1
|
Lim XR, Willemse L, Harraz OF. Amyloid beta Aβ 1-40 activates Piezo1 channels in brain capillary endothelial cells. Biophys J 2024:S0006-3495(24)04106-7. [PMID: 39722451 DOI: 10.1016/j.bpj.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024] Open
Abstract
Amyloid beta (Aβ) peptide accumulation on blood vessels in the brain is a hallmark of neurodegeneration. While Aβ peptides constrict cerebral arteries and arterioles, their impact on capillaries is less understood. Aβ was recently shown to constrict brain capillaries through pericyte contraction, but whether-and if so how-Aβ affects endothelial cells (ECs) remains unknown. ECs represent the predominant vascular cell type in the cerebral circulation, and we recently showed that the mechanosensitive ion channel Piezo1 is functionally expressed in the plasma membrane of ECs. Since Aβ disrupts membrane structures, we hypothesized that Aβ1-40, the predominantly deposited isoform in the cerebral circulation, alters endothelial Piezo1 function. Using patch-clamp electrophysiology and freshly isolated capillary ECs, we assessed the impact of the Aβ1-40 peptide on single-channel Piezo1 activity. We show that Aβ1-40 increased Piezo1 open probability and channel open time. Aβ1-40 effects were absent when Piezo1 was genetically deleted or when a superoxide dismutase/catalase mimetic was used. Further, Aβ1-40 enhanced Piezo1 mechanosensitivity and lowered the pressure of half-maximal Piezo1 activation. Our data collectively suggest that Aβ1-40 facilitates higher Piezo1-mediated cation influx in brain ECs. These novel findings have the potential to unravel the possible involvement of Piezo1 modulation in the pathophysiology of neurodegenerative diseases characterized by Aβ accumulation.
Collapse
Affiliation(s)
- Xin Rui Lim
- Department of Pharmacology, Larner College of Medicine, Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, Vermont
| | - Luc Willemse
- Department of Pharmacology, Larner College of Medicine, Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, Vermont
| | - Osama F Harraz
- Department of Pharmacology, Larner College of Medicine, Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, Vermont.
| |
Collapse
|
2
|
Cubero-Sarabia M, Kapetanaki AM, Vassalli M. Biophysical assays to test cellular mechanosensing: moving towards high throughput. Biophys Rev 2024; 16:875-882. [PMID: 39830126 PMCID: PMC11735701 DOI: 10.1007/s12551-024-01263-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Mechanosensitivity is the ability of cells to sense and respond to mechanical stimuli. In order to do this, cells are endowed with different components that allow them to react to a broad range of stimuli, such as compression or shear forces, pressure, and vibrations. This sensing process, mechanosensing, is involved in fundamental physiological mechanisms, such as stem cell differentiation and migration, but it is also central to the development of pathogenic states. Here, we review the approaches that have been proposed to quantify mechanosensation in living cells, with a specific focus on methodologies that enable higher experimental throughput. This aspect is crucial to fully understand the nuances of mechanosensation and how it impacts the physiology and pathology of living systems. We will discuss traditional methods for studying mechanosensing at the level of single cells, with particular attention to the activation of the mechanosensitive ion channel piezo1. Moreover, we will present recent attempts to push the analysis towards higher throughput.
Collapse
Affiliation(s)
| | | | - Massimo Vassalli
- James Watt School of Engineering, University of Glasgow, Glasgow, UK
| |
Collapse
|
3
|
Kinsella JA, Debant M, Parsonage G, Morley LC, Bajarwan M, Revill C, Foster R, Beech DJ. Pharmacology of PIEZO1 channels. Br J Pharmacol 2024; 181:4714-4732. [PMID: 39402010 DOI: 10.1111/bph.17351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/15/2024] [Accepted: 08/25/2024] [Indexed: 11/05/2024] Open
Abstract
PIEZO1 is a eukaryotic membrane protein that assembles as trimers to form calcium-permeable, non-selective cation channels with exquisite capabilities for mechanical force sensing and transduction of force into effect in diverse cell types that include blood cells, endothelial cells, epithelial cells, fibroblasts and stem cells and diverse systems that include bone, lymphatics and muscle. The channel has wide-ranging roles and is considered as a target for novel therapeutics in ailments spanning cancers and cardiovascular, dental, gastrointestinal, hepatobiliary, infectious, musculoskeletal, nervous system, ocular, pregnancy, renal, respiratory and urological disorders. The identification of PIEZO1 modulators is in its infancy but useful experimental tools emerged for activating, and to a lesser extent inhibiting, the channels. Elementary structure-activity relationships are known for the Yoda series of small molecule agonists, which show the potential for diverse physicochemical and pharmacological properties. Intriguing effects of Yoda1 include the stimulated removal of excess cerebrospinal fluid. Despite PIEZO1's broad expression, opportunities are suggested for selective positive or negative modulation without intolerable adverse effects. Here we provide a focused, non-systematic, narrative review of progress with this pharmacology and discuss potential future directions for research in the area.
Collapse
Affiliation(s)
- Jacob A Kinsella
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- School of Chemistry, University of Leeds, Leeds, UK
| | - Marjolaine Debant
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Gregory Parsonage
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Lara C Morley
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Muath Bajarwan
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | | | | | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
4
|
Jin C, Su S, Yu S, Zhang Y, Chen K, Xiang M, Ma H. Essential Roles of PIEZO1 in Mammalian Cardiovascular System: From Development to Diseases. Cells 2024; 13:1422. [PMID: 39272994 PMCID: PMC11394449 DOI: 10.3390/cells13171422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Mechanical force is the basis of cardiovascular development, homeostasis, and diseases. The perception and response of mechanical force by the cardiovascular system are crucial. However, the molecular mechanisms mediating mechanotransduction in the cardiovascular system are not yet understood. PIEZO1, a novel transmembrane mechanosensitive cation channel known for its regulation of touch sensation, has been found to be widely expressed in the mammalian cardiovascular system. In this review, we elucidate the role and mechanism of PIEZO1 as a mechanical sensor in cardiovascular development, homeostasis, and disease processes, including embryo survival, angiogenesis, cardiac development repair, vascular inflammation, lymphangiogenesis, blood pressure regulation, cardiac hypertrophy, cardiac fibrosis, ventricular remodeling, and heart failure. We further summarize chemical molecules targeting PIEZO1 for potential translational applications. Finally, we address the controversies surrounding emergent concepts and challenges in future applications.
Collapse
Affiliation(s)
- Chengjiang Jin
- Cardiovascular Key Laboratory of Zhejiang Province, National Key Laboratory of Vascular Implantable Devices, Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Sheng’an Su
- Cardiovascular Key Laboratory of Zhejiang Province, National Key Laboratory of Vascular Implantable Devices, Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Shuo Yu
- Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yue Zhang
- Cardiovascular Key Laboratory of Zhejiang Province, National Key Laboratory of Vascular Implantable Devices, Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Kaijie Chen
- Cardiovascular Key Laboratory of Zhejiang Province, National Key Laboratory of Vascular Implantable Devices, Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Meixiang Xiang
- Cardiovascular Key Laboratory of Zhejiang Province, National Key Laboratory of Vascular Implantable Devices, Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Hong Ma
- Cardiovascular Key Laboratory of Zhejiang Province, National Key Laboratory of Vascular Implantable Devices, Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
5
|
Thien ND, Hai-Nam N, Anh DT, Baecker D. Piezo1 and its inhibitors: Overview and perspectives. Eur J Med Chem 2024; 273:116502. [PMID: 38761789 DOI: 10.1016/j.ejmech.2024.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The cation channel Piezo1, a crucial mechanotransducer found in various organs and tissues, has gained considerable attention as a therapeutic target in recent years. Following this trend, several Piezo1 inhibitors have been discovered and studied for potential pharmacological properties. This review provides an overview of the structural and functional importance of Piezo1, as well as discussing the biological activities of Piezo1 inhibitors based on their mechanism of action. The compounds addressed include the toxin GsMTx4, Aβ peptides, certain fatty acids, ruthenium red and gadolinium, Dooku1, as well as the natural products tubeimoside I, salvianolic acid B, jatrorrhzine, and escin. The findings revealed that misexpression of Piezo1 can be associated with a number of chronic diseases, including hypertension, cancer, and hemolytic anemia. Consequently, inhibiting Piezo1 and the subsequent calcium influx can have beneficial effects on various pathological processes, as shown by many in vitro and in vivo studies. However, the development of Piezo1 inhibitors is still in its beginnings, with many opportunities and challenges remaining to be explored.
Collapse
Affiliation(s)
- Nguyen Duc Thien
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 100000, Viet Nam
| | - Nguyen Hai-Nam
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 100000, Viet Nam
| | - Duong Tien Anh
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 100000, Viet Nam.
| | - Daniel Baecker
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, Berlin, 14195, Germany.
| |
Collapse
|
6
|
Wang HJ, Wang Y, Mirjavadi SS, Andersen T, Moldovan L, Vatankhah P, Russell B, Jin J, Zhou Z, Li Q, Cox CD, Su QP, Ju LA. Microscale geometrical modulation of PIEZO1 mediated mechanosensing through cytoskeletal redistribution. Nat Commun 2024; 15:5521. [PMID: 38951553 PMCID: PMC11217425 DOI: 10.1038/s41467-024-49833-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
The microgeometry of the cellular microenvironment profoundly impacts cellular behaviors, yet the link between it and the ubiquitously expressed mechanosensitive ion channel PIEZO1 remains unclear. Herein, we describe a fluorescent micropipette aspiration assay that allows for simultaneous visualization of intracellular calcium dynamics and cytoskeletal architecture in real-time, under varied micropipette geometries. By integrating elastic shell finite element analysis with fluorescent lifetime imaging microscopy and employing PIEZO1-specific transgenic red blood cells and HEK cell lines, we demonstrate a direct correlation between the microscale geometry of aspiration and PIEZO1-mediated calcium signaling. We reveal that increased micropipette tip angles and physical constrictions lead to a significant reorganization of F-actin, accumulation at the aspirated cell neck, and subsequently amplify the tension stress at the dome of the cell to induce more PIEZO1's activity. Disruption of the F-actin network or inhibition of its mobility leads to a notable decline in PIEZO1 mediated calcium influx, underscoring its critical role in cellular mechanosensing amidst geometrical constraints.
