1
|
Wu W, Li S, Ye Z. Targeting the gut microbiota-inflammation-brain axis as a potential therapeutic strategy for psychiatric disorders: A Mendelian randomization analysis. J Affect Disord 2025; 374:150-159. [PMID: 39809351 DOI: 10.1016/j.jad.2025.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND Extensive research indicates a link between gut microbiota dysbiosis and psychiatric disorders. However, the causal relationships between gut microbiota and different types of psychiatric disorders, as well as whether inflammatory factors mediate these relationships, remain unclear. METHODS We utilized summary statistics from the largest genome-wide association studies to date for gut microbiota (n = 18,340 in MiBioGen consortium), circulating inflammatory factors (n = 8293 for 41 factors and n = 14,824 for 91 factors in GWAS catalog), and six major psychiatric disorders from the Psychiatric Genomics Consortium (PGC): attention deficit hyperactivity disorder (ADHD, n = 38,691), anxiety disorder (ANX, n = 2248), bipolar disorder (BIP, n = 41,917), anorexia nervosa (AN, n = 16,992), schizophrenia (SCZ, n = 36,989), and autism spectrum disorder (ASD, n = 18,381). We conducted bidirectional Mendelian randomization (MR) analysis to explore the causal relationships between gut microbiota and psychiatric disorders. Additionally, we performed two-step MR and multivariable MR (MVMR) analyses to identify potential mediating inflammatory factors. RESULTS We found significant causal relationships between 11 gut microbiota and ADHD, 2 gut microbiota and ANX, 11 gut microbiota and BIP, 8 gut microbiota and AN, 15 gut microbiota and SCZ, and 5 gut microbiota and ASD. There were 16 positive and 15 negative causal effects between inflammatory factors and psychiatric disorders. Furthermore, MVMR analysis results indicated that the correlation between genus Roseburia and ADHD was mediated by MCSF, with a mediation proportion of 3.3 %; the correlation between genus Erysipelotrichaceae UCG003 and BIP was mediated by GDNF, with a mediation proportion of 3.7 %; and the correlation between family Prevotellaceae and SCZ was mediated by CD40, with a mediation proportion of 8.2 %. CONCLUSIONS The MR analysis results supported causal relationships between gut microbiota and six psychiatric disorders, as well as the potential mediating role of inflammatory factors. This study highlights the potential role of the gut microbiota-inflammation-brain axis in psychiatric disorders.
Collapse
Affiliation(s)
- Wenjing Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Shuhan Li
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Zengjie Ye
- School of Nursing, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
2
|
Ying J, Zhang MW, Wei KC, Wong SH, Subramaniam M. Influential articles in autism and gut microbiota: bibliometric profile and research trends. Front Microbiol 2025; 15:1401597. [PMID: 39850141 PMCID: PMC11755156 DOI: 10.3389/fmicb.2024.1401597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/27/2024] [Indexed: 01/25/2025] Open
Abstract
Objective Autism spectrum disorder (ASD) is a common neurodevelopmental disorder. Increasing evidence suggests that it is potentially related to gut microbiota, but no prior bibliometric analysis has been performed to explore the most influential works in the relationships between ASD and gut microbiota. In this study, we conducted an in-depth analysis of the most-cited articles in this field, aiming to provide insights to the existing body of research and guide future directions. Methods A search strategy was constructed and conducted in the Web of Science database to identify the 100 most-cited papers in ASD and gut microbiota. The Biblioshiny package in R was used to analyze and visualize the relevant information, including citation counts, country distributions, authors, journals, and thematic analysis. Correlation and comparison analyses were performed using SPSS software. Results The top 100 influential manuscripts were published between 2000 and 2021, with a total citation of 40,662. The average number of citations annually increased over the years and was significantly correlated to the year of publication (r = 0.481, p < 0.01, Spearman's rho test). The United States was involved in the highest number of publications (n = 42). The number of publications in the journal was not significantly related to the journal's latest impact factor (r = 0.016, p > 0.05, Spearman's rho test). Co-occurrence network and thematic analysis identified several important areas, such as microbial metabolites of short-chain fatty acids and overlaps with irritable bowel syndrome. Conclusion This bibliometric analysis provides the key information of the most influential studies in the area of ASD and gut microbiota, and suggests the hot topics and future directions. The findings of this study can serve as a valuable reference for researchers and policymakers, guiding the development and implementation of the scientific research strategies in this area.
Collapse
Affiliation(s)
- Jiangbo Ying
- Department of Developmental Psychiatry, Institute of Mental Health, Singapore, Singapore
| | | | - Ker-Chiah Wei
- Department of Developmental Psychiatry, Institute of Mental Health, Singapore, Singapore
| | - Sunny H. Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, Singapore, Singapore
| | | |
Collapse
|
3
|
Díez-Madueño K, de la Cueva Dobao P, Torres-Rojas I, Fernández-Gosende M, Hidalgo-Cantabrana C, Coto-Segura P. Gut Dysbiosis and Adult Atopic Dermatitis: A Systematic Review. J Clin Med 2024; 14:19. [PMID: 39797102 PMCID: PMC11721037 DOI: 10.3390/jcm14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Research on the relationship between gut microbiota (GM) and atopic dermatitis (AD) has seen a growing interest in recent years. The aim of this systematic review was to determine whether differences exist between the GM of adults with AD and that of healthy adults (gut dysbiosis). Methods: We conducted a systematic review based on the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). The search was performed using PubMed, EMBASE, and Web of Science. Observational and interventional studies were analyzed. Results: Although the studies showed heterogeneous results, some distinguishing characteristics were found in the intestinal microbial composition of adults with dermatitis. Even though no significant differences in diversity were found between healthy and affected adults, certain microorganisms, such as Bacteroidales, Enterobacteriaceae, and Clostridium (perfringens), were more characteristic of the fecal microbiota in adults with AD. Healthy individuals exhibited lower abundances of aerobic bacteria and higher abundances of short-chain fatty acid-producing species and polyamines. Clinical trials showed that the consumption of probiotics (Bifidobacterium and/or Lactobacillus), fecal microbiota transplants, and balneotherapy modified the fecal microbiota composition of participants and were associated with significant improvements in disease management. Conclusions: In anticipation of forthcoming clinical trials, it is essential to conduct meta-analyses that comprehensively evaluate the effectiveness and safety of interventions designed to modify intestinal flora in the context of AD. Preliminary evidence suggests that certain interventions may enhance adult AD management.
Collapse
Affiliation(s)
- Kevin Díez-Madueño
- Dermatology Department, Hospital Universitario Infanta Leonor, Complutense University of Madrid, 28040 Madrid, Spain;
- School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Pablo de la Cueva Dobao
- Dermatology Department, Hospital Universitario Infanta Leonor, Complutense University of Madrid, 28040 Madrid, Spain;
- School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Isabel Torres-Rojas
- Allergy Department, Hospital Universitario Infanta Sofía, 28702 Alcobendas, Spain;
| | | | | | - Pablo Coto-Segura
- Dermatology Department, Hospital Vital Álvarez Buylla, 33611 Mieres, Spain;
| |
Collapse
|
4
|
Golbaghi N, Naeimi S, Darvishi A, Najari N, Cussotto S. Probiotics in autism spectrum disorder: Recent insights from animal models. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2024; 28:2722-2737. [PMID: 38666595 DOI: 10.1177/13623613241246911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
LAY ABSTRACT Autism spectrum disorder is a neurodevelopmental disorder characterized by a wide range of behavioral alterations, including impaired social interaction and repetitive behaviors. Numerous pharmacological interventions have been developed for autism spectrum disorder, often proving ineffective and accompanied by a multitude of side effects. The gut microbiota is the reservoir of bacteria inhabiting our gastrointestinal tract. The gut microbial alterations observed in individuals with autism spectrum disorder, including elevated levels of Bacteroidetes, Firmicutes, and Proteobacteria, as well as reduced levels of Bifidobacterium, provide a basis for further investigation into the role of the gut microbiota in autism spectrum disorder. Recent preclinical studies have shown favorable outcomes with probiotic therapy, including improvements in oxidative stress, anti-inflammatory effects, regulation of neurotransmitters, and restoration of microbial balance. The aim of this review is to explore the potential of probiotics for the management and treatment of autism spectrum disorder, by investigating insights from recent studies in animals.
Collapse
Affiliation(s)
- Navid Golbaghi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
| | - Saeideh Naeimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - Afra Darvishi
- School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloofar Najari
- School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sofia Cussotto
- Université Paris-Saclay, UVSQ, Centre de recherche en Epidémiologie et Santé des Populations (CESP), UMR 1018, CESP-Inserm, Team Moods, Faculté de Pharmacie, Bâtiment Henri Moissan, Orsay, France
| |
Collapse
|
5
|
Ignatiou A, Pitsouli C. Host-diet-microbiota interplay in intestinal nutrition and health. FEBS Lett 2024; 598:2482-2517. [PMID: 38946050 DOI: 10.1002/1873-3468.14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
The intestine is populated by a complex and dynamic assortment of microbes, collectively called gut microbiota, that interact with the host and contribute to its metabolism and physiology. Diet is considered a key regulator of intestinal microbiota, as ingested nutrients interact with and shape the resident microbiota composition. Furthermore, recent studies underscore the interplay of dietary and microbiota-derived nutrients, which directly impinge on intestinal stem cells regulating their turnover to ensure a healthy gut barrier. Although advanced sequencing methodologies have allowed the characterization of the human gut microbiome, mechanistic studies assessing diet-microbiota-host interactions depend on the use of genetically tractable models, such as Drosophila melanogaster. In this review, we first discuss the similarities between the human and fly intestines and then we focus on the effects of diet and microbiota on nutrient-sensing signaling cascades controlling intestinal stem cell self-renewal and differentiation, as well as disease. Finally, we underline the use of the Drosophila model in assessing the role of microbiota in gut-related pathologies and in understanding the mechanisms that mediate different whole-body manifestations of gut dysfunction.
Collapse
Affiliation(s)
- Anastasia Ignatiou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Chrysoula Pitsouli
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
6
|
Davias A, Lyon-Caen S, Rolland M, Iszatt N, Thomsen C, Haug LS, Sakhi AK, Monot C, Rayah Y, Ilhan ZE, Jovanovic N, Philippat C, Eggesbo M, Lepage P, Slama R. Perinatal Exposure to Phenols and Poly- and Perfluoroalkyl Substances and Gut Microbiota in One-Year-Old Children. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15395-15414. [PMID: 39173114 DOI: 10.1021/acs.est.3c09927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The role of the gut microbiota in human health calls for a better understanding of its determinants. In particular, the possible effects of chemicals with widespread exposure other than pharmaceuticals are little known. Our aim was to characterize the sensitivity of the early-life gut microbiota to specific chemicals with possible antimicrobial action. Within the SEPAGES French couple-child cohort, we assessed 12 phenols in repeated urine samples from 356 pregnant women and their offspring and 19 poly- and perfluoroalkyl substances (PFASs) in serum from the pregnant women. We collected stool samples from the children at one year of age, in which the V3-V4 region of the 16S rRNA gene was sequenced, allowing for gut bacterial profiling. Associations of each chemical with α- and β-diversity indices of the gut microbiota and with the relative abundance of the most abundant taxa were assessed using single-pollutant and mixture (BKMR) models. Perinatal exposure to certain parabens was associated with gut microbiota α- and β-diversity and with Firmicutes and Proteobacteria. Suggestive associations of certain phenols with genera of the Lachnospiraceae and Enterobacteriaceae families were observed, but these were not maintained after correction for multiple testing. Parabens, which have known antimicrobial properties, might disrupt the child gut microbiota, but larger studies are required to confirm these findings.
Collapse
Affiliation(s)
- Aline Davias
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Sarah Lyon-Caen
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Matthieu Rolland
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Cathrine Thomsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Line Småstuen Haug
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Amrit Kaur Sakhi
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Celine Monot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas 78350, France
| | - Yamina Rayah
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas 78350, France
| | - Zehra Esra Ilhan
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas 78350, France
| | - Nicolas Jovanovic
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Claire Philippat
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Merete Eggesbo
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Patricia Lepage
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas 78350, France
| | - Rémy Slama
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| |
Collapse
|
7
|
Reeves KD, Figuereo YF, Weis VG, Hsu FC, Engevik MA, Krigsman A, Walker SJ. Mapping the geographical distribution of the mucosa-associated gut microbiome in GI-symptomatic children with autism spectrum disorder. Am J Physiol Gastrointest Liver Physiol 2024; 327:G217-G234. [PMID: 38887795 PMCID: PMC11637567 DOI: 10.1152/ajpgi.00101.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by cognitive, behavioral, and communication impairments. In the past few years, it has been proposed that alterations in the gut microbiota may contribute to an aberrant communication between the gut and brain in children with ASD. Consistent with this notion, several studies have demonstrated that children with ASD have an altered fecal microbiota compared with typically developing (TD) children. However, it is unclear where along the length of the gastrointestinal (GI) tract these alterations in microbial communities occur. In addition, the variation between specific mucosa-associated communities remains unknown. To address this gap in knowledge of the microbiome associated with ASD, biopsies from the antrum, duodenum, ileum, right colon, and rectum of children with ASD and age- and sex-matched TD children were examined by 16S rRNA sequencing. We observed an overall elevated abundance of Bacillota and Bacteroidota and a decreased abundance of Pseudomonadota in all GI tract regions of both male and female children with ASD compared with TD children. Further analysis at the genera level revealed unique differences in the microbiome in the different regions of the GI tract in children with ASD compared with TD children. We also observed sex-specific differences in the gut microbiota composition in children with ASD. These data indicate that the microbiota of children with ASD is altered in multiple regions of the GI tract and that different anatomic locations have unique alterations in mucosa-associated bacterial genera.NEW & NOTEWORTHY Analysis in stool samples has shown gut microbiota alterations in children with autism spectrum disorder (ASD) compared with typically developing (TD) children. However, it is unclear which segment(s) of the gut exhibit alterations in microbiome composition. In this study, we examined microbiota composition along the gastrointestinal (GI) tract in the stomach, duodenum, ileum, right colon, and rectum. We found site-specific and sex-specific differences in the gut microbiota of children with ASD, compared with controls.
