1
|
Stefani O, Schöllhorn I, Münch M. Towards an evidence-based integrative lighting score: a proposed multi-level approach. Ann Med 2024; 56:2381220. [PMID: 39049780 PMCID: PMC11275531 DOI: 10.1080/07853890.2024.2381220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 07/27/2024] Open
Abstract
Background: Human circadian clocks are synchronized daily with the external light-dark cycle and entrained to the 24-hour day. There is increasing evidence that a lack of synchronization and circadian entrainment can lead to adverse health effects. Beyond vision, light plays a critical role in modulating many so-called non-visual functions, including sleep-wake cycles, alertness, mood and endocrine functions. To assess (and potentially optimize) the impact of light on non-visual functions, it is necessary to know the exact 'dose' (i.e. spectral irradiance and exposure duration at eye level) of 24-hour light exposures, but also to include metadata about the lighting environment, individual needs and resources. Problem statement: To address this problem, a new assessment tool is needed that uses existing metrics to provide metadata and information about light quality and quantity from all sources. In this commentary, we discuss the need to develop an evidence-based integrative lighting score that is tailored to specific audiences and lighting environments. We will summarize the most compelling evidence from the literature and outline a future plan for developing such a lighting score using internationally accepted metrics, stakeholder and user feedback. Conclusion: We propose a weighting system that combines light qualities with physiological and behavioral effects, and the use of mathematical modelling for an output score. Such a scoring system will facilitate a holistic assessment of a lighting environment, integrating all available light sources.
Collapse
Affiliation(s)
- Oliver Stefani
- Lucerne School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, Horw, Switzerland
| | - Isabel Schöllhorn
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Mirjam Münch
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Research Cluster Molecular Cognitive Neuroscience, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
白 亚, 孙 晓, 文 巧, 吴 江, 邹 剑, 王 海. [Effects of Extreme Environments on Human Sleep]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:1034-1043. [PMID: 39170010 PMCID: PMC11334294 DOI: 10.12182/20240760402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 08/23/2024]
Abstract
Recently, with the rapid growth of the global population and the exhaustion of resources, exploration activities in extreme environments such as the polar regions, the outer space, the deep sea, the deep underground and highlands are becoming increasingly more frequent. This in-depth exploration of the external environment and the consequent dramatic changes in lifestyles impact on sleep, a basic life activity of humans, in ways that cannot be overlooked. the basic life activity of human beings. Sleep, a basic life activity and the result of the evolution of organisms to adapt to their environment, is closely associated with sleep homeostasis and endogenous rhythms. However, external environmental changes and lifestyle shifts in extreme environments have had a significant impact on the patterns and the quality of sleep in humans. Furthermore, this impact can lead to many physiological and psychological problems, posing a great threat to human health. In this review, we delved into the specific effects of different extreme natural environments and enclosed environments on sleep, elaborating on how these environments alter the patterns and the quality of sleep in humans. In addition, we summarized the changes in human sleep under extreme environments to help gain a better understanding of the mechanisms by which these specific environments impact human sleep. It is expected that this review will provide a solid theoretical foundation for optimizing long-term survival strategies in extreme environments and help humans adapt to and overcome the challenges posed by extreme environments more effectively.
Collapse
Affiliation(s)
- 亚宁 白
- 四川大学华西医院 耳鼻咽喉头颈外科 (成都 610041)Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 晓茹 孙
- 四川大学华西医院 耳鼻咽喉头颈外科 (成都 610041)Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学深地医学中心 (成都 610041)Deep Under Ground Medical Center, Sichuan University, Chengdu 610041, China
| | - 巧 文
- 四川大学华西医院 耳鼻咽喉头颈外科 (成都 610041)Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学深地医学中心 (成都 610041)Deep Under Ground Medical Center, Sichuan University, Chengdu 610041, China
| | - 江 吴
- 四川大学华西医院 耳鼻咽喉头颈外科 (成都 610041)Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学深地医学中心 (成都 610041)Deep Under Ground Medical Center, Sichuan University, Chengdu 610041, China
| | - 剑 邹
- 四川大学华西医院 耳鼻咽喉头颈外科 (成都 610041)Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学深地医学中心 (成都 610041)Deep Under Ground Medical Center, Sichuan University, Chengdu 610041, China
| | - 海洋 王
- 四川大学华西医院 耳鼻咽喉头颈外科 (成都 610041)Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学深地医学中心 (成都 610041)Deep Under Ground Medical Center, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Huang S, Zhang W, Xuan S, Si H, Huang D, Ba M, Qi D, Pei X, Lu D, Li Z. Chronic sleep deprivation impairs retinal circadian transcriptome and visual function. Exp Eye Res 2024; 243:109907. [PMID: 38649019 DOI: 10.1016/j.exer.2024.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Sleep loss is common in modern society and is increasingly associated with eye diseases. However, the precise effects of sleep loss on retinal structure and function, particularly on the retinal circadian system, remain largely unexplored. This study investigates these effects using a chronic sleep deprivation (CSD) model in mice. Our investigation reveals that CSD significantly alters the retinal circadian transcriptome, leading to remarkable changes in the temporal patterns of enriched pathways. This perturbation extends to metabolic and immune-related transcriptomes, coupled with an accumulation of reactive oxygen species in the retina. Notably, CSD rhythmically affects the thickness of the ganglion cell complex, along with diurnal shifts in microglial migration and morphology within the retina. Most critically, we observe a marked decrease in both scotopic and photopic retinal function under CSD conditions. These findings underscore the broad impact of sleep deprivation on retinal health, highlighting its role in altering circadian gene expression, metabolism, immune response, and structural integrity. Our study provides new insights into the broader impact of sleep loss on retinal health.
Collapse
Affiliation(s)
- Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China; Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Wenxiao Zhang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shuting Xuan
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongli Si
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Duliurui Huang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Mengru Ba
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China; Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China.
| |
Collapse
|
4
|
Kok EY, Kaur S, Mohd Shukri NH, Abdul Razak N, Takahashi M. Maternal dietary and environmental factors associated with infant circadian rhythm, growth, and temperament: Research protocol for a prospective cohort study. Nutr Health 2024:2601060241246354. [PMID: 38584399 DOI: 10.1177/02601060241246354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Introduction: Emerging evidence has been explored to determine the factors affecting the development of infant circadian rhythm. While fetal programming happens during the pregnancy period, external environmental cues and infant nutritional programming can have substantial effects on the infant circadian rhythm. Understanding prenatal and postnatal factors determining infant circadian rhythm can improve future interventions in optimizing maternal and infant health. Methods: This is a prospective observational cohort study, targeting 216 pregnant women from government maternity clinics in Kuala Lumpur, Malaysia. Pregnant women will be recruited at third trimester (baseline), and follow up at 3 months, and 6 months. A subsample will be collected for salivary cortisol analysis to determine circadian rhythm of the mother and infant at third trimester and 3 months. Data of eating misalignment, light exposure, chronotype, infant temperament, sleep quality, and mood will be collected via validated questionnaires. Anthropometric data and birth outcomes will be collected from antenatal and postnatal health records. Summary: Studies on infant circadian rhythm development have yet to be explored and established, hence this study presents a novel approach to identify the factors from prenatal to postnatal periods on infant circadian rhythm and its influence on growth and temperament. Findings from this study will provide insights in the critical timing which has larger effects on infant circadian rhythm development for future interventions to be conducted.
