C (CHC). Neuroimaging studies show that the basal ganglia and insula are sensitive to systemic inflammation. AIM To elucidate the clinical and neurobiological aspects of prolonged illnesses in patients with CHC. METHODS Thirty-five CHC patients not treated with interferon-α or other antiviral therapy, and 30 control subjects matched for age and sex, were evaluated for perceived stress (perceived stress scale; PSS), depression (PHQ-9), fatigue and irritability through a visual analog scale (VAS), as well as serum levels of interleukin-6 (IL-6), prostaglandin E2 (PGE2) and oxidative stress markers. Functional MRI was performed, measuring resting-state functional connectivity using a region-of-interest (seed)-based approach focusing on the bilateral insula, subgenual anterior cingulate cortex and bilateral putamen. Between-group differences in functional connectivity patterns were assessed with two-sample t-tests, while the associations between symptoms, inflammatory markers and functional connectivity patterns were analyzed with multiple regression analyses. RESULTS CHC patients had higher PSS, PHQ-9 and VAS scores for fatigue and irritability, as well as increased IL-6 levels, PGE2 concentrations and antioxidant system activation compared to controls. PSS scores positively correlated with functional connectivity between the right anterior insula and right putamen, whereas PHQ-9 scores correlated with functional connectivity between most of the seeds and the right anterior insula. PGE2 (positively) and IL-6 (negatively) correlated with functional connectivity between the right anterior insula and right caudate nucleus and between the right ventral putamen and right putamen/globus pallidus. PGE2 and PSS scores accounted for 46% of the variance in functional connectivity between the anterior insula and putamen. CONCLUSIONS CHC patients exhibited increased perceived stress and depressive symptoms, which were associated with changes in inflammatory marker levels and in functional connectivity between the insula and putamen, areas involved in interoceptive integration, emotional awareness, and orientation of motivational state.
Collapse
Affiliation(s)
- Giovanni Oriolo
- Department of Psychiatry and Psychology, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigacion Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain; Department of Medicine, Faculty of Medicine, and Institute of Neuroscience, University of Barcelona (UB), Barcelona, Spain
| | - Laura Blanco-Hinojo
- MRI Research Unit, Department of Radiology, Hospital del Mar, CIBERSAM, G21, Barcelona, Spain
| | - Ricard Navines
- Department of Psychiatry and Psychology, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigacion Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain; Department of Medicine, Faculty of Medicine, and Institute of Neuroscience, University of Barcelona (UB), Barcelona, Spain
| | - Zoe Mariño
- Liver Unit, Hospital Clinic, IDIBAPS, Centro Investigacion Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - David Martín-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, CIBERSAM, Imas12, IUINQ, Madrid, Spain
| | - Myriam Cavero
- Department of Psychiatry and Psychology, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigacion Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain; Department of Medicine, Faculty of Medicine, and Institute of Neuroscience, University of Barcelona (UB), Barcelona, Spain
| | - Dolors Gimenez
- Liver Section, Hospital del Mar, Parc de Salut Mar, Grup de Recerca Hepatológica, FIMIM, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Javier Caso
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, CIBERSAM, Imas12, IUINQ, Madrid, Spain
| | - Lucile Capuron
- INRA, Laboratory of Nutrition and Integrative Neurobiology (NutriNeuro), UMR 1286, F-33076 Bordeaux, France; University of Bordeaux, Laboratory of Nutrition and Integrative Neurobiology (NutriNeuro), UMR 1286, F-33076 Bordeaux, France
| | - Xavier Forns
- Liver Unit, Hospital Clinic, IDIBAPS, Centro Investigacion Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Jesus Pujol
- MRI Research Unit, Department of Radiology, Hospital del Mar, CIBERSAM, G21, Barcelona, Spain
| | - Ricard Sola
- Liver Section, Hospital del Mar, Parc de Salut Mar, Grup de Recerca Hepatológica, FIMIM, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Rocio Martin-Santos
- Department of Psychiatry and Psychology, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigacion Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain; Department of Medicine, Faculty of Medicine, and Institute of Neuroscience, University of Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
36
|
Luo D, Zhang Y, Yuan X, Pan Y, Yang L, Zhao Y, Zhuo R, Chen C, Peng L, Li W, Jin X, Zhou Y. Oleoylethanolamide inhibits glial activation via moudulating PPARα and promotes motor function recovery after brain ischemia. Pharmacol Res 2019; 141:530-540. [PMID: 30660821 DOI: 10.1016/j.phrs.2019.01.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/29/2018] [Accepted: 01/14/2019] [Indexed: 02/06/2023]
Abstract
Glial activation and scar formation impede the neurological function recovery after cerebral ischemia. Oleoylethanolamide (OEA), a bioactive lipid mediator, shows neuroprotection against acute brain ischemia, however, its long-term effect, especially on glial scar formation, has not been characterized. In this research, we investigate the effect of OEA on glial activation and scar formation after cerebral ischemia in vitro and in vivo experiments. Glial scar formation in vitro model was induced by transforming growth factor β1 (TGF-β1) in C6 glial cell culture, and experiment model in vivo was induced by middle cerebral artery occlusion (MCAO) in mice. The protein expressions of the markers of glial activation (S100β, GFAP, or pSmads) and glial scar (neurocan) were detected by Western blot and/or immunofluorescence staining; To evaluate the role of PPARɑ in the effect of OEA on glial activation, the PPARɑ antagonist GW6471 was used. Behavior tests were used to assay the effect of OEA on motor function recovery 14 days after brain ischemia in mice. Our results show that OEA (10-50 μM) concentration-dependently inhibited the upregulation of S100β, GFAP, pSmads and neurocan induced by TGF-β1 in C6 glial cells. At the same time, OEA promoted the protein expression and nuclear transportation of PPARɑ in glial cells. PPARα antagonist GW6471 abolished the effect of OEA on glial activation. In addition, we found that delay administration of OEA inhibited the astrocyte activation and promoted the recovery of motor function after brain ischemia in mice. These results indicate that OEA may be developed into a new candidate for attenuating astrocytic scar formation and improving motor function after ischemic stroke.
Collapse
Affiliation(s)
- Doudou Luo
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, PR China; Key Laboratory of Chiral Drugs, Xiamen, 361102, PR China
| | - Yali Zhang
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, PR China; Key Laboratory of Chiral Drugs, Xiamen, 361102, PR China; Medical College, Xuchang University, Xuchang, 461000, PR China
| | - Xiaoqian Yuan
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, PR China; Key Laboratory of Chiral Drugs, Xiamen, 361102, PR China
| | - Yilin Pan
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, PR China
| | - Lichao Yang
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, PR China; Key Laboratory of Chiral Drugs, Xiamen, 361102, PR China
| | - Yun Zhao
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, PR China; Key Laboratory of Chiral Drugs, Xiamen, 361102, PR China
| | - Rengong Zhuo
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, PR China; Key Laboratory of Chiral Drugs, Xiamen, 361102, PR China
| | - Caixia Chen
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, PR China; Key Laboratory of Chiral Drugs, Xiamen, 361102, PR China
| | - Lu Peng
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, PR China; Key Laboratory of Chiral Drugs, Xiamen, 361102, PR China
| | - Wenjun Li
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, PR China; Key Laboratory of Chiral Drugs, Xiamen, 361102, PR China
| | - Xin Jin
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, PR China; Key Laboratory of Chiral Drugs, Xiamen, 361102, PR China.
| | - Yu Zhou
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, PR China; Key Laboratory of Chiral Drugs, Xiamen, 361102, PR China.
| |
Collapse
|