Collapse
Affiliation(s)
- Kimberly D Reeves
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem North Carolina, United States
| | - Yosauri F Figuereo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Victoria G Weis
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Melinda A Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Arthur Krigsman
- Pediatric Gastroenterology Resources, Georgetown, Texas, United States
| | - Stephen J Walker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| |
Collapse
|
8
|
Yang C, Xiao H, Zhu H, Du Y, Wang L. Revealing the gut microbiome mystery: A meta-analysis revealing differences between individuals with autism spectrum disorder and neurotypical children. Biosci Trends 2024; 18:233-249. [PMID: 38897955 DOI: 10.5582/bst.2024.01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The brain-gut axis intricately links gut microbiota (GM) dysbiosis to the development or worsening of autism spectrum disorder (ASD). However, the precise GM composition in ASD and the effectiveness of probiotics are unclear. To address this, we performed a thorough meta-analysis of 28 studies spanning PubMed, PsycINFO, Web of Science, Scopus, and MEDLINE, involving 1,256 children with ASD and 1042 neurotypical children, up to February 2024. Using Revman 5.3, we analyzed the relative abundance of 8 phyla and 64 genera. While individuals with ASD did not exhibit significant differences in included phyla, they exhibited elevated levels of Parabacteroides, Anaerostipes, Faecalibacterium, Clostridium, Dorea, Phascolarctobacterium, Lachnoclostridium, Catenibacterium, and Collinsella along with reduced percentages of Barnesiella, Odoribacter, Paraprevotella, Blautia, Turicibacter, Lachnospira, Pseudomonas, Parasutterella, Haemophilus, and Bifidobacterium. Notably, discrepancies in Faecalibacterium, Clostridium, Dorea, Phascolarctobacterium, Catenibacterium, Odoribacter, and Bifidobacterium persisted even upon systematic exclusion of individual studies. Consequently, the GM of individuals with ASD demonstrates an imbalance, with potential increases or decreases in both beneficial and harmful bacteria. Therefore, personalized probiotic interventions tailored to ASD specifics are imperative, rather than a one-size-fits-all approach.
Collapse
Affiliation(s)
- Changjiang Yang
- Faculty of Education, East China Normal University, Shanghai, China
| | - Hongli Xiao
- Faculty of Education, East China Normal University, Shanghai, China
| | - Han Zhu
- Faculty of Education, East China Normal University, Shanghai, China
| | - Yijie Du
- Qingpu Traditional Chinese Medicine Hospital, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
9
|
Zimmermann-Rösner A, Prehn-Kristensen A. The Microbiome in Child and Adolescent Psychiatry. ZEITSCHRIFT FUR KINDER- UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2024; 52:213-226. [PMID: 38240707 DOI: 10.1024/1422-4917/a000965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Recent research has increasingly emphasized the function of the microbiome in human health. The gut microbiome is essential for digesting food and seems to play a vital role in mental health as well. This review briefly overviews the gut microbiome and its interplay with the central nervous system. We then summarize some of the latest findings on the possible role of the microbiome in psychiatric disorders in children and adolescents. In particular, we focus on autism spectrum disorder, attention-deficit/hyperactivity disorder, anorexia nervosa, bipolar disorder, and major depressive disorder. Although the role of microbiota in mental development and health still needs to be researched intensively, it has become increasingly apparent that the impact of microbiota must be considered to better understand psychiatric disorders.
Collapse
Affiliation(s)
| | - Alexander Prehn-Kristensen
- Institute for Child and Adolescent Psychiatry, Center of Integrative Psychiatry GmbH, Kiel, Germany
- Department of Psychology, Faculty of Human Sciences, MSH Medical School Hamburg - University of Applied Sciences and Medical University, Hamburg, Germany
| |
Collapse
|
10
|
Xu T, Chen K, Li G. TENSOR REGRESSION FOR INCOMPLETE OBSERVATIONS WITH APPLICATION TO LONGITUDINAL STUDIES. Ann Appl Stat 2024; 18:1195-1212. [PMID: 39360180 PMCID: PMC11446469 DOI: 10.1214/23-aoas1830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Multivariate longitudinal data are frequently encountered in practice such as in our motivating longitudinal microbiome study. It is of general interest to associate such high-dimensional, longitudinal measures with some univariate continuous outcome. However, incomplete observations are common in a regular study design, as not all samples are measured at every time point, giving rise to the so-called blockwise missing values. Such missing structure imposes significant challenges for association analysis and defies many existing methods that require complete samples. In this paper we propose to represent multivariate longitudinal data as a three-way tensor array (i.e., sample-by-feature-by-time) and exploit a parsimonious scalar-on-tensor regression model for association analysis. We develop a regularized covariance-based estimation procedure that effectively leverages all available observations without imputation. The method achieves variable selection and smooth estimation of time-varying effects. The application to the motivating microbiome study reveals interesting links between the preterm infant's gut microbiome dynamics and their neurodevelopment. Additional numerical studies on synthetic data and a longitudinal aging study further demonstrate the efficacy of the proposed method.
Collapse
Affiliation(s)
| | - Kun Chen
- Department of Statistics, University of Connecticut
| | - Gen Li
- Department of Biostatistics, University of Michigan, Ann Arbor
| |
Collapse
|
11
|
Li Y, Xiao P, Cao R, Le J, Xu Q, Xiao F, Ye L, Wang X, Wang Y, Zhang T. Effects and microbiota changes following oral lyophilized fecal microbiota transplantation in children with autism spectrum disorder. Front Pediatr 2024; 12:1369823. [PMID: 38783921 PMCID: PMC11112010 DOI: 10.3389/fped.2024.1369823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Background and purpose Autism spectrum disorder (ASD) is a group of heterogeneous neurodevelopmental disorders that is characterized by core features in social communication impairment and restricted, repetitive sensory-motor behaviors. This study aimed to further investigate the utilization of fecal microbiota transplantation (FMT) in children with ASD, both with and without gastrointestinal (GI) symptoms, evaluate the effect of FMT and analyze the alterations in bacterial and fungal composition within the gut microbiota. Methods A total of 38 children diagnosed with ASD participated in the study and underwent oral lyophilized FMT treatment. The dosage of the FMT treatment was determined based on a ratio of 1 g of donor stool per 1 kg of recipient body weight, with a frequency of once every 4 weeks for a total of 12 weeks. In addition, 30 healthy controls (HC) were included in the analysis. The clinical efficacy of FMT was evaluated, while the composition of fecal bacteria and fungi was determined using 16S rRNA and ITS gene sequencing methods. Results Median age of the 38 children with ASD was 7 years. Among these children, 84.2% (32 of 38) were boys and 81.6% (31 of 38) exhibited GI symptoms, with indigestion, constipation and diarrhea being the most common symptoms. Sample collections and assessments were conducted at baseline (week 0), post-treatment (week 12) and follow-up (week 20). At the end of the follow-up phase after FMT treatment, the autism behavior checklist (ABC) scores decreased by 23% from baseline, and there was a 10% reduction in scores on the childhood autism rating scale (CARS), a 6% reduction in scores on the social responsiveness scale (SRS) and a 10% reduction in scores on the sleep disturbance scale for children (SDSC). In addition, short-term adverse events observed included vomiting and fever in 2 participants, which were self-limiting and resolved within 24 h, and no long-term adverse events were observed. Although there was no significant difference in alpha and beta diversity in children with ASD before and after FMT therapy, the FMT treatment resulted in alterations in the relative abundances of various bacterial and fungal genera in the samples of ASD patients. Comparisons between children with ASD and healthy controls (HC) revealed statistically significant differences in microbial abundance before and after FMT. Blautia, Sellimonas, Saccharomycopsis and Cystobasidium were more abundant in children with ASD than in HC, while Dorea were less abundant. After FMT treatment, levels of Blautia, Sellimonas, Saccharomycopsis and Cystobasidium decreased, while levels of Dorea increased. Moreover, the increased abundances of Fusicatenibacter, Erysipelotrichaceae_UCG-003, Saccharomyces, Rhodotorula, Cutaneotrichosporon and Zygosaccharomyces were negatively correlated with the scores of ASD core symptoms. Conclusions Oral lyophilized FMT could improve GI and ASD related symptoms, as well as sleep disturbances, and alter the gut bacterial and fungal microbiota composition in children with ASD. Clinical Trial Registration Chinese Clinical Trial Registry, ChiCTR2200055943. Registered 28 January 2022, www.chictr.org.cn.
Collapse
Affiliation(s)
- Youran Li
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Xiao
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Cao
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Le
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiao Xu
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fangfei Xiao
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Ye
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xufei Wang
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yizhong Wang
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Zhang
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Fu Z, Yang X, Jiang Y, Mao X, Liu H, Yang Y, Chen J, Chen Z, Li H, Zhang XS, Mao X, Li N, Wang D, Jiang J. Microbiota profiling reveals alteration of gut microbial neurotransmitters in a mouse model of autism-associated 16p11.2 microduplication. Front Microbiol 2024; 15:1331130. [PMID: 38596370 PMCID: PMC11002229 DOI: 10.3389/fmicb.2024.1331130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/27/2024] [Indexed: 04/11/2024] Open
Abstract
The gut-brain axis is evident in modulating neuropsychiatric diseases including autism spectrum disorder (ASD). Chromosomal 16p11.2 microduplication 16p11.2dp/+ is among the most prevalent genetic copy number variations (CNV) linked with ASD. However, the implications of gut microbiota status underlying the development of ASD-like impairments induced by 16p11.2dp/+ remains unclear. To address this, we initially investigated a mouse model of 16p11.2dp/+, which exhibits social novelty deficit and repetitive behavior characteristic of ASD. Subsequently, we conducted a comparative analysis of the gut microbial community and metabolomic profiles between 16p11.2dp/+ and their wild-type counterparts using 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC/MS). Our microbiota analysis revealed structural dysbiosis in 16p11.2dp/+ mice, characterized by reduced biodiversity and alterations in species abundance, as indicated by α/β-diversity analysis. Specifically, we observed reduced relative abundances of Faecalibaculum and Romboutsia, accompanied by an increase in Turicibacter and Prevotellaceae UCG_001 in 16p11.2dp/+ group. Metabolomic analysis identified 19 significantly altered metabolites and unveiled enriched amino acid metabolism pathways. Notably, a disruption in the predominantly histamine-centered neurotransmitter network was observed in 16p11.2dp/+ mice. Collectively, our findings delineate potential alterations and correlations among the gut microbiota and microbial neurotransmitters in 16p11.2dp/+ mice, providing new insights into the pathogenesis of and treatment for 16p11.2 CNV-associated ASD.
Collapse
Affiliation(s)
- Zhang Fu
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiuyan Yang
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Youheng Jiang
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xinliang Mao
- Guangdong Perfect Life Health Science and Technology Research Institute Co., Ltd., Zhongshan, Guangdong, China
| | - Hualin Liu
- Guangdong Perfect Life Health Science and Technology Research Institute Co., Ltd., Zhongshan, Guangdong, China
| | - Yanming Yang
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jia Chen
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhumei Chen
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-Sen University (SYSU), Shenzhen, Guangdong, China
| | - Huiliang Li
- Division of Medicine, Wolfson Institute for Biomedical Research, Faculty of Medical Sciences, University College London, London, United Kingdom
- China-UK Institute for Frontier Science, Shenzhen, Guangdong, China
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| | - Xinjun Mao
- Department of Anesthesiology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Ningning Li
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- China-UK Institute for Frontier Science, Shenzhen, Guangdong, China
| | - Dilong Wang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian Jiang
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Caputi V, Hill L, Figueiredo M, Popov J, Hartung E, Margolis KG, Baskaran K, Joharapurkar P, Moshkovich M, Pai N. Functional contribution of the intestinal microbiome in autism spectrum disorder, attention deficit hyperactivity disorder, and Rett syndrome: a systematic review of pediatric and adult studies. Front Neurosci 2024; 18:1341656. [PMID: 38516317 PMCID: PMC10954784 DOI: 10.3389/fnins.2024.1341656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/02/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction Critical phases of neurodevelopment and gut microbiota diversification occur in early life and both processes are impacted by genetic and environmental factors. Recent studies have shown the presence of gut microbiota alterations in neurodevelopmental disorders. Here we performed a systematic review of alterations of the intestinal microbiota composition and function in pediatric and adult patients affected by autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and Rett syndrome (RETT). Methods We searched selected keywords in the online databases of PubMed, Cochrane, and OVID (January 1980 to December 2021) with secondary review of references of eligible articles. Two reviewers independently performed critical appraisals on the included articles using the Critical Appraisal Skills Program for each study design. Results Our systematic review identified 18, 7, and 3 original articles describing intestinal microbiota profiles in ASD, ADHD, and RETT, respectively. Decreased Firmicutes and increased Bacteroidetes were observed in the gut microbiota of individuals affected by ASD and ADHD. Proinflammatory cytokines, short-chain fatty acids and neurotransmitter levels were altered in ASD and RETT. Constipation and visceral pain were related to changes in the gut microbiota in patients affected by ASD and RETT. Hyperactivity and impulsivity were negatively correlated with Faecalibacterium (phylum Firmicutes) and positively correlated with Bacteroides sp. (phylum Bacteroidetes) in ADHD subjects. Five studies explored microbiota-or diet-targeted interventions in ASD and ADHD. Probiotic treatments with Lactobacillus sp. and fecal microbiota transplantation from healthy donors reduced constipation and ameliorated ASD symptoms in affected children. Perinatal administration of Lactobacillus sp. prevented the onset of Asperger and ADHD symptoms in adolescence. Micronutrient supplementation improved disease symptomatology in ADHD without causing significant changes in microbiota communities' composition. Discussion Several discrepancies were found among the included studies, primarily due to sample size, variations in dietary practices, and a high prevalence of functional gastrointestinal symptoms. Further studies employing longitudinal study designs, larger sample sizes and multi-omics technologies are warranted to identify the functional contribution of the intestinal microbiota in developmental trajectories of the human brain and neurobehavior. Systematic review registration https://clinicaltrials.gov/, CRD42020158734.