Collapse
Affiliation(s)
- Haoqing Jerry Wang
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Camperdown, Newtown, NSW, 2042, Australia
| | - Yao Wang
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Seyed Sajad Mirjavadi
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Tomas Andersen
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Laura Moldovan
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Camperdown, Newtown, NSW, 2042, Australia
| | - Parham Vatankhah
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Blake Russell
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Jasmine Jin
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Zijing Zhou
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
- Faculty of Medicine, St. Vincent's Clinical School, University of New South Wale, Sydney, NSW, 2010, Australia
| | - Qian Peter Su
- Heart Research Institute, Camperdown, Newtown, NSW, 2042, Australia.
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
- Heart Research Institute, Camperdown, Newtown, NSW, 2042, Australia.
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
7
|
Chen J, Holt JR, Evans EL, Lowengrub JS, Pathak MM. PIEZO1 regulates leader cell formation and cellular coordination during collective keratinocyte migration. PLoS Comput Biol 2024; 20:e1011855. [PMID: 38578817 PMCID: PMC11023636 DOI: 10.1371/journal.pcbi.1011855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/17/2024] [Accepted: 01/23/2024] [Indexed: 04/07/2024] Open
Abstract
The collective migration of keratinocytes during wound healing requires both the generation and transmission of mechanical forces for individual cellular locomotion and the coordination of movement across cells. Leader cells along the wound edge transmit mechanical and biochemical cues to ensuing follower cells, ensuring their coordinated direction of migration across multiple cells. Despite the observed importance of mechanical cues in leader cell formation and in controlling coordinated directionality of cell migration, the underlying biophysical mechanisms remain elusive. The mechanically-activated ion channel PIEZO1 was recently identified to play an inhibitory role during the reepithelialization of wounds. Here, through an integrative experimental and mathematical modeling approach, we elucidate PIEZO1's contributions to collective migration. Time-lapse microscopy reveals that PIEZO1 activity inhibits leader cell formation at the wound edge. To probe the relationship between PIEZO1 activity, leader cell formation and inhibition of reepithelialization, we developed an integrative 2D continuum model of wound closure that links observations at the single cell and collective cell migration scales. Through numerical simulations and subsequent experimental validation, we found that coordinated directionality plays a key role during wound closure and is inhibited by upregulated PIEZO1 activity. We propose that PIEZO1-mediated retraction suppresses leader cell formation which inhibits coordinated directionality between cells during collective migration.
Collapse
Affiliation(s)
- Jinghao Chen
- Department of Mathematics, University of California, Irvine, Irvine, California, United States of America
| | - Jesse R. Holt
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Elizabeth L. Evans
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, United States of America
| | - John S. Lowengrub
- Department of Mathematics, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
| | - Medha M. Pathak
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
| |
Collapse
|
8
|
Drobnik M, Smólski J, Grądalski Ł, Niemirka S, Młynarska E, Rysz J, Franczyk B. Mechanosensitive Cation Channel Piezo1 Is Involved in Renal Fibrosis Induction. Int J Mol Sci 2024; 25:1718. [PMID: 38338996 PMCID: PMC10855652 DOI: 10.3390/ijms25031718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Renal fibrosis, the result of different pathological processes, impairs kidney function and architecture, and usually leads to renal failure development. Piezo1 is a mechanosensitive cation channel highly expressed in kidneys. Activation of Piezo1 by mechanical stimuli increases cations influx into the cell with slight preference of calcium ions. Two different models of Piezo1 activation are considered: force through lipid and force through filament. Expression of Piezo1 on mRNA and protein levels was confirmed within the kidney. Their capacity is increased in the fibrotic kidney. The pharmacological tools for Piezo1 research comprise selective activators of the channels (Yoda1 and Jedi1/2) as well as non-selective inhibitors (spider peptide toxin) GsMTx4. Piezo1 is hypothesized to be the upstream element responsible for the activation of integrin. This pathway (calcium/calpain2/integrin beta1) is suggested to participate in profibrotic response induced by mechanical stimuli. Administration of the Piezo1 unspecific inhibitor or activators to unilateral ureter obstruction (UUO) mice or animals with folic acid-induced fibrosis modulates extracellular matrix deposition and influences kidney function. All in all, according to the recent data Piezo1 plays an important role in kidney fibrosis development. This channel has been selected as the target for pharmacotherapy of renal fibrosis.
Collapse
Affiliation(s)
- Marta Drobnik
- Department of Nephrocardiology, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Lodz, Poland; (M.D.)
| | - Jakub Smólski
- Department of Nephrocardiology, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Lodz, Poland; (M.D.)
| | - Łukasz Grądalski
- Department of Nephrocardiology, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Lodz, Poland; (M.D.)
| | - Szymon Niemirka
- Department of Nephrocardiology, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Lodz, Poland; (M.D.)
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Lodz, Poland; (M.D.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Lodz, Poland; (M.D.)
| |
Collapse
|
9
|
Murciano N, Rotordam MG, Becker N, Ludlow MJ, Parsonage G, Darras A, Kaestner L, Beech DJ, George M, Fertig N, Rapedius M, Brüggemann A. A high-throughput electrophysiology assay to study the response of PIEZO1 to mechanical stimulation. J Gen Physiol 2023; 155:e202213132. [PMID: 37801066 PMCID: PMC10558326 DOI: 10.1085/jgp.202213132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/17/2023] [Accepted: 09/17/2023] [Indexed: 10/07/2023] Open
Abstract
PIEZO1 channels are mechanically activated cation channels that play a pivotal role in sensing mechanical forces in various cell types. Their dysfunction has been associated with numerous pathophysiological states, including generalized lymphatic dysplasia, varicose vein disease, and hereditary xerocytosis. Given their physiological relevance, investigating PIEZO1 is crucial for the pharmaceutical industry, which requires scalable techniques to allow for drug discovery. In this regard, several studies have used high-throughput automated patch clamp (APC) combined with Yoda1, a specific gating modifier of PIEZO1 channels, to explore the function and properties of PIEZO1 in heterologous expression systems, as well as in primary cells. However, a combination of solely mechanical stimulation (M-Stim) and high-throughput APC has not yet been available for the study of PIEZO1 channels. Here, we show that optimization of pipetting parameters of the SyncroPatch 384 coupled with multihole NPC-384 chips enables M-Stim of PIEZO1 channels in high-throughput electrophysiology. We used this approach to explore differences between the response of mouse and human PIEZO1 channels to mechanical and/or chemical stimuli. Our results suggest that applying solutions on top of the cells at elevated pipetting flows is crucial for activating PIEZO1 channels by M-Stim on the SyncroPatch 384. The possibility of comparing and combining mechanical and chemical stimulation in a high-throughput patch clamp assay facilitates investigations on PIEZO1 channels and thereby provides an important experimental tool for drug development.
Collapse
Affiliation(s)
- Nicoletta Murciano
- Nanion Technologies GmbH, München, Germany
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | | | | | - Melanie J. Ludlow
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Gregory Parsonage
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Alexis Darras
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - David J. Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | | | | | | | | |
Collapse
|
10
|
Zheng M, Borkar NA, Yao Y, Ye X, Vogel ER, Pabelick CM, Prakash YS. Mechanosensitive channels in lung disease. Front Physiol 2023; 14:1302631. [PMID: 38033335 PMCID: PMC10684786 DOI: 10.3389/fphys.2023.1302631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Mechanosensitive channels (MS channels) are membrane proteins capable of responding to mechanical stress over a wide dynamic range of external mechanical stimuli. In recent years, it has been found that MS channels play an important role as "sentinels" in the process of cell sensing and response to extracellular and intracellular force signals. There is growing appreciation for mechanical activation of ion channels and their subsequent initiation of downstream signaling pathways. Members of the transient receptor potential (TRP) superfamily and Piezo channels are broadly expressed in human tissues and contribute to multiple cellular functions. Both TRP and Piezo channels are thought to play key roles in physiological homeostasis and pathophysiology of disease states including in the lung. Here, we review the current state of knowledge on the expression, regulation, and function of TRP and Piezo channels in the context of the adult lung across the age spectrum, and in lung diseases such as asthma, COPD and pulmonary fibrosis where mechanical forces likely play varied roles in the structural and functional changes characteristic of these diseases. Understanding of TRP and Piezo in the lung can provide insights into new targets for treatment of pulmonary disease.