Collapse
Affiliation(s)
- Ee Yin Kok
- Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Satvinder Kaur
- Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Nurul Husna Mohd Shukri
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | | | - Masaki Takahashi
- Institute for Liberal Arts, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
5
|
Benjamin JI, Pollock DM. Current perspective on circadian function of the kidney. Am J Physiol Renal Physiol 2024; 326:F438-F459. [PMID: 38134232 PMCID: PMC11207578 DOI: 10.1152/ajprenal.00247.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/28/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
Behavior and function of living systems are synchronized by the 24-h rotation of the Earth that guides physiology according to time of day. However, when behavior becomes misaligned from the light-dark cycle, such as in rotating shift work, jet lag, and even unusual eating patterns, adverse health consequences such as cardiovascular or cardiometabolic disease can arise. The discovery of cell-autonomous molecular clocks expanded interest in regulatory systems that control circadian physiology including within the kidney, where function varies along a 24-h cycle. Our understanding of the mechanisms for circadian control of physiology is in the early stages, and so the present review provides an overview of what is known and the many gaps in our current understanding. We include a particular focus on the impact of eating behaviors, especially meal timing. A better understanding of the mechanisms guiding circadian function of the kidney is expected to reveal new insights into causes and consequences of a wide range of disorders involving the kidney, including hypertension, obesity, and chronic kidney disease.
Collapse
Affiliation(s)
- Jazmine I Benjamin
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
6
|
Madsen HØ, Hageman I, Martiny K, Faurholt-Jepsen M, Kolko M, Henriksen TEG, Kessing LV. BLUES - stabilizing mood and sleep with blue blocking eyewear in bipolar disorder - a randomized controlled trial study protocol. Ann Med 2023; 55:2292250. [PMID: 38109922 PMCID: PMC10732202 DOI: 10.1080/07853890.2023.2292250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/26/2023] [Indexed: 12/20/2023] Open
Abstract
INTRODUCTION Chronotherapeutic interventions for bipolar depression and mania are promising interventions associated with rapid response and benign side effect profiles. Filtering of biologically active short wavelength (blue) light by orange tinted eyewear has been shown to induce antimanic and sleep promoting effects in inpatient mania. We here describe a study protocol assessing acute and long-term stabilizing effects of blue blocking (BB) glasses in outpatient treatment of bipolar disorder. PATIENTS AND METHODS A total of 150 outpatients with bipolar disorder and current symptoms of (hypo)-mania will be randomized 1:1 to wear glasses with either high (99%) (intervention group) or low (15%) (control group) filtration of short wavelength light (<500 nm). Following a baseline assessment including ratings of manic and depressive symptoms, sleep questionnaires, pupillometric evaluation and 48-h actigraphy, participants will wear the glasses from 6 PM to 8 AM for 7 consecutive days. The primary outcome is the between group difference in change in Young Mania Rating Scale scores after 7 days of intervention (day 9). Following the initial treatment period, the long-term stabilizing effects on mood and sleep will be explored in a 3-month treatment paradigm, where the period of BB treatment is tailored to the current symptomatology using a 14-h antimanic schedule during (hypo-) manic episodes (BB glasses or dark bedroom from 6 PM to 8 AM) and a 2-h maintenance schedule (BB glasses on two hours prior to bedtime/dark bedroom) during euthymic and depressive states.The assessments will be repeated at follow-up visits after 1 and 3 months. Throughout the 3-month study period, participants will perform continuous daily self-monitoring of mood, sleep and activity in a smartphone-based app. Secondary outcomes include between-group differences in actigraphic sleep parameters on day 9 and in day-to-day instability in mood, sleep and activity, general functioning and objective sleep markers (actigraphy) at weeks 5 and 15. TRIAL REGISTRATION The trial will be registered at www.clinicaltrials.gov prior to initiation and has not yet received a trial reference. ADMINISTRATIVE INFORMATION The current paper is based on protocol version 1.0_31.07.23. Trial sponsor: Lars Vedel Kessing.
Collapse
Affiliation(s)
- Helle Østergaard Madsen
- Copenhagen Affective Disorder Research Centre (CADIC), Mental Health Centre Copenhagen, Copenhagen, Denmark
| | - Ida Hageman
- Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Klaus Martiny
- Copenhagen Affective Disorder Research Centre (CADIC), Mental Health Centre Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Faurholt-Jepsen
- Copenhagen Affective Disorder Research Centre (CADIC), Mental Health Centre Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Miriam Kolko
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Tone E. G. Henriksen
- Department of Research and Innovation, Division of Mental Health Care, Valen Hospital, Fonna Health Authority, Kvinnherad, Norway
| | - Lars Vedel Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Mental Health Centre Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Schöllhorn I, Stefani O, Blume C, Cajochen C. Seasonal Variation in the Responsiveness of the Melanopsin System to Evening Light: Why We Should Report Season When Collecting Data in Human Sleep and Circadian Studies. Clocks Sleep 2023; 5:651-666. [PMID: 37987395 PMCID: PMC10660855 DOI: 10.3390/clockssleep5040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/07/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023] Open
Abstract
It is well known that variations in light exposure during the day affect light sensitivity in the evening. More daylight reduces sensitivity, and less daylight increases it. On average days, we spend less time outdoors in winter and receive far less light than in summer. Therefore, it could be relevant when collecting research data on the non-image forming (NIF) effects of light on circadian rhythms and sleep. In fact, studies conducted only in winter may result in more pronounced NIF effects than in summer. Here, we systematically collected information on the extent to which studies on the NIF effects of evening light include information on season and/or light history. We found that more studies were conducted in winter than in summer and that reporting when a study was conducted or measuring individual light history is not currently a standard in sleep and circadian research. In addition, we sought to evaluate seasonal variations in a previously published dataset of 72 participants investigating circadian and sleep effects of evening light exposure in a laboratory protocol where daytime light history was not controlled. In this study, we selectively modulated melanopic irradiance at four different light levels (<90 lx). Here, we aimed to retrospectively evaluate seasonal variations in the responsiveness of the melanopsin system by combining all data sets in an exploratory manner. Our analyses suggest that light sensitivity is indeed reduced in summer compared to winter. Thus, to increase the reproducibility of NIF effects on sleep and circadian measures, we recommend an assessment of the light history and encourage standardization of reporting guidelines on the seasonal distribution of measurements.
Collapse
Affiliation(s)
- Isabel Schöllhorn
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (I.S.); (O.S.)
- Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, 4001 Basel, Switzerland
| | - Oliver Stefani
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (I.S.); (O.S.)
- Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, 4001 Basel, Switzerland
- Lucerne University of Applied Sciences and Arts, Engineering and Architecture, Technikumstrasse 21, 6048 Horw, Switzerland
| | - Christine Blume
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (I.S.); (O.S.)
- Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, 4001 Basel, Switzerland
- Department of Biomedicine, University of Basel, 4001 Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (I.S.); (O.S.)
- Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
8
|
Matre D, Sallinen M, Phillips AJK, Moen LV, Nilsen KB, Haugen F. Night work, season and alertness as occupational safety hazards in the Arctic: protocol for the Noralert observational crossover study among Norwegian process operators. BMJ Open 2023; 13:e075107. [PMID: 37793926 PMCID: PMC10551971 DOI: 10.1136/bmjopen-2023-075107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023] Open
Abstract
INTRODUCTION The objective of this study is to determine the effects of night work, Arctic seasonal factors and cold working environments on human functions relevant to safety. The study aims to quantify the contribution of (1) several consecutive night shifts, (2) seasonal variation on sleepiness, alertness and circadian rhythm and (3) whether a computational model of sleep, circadian rhythms and cognitive performance can accurately predict the observed sleepiness and alertness. METHODS AND ANALYSIS In an observational crossover study of outdoor and indoor workers (n=120) on a three-shift schedule from an industrial plant in Norway (70 °N), measurements will be conducted during the summer and winter. Sleep duration and quality will be measured daily by smartphone questionnaire, aided by actigraphy and heart rate measurements. Sleepiness and alertness will be assessed at regular intervals by the Karolinska Sleepiness Scale and the psychomotor vigilance test, respectively. Saliva samples will assess melatonin levels, and a blood sample will measure circadian time. Thermal exposures and responses will be measured by sensors and by thermography. ETHICS AND DISSEMINATION All participants will give written informed consent to participate in the study, which will be conducted in accordance with the Declaration of Helsinki. The Norwegian Regional Committee for Medical Research Ethics South-East D waivered the need for ethics approval (reference 495816). Dissemination plans include academic and lay publications, and partnerships with national and regional policymakers.
Collapse
Affiliation(s)
- Dagfinn Matre
- National Institute of Occupational Health, Oslo, Norway
| | - Mikael Sallinen
- Finnish Institute of Occupational Health, Työterveyslaitos, Finland
| | | | | | | | - Fred Haugen
- National Institute of Occupational Health, Oslo, Norway
| |
Collapse
|
9
|
Castillo J, Tonon AC, Hidalgo MP, Silva A, Tassino B. Individual light history matters to deal with the Antarctic summer. Sci Rep 2023; 13:12081. [PMID: 37495664 PMCID: PMC10372057 DOI: 10.1038/s41598-023-39315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023] Open
Abstract
The effect of light, main zeitgeber of the circadian system, depends on the time of day it is received. A brief trip to the Antarctic summer (ANT) allowed us to explore the impact of a sudden and synchronized increase in light exposure on activity-rest rhythms and sleep patterns of 11 Uruguayan university students, and to assess the significance of light history in determining individual circadian phase shift. Measurements collected in the peri-equinox in Montevideo, Uruguay (baseline situation, MVD) and in ANT, included sleep logs, actigraphy, and salivary melatonin to determine dim-light melatonin onset (DLMO), the most reliable marker of circadian phase. The increase in light exposure in ANT with respect to MVD (affecting both light-sensitive windows with opposite effects on the circadian phase) resulted in no net change in DLMO among participants as some participants advanced their DLMO and some others delayed it. The ultimate cause of each participant's distinctive circadian phase shift relied on the unique change in light exposure each individual was subjected to between their MVD and ANT. This study shows an association between the individual light history and the circadian phase shift.
Collapse
Affiliation(s)
- Julieta Castillo
- Grupo Cronobiología, Comisión Sectorial de Investigación Científica, Universidad de la República, Montevideo, Uruguay
| | - André C Tonon
- Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - María Paz Hidalgo
- Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Silva
- Grupo Cronobiología, Comisión Sectorial de Investigación Científica, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Bettina Tassino
- Grupo Cronobiología, Comisión Sectorial de Investigación Científica, Universidad de la República, Montevideo, Uruguay.
- Sección Etología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
10
|
Ishikawa M, Hatsukawa H. Recommendation of using both initial pupil size and constriction latency in pupillary light reflex as objective indicators reflecting subacute pain-related mental fatigue. Int J Psychophysiol 2023; 185:19-26. [PMID: 36669648 DOI: 10.1016/j.ijpsycho.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/12/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
A previous study examining clinical subacute pain models under different methodological conditions showed that pain-induced mental fatigue can be associated with decreased initial pupil size (INIT)/shortened constriction latency (LAT) in the pupillary light reflex (PLR). We aimed to investigate the potential of INIT/LAT as objective indicators reflecting mental fatigue under the same methodological conditions. We recruited 118 patients planning to undergo three types of representative otolaryngological head and neck surgery procedures. We used the numerical rating scale (NRS) to assess subjective pain intensity and two mental fatigue-related mood categories of the Profile of Mood States, as well as INIT and LAT measurements (1) in the afternoon one day before surgery (pre1-surgery), (2) in the morning of the day of surgery (pre2-surgery), and (3) in the morning of the day following surgery (post-surgery). We assessed time point-dependent changes using one- or two-way analysis of variance, as well as responses of PLR parameters to mental fatigue using linear mixed-effects models (LMMs). As a result, NRS scores, the two mood categories, as well as LAT and INIT, showed significant time point-dependent changes. In post-hoc analyses, only INIT showed significant changes between the two pre-surgery time points. Thus, INIT values fluctuated even under pain-free conditions due to differences in the time of the day. LMMs demonstrated decreased INIT/shortened LAT related to mental fatigue. All surgical groups showed similar associations between mental fatigue and INIT/LAT findings. As each parameter has advantages and disadvantages, it is recommended to use both INIT and LAT as the indicators.
Collapse
Affiliation(s)
- Masaaki Ishikawa
- Department of Otolaryngology, Head and Neck Surgery, Hyogo Prefectural Amagasaki General Medical Center, 6608550 Higashinaniwachou 2-17-77, Hyogo Prefecture, Japan.
| | - Hiroatsu Hatsukawa
- Department of Otolaryngology, Head and Neck Surgery, Hyogo Prefectural Amagasaki General Medical Center, 6608550 Higashinaniwachou 2-17-77, Hyogo Prefecture, Japan
| |
Collapse
|
11
|
van den Berg NH, Michaud X, Pattyn N, Simonelli G. How Sleep Research in Extreme Environments Can Inform the Military: Advocating for a Transactional Model of Sleep Adaptation. Curr Psychiatry Rep 2023; 25:73-91. [PMID: 36790725 DOI: 10.1007/s11920-022-01407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 02/16/2023]
Abstract
PURPOSE OF REVIEW We review the literature on sleep in extreme environments. Accordingly, we present a model that identifies the need for mitigating interventions to preserve sleep quality for military deployments. RECENT FINDINGS Situational factors that affect sleep in extreme environments include cold temperatures, isolated and confined areas, fluctuating seasonality, photoperiodicity, and extreme latitudes and altitudes. Results vary across studies, but general effects include decreased total sleep time, poor sleep efficiency, and non-specific phase delays or phase advances in sleep onset and sleep architecture. Considering habitability measures (e.g., light or temperature control) and individual differences such as variable stress responses or sleep need can mitigate these effects to improve mood, cognition, and operational performance. Although the situational demands during military missions inevitably reduce total sleep time and sleep efficiency, mitigating factors can attenuate sleep-related impairments, hence allowing for optimal mission success and personnel safety.