Collapse
Affiliation(s)
- Valentina Caputi
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR, United States
| | - Lee Hill
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Pediatrics, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Melanie Figueiredo
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jelena Popov
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Harvard Medical School, Boston, MA, United States
- Boston Children’s Hospital, Boston, MA, United States
| | - Emily Hartung
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Science, McMaster University, Hamilton, ON, Canada
| | - Kara Gross Margolis
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, United States
- New York University Pain Research Center, New York, NY, United States
- New York University College of Dentistry, New York, NY, United States
| | - Kanish Baskaran
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Papiha Joharapurkar
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Michal Moshkovich
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nikhil Pai
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Division of Gastroenterology, Hepatology and Nutrition, McMaster Children’s Hospital, Hamilton, ON, Canada
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Division of Gastroenterology, Hepatology, and Nutrition, the Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
14
|
Li H, Guo W, Li S, Sun B, Li N, Xie D, Dong Z, Luo D, Chen W, Fu W, Zheng J, Zhu J. Alteration of the gut microbiota profile in children with autism spectrum disorder in China. Front Microbiol 2024; 14:1326870. [PMID: 38420215 PMCID: PMC10899803 DOI: 10.3389/fmicb.2023.1326870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/18/2023] [Indexed: 03/02/2024] Open
Abstract
Background Autism spectrum disorder (ASD) is associated with alterations in the gut microbiome. However, there are few studies on gut microbiota of children with ASD in China, and there is a lack of consensus on the changes of bacterial species. Purpose Autism spectrum disorder (ASD) is associated with alterations in the gut microbiome. However, there are few studies on gut microbiota of children with ASD in China, and there is a lack of consensus on the changes of bacterial species. Methods We used 16S rRNA sequencing to analyze ASD children (2 to 12 years), HC (2 to 12 years). Results Our findings showed that the α-diversity, composition, and relative abundance of gut microbiota in the ASD group were significantly different from those in the HC groups. Compared with the HC group, the α-diversity in the ASD group was significantly decreased. At the genus level, the relative abundance of g_Faecalibacterium, g_Blautia, g_Eubacterium_eligens_group, g_Parasutterella, g_Lachnospiraceae_NK4A136_group and g_Veillonella in ASD group was significantly increased than that in HC groups, while the relative abundance of g_Prevotella 9 and g_Agathobacter was significantly decreased than that in HC groups. In addition, KEGG pathway analysis showed that the microbial functional abnormalities in ASD patients were mainly concentrated in metabolic pathways related to fatty acid, amino acid metabolism and aromatic compound metabolism, and were partially involved in neurotransmitter metabolism. Conclusion This study revealed the characteristics of gut microbiota of Chinese children with ASD and provided further evidence of gut microbial dysbiosis in ASD.
Collapse
Affiliation(s)
- Hui Li
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Wei Guo
- Stroke Center, Puyang People's Hospital, Puyang, China
| | - Sijie Li
- Department of Pediatrics, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Bishao Sun
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ningshan Li
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Dongjing Xie
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zongming Dong
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Dan Luo
- Department of Neurology, Yunyang People's Hospital, Yunyang, China
| | - Wei Chen
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Weihua Fu
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jingzhen Zhu
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
15
|
Wang C, Chen W, Jiang Y, Xiao X, Zou Q, Liang J, Zhao Y, Wang Q, Yuan T, Guo R, Liu X, Liu Z. A synbiotic formulation of Lactobacillus reuteri and inulin alleviates ASD-like behaviors in a mouse model: the mediating role of the gut-brain axis. Food Funct 2024; 15:387-400. [PMID: 38099485 DOI: 10.1039/d3fo02663a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Autism Spectrum Disorder (ASD), a complex neurodevelopmental disorder marked by social communication deficits and repetitive behaviors, may see symptom amelioration through gut microbiota modulation. This study investigates the effects of a synbiotic - specifically a probiotic amplified by prebiotic supplementation - on ASD-like mouse model's social deficiencies. This model was established via valproic acid injection into pregnant females. Post-weaning, male progeny received daily synbiotic treatment, a combination of Lactobacillus reuteri (L. reuteri) and inulin, for four weeks. Results indicated that the synbiotic rectified social impairments and attenuated inflammatory cytokine expressions in the brain. Moreover, synbiotic intervention protected gut barrier integrity and altered the gut microbiota composition, enhancing the butyrate-producing Bifidobacterium abundance. The synbiotic elevated metabolites such as butyrate and 3-hydroxybutyric acid (3-HB), alongside upregulated genes associated with 3-HB synthesis in the colon and liver, and brain receptors. Conclusively, the synbiotic combination of L. reuteri and inulin mitigated ASD-related social impairments, partially via their regulatory effect on the gut-brain axis.
Collapse
Affiliation(s)
- Chuanchuan Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China
| | - Weixuan Chen
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yishan Jiang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiao Xiao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Qianhui Zou
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jiarui Liang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yu Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Qianxu Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Tian Yuan
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Guo
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
16
|
Filho AMC, Gomes NS, Lós DB, Leite IB, Tremblay MÈ, Macêdo DS. Microglia and Microbiome-Gut-Brain Axis. ADVANCES IN NEUROBIOLOGY 2024; 37:303-331. [PMID: 39207699 DOI: 10.1007/978-3-031-55529-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The mammalian gut contains a community of microorganisms called gut microbiome. The gut microbiome is integrated into mammalian physiology, contributing to metabolism, production of metabolites, and promoting immunomodulatory actions. Microglia, the brain's resident innate immune cells, play an essential role in homeostatic neurogenesis, synaptic remodeling, and glial maturation. Microglial dysfunction has been implicated in the pathogenesis of several neuropsychiatric disorders. Recent findings indicate that microglia are influenced by the gut microbiome and their derived metabolites throughout life. The pathways by which microbiota regulate microglia have only started to be understood, but this discovery has the potential to provide valuable insights into the pathogenesis of brain disorders associated with an altered microbiome. Here, we discuss the recent literature on the role of the gut microbiome in modulating microglia during development and adulthood and summarize the key findings on this bidirectional crosstalk in selected examples of neuropsychiatric and neurodegenerative disorders. We also highlight some current caveats and perspectives for the field.
Collapse
Affiliation(s)
- Adriano Maia Chaves Filho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Nayana Soares Gomes
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Deniele Bezerra Lós
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Isabel Bessa Leite
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Department of Molecular Medicine, Université de Laval, Québec City, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
| | - Danielle S Macêdo
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
17
|
Lagod PP, Naser SA. The Role of Short-Chain Fatty Acids and Altered Microbiota Composition in Autism Spectrum Disorder: A Comprehensive Literature Review. Int J Mol Sci 2023; 24:17432. [PMID: 38139261 PMCID: PMC10743890 DOI: 10.3390/ijms242417432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by deficits in communication and social interactions, restrictive and repetitive behavior, and a wide range of cognitive impediments. The prevalence of ASD tripled in the last 20 years and now affects 1 in 44 children. Although ASD's etiology is not yet elucidated, a growing body of evidence shows that it stems from a complex interplay of genetic and environmental factors. In recent years, there has been increased focus on the role of gut microbiota and their metabolites, as studies show that ASD patients show a significant shift in their gut composition, characterized by an increase in specific bacteria and elevated levels of short-chain fatty acids (SCFAs), especially propionic acid (PPA). This review aims to provide an overview of the role of microbiota and SCFAs in the human body, as well as possible implications of microbiota shift. Also, it highlights current studies aiming to compare the composition of the gut microbiome of ASD-afflicted patients with neurotypical control. Finally, it highlights studies with rodents where ASD-like symptoms or molecular hallmarks of ASD are evoked, via the grafting of microbes obtained from ASD subjects or direct exposure to PPA.
Collapse
Affiliation(s)
| | - Saleh A. Naser
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA;
| |
Collapse
|
18
|
Lewandowska-Pietruszka Z, Figlerowicz M, Mazur-Melewska K. Microbiota in Autism Spectrum Disorder: A Systematic Review. Int J Mol Sci 2023; 24:16660. [PMID: 38068995 PMCID: PMC10706819 DOI: 10.3390/ijms242316660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by several core symptoms: restricted interests, communication difficulties, and impaired social interactions. Many ASD children experience gastrointestinal functional disorders, impacting their well-being. Emerging evidence suggests that a gut microbiota imbalance may exacerbate core and gastrointestinal symptoms. Our review assesses the gut microbiota in children with ASD and interventions targeting microbiota modulation. The analysis of forty-four studies (meta-analyses, reviews, original research) reveals insights into the gut microbiota-ASD relationship. While specific microbiota alterations are mixed, some trends emerge. ASD children exhibit increased Firmicutes (36-81%) and Pseudomonadota (78%) and decreased Bacteroidetes (56%). The Bacteroidetes to Firmicutes ratio tends to be lower (56%) compared to children without ASD, which correlates with behavioral and gastrointestinal abnormalities. Probiotics, particularly Lactobacillus, Bifidobacterium, and Streptococcus strains, show promise in alleviating behavioral and gastrointestinal symptoms (66%). Microbiota transfer therapy (MTT) seems to have lasting benefits for the microbiota and symptoms in one longitudinal study. Prebiotics can potentially help with gastrointestinal and behavioral issues, needing further research for conclusive efficacy due to different interventions being used. This review highlights the gut microbiota-ASD interplay, offering potential therapeutic avenues for the gut-brain axis. However, study heterogeneity, small sample sizes, and methodological variations emphasize the need for comprehensive, standardized research. Future investigations may unveil complex mechanisms linking the gut microbiota to ASD, ultimately enhancing the quality of life for affected individuals.
Collapse
Affiliation(s)
| | | | - Katarzyna Mazur-Melewska
- Department of Infectious Diseases and Child Neurology, Poznan University of Medical Sciences, 60-572 Poznan, Poland; (Z.L.-P.); (M.F.)
| |
Collapse
|
19
|
He J, Gong X, Hu B, Lin L, Lin X, Gong W, Zhang B, Cao M, Xu Y, Xia R, Zheng G, Wu S, Zhang Y. Altered Gut Microbiota and Short-chain Fatty Acids in Chinese Children with Constipated Autism Spectrum Disorder. Sci Rep 2023; 13:19103. [PMID: 37925571 PMCID: PMC10625580 DOI: 10.1038/s41598-023-46566-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023] Open
Abstract
Gastrointestinal symptoms are more prevalent in children with autism spectrum disorder (ASD) than in typically developing (TD) children. Constipation is a significant gastrointestinal comorbidity of ASD, but the associations among constipated autism spectrum disorder (C-ASD), microbiota and short-chain fatty acids (SCFAs) are still debated. We enrolled 80 children, divided into the C-ASD group (n = 40) and the TD group (n = 40). In this study, an integrated 16S rRNA gene sequencing and gas chromatography-mass spectrometry-based metabolomics approach was applied to explore the association of the gut microbiota and SCFAs in C-ASD children in China. The community diversity estimated by the Observe, Chao1, and ACE indices was significantly lower in the C-ASD group than in the TD group. We observed that Ruminococcaceae_UCG_002, Erysipelotrichaceae_UCG_003, Phascolarctobacterium, Megamonas, Ruminiclostridium_5, Parabacteroides, Prevotella_2, Fusobacterium, and Prevotella_9 were enriched in the C-ASD group, and Anaerostipes, Lactobacillus, Ruminococcus_gnavus_group, Lachnospiraceae_NK4A136_group, Ralstonia, Eubacterium_eligens_group, and Ruminococcus_1 were enriched in the TD group. The propionate levels, which were higher in the C-ASD group, were negatively correlated with the abundance of Lactobacillus taxa, but were positively correlated with the severity of ASD symptoms. The random forest model, based on the 16 representative discriminant genera, achieved a high accuracy (AUC = 0.924). In conclusion, we found that C-ASD is related to altered gut microbiota and SCFAs, especially decreased abundance of Lactobacillus and excessive propionate in faeces, which provide new clues to understand C-ASD and biomarkers for the diagnosis and potential strategies for treatment of the disorder. This study was registered in the Chinese Clinical Trial Registry ( www.chictr.org.cn ; trial registration number ChiCTR2100052106; date of registration: October 17, 2021).