Collapse
Affiliation(s)
- Mengning Zheng
- Department of Respiratory and Critical Care Medicine, Guizhou Province People’s Hospital, Guiyang, Guizhou, China
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Niyati A. Borkar
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Yang Yao
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
| | - Xianwei Ye
- Department of Respiratory and Critical Care Medicine, Guizhou Province People’s Hospital, Guiyang, Guizhou, China
| | - Elizabeth R. Vogel
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
11
|
Liu X, Niu W, Zhao S, Zhang W, Zhao Y, Li J. Piezo1:the potential new therapeutic target for fibrotic diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 184:42-49. [PMID: 37722629 DOI: 10.1016/j.pbiomolbio.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Fibrosis is a pathological process that occurs in various organs, characterized by excessive deposition of extracellular matrix (ECM), leading to structural damage and, in severe cases, organ failure. Within the fibrotic microenvironment, mechanical forces play a crucial role in shaping cell behavior and function, yet the precise molecular mechanisms underlying how cells sense and transmit these mechanical cues, as well as the physical aspects of fibrosis progression, remain less understood. Piezo1, a mechanosensitive ion channel protein, serves as a pivotal mediator, converting mechanical stimuli into electrical or chemical signals. Accumulating evidence suggests that Piezo1 plays a central role in ECM formation and hemodynamics in the mechanical transduction of fibrosis expansion. This review provides an overview of the current understanding of the role of Piezo1 in fibrosis progression, encompassing conditions such as myocardial fibrosis, pulmonary fibrosis, renal fibrosis, and other fibrotic diseases. The main goal is to pave the way for potential clinical applications in the field of fibrotic diseases.
Collapse
Affiliation(s)
- Xin Liu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weipin Niu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuqing Zhao
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenjuan Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Zhao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jing Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
12
|
Zhu H, He W, Ye P, Chen J, Wu X, Mu X, Wu Y, Pang H, Han F, Nie X. Piezo1 in skin wound healing and related diseases: Mechanotransduction and therapeutic implications. Int Immunopharmacol 2023; 123:110779. [PMID: 37582313 DOI: 10.1016/j.intimp.2023.110779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023]
Abstract
Skin wound healing is a multifaceted and intricate process involving inflammation, tissue proliferation, and scar formation, all of which are accompanied by the continuous application of mechanical forces. Mechanotransduction is the mechanism by which the skin receives and reacts to physical signals from the internal and external environment, converting them into intracellular biochemical signals. This intricate process relies on specialized proteins known as mechanotransducers, with Piezo1 being a critical mechanosensitive ion channel that plays a central role in this process. This article provides an overview of the structural characteristics of Piezo1 and summarizes its effects on corresponding cells or tissues at different stages of skin trauma, including how it regulates skin sensation and skin-related diseases. The aim is to reveal the potential diagnostic and therapeutic value of Piezo1 in skin trauma and skin-related diseases. Piezo1 has been reported to be a vital mediator of mechanosensation and transduction in various organs and tissues. Given its high expression in the skin, Piezo1, as a significant cell membrane ion channel, is essential in activating intracellular signaling cascades that trigger several cellular physiological functions, including cell migration and muscle contraction. These functions contribute to the regulation and improvement of wound healing.
Collapse
Affiliation(s)
- Huan Zhu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Wenjie He
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Penghui Ye
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Jitao Chen
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Xingqian Wu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Xingrui Mu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Youzhi Wu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), Brisbane, QLD 4072, Australia.
| | - Huiwen Pang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), Brisbane, QLD 4072, Australia.
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), Brisbane, QLD 4072, Australia.
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; School Medical Office, Zunyi Medical University, Zunyi 563006, China; Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), Brisbane, QLD 4072, Australia; School of Biomedical Sciences, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia.
| |
Collapse
|
13
|
Zong B, Yu F, Zhang X, Pang Y, Zhao W, Sun P, Li L. Mechanosensitive Piezo1 channel in physiology and pathophysiology of the central nervous system. Ageing Res Rev 2023; 90:102026. [PMID: 37532007 DOI: 10.1016/j.arr.2023.102026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Since the discovery of the mechanosensitive Piezo1 channel in 2010, there has been a significant amount of research conducted to explore its regulatory role in the physiology and pathology of various organ systems. Recently, a growing body of compelling evidence has emerged linking the activity of the mechanosensitive Piezo1 channel to health and disease of the central nervous system. However, the exact mechanisms underlying these associations remain inadequately comprehended. This review systematically summarizes the current research on the mechanosensitive Piezo1 channel and its implications for central nervous system mechanobiology, retrospects the results demonstrating the regulatory role of the mechanosensitive Piezo1 channel on various cell types within the central nervous system, including neural stem cells, neurons, oligodendrocytes, microglia, astrocytes, and brain endothelial cells. Furthermore, the review discusses the current understanding of the involvement of the Piezo1 channel in central nervous system disorders, such as Alzheimer's disease, multiple sclerosis, glaucoma, stroke, and glioma.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Fengzhi Yu
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoyou Zhang
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Yige Pang
- Department of Neurosurgery, Zibo Central Hospital, Zibo 255000, Shandong, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Peng Sun
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
14
|
Chuntharpursat-Bon E, Povstyan OV, Ludlow MJ, Carrier DJ, Debant M, Shi J, Gaunt HJ, Bauer CC, Curd A, Simon Futers T, Baxter PD, Peckham M, Muench SP, Adamson A, Humphreys N, Tumova S, Bon RS, Cubbon R, Lichtenstein L, Beech DJ. PIEZO1 and PECAM1 interact at cell-cell junctions and partner in endothelial force sensing. Commun Biol 2023; 6:358. [PMID: 37005489 PMCID: PMC10067937 DOI: 10.1038/s42003-023-04706-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 03/14/2023] [Indexed: 04/04/2023] Open
Abstract
Two prominent concepts for the sensing of shear stress by endothelium are the PIEZO1 channel as a mediator of mechanically activated calcium ion entry and the PECAM1 cell adhesion molecule as the apex of a triad with CDH5 and VGFR2. Here, we investigated if there is a relationship. By inserting a non-disruptive tag in native PIEZO1 of mice, we reveal in situ overlap of PIEZO1 with PECAM1. Through reconstitution and high resolution microscopy studies we show that PECAM1 interacts with PIEZO1 and directs it to cell-cell junctions. PECAM1 extracellular N-terminus is critical in this, but a C-terminal intracellular domain linked to shear stress also contributes. CDH5 similarly drives PIEZO1 to junctions but unlike PECAM1 its interaction with PIEZO1 is dynamic, increasing with shear stress. PIEZO1 does not interact with VGFR2. PIEZO1 is required in Ca2+-dependent formation of adherens junctions and associated cytoskeleton, consistent with it conferring force-dependent Ca2+ entry for junctional remodelling. The data suggest a pool of PIEZO1 at cell junctions, the coming together of PIEZO1 and PECAM1 mechanisms and intimate cooperation of PIEZO1 and adhesion molecules in tailoring junctional structure to mechanical requirement.
Collapse
Affiliation(s)
| | | | | | - David J Carrier
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Jian Shi
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Hannah J Gaunt
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Alistair Curd
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - T Simon Futers
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul D Baxter
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Michelle Peckham
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Stephen P Muench
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Antony Adamson
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Neil Humphreys
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Sarka Tumova
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Robin S Bon
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Richard Cubbon
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | | | - David J Beech
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
15
|
PIEZO1-Related Physiological and Pathological Processes in CNS: Focus on the Gliomas. Cancers (Basel) 2023; 15:cancers15030883. [PMID: 36765838 PMCID: PMC9913778 DOI: 10.3390/cancers15030883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
PIEZO1 is ubiquitously expressed in cells in different kinds of tissues throughout the body, which can sense physical or mechanical stimuli and translate them into intracellular electrochemical signals to regulate organism functions. In particular, PIEZO1 appears in complex interactive regulatory networks as a central node, governing normal and pathological functions in the body. However, the effect and mechanism of the activation or expression of PIEZO1 in diseases of the central nervous system (CNS) remain unclear. On one hand, in CNS diseases, pathophysiological processes in neurons and glial are often accompanied by variations in the mechanical properties of the cellular and extracellular matrix stiffness. The expression of PIEZO1 can therefore be upregulated, in responding to mechanical stimulation, to drive the biological process in cells, which in turns indirectly affects the cellular microenvironment, resulting in alterations of the cellular status. On the other hand, it may have contradictory effects with the change of active patterns and/or subcellular location. This review highlights the biological processes involved with PIEZO1 in CNS cells, with special emphasis on its multiple roles in glioma-associated phenotypes. In conclusion, PIEZO1 can be used as an indicator to assess the malignancy and prognosis of patients with gliomas, as well as a therapeutic target for clinical application following fully exploring the potential mechanism of PIEZO1 in CNS diseases.