Collapse
Affiliation(s)
- N H van den Berg
- Centre d'études avancées en médecine du sommeil, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord de l'Île-de-Montréal, Montreal, Quebec, Canada.,School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - X Michaud
- Centre d'études avancées en médecine du sommeil, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord de l'Île-de-Montréal, Montreal, Quebec, Canada.,Department of Psychology, Faculty of Arts and Science, Université de Montréal, Montreal, Quebec, Canada
| | - N Pattyn
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Human Physiology Department (MFYS), Vrije Universiteit Brussel, Brussels, Belgium.,VIPER Research Unit, Royal Military Academy, Brussels, Belgium
| | - G Simonelli
- Centre d'études avancées en médecine du sommeil, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord de l'Île-de-Montréal, Montreal, Quebec, Canada. .,Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada. .,Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
12
|
Van Puyvelde M, Gijbels D, Van Caelenberg T, Smith N, Bessone L, Buckle-Charlesworth S, Pattyn N. Living on the edge: How to prepare for it? FRONTIERS IN NEUROERGONOMICS 2022; 3:1007774. [PMID: 38235444 PMCID: PMC10790891 DOI: 10.3389/fnrgo.2022.1007774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/15/2022] [Indexed: 01/19/2024]
Abstract
Introduction Isolated, confined, and extreme (ICE) environments such as found at Antarctic, Arctic, and other remote research stations are considered space-analogs to study the long duration isolation aspects of operational space mission conditions. Methods We interviewed 24 sojourners that participated in different short/long duration missions in an Antarctic (Concordia, Halley VI, Rothera, Neumayer II) or non-Antarctic (e.g., MDRS, HI-SEAS) station or in polar treks, offering a unique insight based on first-hand information on the nature of demands by ICE-personnel at multiple levels of functioning. We conducted a qualitative thematic analysis to explore how sojourners were trained, prepared, how they experienced the ICE-impact in function of varieties in environment, provided trainings, station-culture, and type of mission. Results The ICE-environment shapes the impact of organizational, interpersonal, and individual working- and living systems, thus influencing the ICE-sojourners' functioning. Moreover, more specific training for operating in these settings would be beneficial. The identified pillars such as sensory deprivation, sleep, fatigue, group dynamics, displacement of negative emotions, gender-issues along with coping strategies such as positivity, salutogenic effects, job dedication and collectivistic thinking confirm previous literature. However, in this work, we applied a systemic perspective, assembling the multiple levels of functioning in ICE-environments. Discussion A systemic approach could serve as a guide to develop future preparatory ICE-training programs, including all the involved parties of the crew system (e.g., family, on-ground crew) with attention for the impact of organization- and station-related subcultures and the risk of unawareness about the impact of poor sleep, fatigue, and isolation on operational safety that may occur on location.
Collapse
Affiliation(s)
- Martine Van Puyvelde
- Vital Signs and PERformance Monitoring (VIPER) Research Unit, Life Sciences (LIFE) Department, Royal Military Academy, Brussels, Belgium
- Brain, Body and Cognition (BBC), Department of Psychology, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Clinical and Lifespan Psychology, Department of Psychology, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- School of Natural Sciences and Psychology, Faculty of Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Daisy Gijbels
- Vital Signs and PERformance Monitoring (VIPER) Research Unit, Life Sciences (LIFE) Department, Royal Military Academy, Brussels, Belgium
| | - Thomas Van Caelenberg
- Vital Signs and PERformance Monitoring (VIPER) Research Unit, Life Sciences (LIFE) Department, Royal Military Academy, Brussels, Belgium
- Human Behavior and Performance Training, European Astronaut Centre, Cologne, Germany
| | - Nathan Smith
- Protective Security and Resilience Centre, Coventry University, Coventry, United Kingdom
| | - Loredana Bessone
- Human Behavior and Performance Training, European Astronaut Centre, Cologne, Germany
| | - Susan Buckle-Charlesworth
- Human Behavior and Performance Training, European Astronaut Centre, Cologne, Germany
- Oxford Human Performance, Oxfordshire, United Kingdom
| | - Nathalie Pattyn
- Vital Signs and PERformance Monitoring (VIPER) Research Unit, Life Sciences (LIFE) Department, Royal Military Academy, Brussels, Belgium
- Human Physiology and Human Performance Lab (MFYS-BLITS), Human Physiology Department, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
13
|
Sletten TL, Sullivan JP, Arendt J, Palinkas LA, Barger LK, Fletcher L, Arnold M, Wallace J, Strauss C, Baker RJS, Kloza K, Kennaway DJ, Rajaratnam SMW, Ayton J, Lockley SW. The role of circadian phase in sleep and performance during Antarctic winter expeditions. J Pineal Res 2022; 73:e12817. [PMID: 35833316 PMCID: PMC9541096 DOI: 10.1111/jpi.12817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/23/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
The Antarctic environment presents an extreme variation in the natural light-dark cycle which can cause variability in the alignment of the circadian pacemaker with the timing of sleep, causing sleep disruption, and impaired mood and performance. This study assessed the incidence of circadian misalignment and the consequences for sleep, cognition, and psychological health in 51 over-wintering Antarctic expeditioners (45.6 ± 11.9 years) who completed daily sleep diaries, and monthly performance tests and psychological health questionnaires for 6 months. Circadian phase was assessed via monthly 48-h urine collections to assess the 6-sulphatoxymelatonin (aMT6s) rhythm. Although the average individual sleep duration was 7.2 ± 0.8 h, there was substantial sleep deficiency with 41.4% of sleep episodes <7 h and 19.1% <6 h. Circadian phase was highly variable and 34/50 expeditioners had sleep episodes that occurred at an abnormal circadian phase (acrophase outside of the sleep episode), accounting for 18.8% (295/1565) of sleep episodes. Expeditioners slept significantly less when misaligned (6.1 ± 1.3 h), compared with when aligned (7.3 ± 1.0 h; p < .0001). Performance and mood were worse when awake closer to the aMT6s peak and with increased time awake (all p < .0005). This research highlights the high incidence of circadian misalignment in Antarctic over-wintering expeditioners. Similar incidence has been observed in long-duration space flight, reinforcing the fidelity of Antarctica as a space analog. Circadian misalignment has considerable safety implications, and potentially longer term health risks for other circadian-controlled physiological systems. This increased risk highlights the need for preventative interventions, such as proactively planned lighting solutions, to ensure circadian alignment during long-duration Antarctic and space missions.