Collapse
Affiliation(s)
- Jianquan He
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Department of Rehabilitation, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
- Xiamen Institute of Big Data of TCM Constitution and PreventiveTreatment for Disease, Xiamen, China
| | - Xiuhua Gong
- School of Nursing, Qingdao University, Qingdao, China
| | - Bing Hu
- Department of Pediatrics, Yichun People's Hospital, Yichun, China
| | - Lin Lin
- Xiamen Institute of Big Data of TCM Constitution and PreventiveTreatment for Disease, Xiamen, China
| | - Xiujuan Lin
- Xiamen Institute of Big Data of TCM Constitution and PreventiveTreatment for Disease, Xiamen, China
| | - Wenxiu Gong
- Xiamen Institute of Big Data of TCM Constitution and PreventiveTreatment for Disease, Xiamen, China
| | | | - Man Cao
- Xiamen Treatgut Biotechnology Co., Ltd, Xiamen, China
| | - Yanzhi Xu
- Xiamen Treatgut Biotechnology Co., Ltd, Xiamen, China
| | - Rongmu Xia
- Clinical Research Institute, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Guohua Zheng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
- College of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Shuijin Wu
- Xiamen Food and Drug Evaluation and Adverse Reaction Monitoring Center, Xiamen, China.
| | - Yuying Zhang
- Department of Gastroenterology, Weifang People's Hospital, Weifang, China.
| |
Collapse
|
20
|
Osman A, Mervosh NL, Strat AN, Euston TJ, Zipursky G, Pollak RM, Meckel KR, Tyler SR, Chan KL, Buxbaum Grice A, Drapeau E, Litichevskiy L, Gill J, Zeldin SM, Thaiss CA, Buxbaum JD, Breen MS, Kiraly DD. Acetate supplementation rescues social deficits and alters transcriptional regulation in prefrontal cortex of Shank3 deficient mice. Brain Behav Immun 2023; 114:311-324. [PMID: 37657643 PMCID: PMC10955506 DOI: 10.1016/j.bbi.2023.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/02/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND The pathophysiology of autism spectrum disorder (ASD) involves genetic and environmental factors. Mounting evidence demonstrates a role for the gut microbiome in ASD, with signaling via short-chain fatty acids (SCFA) as one mechanism. Here, we utilize mice carrying deletion to exons 4-22 of Shank3 (Shank3KO) to model gene by microbiome interactions in ASD. We identify SCFA acetate as a mediator of gut-brain interactions and show acetate supplementation reverses social deficits concomitant with alterations to medial prefrontal cortex (mPFC) transcriptional regulation independent of microbiome status. METHODS Shank3KO and wild-type (Wt) littermates were divided into control, Antibiotic (Abx), Acetate and Abx + Acetate groups upon weaning. After six weeks, animals underwent behavioral testing. Molecular analysis including 16S and metagenomic sequencing, metabolomic and transcriptional profiling were conducted. Additionally, targeted serum metabolomic data from Phelan McDermid Syndrome (PMS) patients (who are heterozygous for the Shank3 gene) were leveraged to assess levels of SCFA's relative to ASD clinical measures. RESULTS Shank3KO mice were found to display social deficits, dysregulated gut microbiome and decreased cecal levels of acetate - effects exacerbated by Abx treatment. RNA-sequencing of mPFC showed unique gene expression signature induced by microbiome depletion in the Shank3KO mice. Oral treatment with acetate reverses social deficits and results in marked changes in gene expression enriched for synaptic signaling, pathways among others, even in Abx treated mice. Clinical data showed sex specific correlations between levels of acetate and hyperactivity scores. CONCLUSION These results suggest a key role for the gut microbiome and the neuroactive metabolite acetate in regulating ASD-like behaviors.
Collapse
Affiliation(s)
- Aya Osman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Nicholas L Mervosh
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ana N Strat
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Tanner J Euston
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Gillian Zipursky
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Rebecca M Pollak
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Katherine R Meckel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Scott R Tyler
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Kenny L Chan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ariela Buxbaum Grice
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Elodie Drapeau
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Lev Litichevskiy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jasleen Gill
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sharon M Zeldin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute of Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Michael S Breen
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Drew D Kiraly
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Atrium Wake Forest Baptist Health, Winston-Salem, NC 27101, United States; Department of Psychiatry, Wake Forest University School of Medicine, Atrium Wake Forest Baptist Health, Winston-Salem, NC 27101, United States.
| |
Collapse
|
21
|
Chamtouri M, Gaddour N, Merghni A, Mastouri M, Arboleya S, de Los Reyes-Gavilán CG. Age and severity-dependent gut microbiota alterations in Tunisian children with autism spectrum disorder. Sci Rep 2023; 13:18218. [PMID: 37880312 PMCID: PMC10600251 DOI: 10.1038/s41598-023-45534-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
Alterations in gut microbiota and short chain fatty acids (SCFA) have been reported in autism spectrum disorder (ASD). We analysed the gut microbiota and fecal SCFA in Tunisian autistic children from 4 to 10 years, and results were compared to those obtained from a group of siblings (SIB) and children from the general population (GP). ASD patients presented different gut microbiota profiles compared to SIB and GP, with differences in the levels of Bifidobacterium and Collinsella occurring in younger children (4-7 years) and that tend to be attenuated at older ages (8-10 years). The lower abundance of Bifidobacterium is the key feature of the microbiota composition associated with severe autism. ASD patients presented significantly higher levels of propionic and valeric acids than GP at 4-7 years, but these differences disappeared at 8-10 years. To the best of our knowledge, this is the first study on the gut microbiota profile of Tunisian autistic children using a metataxonomic approach. This exploratory study reveals more pronounced gut microbiota alterations at early than at advanced ages in ASD. Although we did not account for multiple testing, our findings suggest that early interventions might mitigate gut disorders and cognitive and neurodevelopment impairment associated to ASD.
Collapse
Affiliation(s)
- Mariem Chamtouri
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300, Villaviciosa, Spain
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, 5000, Monastir, Tunisia
| | - Naoufel Gaddour
- Unit of Child Psychiatry, Monastir University Hospital, 5000, Monastir, Tunisia
| | - Abderrahmen Merghni
- Laboratory of Antimicrobial Resistance LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, 1068, Tunis, Tunisia
| | - Maha Mastouri
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, 5000, Monastir, Tunisia
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300, Villaviciosa, Spain.
- Diet, Microbiota, and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain.
| | - Clara G de Los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300, Villaviciosa, Spain.
- Diet, Microbiota, and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain.
| |
Collapse
|
22
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
23
|
Pan X, Raaijmakers JM, Carrión VJ. Importance of Bacteroidetes in host-microbe interactions and ecosystem functioning. Trends Microbiol 2023; 31:959-971. [PMID: 37173204 DOI: 10.1016/j.tim.2023.03.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 05/15/2023]
Abstract
Bacteroidetes are prevalent in soil ecosystems and are associated with various eukaryotic hosts, including plants, animals, and humans. The ubiquity and diversity of Bacteroidetes exemplify their impressive versatility in niche adaptation and genomic plasticity. Over the past decade, a wealth of knowledge has been obtained on the metabolic functions of clinically relevant Bacteroidetes, but much less attention has been given to Bacteroidetes living in close association with plants. To improve our understanding of the functional roles of Bacteroidetes for plants and other hosts, we review the current knowledge of their taxonomy and ecology, in particular their roles in nutrient cycling and host fitness. We highlight their environmental distribution, stress resilience, genomic diversity, and functional importance in diverse ecosystems, including, but not limited to, plant-associated microbiomes.
Collapse
Affiliation(s)
- Xinya Pan
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708, PB, Wageningen, The Netherlands; Institute of Biology, Leiden University, Sylviusweg 72, 2333, BE, Leiden, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708, PB, Wageningen, The Netherlands; Institute of Biology, Leiden University, Sylviusweg 72, 2333, BE, Leiden, The Netherlands
| | - Víctor J Carrión
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708, PB, Wageningen, The Netherlands; Institute of Biology, Leiden University, Sylviusweg 72, 2333, BE, Leiden, The Netherlands; Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain; Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Málaga, Spain.
| |
Collapse
|
24
|
de la Rubia Ortí JE, Moneti C, Serrano-Ballesteros P, Castellano G, Bayona-Babiloni R, Carriquí-Suárez AB, Motos-Muñoz M, Proaño B, Benlloch M. Liposomal Epigallocatechin-3-Gallate for the Treatment of Intestinal Dysbiosis in Children with Autism Spectrum Disorder: A Comprehensive Review. Nutrients 2023; 15:3265. [PMID: 37513683 PMCID: PMC10383799 DOI: 10.3390/nu15143265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is characterized by varying degrees of difficulty in social interaction and communication. These deficits are often associated with gastrointestinal symptoms, indicating alterations in both intestinal microbiota composition and metabolic activities. The intestinal microbiota influences the function and development of the nervous system. In individuals with ASD, there is an increase in bacterial genera such as Clostridium, as well as species involved in the synthesis of branched-chain amino acids (BCAA) like Prevotella copri. Conversely, decreased amounts of Akkermansia muciniphila and Bifidobacterium spp. are observed. Epigallocatechin-3-gallate (EGCG) is one of the polyphenols with the greatest beneficial activity on microbial growth, and its consumption is associated with reduced psychological distress. Therefore, the objective of this review is to analyze how EGCG and its metabolites can improve the microbial dysbiosis present in ASD and its impact on the pathology. The analysis reveals that EGCG inhibits the growth of pathogenic bacteria like Clostridium perfringens and Clostridium difficile. Moreover, it increases the abundance of Bifidobacterium spp. and Akkermansia spp. As a result, EGCG demonstrates efficacy in increasing the production of metabolites involved in maintaining epithelial integrity and improving brain function. This identifies EGCG as highly promising for complementary treatment in ASD.
Collapse
Affiliation(s)
| | - Costanza Moneti
- Doctoral School, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | | | - Gloria Castellano
- Centro de Investigación Traslacional San Alberto Magno (CITSAM), Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Raquel Bayona-Babiloni
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Ana Belén Carriquí-Suárez
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - María Motos-Muñoz
- Department of Personality Psychology, Treatment and Methodology, Catholic University of Valencia San Vicente Mártir, 46100 Valencia, Spain
- Child Neurorehabilitation Unit, Manises Hospital, 46940 Valencia, Spain
| | - Belén Proaño
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - María Benlloch
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
25
|
Levkova M, Chervenkov T, Pancheva R. Genus-Level Analysis of Gut Microbiota in Children with Autism Spectrum Disorder: A Mini Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1103. [PMID: 37508600 PMCID: PMC10377934 DOI: 10.3390/children10071103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023]
Abstract
Autism is a global health problem, probably due to a combination of genetic and environmental factors. There is emerging data that the gut microbiome of autistic children differs from the one of typically developing children and it is important to know which bacterial genera may be related to autism. We searched different databases using specific keywords and inclusion criteria and identified the top ten bacterial genera from the selected articles that were significantly different between the studied patients and control subjects studied. A total of 34 studies that met the inclusion criteria were identified. The genera Bacteroides, Bifidobacterium, Clostridium, Coprococcus, Faecalibacterium, Lachnospira, Prevotella, Ruminococcus, Streptococcus, and Blautia exhibited the most substantial data indicating that their fluctuations in the gastrointestinal tract could be linked to the etiology of autism. It is probable that autism symptoms are influenced by both increased levels of harmful bacteria and decreased levels of beneficial bacteria. Interestingly, these genera demonstrated varying patterns of increased or decreased levels across different articles. To validate and eliminate the sources of this fluctuation, further research is needed. Consequently, future investigations on the causes of autism should prioritize the examination of the bacterial genera discussed in this publication.