Collapse
|
16
|
Yang Q, Li X, Xing Y, Chen Y. Piezo1, a novel therapeutic target to treat pulmonary arterial hypertension. Front Physiol 2023; 14:1084921. [PMID: 36776977 PMCID: PMC9909334 DOI: 10.3389/fphys.2023.1084921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
|
17
|
Hu J, Chen Q, Zhu H, Hou L, Liu W, Yang Q, Shen H, Chai G, Zhang B, Chen S, Cai Z, Wu C, Hong F, Li H, Chen S, Xiao N, Wang ZX, Zhang X, Wang B, Zhang L, Mo W. Microglial Piezo1 senses Aβ fibril stiffness to restrict Alzheimer's disease. Neuron 2023; 111:15-29.e8. [PMID: 36368316 DOI: 10.1016/j.neuron.2022.10.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/15/2022] [Accepted: 10/12/2022] [Indexed: 11/12/2022]
Abstract
The pathology of Alzheimer's disease (AD) is featured with extracellular amyloid-β (Aβ) plaques, whose impact on the mechanical properties of the surrounding brain tissues is unclear. Microglia sense and integrate biochemical cues of the microenvironment. However, whether the microglial mechanosensing pathways influence AD pathogenesis is unknown. Here, we surveyed the elevated stiffness of Aβ-plaque-associated tissues and observed the selective upregulation of the mechanosensitive ion channel Piezo1 in Aβ-plaque-associated microglia. Piezo1 sensed the stiffness stimuli of Aβ fibrils and subsequently induced Ca2+ influx for microglial clustering, phagocytosis, and compacting of Aβ plaques. Microglia lacking Piezo1 led to the exacerbation of Aβ pathology and cognitive decline, whereas pharmacological activation of microglial Piezo1 ameliorated brain Aβ burden and cognitive impairment in 5 × FAD mice. Together, our results reveal that Piezo1, a mechanosensor of Aβ fibril stiffness in microglia, represents a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Jin Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Qiang Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hongrui Zhu
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lichao Hou
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wei Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Qihua Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Huidan Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China; Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Guolin Chai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Boxin Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Shaoxuan Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Zhiyu Cai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Chongxin Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Fan Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hongda Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Sifang Chen
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Naian Xiao
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Zhan-Xiang Wang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xueqin Zhang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Bo Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Liang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Wei Mo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
18
|
Bryniarska-Kubiak N, Kubiak A, Basta-Kaim A. Mechanotransductive Receptor Piezo1 as a Promising Target in the Treatment of Neurological Diseases. Curr Neuropharmacol 2023; 21:2030-2035. [PMID: 36173070 PMCID: PMC10556366 DOI: 10.2174/1570159x20666220927103454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/16/2022] [Accepted: 08/28/2022] [Indexed: 11/22/2022] Open
Abstract
In recent years, increasing attention has been paid to the role of physical factors in biological processes. This direction was ultimately confirmed by the recent 2021 Nobel Prize in medicine and physiology awarded in ½ to Ardem Patapoutian for his discovery of Piezo1 and Piezo2 mechanosensitive receptors. Among them, Piezo2 is responsible for sensing touch, while Piezo1 is engaged in a variety of mechanotransduction events. Piezo1 is expressed in various central nervous system cells, while its expression may be affected in the course of various pathological conditions. Recently, thanks to the development of Piezo1 modulators (i.e. Yoda1, Jedi1/2 and Dooku2), it is possible to study the role of Piezo1 in the pathogenesis of various neurological diseases including ischemia, glioma, and age-related dementias. The results obtained in this field suggest that proper modulation of Piezo1 receptor might be beneficial in the course of various neurological diseases.
Collapse
Affiliation(s)
- Natalia Bryniarska-Kubiak
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., Kraków, 31-343, Poland
| | - Andrzej Kubiak
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., Kraków, 31-343, Poland
| |
Collapse
|
19
|
Gonçalves AN, Moura RS, Correia-Pinto J, Nogueira-Silva C. Intraluminal chloride regulates lung branching morphogenesis: involvement of PIEZO1/PIEZO2. Respir Res 2023; 24:42. [PMID: 36740669 PMCID: PMC9901166 DOI: 10.1186/s12931-023-02328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Clinical and experimental evidence shows lung fluid volume as a modulator of fetal lung growth with important value in treating fetal lung hypoplasia. Thus, understanding the mechanisms underlying these morphological dynamics has been the topic of multiple investigations with, however, limited results, partially due to the difficulty of capturing or recapitulating these movements in the lab. In this sense, this study aims to establish an ex vivo model allowing the study of lung fluid function in branching morphogenesis and identify the subsequent molecular/ cellular mechanisms. METHODS Ex vivo lung explant culture was selected as a model to study branching morphogenesis, and intraluminal injections were performed to change the composition of lung fluid. Distinct chloride (Cl-) concentrations (5.8, 29, 143, and 715 mM) or Cl- channels inhibitors [antracene-9-carboxylic acid (A9C), cystic fibrosis transmembrane conductance regulator inhibitor172 (CFTRinh), and calcium-dependent Cl- channel inhibitorA01 (CaCCinh)] were injected into lung lumen at two timepoints, day0 (D0) and D2. At D4, morphological and molecular analyses were performed in terms of branching morphogenesis, spatial distribution (immunofluorescence), and protein quantification (western blot) of mechanoreceptors (PIEZO1 and PIEZO2), neuroendocrine (bombesin, ghrelin, and PGP9.5) and smooth muscle [alpha-smooth muscle actin (α-SMA) and myosin light chain 2 (MLC2)] markers. RESULTS For the first time, we described effective intraluminal injections at D0 and D2 and demonstrated intraluminal movements at D4 in ex vivo lung explant cultures. Through immunofluorescence assay in in vivo and ex vivo branching morphogenesis, we show that PGP9.5 colocalizes with PIEZO1 and PIEZO2 receptors. Fetal lung growth is increased at higher [Cl-], 715 mM Cl-, through the overexpression of PIEZO1, PIEZO2, ghrelin, bombesin, MLC2, and α-SMA. In contrast, intraluminal injection of CFTRinh or CaCCinh decreases fetal lung growth and the expression of PIEZO1, PIEZO2, ghrelin, bombesin, MLC2, and α-SMA. Finally, the inhibition of PIEZO1/PIEZO2 by GsMTx4 decreases branching morphogenesis and ghrelin, bombesin, MLC2, and α-SMA expression in an intraluminal injection-independent manner. CONCLUSIONS Our results identify PIEZO1/PIEZO2 expressed in neuroendocrine cells as a regulator of fetal lung growth induced by lung fluid.
Collapse
Affiliation(s)
- Ana N. Gonçalves
- grid.10328.380000 0001 2159 175XSchool of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057 Braga, Portugal ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rute S. Moura
- grid.10328.380000 0001 2159 175XSchool of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057 Braga, Portugal ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Correia-Pinto
- grid.10328.380000 0001 2159 175XSchool of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057 Braga, Portugal ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal ,Department of Pediatric Surgery, Hospital de Braga, Braga, Portugal
| | - Cristina Nogueira-Silva
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057, Braga, Portugal. .,Life and Health Sciences Research Institute/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal. .,Department of Obstetrics and Gynecology, Hospital de Braga, Braga, Portugal.
| |
Collapse
|
20
|
Sukharev S, Anishkin A. Mechanosensitive Channels: History, Diversity, and Mechanisms. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2022. [DOI: 10.1134/s1990747822090021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Huang J, Zhang K, Du R, Liu W, Zhang H, Tian T, Wang Y, Wang G, Yin T. The Janus-faced role of Piezo1 in cardiovascular health under mechanical stimulation. Genes Dis 2022. [PMID: 37492728 PMCID: PMC10363580 DOI: 10.1016/j.gendis.2022.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
In recent years, cardiovascular health problems are becoming more and more serious. At the same time, mechanical stimulation closely relates to cardiovascular health. In this context, Piezo1, which is very sensitive to mechanical stimulation, has attracted our attention. Here, we review the critical significance of Piezo1 in mechanical stimulation of endothelial cells, NO production, lipid metabolism, DNA damage protection, the development of new blood vessels and maturation, narrowing of blood vessels, blood pressure regulation, vascular permeability, insulin sensitivity, and maintenance of red blood cell function. Besides, Piezo1 may participate in the occurrence and development of atherosclerosis, diabetes, hypertension, and other cardiovascular diseases. It is worth noting that Piezo1 has dual effects on maintaining cardiovascular health. On the one hand, the function of Piezo1 is necessary to maintain cardiovascular health; on the other hand, under some extreme mechanical stimulation, the overexpression of Piezo1 may bring adverse factors such as inflammation. Therefore, this review discusses the Janus-faced role of Piezo1 in maintaining cardiovascular health and puts forward new ideas to provide references for gene therapy or nanoagents targeting Piezo1.
Collapse
|
22
|
Jäntti H, Sitnikova V, Ishchenko Y, Shakirzyanova A, Giudice L, Ugidos IF, Gómez-Budia M, Korvenlaita N, Ohtonen S, Belaya I, Fazaludeen F, Mikhailov N, Gotkiewicz M, Ketola K, Lehtonen Š, Koistinaho J, Kanninen KM, Hernández D, Pébay A, Giugno R, Korhonen P, Giniatullin R, Malm T. Microglial amyloid beta clearance is driven by PIEZO1 channels. J Neuroinflammation 2022; 19:147. [PMID: 35706029 PMCID: PMC9199162 DOI: 10.1186/s12974-022-02486-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/15/2022] [Indexed: 02/06/2023] Open
Abstract
Background Microglia are the endogenous immune cells of the brain and act as sensors of pathology to maintain brain homeostasis and eliminate potential threats. In Alzheimer's disease (AD), toxic amyloid beta (Aβ) accumulates in the brain and forms stiff plaques. In late-onset AD accounting for 95% of all cases, this is thought to be due to reduced clearance of Aβ. Human genome-wide association studies and animal models suggest that reduced clearance results from aberrant function of microglia. While the impact of neurochemical pathways on microglia had been broadly studied, mechanical receptors regulating microglial functions remain largely unexplored. Methods Here we showed that a mechanotransduction ion channel, PIEZO1, is expressed and functional in human and mouse microglia. We used a small molecule agonist, Yoda1, to study how activation of PIEZO1 affects AD-related functions in human induced pluripotent stem cell (iPSC)-derived microglia-like cells (iMGL) under controlled laboratory experiments. Cell survival, metabolism, phagocytosis and lysosomal activity were assessed using real-time functional assays. To evaluate the effect of activation of PIEZO1 in vivo, 5-month-old 5xFAD male mice were infused daily with Yoda1 for two weeks through intracranial cannulas. Microglial Iba1 expression and Aβ pathology were quantified with immunohistochemistry and confocal microscopy. Published human and mouse AD datasets were used for in-depth analysis of PIEZO1 gene expression and related pathways in microglial subpopulations. Results We show that PIEZO1 orchestrates Aβ clearance by enhancing microglial survival, phagocytosis, and lysosomal activity. Aβ inhibited PIEZO1-mediated calcium transients, whereas activation of PIEZO1 with a selective agonist, Yoda1, improved microglial phagocytosis resulting in Aβ clearance both in human and mouse models of AD. Moreover, PIEZO1 expression was associated with a unique microglial transcriptional phenotype in AD as indicated by assessment of cellular metabolism, and human and mouse single-cell datasets. Conclusion These results indicate that the compromised function of microglia in AD could be improved by controlled activation of PIEZO1 channels resulting in alleviated Aβ burden. Pharmacological regulation of these mechanoreceptors in microglia could represent a novel therapeutic paradigm for AD. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02486-y.