Collapse
Affiliation(s)
- Tracey L. Sletten
- Turner Institute for Brain and Mental Health and School of Psychological SciencesMonash UniversityVictoriaAustralia
| | - Jason P. Sullivan
- Division of Sleep and Circadian Disorders, Departments of Medicine and NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
| | - Josephine Arendt
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - Lawrence A. Palinkas
- Suzanne Dworak‐Peck School of Social WorkUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Laura K. Barger
- Turner Institute for Brain and Mental Health and School of Psychological SciencesMonash UniversityVictoriaAustralia
- Division of Sleep and Circadian Disorders, Departments of Medicine and NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
- Division of Sleep Medicine, Harvard Medical SchoolBostonMassachusettsUSA
| | - Lloyd Fletcher
- Polar Medicine Unit, Australian Antarctic DivisionKingstonTasmaniaAustralia
| | - Malcolm Arnold
- Polar Medicine Unit, Australian Antarctic DivisionKingstonTasmaniaAustralia
| | - Jan Wallace
- Polar Medicine Unit, Australian Antarctic DivisionKingstonTasmaniaAustralia
| | - Clive Strauss
- Polar Medicine Unit, Australian Antarctic DivisionKingstonTasmaniaAustralia
| | | | - Kate Kloza
- Polar Medicine Unit, Australian Antarctic DivisionKingstonTasmaniaAustralia
| | - David J. Kennaway
- Robinson Research Institute, School of Medicine, Discipline of Obstetrics and GynaecologyUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Shantha M. W. Rajaratnam
- Turner Institute for Brain and Mental Health and School of Psychological SciencesMonash UniversityVictoriaAustralia
- Division of Sleep and Circadian Disorders, Departments of Medicine and NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
- Division of Sleep Medicine, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jeff Ayton
- Polar Medicine Unit, Australian Antarctic DivisionKingstonTasmaniaAustralia
| | - Steven W. Lockley
- Division of Sleep and Circadian Disorders, Departments of Medicine and NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
- Division of Sleep Medicine, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
14
|
Hatsukawa H, Ishikawa M. Clinical potential of pupillary light reflex and heart rate variability parameters as objective indicators of tonsillectomy-induced pain. Physiol Meas 2022; 43. [PMID: 35245910 DOI: 10.1088/1361-6579/ac5ae6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/04/2022] [Indexed: 11/12/2022]
Abstract
Establishing objective indicators of subjective pain intensity is important in pain assessment. Pupillary light reflex (PLR) and heart rate variability (HRV) indicate autonomic nervous system (ANS) activity and may serve as pain indicators because pain can affect ANS activity. In this prospective longitudinal study, we aimed to investigate the potential of PLR/HRV parameters as objective indicators of subjective pain intensity after tonsillectomy. Sixty-seven patients undergoing tonsillectomy were enrolled. Subjective pain intensity based on a numeric rating scale (NRS) and eight PLR/HRV parameters were assessed at five time points. We investigated the changes in the NRS values over time. We estimated regression coefficients reflecting parameter changes per unit change in the NRS score using linear mixed-effects models. The mean NRS score was 0 at two pre-surgery time points, 5 on postoperative days (PODs) 1 and 2, and 0 at postoperative week 3. Two parameters (initial pupil size [INIT] and constriction latency [LAT]) showed significant changes on POD1 and POD2 in comparison to baseline data measured at the pre-surgery time point. Among these parameters, only LAT showed no significant changes between POD1 and POD2. Significant regression coefficients with the narrowest 95% confidence intervals were observed for INIT and LAT. Increased NRS scores were associated with decreased INIT and shortened LAT. LAT was a robust indicator of subjective pain intensity. Our patients showed decreased INIT with increased NRS scores, indicating the predominance of the parasympathetic, not sympathetic, tone in pupils. Further studies are required to investigate factors causing this predominance.
Collapse
Affiliation(s)
- Hiroatsu Hatsukawa
- Department of Otolaryngology, Head and Neck Surgery, Hyogo Prefectural Amagasaki General Medical Center, Higashinannbachou 2-17-77, Amagasaki, 660-8550, JAPAN
| | - Masaaki Ishikawa
- Department of Otolaryngology, Head and Neck Surgery, Hyogo Prefectural Amagasaki General Medical Center, Higashinannbachou 2-17-77, Amagasaki, 660-8550, JAPAN
| |
Collapse
|
15
|
Steiner O, de Zeeuw J, Stotz S, Bes F, Kunz D. Post-Illumination Pupil Response as a Biomarker for Cognition in α-Synucleinopathies. JOURNAL OF PARKINSON'S DISEASE 2022; 12:593-598. [PMID: 34806618 DOI: 10.3233/jpd-212775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Neurodegenerative processes in the brain are reflected by structural retinal changes. As a possible biomarker of cognitive state in prodromal α-synucleinopathies, we compared melanopsin-mediated post-illumination pupil response (PIPR) with cognition (CERAD-plus) in 69 patients with isolated REM-sleep behavior disorder. PIPR was significantly correlated with cognitive domains, especially executive functioning (r = 0.417, p < 0.001), which was more pronounced in patients with lower dopamine-transporter density, suggesting advanced neurodegenerative state (n = 26; r = 0.575, p = 0.002). Patients with mild neurocognitive disorder (n = 10) had significantly reduced PIPR (smaller melanopsin-mediated response) compared to those without (p = 0.001). Thus, PIPR may be a functional-possibly monitoring-marker for impaired cognitive state in (prodromal) α-synucleinopathies.
Collapse
Affiliation(s)
- Oliver Steiner
- St. Hedwig-Hospital, Clinic for Sleep- & Chronomedicine, Berlin, Germany
| | - Jan de Zeeuw
- St. Hedwig-Hospital, Clinic for Sleep- & Chronomedicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Sleep Research & Clinical Chronobiology, Berlin, Germany
| | - Sophia Stotz
- St. Hedwig-Hospital, Clinic for Sleep- & Chronomedicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Sleep Research & Clinical Chronobiology, Berlin, Germany
| | - Frederik Bes
- St. Hedwig-Hospital, Clinic for Sleep- & Chronomedicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Sleep Research & Clinical Chronobiology, Berlin, Germany
| | - Dieter Kunz
- St. Hedwig-Hospital, Clinic for Sleep- & Chronomedicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Sleep Research & Clinical Chronobiology, Berlin, Germany
| |
Collapse
|
16
|
Bagci S, Wieduwilt A, Alsat EA, Blickwedel J, Strizek B, Di Battista C, Lachner A, Plischke H, Melaku T, Müller A. Biodynamic lighting conditions preserve nocturnal melatonin production in pregnant women during hospitalization: A randomized prospective pilot study. Front Endocrinol (Lausanne) 2022; 13:1043366. [PMID: 36568081 PMCID: PMC9774480 DOI: 10.3389/fendo.2022.1043366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Maternal circadian rhythms are important for maintaining maternal and fetal homeostasis. The maternal circadian system coordinates the internal clock of the fetus with environmental lighting conditions via the melatonin signal. The intensity and wavelength of daylight influence nocturnal melatonin production. This study aims to evaluate the effect of environmental lighting conditions on melatonin production in pregnant women with reduced mobility during hospitalization. METHODS We installed a human-centric lighting system with biodynamic effects (BDL, biodynamic lighting) in the patient rooms. The pregnant women in the patient rooms with standard indoor conditions served as a control group. The illuminance (lux) and dose of effective circadian irradiation (Hec) were recorded every 10 seconds by light dosimeters (Lucerne University, Switzerland) attached to the patients` clothing. RESULTS We analyzed the illuminance status of 47 pregnant women with a median (IQR) gestational age of 29.9 (25.4-32.3) weeks of gestation. The median illuminance in the control group was significantly lower (p<0.05) than in the BDL group in the morning and afternoon from day 1 to 5. BDL patients had a significantly higher effective circadian irradiation in the morning. The effective circadian irradiation showed a significant daily rhythm only in the BDL group. The BDL group had a significantly higher melatonin production on day 3 (p=0.006) and day 5 (p=0.012) than the control group median (IQR) nocturnal 6-Sulfatoxymelatonin excretion 15840 (10140-22160) ng/12h vs. 6141 (2080-11328) ng/12h on day 3 and 18780 (11320-23562) ng/12h vs. 6380 (3500-17600) ng/12h on day 5). CONCLUSION We have demonstrated that dramatically altered lighting conditions of hospitalized pregnant women may be optimized by installing biodynamic lighting systems in the patient rooms resulting in the maintenance of nocturnal melatonin production in pregnant women.