Collapse
Affiliation(s)
- Mariya Levkova
- Department of Medical Genetics, Medical University Varna, Marin Drinov Str 55, 9000 Varna, Bulgaria
- Laboratory of Medical Genetics, St. Marina Hospital, Hristo Smirnenski Blv 1, 9000 Varna, Bulgaria
| | - Trifon Chervenkov
- Laboratory of Medical Genetics, St. Marina Hospital, Hristo Smirnenski Blv 1, 9000 Varna, Bulgaria
- Laboratory of Clinical Immunology, St. Marina Hospital, Hristo Smirnenski Blv 1, 9000 Varna, Bulgaria
| | - Rouzha Pancheva
- Department of Hygiene and Epidemiology, Medical University Varna, Marin Drinov Str 55, 9000 Varna, Bulgaria
| |
Collapse
|
26
|
Wang F, Yang H, Wu Y, Peng L, Li X. SAELGMDA: Identifying human microbe-disease associations based on sparse autoencoder and LightGBM. Front Microbiol 2023; 14:1207209. [PMID: 37415823 PMCID: PMC10320730 DOI: 10.3389/fmicb.2023.1207209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/18/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction Identification of complex associations between diseases and microbes is important to understand the pathogenesis of diseases and design therapeutic strategies. Biomedical experiment-based Microbe-Disease Association (MDA) detection methods are expensive, time-consuming, and laborious. Methods Here, we developed a computational method called SAELGMDA for potential MDA prediction. First, microbe similarity and disease similarity are computed by integrating their functional similarity and Gaussian interaction profile kernel similarity. Second, one microbe-disease pair is presented as a feature vector by combining the microbe and disease similarity matrices. Next, the obtained feature vectors are mapped to a low-dimensional space based on a Sparse AutoEncoder. Finally, unknown microbe-disease pairs are classified based on Light Gradient boosting machine. Results The proposed SAELGMDA method was compared with four state-of-the-art MDA methods (MNNMDA, GATMDA, NTSHMDA, and LRLSHMDA) under five-fold cross validations on diseases, microbes, and microbe-disease pairs on the HMDAD and Disbiome databases. The results show that SAELGMDA computed the best accuracy, Matthews correlation coefficient, AUC, and AUPR under the majority of conditions, outperforming the other four MDA prediction models. In particular, SAELGMDA obtained the best AUCs of 0.8358 and 0.9301 under cross validation on diseases, 0.9838 and 0.9293 under cross validation on microbes, and 0.9857 and 0.9358 under cross validation on microbe-disease pairs on the HMDAD and Disbiome databases. Colorectal cancer, inflammatory bowel disease, and lung cancer are diseases that severely threat human health. We used the proposed SAELGMDA method to find possible microbes for the three diseases. The results demonstrate that there are potential associations between Clostridium coccoides and colorectal cancer and one between Sphingomonadaceae and inflammatory bowel disease. In addition, Veillonella may associate with autism. The inferred MDAs need further validation. Conclusion We anticipate that the proposed SAELGMDA method contributes to the identification of new MDAs.
Collapse
Affiliation(s)
- Feixiang Wang
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Huandong Yang
- Department of Gastrointestinal Surgery, Yidu Central Hospital of Weifang, Weifang, China
| | - Yan Wu
- Geneis (Beijing) Co., Ltd., Beijing, China
| | - Lihong Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Xiaoling Li
- The Second Department of Oncology, Beidahuang Industry Group General Hospital, Harbin, China
- The Second Department of Oncology, Heilongjiang Second Cancer Hospital, Harbin, China
| |
Collapse
|
27
|
Liu L, Wang H, Chen X, Xie P. Gut microbiota: a new insight into neurological diseases. Chin Med J (Engl) 2023; 136:1261-1277. [PMID: 35830286 PMCID: PMC10309523 DOI: 10.1097/cm9.0000000000002212] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT In the last decade, it has become increasingly recognized that a balanced gut microbiota plays an important role in maintaining the health of the host. Numerous clinical and preclinical studies have shown that changes in gut microbiota composition are associated with a variety of neurological diseases, e.g., Parkinson's disease, Alzheimer's disease, and myasthenia gravis. However, the underlying molecular mechanisms are complex and remain unclear. Behavioral phenotypes can be transmitted from humans to animals through gut microbiota transplantation, indicating that the gut microbiota may be an important regulator of neurological diseases. However, further research is required to determine whether animal-based findings can be extended to humans and to elucidate the relevant potential mechanisms by which the gut microbiota regulates neurological diseases. Such investigations may aid in the development of new microbiota-based strategies for diagnosis and treatment and improve the clinical management of neurological disorders. In this review, we describe the dysbiosis of gut microbiota and the corresponding mechanisms in common neurological diseases, and discuss the potential roles that the intestinal microbiome may play in the diagnosis and treatment of neurological disorders.
Collapse
Affiliation(s)
- Lanxiang Liu
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Haiyang Wang
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xueyi Chen
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
28
|
Zhang X, Yang H, Zhang K, Zhang J, Lu X, Guo H, Yuan G, Zhu Z, Du J, Shi H, Jin G, Hao J, Sun Y, Su P, Zhang Z. Effects of exercise or tai chi on Internet addiction in college students and the potential role of gut microbiota: A randomized controlled trial. J Affect Disord 2023; 327:404-415. [PMID: 36754096 DOI: 10.1016/j.jad.2023.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
OBJECTIVE This study aimed to explore the effect of exercise or tai chi on Internet addiction disorder (IAD) among college students and clarified the abundance and population changes of gut microbiota in different groups. Thus explore the potential role of gut microbiota between exercise and IAD. METHODS A total of 93 subjects diagnosed with mild IAD were randomly assigned to the exercise group, the tai chi group, and the control group. The intervention groups received exercise or tai chi for 8 weeks and the control group was evaluated without any intervention. Fecal samples were collected after the intervention. RESULTS 1) Analysis found a significant intervention effect with the exercise group showing an average decrease of 8.84 points on the Internet addiction test (IAT) compared with the control group (95%CI -15.41 to-2.27, P = 0.004). But there was no significant difference between the control group and the tai chi group. 2) Both exercise (P = 0.018) and tai chi (P = 0.026) could significantly relieve fatigue symptoms. 3) The relative abundance of the Betaproteobacteria, Porphyromonadaceae, Sutterellaceae, and Alistipes were significantly decreased in the exercise group compared with the control group, and the relative abundance of Escherichia was significantly increased in the exercise group. 4) The relative abundance of Betaproteobacteria, Sutterellaceae, and Escherichia had significant differences between the improved group and the no-improved group. CONCLUSION Exercise intervention has a considerable effect on treating IAD. Exercise and tai chi might have effectiveness in relieving the symptoms of fatigue. Exercise intervention regulates the gut microflora and changes the abundance of microflora to improve IAD. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, identifier NCT05529368.
Collapse
Affiliation(s)
- Xueqing Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Huayu Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Kexin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jianghui Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Xiaoyan Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Haiyun Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Guojing Yuan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Zhihui Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jun Du
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Haiyan Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Guifang Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jiahu Hao
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Ying Sun
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Puyu Su
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Zhihua Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
29
|
Tejkalová H, Jakob L, Kvasnová S, Klaschka J, Sechovcová H, Mrázek J, Páleníček T, Fliegerová KO. The influence of antibiotic treatment on the behavior and gut microbiome of adult rats neonatally insulted with lipopolysaccharide. Heliyon 2023; 9:e15417. [PMID: 37123951 PMCID: PMC10130227 DOI: 10.1016/j.heliyon.2023.e15417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
The present study investigated whether neonatal exposure to the proinflammatory endotoxin lipopolysaccharide (LPS) followed by an antibiotic (ATB)-induced dysbiosis in early adulthood could induce neurodevelopmental disorders-like behavioral changes in adult male rats. Combining these two stressors resulted in decreased weight gain, but no significant behavioral abnormalities were observed. LPS treatment resulted in adult rats' hypoactivity and induced anxiety-like behavior in the social recognition paradigm, but these behavioral changes were not exacerbated by ATB-induced gut dysbiosis. ATB treatment seriously disrupted the gut bacterial community, but dysbiosis did not affect locomotor activity, social recognition, and acoustic reactivity in adult rats. Fecal bacterial community analyses showed no differences between the LPS challenge exposed/unexposed rats, while the effect of ATB administration was decisive regardless of prior LPS exposure. ATB treatment resulted in significantly decreased bacterial diversity, suppression of Clostridiales and Bacteroidales, and increases in Lactobacillales, Enterobacteriales, and Burkholderiales. The persistent effect of LPS on some aspects of behavior suggests a long-term effect of early toxin exposure that was not observed in ATB-treated animals. However, an anti-inflammatory protective effect of ATB cannot be assumed because of the increased abundance of pro-inflammatory, potentially pathogenic bacteria (Proteus, Suttrella) and the elimination of the bacterial families Ruminococcaceae and Lachnospiraceae, which are generally considered beneficial for gut health.
Collapse
Affiliation(s)
- Hana Tejkalová
- National Institute of Mental Health; Klecany, Czech Republic
| | - Lea Jakob
- National Institute of Mental Health; Klecany, Czech Republic
- 3rd Faculty of Medicine, Charles University, Czech Republic
- Corresponding author. National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic,
| | - Simona Kvasnová
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Czech Republic
| | - Jan Klaschka
- Institute of Computer Science of the Czech Academy of Sciences, Czech Republic
| | - Hana Sechovcová
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Czech Republic
- Czech University of Life Sciences in Prague, Czech Republic
| | - Jakub Mrázek
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Czech Republic
| | - Tomáš Páleníček
- National Institute of Mental Health; Klecany, Czech Republic
- 3rd Faculty of Medicine, Charles University, Czech Republic
| | | |
Collapse
|
30
|
Qiu Z, Luo D, Yin H, Chen Y, Zhou Z, Zhang J, Zhang L, Xia J, Xie J, Sun Q, Xu W. Lactiplantibacillus plantarum N-1 improves autism-like behavior and gut microbiota in mouse. Front Microbiol 2023; 14:1134517. [PMID: 37007488 PMCID: PMC10060657 DOI: 10.3389/fmicb.2023.1134517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionThe gut-brain axis has been widely recognized in autism spectrum disorder (ASD), and probiotics are considered to potentially benefit the rescuing of autism-like behaviors. As a probiotic strain, Lactiplantibacillus plantarumN-1(LPN-1) was utilized to investigate its effects on gut microbiota and autism-like behaviors in ASD mice constructed by maternal immune activation (MIA).MethodsAdult offspring of MIA mice were given LPN-1 at the dosage of 2 × 109 CFU/g for 4 weeks before subject to the behavior and gut microbiota evaluation.ResultsThe behavioral tests showed that LPN-1 intervention was able to rescue autism-like behaviors in mice, including anxiety and depression. In which the LPN-1 treatment group increased the time spent interacting with strangers in the three-chamber test, their activity time and distance in the central area increased in the open field test, and their immobility time decreased when hanging their tails. Moreover, the supplementation of LPN-1 reversed the intestinal flora structure of ASD mice by enhancing the relative abundance of the pivotal microorganisms of Allobaculum and Oscillospira, while reducing those harmful ones like Sutterella at the genus level.DiscussionThese results suggested that LPN-1 supplementation may improve autism-like behaviors, possibly via regulating the gut microbiota.
Collapse
Affiliation(s)
- Zhongqing Qiu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Third People’s Hospital, Chengdu, China
| | - Dongmei Luo
- Key Laboratory of Bio-resources and Eco-Environment, The Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Heng Yin
- Chengdu Third People’s Hospital, Chengdu, China
| | - Yajun Chen
- Chengdu Third People’s Hospital, Chengdu, China
| | - Zhiwei Zhou
- Key Laboratory of Bio-resources and Eco-Environment, The Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jing Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Reproductive Endocrinology and Regulation Laboratory West China Second University Hospital, Sichuan University, Chengdu, China
| | - Linzhu Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Third People’s Hospital, Chengdu, China
| | - Jinrong Xia
- Chengdu Third People’s Hospital, Chengdu, China
| | - Jiang Xie
- Chengdu Third People’s Hospital, Chengdu, China
- *Correspondence: Jiang Xie,
| | - Qun Sun
- Key Laboratory of Bio-resources and Eco-Environment, The Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Qun Sun,
| | - Wenming Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Reproductive Endocrinology and Regulation Laboratory West China Second University Hospital, Sichuan University, Chengdu, China
- Wenming Xu,
| |
Collapse
|
31
|
Wang W, Fu P. Gut Microbiota Analysis and In Silico Biomarker Detection of Children with Autism Spectrum Disorder across Cohorts. Microorganisms 2023; 11:microorganisms11020291. [PMID: 36838256 PMCID: PMC9958793 DOI: 10.3390/microorganisms11020291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
The study of human gut microbiota has attracted increasing interest in the fields of life science and healthcare. However, the complicated and interconnected associations between gut microbiota and human diseases are still difficult to determine in a predictive fashion. Artificial intelligence such as machine learning (ML) and deep learning can assist in processing and interpreting biological datasets. In this study, we aggregated data from different studies based on the species composition and relative abundance of gut microbiota in children with autism spectrum disorder (ASD) and typically developed (TD) individuals and analyzed the commonalities and differences of ASD-associated microbiota across cohorts. We established a predictive model using an ML algorithm to explore the diagnostic value of the gut microbiome for the children with ASD and identify potential biomarkers for ASD diagnosis. The results indicated that the Shenzhen cohort achieved a higher area under the receiver operating characteristic curve (AUROC) value of 0.984 with 97% accuracy, while the Moscow cohort achieved an AUROC value of 0.81 with 67% accuracy. For the combination of the two cohorts, the average prediction results had an AUROC of 0.86 and 80% accuracy. The results of our cross-cohort analysis suggested that a variety of influencing factors, such as population characteristics, geographical region, and dietary habits, should be taken into consideration in microbial transplantation or dietary therapy. Collectively, our prediction strategy based on gut microbiota can serve as an enhanced strategy for the clinical diagnosis of ASD and assist in providing a more complete method to assess the risk of the disorder.