Collapse
Affiliation(s)
- Henna Jäntti
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Valeriia Sitnikova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Yevheniia Ishchenko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.,Departments of Molecular Biophysics and Biochemistry and Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Anastasia Shakirzyanova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Luca Giudice
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.,Department of Computer Science, University of Verona, 37134, Verona, Italy
| | - Irene F Ugidos
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Mireia Gómez-Budia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Nea Korvenlaita
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Sohvi Ohtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Irina Belaya
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Feroze Fazaludeen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Nikita Mikhailov
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Maria Gotkiewicz
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Kirsi Ketola
- Institute of Biomedicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Damian Hernández
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, 37134, Verona, Italy
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.
| |
Collapse
|
23
|
Tang H, Zeng R, He E, Zhang I, Ding C, Zhang A. Piezo-Type Mechanosensitive Ion Channel Component 1 (Piezo1): A Promising Therapeutic Target and Its Modulators. J Med Chem 2022; 65:6441-6453. [DOI: 10.1021/acs.jmedchem.2c00085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hairong Tang
- Pharm-X Center, Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruoqing Zeng
- Pharm-X Center, Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ende He
- Pharm-X Center, Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Chunyong Ding
- Pharm-X Center, Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ao Zhang
- Pharm-X Center, Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Lingang National Laboratory, Shanghai 200210,China
| |
Collapse
|
24
|
Fatty acids as biomodulators of Piezo1 mediated glial mechanosensitivity in Alzheimer's disease. Life Sci 2022; 297:120470. [DOI: 10.1016/j.lfs.2022.120470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/09/2021] [Accepted: 03/06/2022] [Indexed: 11/18/2022]
|
25
|
Liu H, Hu J, Zheng Q, Feng X, Zhan F, Wang X, Xu G, Hua F. Piezo1 Channels as Force Sensors in Mechanical Force-Related Chronic Inflammation. Front Immunol 2022; 13:816149. [PMID: 35154133 PMCID: PMC8826255 DOI: 10.3389/fimmu.2022.816149] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Mechanical damage is one of the predisposing factors of inflammation, and it runs through the entire inflammatory pathological process. Repeated or persistent damaging mechanical irritation leads to chronic inflammatory diseases. The mechanism of how mechanical forces induce inflammation is not fully understood. Piezo1 is a newly discovered mechanically sensitive ion channel. The Piezo1 channel opens in response to mechanical stimuli, transducing mechanical signals into an inflammatory cascade in the cell leading to tissue inflammation. A large amount of evidence shows that Piezo1 plays a vital role in the occurrence and progression of chronic inflammatory diseases. This mini-review briefly presents new evidence that Piezo1 responds to different mechanical stresses to trigger inflammation in various tissues. The discovery of Piezo1 provides new insights for the treatment of chronic inflammatory diseases related to mechanical stress. Inhibiting the transduction of damaging mechanical signals into inflammatory signals can inhibit inflammation and improve the outcome of inflammation at an early stage. The pharmacology of Piezo1 has shown bright prospects. The development of tissue-specific Piezo1 drugs for clinical use may be a new target for treating chronic inflammation.
Collapse
Affiliation(s)
- Hailin Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingcui Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaojin Feng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fenfang Zhan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xifeng Wang
- Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
26
|
Luo M, Cai G, Ho KKY, Wen K, Tong Z, Deng L, Liu AP. Compression enhances invasive phenotype and matrix degradation of breast Cancer cells via Piezo1 activation. BMC Mol Cell Biol 2022; 23:1. [PMID: 34979904 PMCID: PMC8722159 DOI: 10.1186/s12860-021-00401-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Background Uncontrolled growth in solid breast cancer generates mechanical compression that may drive the cancer cells into a more invasive phenotype, but little is known about how such compression affects the key events and corresponding regulatory mechanisms associated with invasion of breast cancer cells including cellular behaviors and matrix degradation. Results Here we show that compression enhanced invasion and matrix degradation of breast cancer cells. We also identified Piezo1 as the putative mechanosensitive cellular component that transmitted compression to not only enhance the invasive phenotype, but also induce calcium influx and downstream Src signaling. Furthermore, we demonstrated that Piezo1 was mainly localized in caveolae, and both Piezo1 expression and compression-enhanced invasive phenotype of the breast cancer cells were reduced when caveolar integrity was compromised by either knocking down caveolin1 expression or depleting cholesterol content. Conclusions Taken together, our data indicate that mechanical compression activates Piezo1 channels to mediate enhanced breast cancer cell invasion, which involves both cellular events and matrix degradation. This may be a critical mechanotransduction pathway during breast cancer metastasis, and thus potentially a novel therapeutic target for the disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00401-6.
Collapse
Affiliation(s)
- Mingzhi Luo
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, People's Republic of China.,Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth K Y Ho
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.,Present address: Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Kang Wen
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, People's Republic of China
| | - Zhaowen Tong
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, People's Republic of China.
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA. .,Applied Physics Program, University of Michigan, Ann Arbor, MI, USA. .,Department of Biophysics, University of Michigan, Ann Arbor, MI, USA. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA. .,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
27
|
Shinge SAU, Zhang D, Din AU, Yu F, Nie Y. Emerging Piezo1 signaling in inflammation and atherosclerosis; a potential therapeutic target. Int J Biol Sci 2022; 18:923-941. [PMID: 35173527 PMCID: PMC8771847 DOI: 10.7150/ijbs.63819] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose of Review: Atherosclerosis is the principal cause of cardiovascular diseases (CVDs) which are the major cause of death worldwide. Mechanical force plays an essential role in cardiovascular health and disease. To bring the awareness of mechanosensitive Piezo1 role in atherosclerosis and its therapeutic potentials we review recent literature to highlight its involvement in various mechanisms of the disease. Recent Findings: Recent studies reported Piezo1 channel as a sensor, and transducer of various mechanical forces into biochemical signals, which affect various cellular activities such as proliferation, migration, apoptosis and vascular remodeling including immune/inflammatory mechanisms fundamental phenomenon in atherogenesis. Summary: Numerous evidences suggest Piezo1 as a player in different mechanisms of cell biology, including immune/inflammatory and other cellular mechanisms correlated with atherosclerosis. This review discusses mechanistic insight about this matter and highlights the drugability and therapeutic potentials consistent with emerging functions Piezo1 in various mechanisms of atherosclerosis. Based on the recent works, we suggest Piezo1 as potential therapeutic target and a valid candidate for future research. Therefore, a deeper exploration of Piezo1 biology and translation towards the clinic will be a novel strategy for treating atherosclerosis and other CVDs.
Collapse
Affiliation(s)
- Shafiu A. Umar Shinge
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan PRC
| | - Daifang Zhang
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan PRC
- Clinical Research Center, Southwest Medical University, Luzhou, Sichuan PRC
| | - Ahmad Ud Din
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan PRC
| | - FengXu Yu
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan PRC
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan PRC
| | - YongMei Nie
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan PRC
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan PRC
| |
Collapse
|
28
|
Carlstrom LP, Eltanahy A, Perry A, Rabinstein AA, Elder BD, Morris JM, Meyer FB, Graffeo CS, Lundgaard I, Burns TC. A clinical primer for the glymphatic system. Brain 2021; 145:843-857. [PMID: 34888633 DOI: 10.1093/brain/awab428] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 11/14/2022] Open
Abstract
The complex and dynamic system of fluid flow through the perivascular and interstitial spaces of the central nervous system has new-found implications for neurological diseases. Cerebrospinal fluid movement throughout the CNS parenchyma is more dynamic than could be explained via passive diffusion mechanisms alone. Indeed, a semi-structured glial-lymphatic (glymphatic) system of astrocyte-supported extracellular perivascular channels serves to directionally channel extracellular fluid, clearing metabolites and peptides to optimize neurologic function. Clinical studies of the glymphatic network has to date proven challenging, with most data gleaned from rodent models and post-mortem investigations. However, increasing evidence suggests that disordered glymphatic function contributes to the pathophysiology of CNS aging, neurodegenerative disease, and CNS injuries, as well as normal pressure hydrocephalus. Unlocking such pathophysiology could provide important avenues toward novel therapeutics. We here provide a multidisciplinary overview of glymphatics and critically review accumulating evidence regarding its structure, function, and hypothesized relevance to neurological disease. We highlight emerging technologies of relevance to the longitudinal evaluation of glymphatic function in health and disease. Finally, we discuss the translational opportunities and challenges of studying glymphatic science.