Collapse
Affiliation(s)
- Soyhan Bagci
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
- *Correspondence: Soyhan Bagci,
| | - Astrid Wieduwilt
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Ebru Aileen Alsat
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Jana Blickwedel
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Brigitte Strizek
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Bonn, Germany
| | | | - Agnes Lachner
- Applied Sciences, Munich University, Munich, Germany
| | | | - Tamene Melaku
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Andreas Müller
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| |
Collapse
|
17
|
Fernandez FX. Current Insights into Optimal Lighting for Promoting Sleep and Circadian Health: Brighter Days and the Importance of Sunlight in the Built Environment. Nat Sci Sleep 2022; 14:25-39. [PMID: 35023979 PMCID: PMC8747801 DOI: 10.2147/nss.s251712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
This perspective considers the possibility that daytime's intrusion into night made possible by electric lighting may not be as pernicious to sleep and circadian health as the encroachment of nighttime into day wrought by 20th century architectural practices that have left many people estranged from sunlight.
Collapse
|
18
|
Moyo G, Jackson S, Childress A, Dawson J, Thompson L, Oldewage-Theron W. Chrononutrition and Breast Milk: A Review of Circadian Variation in Breast Milk Nutrient Composition. CLINICAL LACTATION 2021. [DOI: 10.1891/clinlact-d-20-00027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ObjectiveThe objective of this literature review was to identify and summarize the current knowledge on the circadian variation of breast milk nutrients and the implications of these findings.MethodA review of literature was conducted, including all relevant studies regardless of location and year of publication.ResultsThe amino acids tyrosine, histidine, aspartic acid and phenylalanine and energy were observed to be higher during the day. Fat and the vitamins B-1, B-2, B-3, B-6, and B-12 were higher at night. Other studies have shown conflicting results or no circadian variation for certain nutrients. Poor reproducibility and small sample sizes affect the quality of existing research.ConclusionMore research is needed, and longitudinal studies would help assess the effect of breast milk chrononutrition on the long-term health outcomes of infants.
Collapse
|
19
|
Kawasaki A, Udry M, El Wardani M, Münch M. Can Extra Daytime Light Exposure Improve Well-Being and Sleep? A Pilot Study of Patients With Glaucoma. Front Neurol 2021; 11:584479. [PMID: 33519670 PMCID: PMC7843442 DOI: 10.3389/fneur.2020.584479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/09/2020] [Indexed: 12/03/2022] Open
Abstract
Glaucoma damages retinal ganglion cells, including intrinsically photosensitive retinal ganglion cells (ipRGCs). These cells modulate various non-visual physiological and psychological functions which are modulated by light. In patients with glaucoma, we assessed the effect of daily bright light exposure (LE) on several melanopsin-dependent functions, such as the pupil constriction, circadian rest-activity cycles, sleep and subjective well-being including relaxation, alertness and mood. Twenty patients participated in the study (9 women, 11 men, mean age = 67.6 ± 7.5 y). Pupillometry was performed before the LE weeks and repeated on the last day of LE. The post-illumination pupil response (PIPR) was calculated as a proxy for melanopsin-dependent activation. Participants continuously wore an activity monitor and self-assessed sleep quality, well-being and visual comfort for 7 days before and during 4 weeks of daily bright LE (30 min to 10,000 lux polychromatic bright white light). After the LE, there was a significantly greater PIPR and higher subjective sleep quality when compared to the pre-LE week (p < 0.05), but no significant changes in 24-h rhythms or sleep parameters. A greater PIPR was correlated with an increase in circadian amplitude and higher inter-daily stability (derived from rest-activity cycles; p < 0.05). In a small group of patients with glaucoma, scheduled daily bright light exposure could improve subjective sleep quality. These findings highlight the importance to evaluate and maintain non-visual functions at different levels in patients with progressive loss of ipRGCs.
Collapse
Affiliation(s)
- Aki Kawasaki
- Hôpital Ophtalmique Jules Gonin, Fondation Asile des Aveugles, Department of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Morgane Udry
- Hôpital Ophtalmique Jules Gonin, Fondation Asile des Aveugles, Department of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Mohamad El Wardani
- Hôpital Ophtalmique Jules Gonin, Fondation Asile des Aveugles, Department of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Ophthalmology Department, Calderdale and Huddersfield NHS Foundation, Huddersfield, United Kingdom
| | - Mirjam Münch
- Sleep/Wake Research Centre, Massey University, Wellington, New Zealand
| |
Collapse
|
20
|
Nie J, Zhou T, Chen Z, Dang W, Jiao F, Zhan J, Chen Y, Chen Y, Pan Z, Kang X, Wang Y, Wang Q, Dong W, Zhou S, Yu X, Zhang G, Shen B. Investigation on entraining and enhancing human circadian rhythm in closed environments using daylight-like LED mixed lighting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139334. [PMID: 32438188 DOI: 10.1016/j.scitotenv.2020.139334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Humans can undergo circadian disruption and misalignment when living in closed environments without sufficient daylight. Therefore, it is of great significance to investigate the effects of artificial light on the circadian rhythm. In this work, the red, green, blue, warm white, and cool white (RGBWW) five-channel light-emitting diodes (LEDs) were fabricated as the only light sources in the closed environment. The LED mixed lighting showed a high color rendering index (CRI) all the time. During the day, the light simulated the daylight and increased the tunability of the circadian action factor (CAF) and correlated color temperature (CCT). At night, it maintained low CAF and CCT. Three subjects did irregular shift work in the closed environment for 38 days. Their plasma melatonin and daily activity were measured to assess the circadian rhythm. After 38 days, the subjects' peak melatonin times did not shift significantly (p = 0.676), while their peak melatonin concentrations increased apparently (p = 0.005). The start times of the least active 5-h period (L5) in one day fluctuated in a small range. The standard deviation (SD) was <15.11 min in most times. These results demonstrated that the subjects' rhythms maintained stable and were enhanced. The periods of circular cross-correlation between activity and CAF oscillated around 24 h (SD = 15.4 min), indicating the entrainment of light on the stable 24-h rhythm. It was concluded that the daylight-like LED lighting effectively entrained and enhanced the circadian rhythm in the closed environment.