Collapse
Affiliation(s)
- Wenjuan Wang
- School of Life and Pharmaceutical Sciences, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Avenue, Haikou 570228, China
- Correspondence:
| |
Collapse
|
32
|
Fumagalli MR, Saro SM, Tajana M, Zapperi S, La Porta CA. Quantitative analysis of disease-related metabolic dysregulation of human microbiota. iScience 2022; 26:105868. [PMID: 36624837 PMCID: PMC9823209 DOI: 10.1016/j.isci.2022.105868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The metabolic activity of all the micro-organism composing the human microbiome interacts with the host metabolism contributing to human health and disease in a way that is not fully understood. Here, we introduce STELLA, a computational method to derive the spectrum of metabolites associated with the microbiome of an individual. STELLA integrates known information on metabolic pathways associated with each bacterial species and extracts from these the list of metabolic products of each singular reaction by means of automatic text analysis. By comparing the result obtained on a single subject with the metabolic profile data of a control set of healthy subjects, we are able to identify individual metabolic alterations. To illustrate the method, we present applications to autism spectrum disorder and multiple sclerosis.
Collapse
Affiliation(s)
- Maria Rita Fumagalli
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milano, Italy
- CNR - Consiglio Nazionale delle Ricerche, Istituto di Biofisica, via De Marini 6, 16149 Genova, Italy
| | - Stella Maria Saro
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria 16, 20133 Milano, Italy
| | - Matteo Tajana
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria 16, 20133 Milano, Italy
| | - Stefano Zapperi
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria 16, 20133 Milano, Italy
- CNR - Consiglio Nazionale delle Ricerche, Istituto di Chimica della Materia Condensata e di Tecnologie per l’Energia, Via R. Cozzi 53, 20125 Milano, Italy
| | - Caterina A.M. La Porta
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milano, Italy
- CNR - Consiglio Nazionale delle Ricerche, Istituto di Biofisica, via De Marini 6, 16149 Genova, Italy
- Corresponding author
| |
Collapse
|
33
|
Yu R, Zhang M, Ahmed T, Wu Z, Lv L, Zhou G, Li B. Metabolic and Proteomic Profiles Reveal the Response of the ASD-Associated Resistant Strain 6-1 of Lactobacillus plantarum to Propionic Acid. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:17020. [PMID: 36554909 PMCID: PMC9779356 DOI: 10.3390/ijerph192417020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/26/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Autism spectrum disorder (ASD) seriously affects children's health. In our previous study, we isolated and identified a bacterium (Lactobacillus plantarum strain 6-1) that is resistant to propionic acid (PA), which has been reported to play a significant role in the formation of ASD. In order to elucidate the mechanism of the resistance to PA, this study investigated the change in the metabolic and proteomic profile of L. plantarum strain 6-1 in the presence and absence of PA. The results show that 967 and 1078 proteins were specifically identified in the absence and the presence of PA, respectively, while 616 proteins were found under both conditions. Gene ontology enrichment analysis of 130 differentially expressed proteins accumulated in the presence and absence of PA indicated that most of the proteins belong to biological processes, cellular components, and molecular functions. Pathway enrichment analysis showed a great reduction in the metabolic pathway-related proteins when this resistant bacterium was exposed to PA compared to the control. Furthermore, there was an obvious difference in protein-protein interaction networks in the presence and the absence of propionic acid. In addition, there was a change in the metabolic profile of L. plantarum strain 6-1 when this bacterium was exposed to PA compared to the control, while six peaks at 696.46, 1543.022, 1905.241, 2004.277, 2037.374, and 2069.348 m/z disappeared. Overall, the results could help us to understand the mechanism of the resistance of gut bacteria to PA, which will provide a new insight for us to use PA-resistant bacteria to prevent the development of ASD in children.
Collapse
Affiliation(s)
- Rongrong Yu
- College of Education, Zhejiang University of Technology, Hangzhou 310032, China
| | - Muchen Zhang
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhifeng Wu
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Luqiong Lv
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Guoling Zhou
- Hangzhou Seventh People’s Hospital (HSPH), Hangzhou 310013, China
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
34
|
[Diversity and functional prediction of gut microbiota in children with autism spectrum disorder]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:1356-1364. [PMID: 36544419 PMCID: PMC9785081 DOI: 10.7499/j.issn.1008-8830.2207130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To study the structure and diversity of gut microbiota in children with autism spectrum disorder (ASD), and to predict the metabolic function of gut microbiota. METHODS Fecal samples were collected from 30 ASD children (ASD group) and 20 typically developing (TD) children (TD group). Genomic DNA was extracted, the 16S rDNA V4 region was amplified by PCR, and Illumina NovaSeq6000 platform was used for high-throughput sequencing. The composition and distribution characteristics of gut microbiota were analyzed for the two groups, and the metabolic function of gut microbiota was predicted. RESULTS There were no significant differences in alpha diversity indices (Chao1, Shannon, and Simpson) of gut microbiota between the ASD and TD groups (P>0.05). At the phylum and class levels, there was no significant difference in the structure of gut microbiota between the two groups (P>0.05). Compared with the TD group, the ASD group had significantly higher abundance of Megamonas, Barnesiella, Dialister, Megasphaera, Ruminococcus_torques_group, and Fusobacterium at the genus level (P<0.05). Functional prediction analysis showed that compared with the TD group, the ASD group had a significantly lower abundance of the gut microbiota with the metabolic functions such as tryptophan degradation, glutamate degradation, and butyrate production (P<0.05) and a significantly higher abundance of the gut microbiota with the metabolic function of GABA degradation (P<0.05). CONCLUSIONS There is no significant difference in the alpha diversity of gut microbiota between ASD children and TD children, while there are differences in the composition of species at the genus level and the metabolic functions of gut microbiota.
Collapse
|
35
|
Plaza-Diaz J, Radar AM, Baig AT, Leyba MF, Costabel MM, Zavala-Crichton JP, Sanchez-Martinez J, MacKenzie AE, Solis-Urra P. Physical Activity, Gut Microbiota, and Genetic Background for Children and Adolescents with Autism Spectrum Disorder. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1834. [PMID: 36553278 PMCID: PMC9777368 DOI: 10.3390/children9121834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
It is estimated that one in 100 children worldwide has been diagnosed with autism spectrum disorder (ASD). Children with ASD frequently suffer from gut dysbiosis and gastrointestinal issues, findings which possibly play a role in the pathogenesis and/or severity of their condition. Physical activity may have a positive effect on the composition of the intestinal microbiota of healthy adults. However, the effect of exercise both on the gastrointestinal problems and intestinal microbiota (and thus possibly on ASD) itself in affected children is unknown. In terms of understanding the physiopathology and manifestations of ASD, analysis of the gut-brain axis holds some promise. Here, we discuss the physiopathology of ASD in terms of genetics and microbiota composition, and how physical activity may be a promising non-pharmaceutical approach to improve ASD-related symptoms.
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Ana Mei Radar
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Aiman Tariq Baig
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Marcos Federico Leyba
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Maria Macarena Costabel
- Children’s Hospital of Eastern Ontario, Division of Urology, Department of Surgery, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | | | - Javier Sanchez-Martinez
- Escuela de Kinesiología, Facultad de Salud, Universidad Santo Tomás, Viña del Mar 2520298, Chile
| | - Alex E. MacKenzie
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Patricio Solis-Urra
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2531015, Chile
- PROFITH “PROmoting FITness and Health through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, 18071 Granada, Spain
- Servicio de Medicina Nuclear, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| |
Collapse
|
36
|
An Updated Systematic Review and Meta-Analysis on the Effects of Probiotics, Prebiotics and Synbiotics in Autism Spectrum Disorder. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2022. [DOI: 10.1007/s40489-022-00348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Chen YC, Lin HY, Chien Y, Tung YH, Ni YH, Gau SSF. Altered gut microbiota correlates with behavioral problems but not gastrointestinal symptoms in individuals with autism. Brain Behav Immun 2022; 106:161-178. [PMID: 36058421 DOI: 10.1016/j.bbi.2022.08.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/09/2022] [Accepted: 08/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite inconsistent results across studies, emerging evidence suggests that the microbial micro-environment may be associated with autism spectrum disorder (ASD). Geographical and cultural factors highly impact microbial profiles, and there is a shortage of data from East Asian populations. This study aimed to comprehensively characterize microbial profiles in an East Asian sample and explore whether gut microbiota contributes to clinical symptoms, emotional/behavioral problems, and GI symptoms in ASD. METHODS We assessed 82 boys and young men with ASD and 31 typically developing controls (TDC), aged 6-25 years. We analyzed the stool sample of all participants with 16S V3-V4 rRNA sequencing and correlated its profile with GI symptoms, autistic symptoms, and emotional/behavioral problems. RESULTS Autistic individuals, compared to TDC, had worse GI symptoms. There were no group differences in alpha diversity of species richness estimates (Shannon-wiener and Simpson diversity indices). Participants with ASD had an increased relative abundance of Fusobacterium, Ruminococcus torques group (at the genus level), and Bacteroides plebeius DSM 17135 (at the species level), while a decreased relative abundance of Ruminococcaceae UCG 013, Ervsipelotrichaceae UCG 003, Parasutterella, Clostridium sensu stricto 1, Turicibacter (at the genus level), and Clostridium spiroforme DSM 1552 and Intestinimonas butyriciproducens (at the species level). Altered taxonomic diversity in ASD significantly correlated with autistic symptoms, thought problems, delinquent behaviors, self dysregulation, and somatic complaints. We did not find an association between gut symptoms and gut microbial dysbiosis. CONCLUSIONS Our findings suggest that altered microbiota are associated with behavioral phenotypes but not GI symptoms in ASD. The function of the identified microbial profiles mainly involves the immune pathway, supporting the hypothesis of a complex relationship between altered microbiome, immune dysregulation, and ASD that may advance the discovery of molecular biomarkers for ASD.
Collapse
Affiliation(s)
- Yu-Chieh Chen
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Yuan Lin
- Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yiling Chien
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Yu-Hung Tung
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Susan Shur-Fen Gau
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
38
|
Soltysova M, Tomova A, Ostatnikova D. Gut Microbiota Profiles in Children and Adolescents with Psychiatric Disorders. Microorganisms 2022; 10:2009. [PMID: 36296284 PMCID: PMC9608804 DOI: 10.3390/microorganisms10102009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of our work is to summarize the current state of knowledge on gut microbiota differences in children and adolescents with psychiatric disorders. To find the relevant articles, the PubMed, Web of Science, and Google Scholar databases were searched. Articles in English presenting original data and comparing the composition of gut microbiota in child psychiatric patients with gut microbiota in healthy children and adolescents were selected. Finally, we identified 55 articles eligible for our purpose. The majority of patients with autism spectrum disorders (ASD) were investigated. A smaller number of studies evaluating the gut microbiota in children and adolescents with attention-deficit/hyperactivity disorder (ADHD), Rett syndrome, anorexia nervosa, depressive disorder (DD), and tic disorders were found. The main findings of this research are discussed in our review, focusing on the age-related gut microbiota specificity for psychiatric disorders and the differences between individual diagnosis. To conclude, the gut microbiota in children and adolescents with psychiatric disorders is evidently different from that in controls. The most pronounced differences are seen in children with ASD, less in ADHD. Moreover, the changes are not identical to those in adult psychiatric patients, as Ruminococcus, Turicibacter, and Bilophila were increased in adults, and decreased in children with ASD, and Parabacteroides and Alistipes were more frequently represented in adults, but less frequently represented in children with depression. The available data suggest some genera have a different abundance in individual psychiatric disorders (e.g., Bilophila, Bifidobacterium, Clostridium, Coprococcus, Faecalibacterium, and Ruminococcus), suggesting their importance for the gut-brain axis. Other bacterial genera might be more important for the pathophysiology of specific disorder in children and adolescents, as Akkermansia and Desulfovibrio for ASD, or Romboutsia for DD. Based on the research findings, we assume that gut microbiota corrections have the potential to improve clinical symptoms in psychiatric patients.