Collapse
Affiliation(s)
- Lucas P Carlstrom
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | - Ahmed Eltanahy
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | - Avital Perry
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Benjamin D Elder
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Fredric B Meyer
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Iben Lundgaard
- Departments of Experimental Medical Science, Lund University, Lund 228 11 Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund 228 11 Sweden
| | - Terry C Burns
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
29
|
Zhou Z, Li JV, Martinac B, Cox CD. Loss-of-Function Piezo1 Mutations Display Altered Stability Driven by Ubiquitination and Proteasomal Degradation. Front Pharmacol 2021; 12:766416. [PMID: 34867393 PMCID: PMC8640252 DOI: 10.3389/fphar.2021.766416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/03/2021] [Indexed: 01/02/2023] Open
Abstract
Missense mutations in the gene that encodes for the mechanically-gated ion channel Piezo1 have been linked to a number of diseases. Gain-of-function variants are linked to a hereditary anaemia and loss-of-function variants have been linked to generalized lymphatic dysplasia and bicuspid aortic valve. Two previously characterized mutations, S217L and G2029R, both exhibit reduced plasma membrane trafficking. Here we show that both mutations also display reduced stability and higher turnover rates than wild-type Piezo1 channels. This occurs through increased ubiquitination and subsequent proteasomal degradation. Congruent with this, proteasome inhibition using N-acetyl-l-leucyl-l-leucyl-l-norleucinal (ALLN) reduced the degradation of both mutant proteins. While ALLN treatment could not rescue the function of S217L we show via multiple complementary methodologies that proteasome inhibition via ALLN treatment can not only prevent G2029R turnover but increase the membrane localized pool of this variant and the functional Piezo1 mechanosensitive currents. This data in combination with a precision medicine approach provides a new potential therapeutic avenue for the treatment of Piezo1 mediated channelopathies.
Collapse
Affiliation(s)
- Zijing Zhou
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Jinyuan Vero Li
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
30
|
Qin L, He T, Chen S, Yang D, Yi W, Cao H, Xiao G. Roles of mechanosensitive channel Piezo1/2 proteins in skeleton and other tissues. Bone Res 2021; 9:44. [PMID: 34667178 PMCID: PMC8526690 DOI: 10.1038/s41413-021-00168-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Mechanotransduction is a fundamental ability that allows living organisms to receive and respond to physical signals from both the external and internal environments. The mechanotransduction process requires a range of special proteins termed mechanotransducers to convert mechanical forces into biochemical signals in cells. The Piezo proteins are mechanically activated nonselective cation channels and the largest plasma membrane ion channels reported thus far. The regulation of two family members, Piezo1 and Piezo2, has been reported to have essential functions in mechanosensation and transduction in different organs and tissues. Recently, the predominant contributions of the Piezo family were reported to occur in the skeletal system, especially in bone development and mechano-stimulated bone homeostasis. Here we review current studies focused on the tissue-specific functions of Piezo1 and Piezo2 in various backgrounds with special highlights on their importance in regulating skeletal cell mechanotransduction. In this review, we emphasize the diverse functions of Piezo1 and Piezo2 and related signaling pathways in osteoblast lineage cells and chondrocytes. We also summarize our current understanding of Piezo channel structures and the key findings about PIEZO gene mutations in human diseases.
Collapse
Affiliation(s)
- Lei Qin
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Sheng Chen
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dazhi Yang
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Weihong Yi
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China.
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
31
|
Holt JR, Zeng WZ, Evans EL, Woo SH, Ma S, Abuwarda H, Loud M, Patapoutian A, Pathak MM. Spatiotemporal dynamics of PIEZO1 localization controls keratinocyte migration during wound healing. eLife 2021; 10:65415. [PMID: 34569935 PMCID: PMC8577841 DOI: 10.7554/elife.65415] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 09/24/2021] [Indexed: 12/17/2022] Open
Abstract
Keratinocytes, the predominant cell type of the epidermis, migrate to reinstate the epithelial barrier during wound healing. Mechanical cues are known to regulate keratinocyte re-epithelialization and wound healing; however, the underlying molecular transducers and biophysical mechanisms remain elusive. Here, we show through molecular, cellular, and organismal studies that the mechanically activated ion channel PIEZO1 regulates keratinocyte migration and wound healing. Epidermal-specific Piezo1 knockout mice exhibited faster wound closure while gain-of-function mice displayed slower wound closure compared to littermate controls. By imaging the spatiotemporal localization dynamics of endogenous PIEZO1 channels, we find that channel enrichment at some regions of the wound edge induces a localized cellular retraction that slows keratinocyte collective migration. In migrating single keratinocytes, PIEZO1 is enriched at the rear of the cell, where maximal retraction occurs, and we find that chemical activation of PIEZO1 enhances retraction during single as well as collective migration. Our findings uncover novel molecular mechanisms underlying single and collective keratinocyte migration that may suggest a potential pharmacological target for wound treatment. More broadly, we show that nanoscale spatiotemporal dynamics of Piezo1 channels can control tissue-scale events, a finding with implications beyond wound healing to processes as diverse as development, homeostasis, disease, and repair.
Collapse
Affiliation(s)
- Jesse R Holt
- Departmentof Physiology & Biophysics, UC Irvine, Irvine, United States.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, United States.,Center for Complex Biological Systems, UC Irvine, Irvine, United States
| | - Wei-Zheng Zeng
- Howard Hughes Medical Institute, Department of Neuroscience, The Scripps Research Institute, La Jolla, United States
| | - Elizabeth L Evans
- Departmentof Physiology & Biophysics, UC Irvine, Irvine, United States.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, United States
| | - Seung-Hyun Woo
- Howard Hughes Medical Institute, Department of Neuroscience, The Scripps Research Institute, La Jolla, United States
| | - Shang Ma
- Howard Hughes Medical Institute, Department of Neuroscience, The Scripps Research Institute, La Jolla, United States
| | - Hamid Abuwarda
- Departmentof Physiology & Biophysics, UC Irvine, Irvine, United States.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, United States
| | - Meaghan Loud
- Howard Hughes Medical Institute, Department of Neuroscience, The Scripps Research Institute, La Jolla, United States
| | - Ardem Patapoutian
- Howard Hughes Medical Institute, Department of Neuroscience, The Scripps Research Institute, La Jolla, United States
| | - Medha M Pathak
- Departmentof Physiology & Biophysics, UC Irvine, Irvine, United States.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, United States.,Center for Complex Biological Systems, UC Irvine, Irvine, United States.,Department of Biomedical Engineering, UC Irvine, Irvine, United States
| |
Collapse
|
32
|
Ridone P, Pandzic E, Vassalli M, Cox CD, Macmillan A, Gottlieb PA, Martinac B. Disruption of membrane cholesterol organization impairs the activity of PIEZO1 channel clusters. J Gen Physiol 2021; 152:151885. [PMID: 32582958 PMCID: PMC7398139 DOI: 10.1085/jgp.201912515] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/12/2020] [Indexed: 11/20/2022] Open
Abstract
The human mechanosensitive ion channel PIEZO1 is gated by membrane tension and regulates essential biological processes such as vascular development and erythrocyte volume homeostasis. Currently, little is known about PIEZO1 plasma membrane localization and organization. Using a PIEZO1-GFP fusion protein, we investigated whether cholesterol enrichment or depletion by methyl-β-cyclodextrin (MBCD) and disruption of membrane cholesterol organization by dynasore affects PIEZO1-GFP's response to mechanical force. Electrophysiological recordings in the cell-attached configuration revealed that MBCD caused a rightward shift in the PIEZO1-GFP pressure-response curve, increased channel latency in response to mechanical stimuli, and markedly slowed channel inactivation. The same effects were seen in native PIEZO1 in N2A cells. STORM superresolution imaging revealed that, at the nanoscale, PIEZO1-GFP channels in the membrane associate as clusters sensitive to membrane manipulation. Both cluster distribution and diffusion rates were affected by treatment with MBCD (5 mM). Supplementation of polyunsaturated fatty acids appeared to sensitize the PIEZO1-GFP response to applied pressure. Together, our results indicate that PIEZO1 function is directly dependent on the membrane composition and lateral organization of membrane cholesterol domains, which coordinate the activity of clustered PIEZO1 channels.
Collapse
Affiliation(s)
- Pietro Ridone
- The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Elvis Pandzic
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, Lowy Cancer Research Centre, The University of New South Wales, Sydney, NSW, Australia
| | - Massimo Vassalli
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Charles D Cox
- The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| | - Alexander Macmillan
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, Lowy Cancer Research Centre, The University of New South Wales, Sydney, NSW, Australia
| | - Philip A Gottlieb
- Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY
| | - Boris Martinac
- The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| |
Collapse
|
33
|
Morozumi W, Aoshima K, Inagaki S, Iwata Y, Nakamura S, Hara H, Shimazawa M. Piezo 1 is involved in intraocular pressure regulation. J Pharmacol Sci 2021; 147:211-221. [PMID: 34217619 DOI: 10.1016/j.jphs.2021.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/28/2021] [Accepted: 06/09/2021] [Indexed: 01/02/2023] Open
Abstract
Trabecular meshwork (TM) regulates the intraocular pressure (IOP) through the control of aqueous humor outflow. Previous reports show that TM cells express 11 types of mechanosensitive molecules, including Piezo 1, which sense mechanical stimuli. However, the role of Piezo 1 on TM remains unclear. Thus, in this study, we focused on the Piezo 1 and examined its role in TM cells. Immunostaining showed that Piezo 1 was expressed in mouse TM and human TM cells. Moreover, the eye drops containing Piezo 1 agonist Yoda 1 reduced the IOP in mice, and also reduced fibronectin expression level around the TM. In addition, Piezo 1 activation suppressed human TM cells migration/proliferation, and decreased fibronectin expression level. On the other hand, Piezo 1 activation increased matrix metalloproteinase (MMP)-2 expression responsible for fibronectin degradation. These findings could contribute to the development of new treatments for glaucoma.