Collapse
Affiliation(s)
- Jingxin Nie
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Tianhang Zhou
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Zhizhong Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.
| | - Weimin Dang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Fei Jiao
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China; State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Jinglin Zhan
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Yifan Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Yiyong Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Zuojian Pan
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Xiangning Kang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Yongzhi Wang
- Dongguan Institute of Optoelectronics, Peking University, Dongguan 523808, Guangdong, China
| | - Qi Wang
- Dongguan Institute of Optoelectronics, Peking University, Dongguan 523808, Guangdong, China
| | - Wentian Dong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Shuzhe Zhou
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Xin Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Guoyi Zhang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China; Dongguan Institute of Optoelectronics, Peking University, Dongguan 523808, Guangdong, China
| | - Bo Shen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Zivi P, De Gennaro L, Ferlazzo F. Sleep in Isolated, Confined, and Extreme (ICE): A Review on the Different Factors Affecting Human Sleep in ICE. Front Neurosci 2020; 14:851. [PMID: 32848590 PMCID: PMC7433404 DOI: 10.3389/fnins.2020.00851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/21/2020] [Indexed: 02/05/2023] Open
Abstract
The recently renewed focus on the human exploration of outer space has boosted the interest toward a variety of questions regarding health of astronauts and cosmonauts. Among the others, sleep has traditionally been considered a central issue. To extend the research chances, human sleep alterations have been investigated in several analog environments, called ICEs (Isolated, Confined, and Extreme). ICEs share different features with the spaceflight itself and have been implemented in natural facilities and artificial simulations. The current paper presents a systematic review of research findings on sleep disturbances in ICEs. We looked for evidence from studies run in polar settings (mostly Antarctica) during space missions, Head-Down Bed-Rest protocols, simulations, and in a few ICE-resembling settings such as caves and submarines. Even though research has shown that sleep can be widely affected in ICEs, mostly evidencing general and non-specific changes in REM and SWS sleep, results show a very blurred picture, often with contradictory findings. The variable coexistence of the many factors characterizing the ICE environments (such as isolation and confinement, microgravity, circadian disentrainment, hypoxia, noise levels, and radiations) does not provide a clear indication of what role is played by each factor per se or in association one with each other in determining the pattern observed, and how. Most importantly, a number of methodological limitations contribute immensely to the unclear pattern of results reported in the literature. Among them, small sample sizes, small effect sizes, and large variability among experimental conditions, protocols, and measurements make it difficult to draw hints about whether sleep alterations in ICEs do exist due to the specific environmental characteristics, and which of them plays a major role. More systematic and cross-settings research is needed to address the mechanisms underlying the sleep alterations in ICE environments and possibly develop appropriate countermeasures to be used during long-term space missions.
Collapse
Affiliation(s)
| | | | - Fabio Ferlazzo
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
22
|
Wieduwilt A, Alsat EA, Blickwedel J, Strizek B, Di Battista C, Lachner AB, Plischke H, Melaku T, Müller A, Bagci S. Dramatically altered environmental lighting conditions in women with high-risk pregnancy during hospitalization. Chronobiol Int 2020; 37:1201-1206. [PMID: 32752886 DOI: 10.1080/07420528.2020.1792484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The maternal circadian time structure is incredibly important in the entrainment and programing of the fetal and newborn circadian time structure. Natural sunlight is the primary environmental time cue for entrainment of circadian rhythms, but high-risk pregnant women spend most of their time indoors with artificial light sources and extremely low levels of natural light both during the day and night. Because the daily level, timing, duration of light exposure and its spectral properties are important in maintaining the normal circadian physiology in humans, we aimed to evaluate the environmental lighting conditions in high-risk pregnant women admitted to hospital for long-term stay. About 30 patients were included in the study. Exposed illuminance, color temperature and effective circadian radiation dose were measured and recorded every 10 s by light dosimeters attached to the patients' clothing. We documented the illuminance of 29 pregnant women on 235 inpatient days. Median (IQR) measured illuminance was 70 (28-173) lux in the morning, 124 (63-241) lux in the afternoon, 19 (6-53) lux in the evening and 0 (0-0) lux at the night. Median illuminance for the 235 inpatient days of assessment was below the recommended EU standard of 100 lux-60.5% of the mornings and 42.7% of the afternoons. The women confined to indoor locations rarely achieved an illuminances more than 300 lux in the morning and in the afternoon. Compared to women with outdoor mobility, those confined indoors have a significantly lower illuminance and color temperature, both in the morning and in the afternoon. Our study presents the first information about the dramatically altered environmental lighting conditions experienced by high-risk pregnant women during their hospital stay. Their exposure to light while in the hospital is significantly lower than exposure to natural daylight levels and below the recommended EU standard.
Collapse
Affiliation(s)
- A Wieduwilt
- Department of Neonatology and Pediatric Intensive Care Medicine, Children's Hospital, University of Bonn , Bonn, Germany
| | - E A Alsat
- Department of Neonatology and Pediatric Intensive Care Medicine, Children's Hospital, University of Bonn , Bonn, Germany
| | - J Blickwedel
- Department of Neonatology and Pediatric Intensive Care Medicine, Children's Hospital, University of Bonn , Bonn, Germany
| | - B Strizek
- Department of Obstetrics and Prenatal Medicine, University of Bonn , Bonn, Germany
| | - C Di Battista
- Engineering and Architecture, University of Lucerne , Lucerne, Switzerland
| | - A B Lachner
- Applied Sciences, Munich University , Germany
| | - H Plischke
- Applied Sciences, Munich University , Germany
| | - T Melaku
- Department of Neonatology and Pediatric Intensive Care Medicine, Children's Hospital, University of Bonn , Bonn, Germany
| | - A Müller
- Department of Neonatology and Pediatric Intensive Care Medicine, Children's Hospital, University of Bonn , Bonn, Germany
| | - S Bagci
- Department of Neonatology and Pediatric Intensive Care Medicine, Children's Hospital, University of Bonn , Bonn, Germany
| |
Collapse
|
23
|
Van Ombergen A, Rossiter A, Ngo-Anh TJ. 'White Mars' - nearly two decades of biomedical research at the Antarctic Concordia station. Exp Physiol 2020; 106:6-17. [PMID: 32662901 DOI: 10.1113/ep088352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/10/2020] [Indexed: 12/31/2022]
Abstract
NEW FINDINGS What is the topic of this review? Biomedical research at the Antarctic Concordia Station. What advances does it highlight? Overview of findings in psychology, neuroscience, sleep, cardiovascular physiology and immune system, relevant in isolated, confined and extreme environments and spaceflight. ABSTRACT Extended stays in isolated, confined and extreme (ICE) environments like Antarctica are associated with a whole set of psychological and physiological challenges for the crew. As such, winter-over stays at Antarctica provide an important opportunity to acquire knowledge into the physiological and psychological changes that ICE environments inevitably bring. The European Space Agency (ESA) is particularly interested in conducting research in such an environment, as it is a unique opportunity to translate these results to space crews experiencing very similar issues. In the past two decades, the ESA has supported a total of 36 biomedical research projects at the Concordia station in collaboration with the French and Italian polar institutes. More specifically, studies in the areas of psychology, neuroscience, sleep physiology, cardiovascular physiology and immunology were performed. The outcomes of these studies are directly relevant for people working in ICE environments, but also help to better understand the biomedical challenges of those environments. Consequently, they can help to better prepare for human space exploration and to identify countermeasures to minimize the adverse effects of space environments on astronaut health. The aim of this review is to provide an overview of the biomedical studies that have taken place in the past two decades at the Antarctic Concordia station and to summarize the results and their implication for human spaceflight.