Collapse
Affiliation(s)
- Marcela Soltysova
- Academic Research Center for Autism, Institute of Physiology, Faculty of Medicine in Bratislava, Comenius University, 813 72 Bratislava, Slovakia
- Child Psychiatry Outpatient Care Unit, Zvolen Hospital, 960 01 Zvolen, Slovakia
| | - Aleksandra Tomova
- Child Psychiatry Outpatient Care Unit, Zvolen Hospital, 960 01 Zvolen, Slovakia
| | - Daniela Ostatnikova
- Child Psychiatry Outpatient Care Unit, Zvolen Hospital, 960 01 Zvolen, Slovakia
| |
Collapse
|
39
|
West KA, Yin X, Rutherford EM, Wee B, Choi J, Chrisman BS, Dunlap KL, Hannibal RL, Hartono W, Lin M, Raack E, Sabino K, Wu Y, Wall DP, David MM, Dabbagh K, DeSantis TZ, Iwai S. Multi-angle meta-analysis of the gut microbiome in Autism Spectrum Disorder: a step toward understanding patient subgroups. Sci Rep 2022; 12:17034. [PMID: 36220843 PMCID: PMC9554176 DOI: 10.1038/s41598-022-21327-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 09/26/2022] [Indexed: 12/29/2022] Open
Abstract
Observational studies have shown that the composition of the human gut microbiome in children diagnosed with Autism Spectrum Disorder (ASD) differs significantly from that of their neurotypical (NT) counterparts. Thus far, reported ASD-specific microbiome signatures have been inconsistent. To uncover reproducible signatures, we compiled 10 publicly available raw amplicon and metagenomic sequencing datasets alongside new data generated from an internal cohort (the largest ASD cohort to date), unified them with standardized pre-processing methods, and conducted a comprehensive meta-analysis of all taxa and variables detected across multiple studies. By screening metadata to test associations between the microbiome and 52 variables in multiple patient subsets and across multiple datasets, we determined that differentially abundant taxa in ASD versus NT children were dependent upon age, sex, and bowel function, thus marking these variables as potential confounders in case-control ASD studies. Several taxa, including the strains Bacteroides stercoris t__190463 and Clostridium M bolteae t__180407, and the species Granulicatella elegans and Massilioclostridium coli, exhibited differential abundance in ASD compared to NT children only after subjects with bowel dysfunction were removed. Adjusting for age, sex and bowel function resulted in adding or removing significantly differentially abundant taxa in ASD-diagnosed individuals, emphasizing the importance of collecting and controlling for these metadata. We have performed the largest (n = 690) and most comprehensive systematic analysis of ASD gut microbiome data to date. Our study demonstrated the importance of accounting for confounding variables when designing statistical comparative analyses of ASD- and NT-associated gut bacterial profiles. Mitigating these confounders identified robust microbial signatures across cohorts, signifying the importance of accounting for these factors in comparative analyses of ASD and NT-associated gut profiles. Such studies will advance the understanding of different patient groups to deliver appropriate therapeutics by identifying microbiome traits germane to the specific ASD phenotype.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kaiti L Dunlap
- Departments of Pediatrics (Systems Medicine), Stanford University, Stanford, CA, USA
| | | | | | | | | | | | - Yonggan Wu
- Second Genome Inc., Brisbane, CA, USA
- Labii Inc., South San Francisco, CA, USA
| | - Dennis P Wall
- Departments of Pediatrics (Systems Medicine), Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences (By Courtesy), Stanford University, Stanford, CA, USA
| | - Maude M David
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | | | | | | |
Collapse
|
40
|
Asbjornsdottir B, Lauth B, Fasano A, Thorsdottir I, Karlsdottir I, Gudmundsson LS, Gottfredsson M, Smarason O, Sigurdardottir S, Halldorsson TI, Marteinsson VT, Gudmundsdottir V, Birgisdottir BE. Meals, Microbiota and Mental Health in Children and Adolescents (MMM-Study): A protocol for an observational longitudinal case-control study. PLoS One 2022; 17:e0273855. [PMID: 36048886 PMCID: PMC9436124 DOI: 10.1371/journal.pone.0273855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
Recent studies indicate that the interplay between diet, intestinal microbiota composition, and intestinal permeability can impact mental health. More than 10% of children and adolescents in Iceland suffer from mental disorders, and rates of psychotropics use are very high. The aim of this novel observational longitudinal case-control study, "Meals, Microbiota and Mental Health in Children and Adolescents (MMM-Study)" is to contribute to the promotion of treatment options for children and adolescents diagnosed with mental disorders through identification of patterns that may affect the symptoms. All children and adolescents, 5-15 years referred to the outpatient clinic of the Child and Adolescent Psychiatry Department at The National University Hospital in Reykjavik, Iceland, for one year (n≈150) will be invited to participate. There are two control groups, i.e., sex-matched children from the same postal area (n≈150) and same parent siblings (full siblings) in the same household close in age +/- 3 years (n<150). A three-day food diary, rating scales for mental health, and multiple questionnaires will be completed. Biosamples (fecal-, urine-, saliva-, blood samples, and buccal swab) will be collected and used for 16S rRNA gene amplicon sequencing of the oral and gut microbiome, measurements of serum factors, quantification of urine metabolites and host genotype, respectively. For longitudinal follow-up, data collection will be repeated after three years in the same groups. Integrative analysis of diet, gut microbiota, intestinal permeability, serum metabolites, and mental health will be conducted applying bioinformatics and systems biology approaches. Extensive population-based data of this quality has not been collected before, with collection repeated in three years' time, contributing to the high scientific value. The MMM-study follows the "Strengthening the Reporting of Observational Studies in Epidemiology" (STROBE) guidelines. Approval has been obtained from the Icelandic National Bioethics Committee, and the study is registered with Clinicaltrials.gov. The study will contribute to an improved understanding of the links between diet, gut microbiota and mental health in children through good quality study design by collecting information on multiple components, and a longitudinal approach. Furthermore, the study creates knowledge on possibilities for targeted and more personalized dietary and lifestyle interventions in subgroups. Trial registration numbers: VSN-19-225 & NCT04330703.
Collapse
Affiliation(s)
- Birna Asbjornsdottir
- Faculty of Medicine and Health Science Institute, University of Iceland, Reykjavik, Iceland
- Faculty of Food Sciences and Nutrition and Health Science Institute, University of Iceland, Reykjavik, Iceland
- Mucosal Immunology and Biology Research Center, Massachusetts Hospital for Children, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bertrand Lauth
- Faculty of Medicine and Health Science Institute, University of Iceland, Reykjavik, Iceland
- Department of Child and Adolescent Psychiatry (BUGL), Landspitali University Hospital, Reykjavik, Iceland
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Massachusetts Hospital for Children, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Inga Thorsdottir
- Faculty of Food Sciences and Nutrition and Health Science Institute, University of Iceland, Reykjavik, Iceland
| | - Ingibjorg Karlsdottir
- Department of Child and Adolescent Psychiatry (BUGL), Landspitali University Hospital, Reykjavik, Iceland
| | - Larus S. Gudmundsson
- Faculty of Pharmaceutical Sciences and Health Science Institute, University of Iceland, Reykjavik, Iceland
| | - Magnus Gottfredsson
- Faculty of Medicine and Health Science Institute, University of Iceland, Reykjavik, Iceland
- Department of Science, Landspitali University Hospital, Reykjavik, Iceland
- Department of Infectious Diseases, Landspitali University Hospital, Reykjavik, Iceland
| | - Orri Smarason
- Faculty of Psychology and Health Science Institute, University of Iceland, Reykjavik, Iceland
| | - Sigurveig Sigurdardottir
- Faculty of Medicine and Health Science Institute, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali University Hospital, Reykjavik, Iceland
| | - Thorhallur I. Halldorsson
- Faculty of Food Sciences and Nutrition and Health Science Institute, University of Iceland, Reykjavik, Iceland
| | - Viggo Thor Marteinsson
- Faculty of Food Sciences and Nutrition and Health Science Institute, University of Iceland, Reykjavik, Iceland
- Matís ohf., Microbiology Group, Reykjavík, Iceland
| | - Valborg Gudmundsdottir
- Faculty of Medicine and Health Science Institute, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Bryndis Eva Birgisdottir
- Faculty of Food Sciences and Nutrition and Health Science Institute, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
41
|
Long-Term Effects of Developmental Exposure to Oxycodone on Gut Microbiota and Relationship to Adult Behaviors and Metabolism. mSystems 2022; 7:e0033622. [PMID: 35862801 PMCID: PMC9426609 DOI: 10.1128/msystems.00336-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Opioid drugs are commonly prescribed analgesic to pregnant women. Direct exposure to such drugs may slow gut motility, alter gut permeability, and affect the gut microbiome. While such drugs affect gut microbiome in infants, no study to date has determined whether developmental exposure to such drugs results in longstanding effects on gut microbiota and correspondingly on host responses. We hypothesized developmental exposure to oxycodone (OXY) leads to enduring effects on gut microbiota and such changes are associated with adult neurobehavioral and metabolic changes. Female mice were treated daily with 5 mg OXY/kg or saline solution (control [CTL]) for 2 weeks prior to breeding and then throughout gestation. Male and female offspring pups were weaned, tested with a battery of behavioral and metabolic tests, and fecal boli were collected adulthood (120 days of age). In females, relative abundance of Butyricimonas spp., Bacteroidetes, Anaeroplasma spp., TM7, Enterococcus spp., and Clostridia were greater in OXY versus CTL individuals. In males, relative abundance of Coriobacteriaceae, Roseburia spp., Sutterella spp., and Clostridia were elevated in OXY exposed individuals. Bacterial changes were also associated with predictive metabolite pathway alterations that also varied according to sex. In males and females, affected gut microbiota correlated with metabolic but not behavioral alterations. The findings suggest that developmental exposure to OXY leads to lasting effects on adult gut microbiota that might affect host metabolism, possibly through specific bacterial metabolites or other bacterial-derived products. Further work is needed to characterize how developmental exposure to OXY affects host responses through the gut microbiome. IMPORTANCE This is the first work to show in a rodent model that in utero exposure to an opioid drug can lead to longstanding effects on the gut microbiota when examined at adulthood. Further, such bacterial changes are associated with metabolic host responses. Given the similarities between rodent and human microbiomes, it raises cause for concern that similar effects may become evident in children born to mothers taking oxycodone and other opioid drugs.
Collapse
|
42
|
Rössler H, Flasbeck V, Gatermann S, Brüne M. Alterations of the gut microbiota in borderline personality disorder. J Psychosom Res 2022; 158:110942. [PMID: 35594813 DOI: 10.1016/j.jpsychores.2022.110942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/07/2022] [Accepted: 05/07/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE A growing body of research has shown that people with a wide range of psychiatric disorders, including depression, present with alterations of the gut microbiota, although it is unclear if differences may be caused by the action of psychotropic medication. No data exist for patients with borderline personality disorder (BPD), a psychiatric condition that is frequently comorbidly associated with depression. METHODS Twenty-four unmedicated patients and twenty-one age- and sex-matched healthy controls were recruited. Stool samples were frozen at -80 °C within ten minutes after defecation. The V4 region of bacterial 16S ribosomal RNA (rRNA) gene was sequenced on an Illumina platform. Operational taxonomic units (OTUs) were used for further analysis of community structure, alpha- and beta-diversity. RESULTS There was no significant difference in alpha- and beta-diversity between patients and controls. However, the Bacteroidetes/Firmicutes-ratio was higher in patients, approaching significance (p = 0.06, r = 0.23). Four species were significantly less abundant in BPD patients, namely Pseudoflavonifractor phocaensis (p = 0.003, r = 0.41), Eubacterium coprostanoligenes (p = 0.01, r = 0.34), Anaerotaenia torta (p = 0.01, r = 0.35), and (statistically somewhat weaker) Parabacteroides chongii (p = 0.046, r = 0.26), which correlated with various psychometric scores. CONCLUSION Differences in the taxonomic composition may indicate a potential dysbiosis among SCFA-producing bacteria in BPD. Future research is warranted to replicate these findings in independent and larger samples. If confirmed, the results suggest that microbiota-targeted therapies may be a useful adjunct strategy for BPD.
Collapse
Affiliation(s)
- Hannah Rössler
- LWL University Hospital, Department of Psychiatry, Psychotherapy and Preventive Medicine, Division of Social Neuropsychiatry and Evolutionary Medicine, Ruhr University Bochum, Germany; Department of Medical Microbiology; National Reference Centre for Multi-Resistant Gram-Negative Infectious Agents, Ruhr University Bochum, Germany
| | - Vera Flasbeck
- LWL University Hospital, Department of Psychiatry, Psychotherapy and Preventive Medicine, Division of Social Neuropsychiatry and Evolutionary Medicine, Ruhr University Bochum, Germany
| | - Sören Gatermann
- Department of Medical Microbiology; National Reference Centre for Multi-Resistant Gram-Negative Infectious Agents, Ruhr University Bochum, Germany
| | - Martin Brüne
- LWL University Hospital, Department of Psychiatry, Psychotherapy and Preventive Medicine, Division of Social Neuropsychiatry and Evolutionary Medicine, Ruhr University Bochum, Germany.