Collapse
Affiliation(s)
- Wataru Morozumi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Kota Aoshima
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Satoshi Inagaki
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuki Iwata
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
34
|
Adherent cell remodeling on micropatterns is modulated by Piezo1 channels. Sci Rep 2021; 11:5088. [PMID: 33658557 PMCID: PMC7930019 DOI: 10.1038/s41598-021-84427-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/11/2021] [Indexed: 11/15/2022] Open
Abstract
Adherent cells utilize local environmental cues to make decisions on their growth and movement. We have previously shown that HEK293 cells grown on the fibronectin stripe patterns were elongated. Here we show that Piezo1 function is involved in cell spreading. Piezo1 expressing HEK cells plated on fibronectin stripes elongated, while a knockout of Piezo1 eliminated elongation. Inhibiting Piezo1 conductance using GsMTx4 or Gd3+ blocked cell spreading, but the cells grew thin tail-like extensions along the patterns. Images of GFP-tagged Piezo1 showed plaques of Piezo1 moving to the extrusion edges, co-localized with focal adhesions. Surprisingly, in non-spreading cells Piezo1 was located primarily on the nuclear envelope. Inhibiting the Rho-ROCK pathway also reversibly inhibited cell extension indicating that myosin contractility is involved. The growth of thin extrusion tails did not occur in Piezo1 knockout cells suggesting that Piezo1 may have functions besides acting as a cation channel.
Collapse
|
35
|
Morachevskaya EA, Sudarikova AV. Actin dynamics as critical ion channel regulator: ENaC and Piezo in focus. Am J Physiol Cell Physiol 2021; 320:C696-C702. [PMID: 33471624 DOI: 10.1152/ajpcell.00368.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ion channels in plasma membrane play a principal role in different physiological processes, including cell volume regulation, signal transduction, and modulation of membrane potential in living cells. Actin-based cytoskeleton, which exists in a dynamic balance between monomeric and polymeric forms (globular and fibrillar actin), can be directly or indirectly involved in various cellular responses including modulation of ion channel activity. In this mini-review, we present an overview of the role of submembranous actin dynamics in the regulation of ion channels in excitable and nonexcitable cells. Special attention is focused on the important data about the involvement of actin assembly/disassembly and some actin-binding proteins in the control of the epithelial Na+ channel (ENaC) and mechanosensitive Piezo channels whose integral activity has a potential impact on membrane transport and multiple coupled cellular reactions. Growing evidence suggests that actin elements of the cytoskeleton can represent a "converging point" of various signaling pathways modulating the activity of ion transport proteins in cell membranes.
Collapse
|
36
|
Liao D, Hsiao MY, Xiang G, Zhong P. Optimal pulse length of insonification for Piezo1 activation and intracellular calcium response. Sci Rep 2021; 11:709. [PMID: 33436695 PMCID: PMC7804118 DOI: 10.1038/s41598-020-78553-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022] Open
Abstract
Ultrasound (US) neuromodulation, especially sonogenetics, has been demonstrated with potential applications in noninvasive and targeted treatment of various neurological disorders. Despite the growing interest, the mechanism for US neuromodulation remains elusive, and the optimal condition for eliciting a neural response with minimal adverse effect has not been identified. Here, we investigate the Piezo1 activation and intracellular calcium response elicited by acoustical streaming induced shear stress under various US exposure conditions. We find that Piezo1 activation and resultant intracellular calcium response depend critically on shear stress amplitude and pulse length of the stimulation. Under the same insonification acoustic energy, we further identify an optical pulse length that leads to maximum cell deformation, Piezo1 activation, and calcium response with minimal injury, confirmed by numerical modeling of Piezo1 channel gating dynamics. Our results provide insight into the mechanism of ultrasonic activation of Piezo1 and highlight the importance of optimizing US exposure conditions in sonogenetics applications.
Collapse
Affiliation(s)
- Defei Liao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ming-Yen Hsiao
- Department of Physical Medicine & Rehabilitation, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Physical Medicine & Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| | - Gaoming Xiang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Pei Zhong
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
37
|
Ion Channels in Biophysics and Physiology: Methods & Challenges to Study Mechanosensitive Ion Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:33-49. [DOI: 10.1007/978-981-16-4254-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Lai A, Chen YC, Cox CD, Jaworowski A, Peter K, Baratchi S. Analyzing the shear-induced sensitization of mechanosensitive ion channel Piezo-1 in human aortic endothelial cells. J Cell Physiol 2020; 236:2976-2987. [PMID: 32959903 DOI: 10.1002/jcp.30056] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/21/2020] [Accepted: 09/07/2020] [Indexed: 01/10/2023]
Abstract
Mechanosensitive ion channels mediate endothelial responses to blood flow and orchestrate their physiological function in response to hemodynamic forces. In this study, we utilized microfluidic technologies to study the shear-induced sensitization of endothelial Piezo-1 to its selective agonist, Yoda-1. We demonstrated that shear stress-induced sensitization is brief and can be impaired when exposing aortic endothelial cells to low and proatherogenic levels of shear stress. Our results suggest that shear stress-induced sensitization of Piezo-1 to Yoda-1 is independent of cell-cell adhesion and is mediated by the PI3K-AKT signaling pathway. We also found that shear stress increases the membrane density of Piezo-1 channels in endothelial cells. To further confirm our findings, we performed experiments using a carotid artery ligation mouse model and demonstrated that transient changes in blood-flow pattern, resulting from a high-degree ligation of the mouse carotid artery alters the distribution of Piezo-1 channels across the endothelial layer. These results suggest that shear stress influences the function of Piezo-1 channels via changes in membrane density, providing a new model of shear-stress sensitivity for Piezo-1 ion channel.
Collapse
Affiliation(s)
- Austin Lai
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Yung C Chen
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Charles D Cox
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Anthony Jaworowski
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Karlheinz Peter
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Sara Baratchi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
39
|
Caolo V, Debant M, Endesh N, Futers TS, Lichtenstein L, Bartoli F, Parsonage G, Jones EA, Beech DJ. Shear stress activates ADAM10 sheddase to regulate Notch1 via the Piezo1 force sensor in endothelial cells. eLife 2020; 9:50684. [PMID: 32484440 PMCID: PMC7295575 DOI: 10.7554/elife.50684] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
Mechanical force is a determinant of Notch signalling but the mechanism of force detection and its coupling to Notch are unclear. We propose a role for Piezo1 channels, which are mechanically-activated non-selective cation channels. In cultured microvascular endothelial cells, Piezo1 channel activation by either shear stress or a chemical agonist Yoda1 activated a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), a Ca2+-regulated transmembrane sheddase that mediates S2 Notch1 cleavage. Consistent with this observation, we found Piezo1-dependent increase in the abundance of Notch1 intracellular domain (NICD) that depended on ADAM10 and the downstream S3 cleavage enzyme, γ-secretase. Conditional endothelial-specific disruption of Piezo1 in adult mice suppressed the expression of multiple Notch1 target genes in hepatic vasculature, suggesting constitutive functional importance in vivo. The data suggest that Piezo1 is a mechanism conferring force sensitivity on ADAM10 and Notch1 with downstream consequences for sustained activation of Notch1 target genes and potentially other processes.
Collapse
Affiliation(s)
- Vincenza Caolo
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Marjolaine Debant
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Naima Endesh
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - T Simon Futers
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Laeticia Lichtenstein
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Fiona Bartoli
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Gregory Parsonage
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Elizabeth Av Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, Leuven, Belgium
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
40
|
Abstract
PURPOSE To review the recent developments on the effect of chronic high mean arterial blood pressure (MAP) on cerebral blood flow (CBF) autoregulation and supporting the notion that CBF autoregulation impairment has connection with chronic cerebral diseases. Method: A narrative review of all the relevant papers known to the authors was conducted. Results: Our understanding of the connection between cerebral perfusion impairment and chronic high MAP and cerebral disease is rapidly evolving, from cerebral perfusion impairment being the result of cerebral diseases to being the cause of cerebral diseases. We now better understand the intertwined impact of hypertension and Alzheimer's disease (AD) on cerebrovascular sensory elements and recognize cerebrovascular elements that are more vulnerable to these diseases. Conclusion: We conclude with the suggestion that the sensory elements pathology plays important roles in intertwined mechanisms of chronic high MAP and AD that impact cerebral perfusion.
Collapse
Affiliation(s)
- Noushin Yazdani
- College of Public Health, University of South Florida , Tampa, FL, USA
| | - Mark S Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida , Tampa, FL, USA.,Biomedical Research, James A. Haley VA Medical Center , Tampa, FL, USA
| | - Saeid Taheri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida , Tampa, FL, USA.,Byrd Neuroscience Institute, University of South Florida , Tampa, FL, USA
| |
Collapse
|
41
|
Kravenska Y, Nieznanska H, Nieznanski K, Lukyanetz E, Szewczyk A, Koprowski P. The monomers, oligomers, and fibrils of amyloid-β inhibit the activity of mitoBK Ca channels by a membrane-mediated mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183337. [PMID: 32380169 DOI: 10.1016/j.bbamem.2020.183337] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023]
Abstract
A causative agent of Alzheimer's disease (AD) is a short amphipathic peptide called amyloid beta (Aβ). Aβ monomers undergo structural changes leading to their oligomerization or fibrillization. The monomers as well as all aggregated forms of Aβ, i.e., oligomers, and fibrils, can bind to biological membranes, thereby modulating membrane mechanical properties. It is also known that some isoforms of the large-conductance calcium-activated potassium (BKCa) channel, including the mitochondrial BKCa (mitoBKCa) channel, respond to mechanical changes in the membrane. Here, using the patch-clamp technique, we investigated the impact of full-length Aβ (Aβ1-42) and its fragment, Aβ25-35, on the activity of mitoBKCa channels. We found that all forms of Aβ inhibited the activity of the mitoBKCa channel in a concentration-dependent manner. Since monomers, oligomers, and fibrils of Aβ exhibit different molecular characteristics and structures, we hypothesized that the inhibition was not due to direct peptide-protein interactions but rather to membrane-binding of the Aβ peptides. Our findings supported this hypothesis by showing that Aβ peptides block mitoBKCa channels irrespective of the side of the membrane to which they are applied. In addition, we found that the enantiomeric peptide, D-Aβ1-42, demonstrated similar inhibitory activity towards mitoBKCa channels. As a result, we proposed a general model in which all Aβ forms i.e., monomers, oligomers, and amyloid fibrils, contribute to the progression of AD by exerting a modulatory effect on mechanosensitive membrane components.