Collapse
Affiliation(s)
- Angelique Van Ombergen
- SciSpacE team, Directorate of Human and Robotic Exploration, European Space Agency, ESTEC, Noordwijk, The Netherlands
| | - Andrea Rossiter
- SciSpacE team, Directorate of Human and Robotic Exploration, European Space Agency, ESTEC, Noordwijk, The Netherlands
| | - Thu Jennifer Ngo-Anh
- SciSpacE team, Directorate of Human and Robotic Exploration, European Space Agency, ESTEC, Noordwijk, The Netherlands
| |
Collapse
|
24
|
Bagci S, Sabir H, Müller A, Reiter RJ. Effects of altered photoperiod due to COVID-19 lockdown on pregnant women and their fetuses. Chronobiol Int 2020; 37:961-973. [PMID: 32519912 DOI: 10.1080/07420528.2020.1772809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Maternal circadian rhythms provide highly important input into the entrainment and programming of fetal and newborn circadian rhythms. The light-dark cycle is an important regulator of the internal biological clock. Even though pregnant women spend a greater part of the day at home during the latter stages of pregnancy, natural light exposure is crucial for the fetus. The current recommended COVID-19 lockdown might dramatically alter normal environmental lighting conditions of pregnant women, resulting in exposure to extremely low levels of natural daylight and high-intensity artificial light sources during both day and night. This article summarizes the potential effects on pregnant woman and their fetuses due to prolonged exposure to altered photoperiod and as consequence altered circadian system, known as chronodisruption, that may result from the COVID-19 lockdown.
Collapse
Affiliation(s)
- S Bagci
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital-University of Bonn , Bonn, Germany
| | - H Sabir
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital-University of Bonn , Bonn, Germany
| | - A Müller
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital-University of Bonn , Bonn, Germany
| | - R J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio , San Antonio, Texas, USA
| |
Collapse
|
25
|
Münch M, Wirz-Justice A, Brown SA, Kantermann T, Martiny K, Stefani O, Vetter C, Wright KP, Wulff K, Skene DJ. The Role of Daylight for Humans: Gaps in Current Knowledge. Clocks Sleep 2020; 2:61-85. [PMID: 33089192 PMCID: PMC7445840 DOI: 10.3390/clockssleep2010008] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/21/2020] [Indexed: 01/04/2023] Open
Abstract
Daylight stems solely from direct, scattered and reflected sunlight, and undergoes dynamic changes in irradiance and spectral power composition due to latitude, time of day, time of year and the nature of the physical environment (reflections, buildings and vegetation). Humans and their ancestors evolved under these natural day/night cycles over millions of years. Electric light, a relatively recent invention, interacts and competes with the natural light-dark cycle to impact human biology. What are the consequences of living in industrialised urban areas with much less daylight and more use of electric light, throughout the day (and at night), on general health and quality of life? In this workshop report, we have classified key gaps of knowledge in daylight research into three main groups: (I) uncertainty as to daylight quantity and quality needed for "optimal" physiological and psychological functioning, (II) lack of consensus on practical measurement and assessment methods and tools for monitoring real (day) light exposure across multiple time scales, and (III) insufficient integration and exchange of daylight knowledge bases from different disciplines. Crucial short and long-term objectives to fill these gaps are proposed.
Collapse
Affiliation(s)
- Mirjam Münch
- Sleep/Wake Research Centre, Massey University Wellington, Wellington 6021, New Zealand
| | - Anna Wirz-Justice
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (A.W.-J.); (O.S.)
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, 4002 Basel, Switzerland
| | - Steven A. Brown
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland;
| | - Thomas Kantermann
- Faculty for Health and Social Affairs, University of Applied Sciences for Economics and Management (FOM), 45141 Essen, Germany;
- SynOpus, 44789 Bochum, Germany
| | - Klaus Martiny
- Psychiatric Center Copenhagen, University of Copenhagen, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Oliver Stefani
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (A.W.-J.); (O.S.)
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, 4002 Basel, Switzerland
| | - Céline Vetter
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (C.V.); (K.P.W.J.)
| | - Kenneth P. Wright
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (C.V.); (K.P.W.J.)
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Aurora, CO 80045, USA
| | - Katharina Wulff
- Departments of Radiation Sciences and Molecular Biology, Umeå University, 901 87 Umeå, Sweden;
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 901 87 Umeå, Sweden
| | - Debra J. Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
| |
Collapse
|
26
|
Aubourg T, Demongeot J, Provost H, Vuillerme N. Circadian Rhythms in the Telephone Calls of Older Adults: Observational Descriptive Study. JMIR Mhealth Uhealth 2020; 8:e12452. [PMID: 32130156 PMCID: PMC7064945 DOI: 10.2196/12452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 05/24/2019] [Accepted: 06/28/2019] [Indexed: 12/26/2022] Open
Abstract
Background Recent studies have thoughtfully and convincingly demonstrated the possibility of estimating the circadian rhythms of young adults’ social activity by analyzing their telephone call-detail records (CDRs). In the field of health monitoring, this development may offer new opportunities for supervising a patient’s health status by collecting objective, unobtrusive data about their daily social interactions. However, before considering this future perspective, whether and how similar results could be observed in other populations, including older ones, should be established. Objective This study was designed specifically to address the circadian rhythms in the telephone calls of older adults. Methods A longitudinal, 12-month dataset combining CDRs and questionnaire data from 26 volunteers aged 65 years or older was used to examine individual differences in the daily rhythms of telephone call activity. The study used outgoing CDRs only and worked with three specific telecommunication parameters: (1) call recipient (alter), (2) time of day, and (3) call duration. As did the studies involving young adults, we analyzed three issues: (1) the existence of circadian rhythms in the telephone call activity of older adults, (2) their persistence over time, and (3) the alter-specificity of calls by calculating relative entropy. Results We discovered that older adults had their own specific circadian rhythms of outgoing telephone call activity whose salient features and preferences varied across individuals, from morning until night. We demonstrated that rhythms were consistent, as reflected by their persistence over time. Finally, results suggested that the circadian rhythms of outgoing telephone call activity were partly structured by how older adults allocated their communication time across their social network. Conclusions Overall, these results are the first to have demonstrated the existence, persistence, and alter-specificity of the circadian rhythms of the outgoing telephone call activity of older adults. These findings suggest an opportunity to consider modern telephone technologies as potential sensors of daily activity. From a health care perspective, these sensors could be harnessed for unobtrusive monitoring purposes.
Collapse
Affiliation(s)
- Timothée Aubourg
- Orange Labs, Chemin du Vieux Chêne, Meylan, France.,University Grenoble Alpes, AGEIS, Grenoble, France.,LabCom Telecom4Health, University Grenoble Apes & Orange Labs, Grenoble, France
| | - Jacques Demongeot
- University Grenoble Alpes, AGEIS, Grenoble, France.,LabCom Telecom4Health, University Grenoble Apes & Orange Labs, Grenoble, France.,Institut Universitaire de France, Paris, France
| | - Hervé Provost
- Orange Labs, Chemin du Vieux Chêne, Meylan, France.,LabCom Telecom4Health, University Grenoble Apes & Orange Labs, Grenoble, France
| | - Nicolas Vuillerme
- University Grenoble Alpes, AGEIS, Grenoble, France.,LabCom Telecom4Health, University Grenoble Apes & Orange Labs, Grenoble, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|