| |
Collapse
|
43
|
Zhang Y, Liang H, Wang Y, Cheng R, Pu F, Yang Y, Li J, Wu S, Shen X, He F. Heat-inactivated Lacticaseibacillus paracasei N1115 alleviates the damage due to brain function caused by long-term antibiotic cocktail exposure in mice. BMC Neurosci 2022; 23:38. [PMID: 35754018 PMCID: PMC9233843 DOI: 10.1186/s12868-022-00724-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/16/2022] [Indexed: 02/08/2023] Open
Abstract
Critical development period of intestinal microbiota occurs concurrently with brain development, and their interaction is influenced by the microbiota–gut–brain axis. This study examined how antibiotics exposure affected gut microbiota and brain development and analyzed the possible benefits of heat-inactivated Lacticaseibacillus paracasei N1115 (N1115). Thirty neonatal male mice were randomly divided into three groups and treated with sterilized water (control), an antibiotic cocktail (Abx), or antibiotics plus heat-inactivated N1115 (Abx + N1115) for 84 days. We found that while the mRNA levels of GABAAα1, GABAb1, and glucocorticoid receptor (GR) in the hippocampus and brain-derived neurotrophic factor (BDNF), GABAAα1, GABAb1, and nerve growth factor (NGF) in the prefrontal cortex were higher, the mRNA levels of 5-HT1A were lower in the Abx group. The Abx + N1115 group had lower mRNA levels of GABAAα1, GABAb1, and GR in the hippocampus and BDNF, GABAb1, and NGF in the prefrontal cortex than the Abx group. The latency period was longer in the Morris water maze test while longer rest time was seen in tail suspension test in the Abx group than the control and Abx + N1115 groups. In the open field test, the moving time and distance of the Abx group were reduced. Further, the alpha-diversity indexes of the Abx and Abx + N1115 groups were significantly lower than the control. Further, long-term exposure to antibiotics disrupted the intestinal microbiota as evidenced by decreased Bacteroides, Firmicutes, and Lactobacillus, and increased Proteobacteria and Citrobacter. However, N1115 significantly decreased the abundance of Citrobacter when compared with those in the Abx group. These results indicate that antibiotics can substantially damage the intestinal microbiota and cognitive function, causing anxiety and depression, which can be alleviated by heat-inactivated N1115 via modulation of the microbiota–gut–brain axis.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China
| | - Huijing Liang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yimie Wang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ruyue Cheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fangfang Pu
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yang Yang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jinxing Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China
| | - Simou Wu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xi Shen
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Fang He
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
44
|
Wong OWH, Lam AMW, Or BPN, Mo FYM, Shea CKS, Lai KYC, Ma SL, Hung SF, Chan S, Kwong TNY, Wong S, Leung PWL. Disentangling the relationship of gut microbiota, functional gastrointestinal disorders and autism: a case-control study on prepubertal Chinese boys. Sci Rep 2022; 12:10659. [PMID: 35739175 PMCID: PMC9225987 DOI: 10.1038/s41598-022-14785-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/10/2022] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence of an altered gut microbiome in autism spectrum disorder (ASD) suggests a pathomechanism through the gut-brain axis despite the inconsistent microbiome profile reported across studies. One of the knowledge gaps in the existing ASD microbiota studies is the lack of systematic exploration of the role of comorbid functional gastrointestinal disorder (FGID) in the association of ASD and altered gut microbiome. Consequently, 92 ASD and 112 age-matched typically developing (TD) boys were profiled on general psychopathology, FGID status by Rome IV classification, and gut microbiota using 16S ribosomal RNA amplicon sequencing at the V4 hypervariable region. Compared to TD, a significant decrease in the within-sample abundance of taxa was observed in ASD, regardless of FGID status. The microbiota of ASD FGID+ and ASD FGID- clustered apart from the TD groups. The microbiota of ASD FGID+ also showed qualitative differences from that of ASD FGID- and had the highest-level Firmicutes: Bacteroidetes ratio, which was paralleled by elevated levels of anxiety and overall psychopathology. The altered gastrointestinal microbiota composition in ASD appeared to be independent of comorbid FGID. Further studies should address how FGID may mediate neuropsychiatric symptoms in ASD through inflammation along the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Oscar W H Wong
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China.
| | - Angela M W Lam
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China
| | - Brian P N Or
- Department of Psychiatry, Tai Po Hospital, Hong Kong, China
| | - Flora Y M Mo
- Department of Psychiatry, Alice Ho Miu Ling Nethersole Hospital, Hong Kong, China
| | - Caroline K S Shea
- Department of Psychiatry, Alice Ho Miu Ling Nethersole Hospital, Hong Kong, China
| | - Kelly Y C Lai
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China
| | - Suk Ling Ma
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China
| | - Se Fong Hung
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China
| | - Sandra Chan
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China
| | - Thomas N Y Kwong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Sunny Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Patrick W L Leung
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
45
|
Mitrea L, Nemeş SA, Szabo K, Teleky BE, Vodnar DC. Guts Imbalance Imbalances the Brain: A Review of Gut Microbiota Association With Neurological and Psychiatric Disorders. Front Med (Lausanne) 2022; 9:813204. [PMID: 35433746 PMCID: PMC9009523 DOI: 10.3389/fmed.2022.813204] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last 10 years, there has been a growing interest in the relationship between gut microbiota, the brain, and neurologic-associated affections. As multiple preclinical and clinical research studies highlight gut microbiota’s potential to modulate the general state of health state, it goes without saying that gut microbiota plays a significant role in neurogenesis, mental and cognitive development, emotions, and behaviors, and in the progression of neuropsychiatric illnesses. Gut microbiota produces important biologic products that, through the gut-brain axis, are directly connected with the appearance and evolution of neurological and psychiatric disorders such as depression, anxiety, bipolar disorder, autism, schizophrenia, Parkinson’s disease, Alzheimer’s disease, dementia, multiple sclerosis, and epilepsy. This study reviews recent research on the link between gut microbiota and the brain, and microbiome’s role in shaping the development of the most common neurological and psychiatric illnesses. Moreover, special attention is paid to the use of probiotic formulations as a potential non-invasive therapeutic opportunity for prevention and management of neuropsychiatric-associated affections.
Collapse
Affiliation(s)
- Laura Mitrea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Silvia-Amalia Nemeş
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Katalin Szabo
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan-Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
46
|
Dash S, Syed YA, Khan MR. Understanding the Role of the Gut Microbiome in Brain Development and Its Association With Neurodevelopmental Psychiatric Disorders. Front Cell Dev Biol 2022; 10:880544. [PMID: 35493075 PMCID: PMC9048050 DOI: 10.3389/fcell.2022.880544] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome has a tremendous influence on human physiology, including the nervous system. During fetal development, the initial colonization of the microbiome coincides with the development of the nervous system in a timely, coordinated manner. Emerging studies suggest an active involvement of the microbiome and its metabolic by-products in regulating early brain development. However, any disruption during this early developmental process can negatively impact brain functionality, leading to a range of neurodevelopment and neuropsychiatric disorders (NPD). In this review, we summarize recent evidence as to how the gut microbiome can influence the process of early human brain development and its association with major neurodevelopmental psychiatric disorders such as autism spectrum disorders, attention-deficit hyperactivity disorder, and schizophrenia. Further, we discuss how gut microbiome alterations can also play a role in inducing drug resistance in the affected individuals. We propose a model that establishes a direct link of microbiome dysbiosis with the exacerbated inflammatory state, leading to functional brain deficits associated with NPD. Based on the existing research, we discuss a framework whereby early diet intervention can boost mental wellness in the affected subjects and call for further research for a better understanding of mechanisms that govern the gut-brain axis may lead to novel approaches to the study of the pathophysiology and treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Somarani Dash
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Yasir Ahmed Syed
- School of Biosciences and Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cardiff, United Kingdom
| | - Mojibur R. Khan
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- *Correspondence: Mojibur R. Khan,
| |
Collapse
|
47
|
Yadav M, Kapoor A, Verma A, Ambatipudi K. Functional Significance of Different Milk Constituents in Modulating the Gut Microbiome and Infant Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3929-3947. [PMID: 35324181 DOI: 10.1021/acs.jafc.2c00335] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human milk, the gold standard for optimal nourishment, controls the microbial composition of infants by either enhancing or limiting bacterial growth. The milk fat globule membrane has gained interest in gut-related functions and cognitive development. The membrane proteins can directly interact with probiotic bacteria, influencing their survival and adhesion through gastrointestinal transit, whereas membrane phospholipids increase the residence time of probiotic bacteria in the gut. The commensal bacteria in milk act as the initial inoculum in building up the gut colonization of an infant, whereas oligosaccharides promote proliferation of beneficial microorganisms. Interestingly, milk extracellular vesicles are also involved in influencing the microbiota composition but are not well-explored. This review highlights the contribution of different milk components in modulating the infant gut microbiota, particularly the fat globule membrane, and the complex interplay between host- and brain-gut microbiota signaling affecting infant and adult health positively.
Collapse
Affiliation(s)
- Monica Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ayushi Kapoor
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Aparna Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
48
|
Zhang X, Zhai Q, Wang J, Ma X, Xing B, Fan H, Gao Z, Zhao F, Liu W. Variation of the Vaginal Microbiome During and After Pregnancy in Chinese Women. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:322-333. [PMID: 35093602 PMCID: PMC9684158 DOI: 10.1016/j.gpb.2021.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/26/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023]
Abstract
A comprehensive profiling of the vaginal microbial communities and their variability enables an accurate description of the microbiome in women. However, there is a lack of studies available on Chinese women. In the present study, the composition of the vaginal microbiota during pregnancy and the 6-week postpartum period of 454 Chinese women was characterized by sequencing the V3-V4 region of the 16S ribosomal RNA (rRNA) gene. The vaginal microbiome showed variations during pregnancy and the postpartum period based on the abortion history, hypertensive disorders, delivery mode, and maternal age. Co-variation of 22 bacterial taxa, including the Lactobacillus genus and two of its species, may account for the common characteristics of the vaginal microbiome under scenarios of different medical histories and pregnancy outcomes. In contrast, discriminant bacterial species were significantly different between women who had preterm birth (PTB) with and without premature rupture of membranes (PROM), and the community state type (CST) IV-A without any predominant Lactobacillus species in the microbiota was more prevalent during pregnancy in the PROM-PTB cases, suggesting that specific bacterial species could be considered to distinguish between different types of PTB. By providing data on Chinese women, this study will enrich the knowledge of the human microbiome and contribute to a better understanding of the association between the vaginal microbiome and reproductive health.
Collapse
Affiliation(s)
- Xiaoai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Qingzhi Zhai
- Department of Obstetrics and Gynecology, First Medical Center, The General Hospital of the People’s Liberation Army, Beijing 100853, China
| | - Jinfeng Wang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuling Ma
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Hang Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zhiying Gao
- Department of Obstetrics and Gynecology, First Medical Center, The General Hospital of the People’s Liberation Army, Beijing 100853, China
| | - Fangqing Zhao
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China,Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China,University of Chinese Academy of Sciences, Beijing 100049, China,Corresponding authors.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China,Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Disease, Beijing 100071, China,Corresponding authors.
| |
Collapse
|
49
|
Bodnar TS, Lee C, Wong A, Rubin I, Parfrey LW, Weinberg J. Evidence for long-lasting alterations in the fecal microbiota following prenatal alcohol exposure. Alcohol Clin Exp Res 2022; 46:542-555. [PMID: 35102585 PMCID: PMC9238389 DOI: 10.1111/acer.14784] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND There is growing evidence that the gut microbiota can be shaped by early-life experiences/exposures, with long-term consequences for brain, behavior, and health. Changes in the gut microbiota have also been identified in neurodevelopmental disorders including Autism Spectrum Disorder and schizophrenia. In contrast, no studies to date have investigated whether the gut microbiota is altered in individuals with Fetal Alcohol Spectrum Disorder (FASD), the neurodevelopmental disorder that results from prenatal alcohol exposure (PAE). The current study was designed to assess the impact of PAE on the fecal microbiota. METHODS We used a rodent model in which pregnant Sprague-Dawley rats were provided with an EtOH-containing diet or a control diet throughout gestation. Fecal samples were collected from adult male and female animals and 16s rRNA sequencing was performed. RESULTS Overall, PAE rats showed greater richness of bacterial species, with community structure investigations demonstrating distinct clustering by prenatal treatment. In addition, prenatal treatment and sex-specific alterations were observed for many specific microbes. For example, in males, Bacteroides and Bifidobacterium, and in females, Faecalitalea and Proteus, differed in abundance between PAE and control rats. CONCLUSIONS Taken together, these results show for the first time that PAE has a long-lasting and sex-specific impact on the fecal microbiota. Further research is needed that considers fetal microbiota in the development of new interventions in FASD.
Collapse
Affiliation(s)
- Tamara S. Bodnar
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Christopher Lee
- Department of Microbiology and Immunology, 2185 E Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Athena Wong
- Department of Biology, 6270 University Blvd, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Ilan Rubin
- Department of Zoology, 6270 University Blvd, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Laura Wegener Parfrey
- Department of Botany and Biodiversity Research Centre, University of British Columbia, 109 – 2212 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| |
Collapse
|
50
|
Analysis of Faecal Microbiota and Small ncRNAs in Autism: Detection of miRNAs and piRNAs with Possible Implications in Host-Gut Microbiota Cross-Talk. Nutrients 2022; 14:nu14071340. [PMID: 35405953 PMCID: PMC9000903 DOI: 10.3390/nu14071340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
Intestinal microorganisms impact health by maintaining gut homeostasis and shaping the host immunity, while gut dysbiosis associates with many conditions, including autism, a complex neurodevelopmental disorder with multifactorial aetiology. In autism, gut dysbiosis correlates with symptom severity and is characterised by a reduced bacterial variability and a diminished beneficial commensal relationship. Microbiota can influence the expression of host microRNAs that, in turn, regulate the growth of intestinal bacteria by means of bidirectional host-gut microbiota cross-talk. We investigated possible interactions among intestinal microbes and between them and host transcriptional modulators in autism. To this purpose, we analysed, by "omics" technologies, faecal microbiome, mycobiome, and small non-coding-RNAs (particularly miRNAs and piRNAs) of children with autism and neurotypical development. Patients displayed gut dysbiosis related to a reduction of healthy gut micro- and mycobiota as well as up-regulated transcriptional modulators. The targets of dysregulated non-coding-RNAs are involved in intestinal permeability, inflammation, and autism. Furthermore, microbial families, underrepresented in patients, participate in the production of human essential metabolites negatively influencing the health condition. Here, we propose a novel approach to analyse faeces as a whole, and for the first time, we detected miRNAs and piRNAs in faecal samples of patients with autism.
Collapse
|