Collapse
Affiliation(s)
- Yevheniia Kravenska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland; Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology NASU, Bogomoletz str. 4, Kyiv 01-024, Ukraine.
| | - Hanna Nieznanska
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland
| | - Krzysztof Nieznanski
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland
| | - Elena Lukyanetz
- Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology NASU, Bogomoletz str. 4, Kyiv 01-024, Ukraine
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland
| |
Collapse
|
42
|
Amphipathic molecules modulate PIEZO1 activity. Biochem Soc Trans 2020; 47:1833-1842. [PMID: 31754715 DOI: 10.1042/bst20190372] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 02/08/2023]
Abstract
PIEZO proteins are large eukaryotic mechanically-gated channels that function as homotrimers. The basic PIEZO1 structure has been elucidated by CryoEM and it assembles into a protein-lipid dome. A curved lipid region allows for the transition to the lipid bilayer from the dome (footprint). Gating PIEZO1 is mediated by bilayer tension that induces an area change in the lipid dome. The footprint region is thought to be energetically important for changes in lateral tension. Amphipathic molecules can modulate channel function beyond the intrinsic gating properties of PIEZO1. As a result, molecules that modify lipid properties within the lipid-channel complex (footprint and dome) will profoundly affect channel kinetics. In this review, we summarize the effects some amphipathic molecules have on the lipid bilayer and PIEZO1 function. PIEZO1 has three states, closed, open and inactivated and amphipathic molecules influence these transitions. The amphipathic peptide, GsMTx4, inhibits the closed to open transition. While saturated fatty acids also prevent PIEZO1 gating, the effect is mediated by stiffening the lipids, presumably in both the dome and footprint region. Polyunsaturated fatty acids can increase disorder within the lipid-protein complex affecting channel kinetics. PIEZO1 can also form higher-ordered structures that confers new kinetic properties associated with clustered channels. Cholesterol-rich domains house PIEZO1 channels, and depletion of cholesterol causes a breakdown of those domains with changes to channel kinetics and channel diffusion. These examples underscore the complex effects lipophilic molecules can have on the PIEZO1 lipid dome structure and thus on the mechanical response of the cell.
Collapse
|
43
|
Xiao B. Levering Mechanically Activated Piezo Channels for Potential Pharmacological Intervention. Annu Rev Pharmacol Toxicol 2020; 60:195-218. [DOI: 10.1146/annurev-pharmtox-010919-023703] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mechanically activated Piezo channels, including Piezo1 and Piezo2 in mammals, function as key mechanotransducers for converting mechanical force into electrochemical signals. This review highlights key evidence for the potential of Piezo channel drug discovery. First, both mouse and human genetic studies have unequivocally demonstrated the prominent role of Piezo channels in various mammalian physiologies and pathophysiologies, validating their potential as novel therapeutic targets. Second, the cryo-electron microscopy structure of the 2,547-residue mouse Piezo1 trimer has been determined, providing a solid foundation for studying its structure-function relationship and drug action mechanisms and conducting virtual drug screening. Third, Piezo1 chemical activators, named Yoda1 and Jedi1/2, have been identified through high-throughput screening assays, demonstrating the drugability of Piezo channels. However, the pharmacology of Piezo channels is in its infancy. By establishing an integrated drug discovery platform, we may hopefully discover and develop a fleet of Jedi masters for battling Piezo-related human diseases.
Collapse
Affiliation(s)
- Bailong Xiao
- State Key Laboratory of Membrane Biology; Tsinghua-Peking Joint Center for Life Sciences; IDG/McGovern Institute for Brain Research; Beijing Advanced Innovation Center for Structural Biology; and School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
44
|
Bavi N, Richardson J, Heu C, Martinac B, Poole K. PIEZO1-Mediated Currents Are Modulated by Substrate Mechanics. ACS NANO 2019; 13:13545-13559. [PMID: 31689081 DOI: 10.1021/acsnano.9b07499] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PIEZO1 is a bona fide mammalian mechanically activated channel that has recently been shown to provide instructive cues during neuronal specification, texture sensing, and cell migration where mechanical inputs arise at the interface between the cells and their substrate. Here, we have investigated whether the mechanical properties of the substrate alone can modulate PIEZO1 activity, in response to exogenously applied stimuli, using elastomeric pillar arrays as force transducers. This methodology enables application of mechanical stimuli at cell-substrate contact points by deflecting individual pili. We found that PIEZO1 is more sensitive to substrate deflections with increased spacing between pili (reducing surface roughness) but not on more stiff substrates. Cellular contractility was required for the sensitization of PIEZO1 but was not essential for PIEZO1 activation. Computational modeling suggested that the membrane tension changes generated by pillar deflections were below the membrane tension changes that arise from cellular indentation or high-speed pressure clamp assays. We conclude that the mechanics of the microenvironment can modulate PIEZO1 signaling, highlighting the importance of studying channel activation directly at the cell-substrate interface. We propose that forces arising from actin-mediated contractility and within the lipid bilayer act synergistically to regulate PIEZO1 activation by stimuli applied at contacts between cells and their surroundings.
Collapse
Affiliation(s)
- Navid Bavi
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
- Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
- Cellular and Systems Physiology, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Jessica Richardson
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
- Cellular and Systems Physiology, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Celine Heu
- Biomedical Imaging Facility , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division , Victor Chang Cardiac Research Institute , Darlinghurst , NSW 2010 , Australia
- St Vincent's Clinical School, Faculty of Medicine , University of New South Wales , Darlinghurst , NSW 2010 , Australia
| | - Kate Poole
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
- Cellular and Systems Physiology, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
| |
Collapse
|
45
|
Beech DJ, Kalli AC. Force Sensing by Piezo Channels in Cardiovascular Health and Disease. Arterioscler Thromb Vasc Biol 2019; 39:2228-2239. [PMID: 31533470 PMCID: PMC6818984 DOI: 10.1161/atvbaha.119.313348] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023]
Abstract
Mechanical forces are fundamental in cardiovascular biology, and deciphering the mechanisms by which they act remains a testing frontier in cardiovascular research. Here, we raise awareness of 2 recently discovered proteins, Piezo1 and Piezo2, which assemble as transmembrane triskelions to combine exquisite force sensing with regulated calcium influx. There is emerging evidence for their importance in endothelial shear stress sensing and secretion, NO generation, vascular tone, angiogenesis, atherosclerosis, vascular permeability and remodeling, blood pressure regulation, insulin sensitivity, exercise performance, and baroreceptor reflex, and there are early suggestions of relevance to cardiac fibroblasts and myocytes. Human genetic analysis points to significance in lymphatic disease, anemia, varicose veins, and potentially heart failure, hypertension, aneurysms, and stroke. These channels appear to be versatile force sensors, used creatively to inform various force-sensing situations. We discuss emergent concepts and controversies and suggest that the potential for new important understanding is substantial.
Collapse
Affiliation(s)
- David J. Beech
- From the Department of Discovery and Translational Science, Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, England, United Kingdom
| | - Antreas C. Kalli
- From the Department of Discovery and Translational Science, Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, England, United Kingdom
| |
Collapse
|
46
|
Jetta D, Gottlieb PA, Verma D, Sachs F, Hua SZ. Shear stress induced nuclear shrinkage through activation of Piezo1 channels in epithelial cells. J Cell Sci 2019; 132:jcs.226076. [DOI: 10.1242/jcs.226076] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/29/2019] [Indexed: 12/30/2022] Open
Abstract
The cell nucleus responds to mechanical cues with changes in size, morphology, and motility. Previous work showed that external forces couple to nuclei through the cytoskeleton network, but we show here that changes in nuclear shape can be driven solely by calcium levels. Fluid shear stress applied to MDCK cells caused the nuclei to shrink through a Ca2+ dependent signaling pathway. Inhibiting mechanosensitive Piezo1 channels with GsMTx4 prevented nuclear shrinkage. Piezo1 knockdown also significantly reduced the nuclear shrinkage. Activation of Piezo1 with the agonist Yoda1 caused similar nucleus shrinkage without shear stress. These results demonstrate that Piezo1 channel is a key element for transmitting shear force input to nuclei. To ascertain the relative contributions of Ca2+ to cytoskeleton perturbation, we examined the F-actin reorganization under shear stress and static conditions, and showed that reorganization of the cytoskeleton is not necessary for nuclear shrinkage. These results emphasize the role of the mechanosensitive channels as primary transducers in force transmission to the nucleus.
Collapse
Affiliation(s)
- Deekshitha Jetta
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, New York 14260, USA
| | - Philip A. Gottlieb
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York 14260, USA
| | - Deepika Verma
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, New York 14260, USA
| | - Frederick Sachs
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York 14260, USA
| | - Susan Z. Hua
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, New York 14260, USA
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York 14260, USA
| |
Collapse
|