1
|
Tseng YC, Liao KS, Lin WT, Li C, Chang CB, Hsu JW, Chan CP, Chen CM, Wang HP, Chien HC, Wang JT, Hsieh SC, Wu SF. A human oral commensal-mediated protection against Sjögren's syndrome with maintenance of T cell immune homeostasis and improved oral microbiota. NPJ Biofilms Microbiomes 2025; 11:18. [PMID: 39820778 PMCID: PMC11739518 DOI: 10.1038/s41522-025-00654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
Sjögren's syndrome (SS) is a prevalent systemic autoimmune disease with substantial impacts on women's health worldwide. Although oral Haemophilus parainfluenzae is reduced in SS, its significance remains unclear. This study aimed to elucidate the pathophysiological role of H. parainfluenzae in SS. Reduced salivary H. parainfluenzae levels in SS patients were confirmed through quantitative PCR. Oral H. parainfluenzae inoculation in NOD mice alleviated focal sialadenitis, improved salivary function, and reduced IFN-γ+CD3+ and IFN-γ+CD8+ T cells in salivary gland-draining lymph nodes, maintaining immune homeostasis against a biased type 1 response. Inoculation also enhanced salivary microbiota diversity, balanced the Firmicutes-to-Proteobacteria ratio, and reduced the overwhelming presence of Pseudomonas mendocina. In vitro, H. parainfluenzae-preconditioned A253 cells limited CD8 T cell expansion with reduced IFN-γ production. These findings suggest that H. parainfluenzae improves oral microbial diversity, promotes homeostatic T-cell immunity, and protects against SS, supporting its potential as a next-generation probiotic.
Collapse
Affiliation(s)
- Yu-Chao Tseng
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Biomedical Sciences and Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan
| | - Kai-Sheng Liao
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Wei-Ting Lin
- Department Oral and Maxillofacial Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Chin Li
- Department of Biomedical Sciences and Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan
| | - Chia-Bin Chang
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Jie-Wei Hsu
- Department of Biomedical Sciences and Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan
| | - Chin-Pui Chan
- Department of Biomedical Sciences and Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan
| | - Chun-Ming Chen
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Hon-Pin Wang
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Hsiu-Chuan Chien
- Department of Laboratory Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Shu-Fen Wu
- Department of Biomedical Sciences and Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan.
- Epigenomics and Human Diseases Research Center, National Chung Cheng University, Chiayi, Taiwan.
| |
Collapse
|
2
|
Xiong J, Lu H, Jiang Y. A Causal Relationship between Type 2 Diabetes and Candidiasis through Two-Sample Mendelian Randomization Analysis. Microorganisms 2024; 12:1984. [PMID: 39458293 PMCID: PMC11509823 DOI: 10.3390/microorganisms12101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
The potential relationship between type 2 diabetes (T2D) and candidiasis is of concern due to the respective characteristics of these conditions, yet the exact causal link between the two remains uncertain and requires further investigation. In this study, the inverse-variance-weighted (IVW) analysis indicated a significant genetic causal relationship between T2D and candidiasis (p = 0.0264, Odds Ratio [OR], 95% confidence interval [CI] = 1.1046 [0.9096-1.2996]), T2D (wide definition) and candidiasis (p = 0.0031, OR 95% [CI] = 1.1562 [0.8718-1.4406]), and severe autoimmune T2D and candidiasis (p = 0.0041, OR 95% [CI] = 1.0559 [0.9493-1.1625]). Additionally, the MR-Egger analyses showed a significant genetic causal relationship between T2D (wide definition) and candidiasis (p = 0.0154, OR 95% [CI] = 1.3197 [0.7760-1.8634]). The weighted median analyses showed a significant genetic causal relationship between severe autoimmune T2D and candidiasis (p = 0.0285, OR 95% [CI] = 1.0554 [0.9498-1.1610]). This Mendelian randomization (MR) study provides evidence for a genetic correlation between T2D and candidiasis.
Collapse
Affiliation(s)
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
3
|
Zhang Y, Huang A, Li J, Munthali W, Cao S, Putri UMP, Yang L. The Effect of Microbiome-Modulating Agents (MMAs) on Type 1 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2024; 16:1675. [PMID: 38892608 PMCID: PMC11174426 DOI: 10.3390/nu16111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Gut microbiome-modulating agents (MMAs), including probiotics, prebiotics, postbiotics, and synbiotics, are shown to ameliorate type 1 diabetes (T1D) by restoring the microbiome from dysbiosis. The objective of this systematic review and meta-analysis was to assess the impact of MMAs on hemoglobin A1c (HbA1c) and biomarkers associated with (T1D). A comprehensive search was conducted in PubMed, Web of Science, Embase, Cochrane Library, National Knowledge Infrastructure, WeiPu, and WanFang Data up to 30 November 2023. Ten randomized controlled trials (n = 630) were included, with study quality evaluated using the Cochrane risk-of-bias tool. Random-effect models with standardized mean differences (SMDs) were utilized. MMA supplementation was associated with improvements in HbA1c (SMD = -0.52, 95% CI [-0.83, -0.20]), daily insulin usage (SMD = -0.41, 95% confidence interval (CI) [-0.76, -0.07]), and fasting C-peptide (SMD = 0.99, 95% CI [0.17, 1.81]) but had no effects on FBG, CRP, TNF-α, IL-10, LDL, HDL, and the Shannon index. Subgroup analysis of HbA1c indicated that a long-term intervention (>3 months) might exert a more substantial effect. These findings suggest an association between MMAs and glycemic control in T1D. Further large-scale clinical trials are necessary to confirm these findings with investigations on inflammation and gut microbiota composition while adjusting confounding factors such as diet, physical activity, and the dose and form of MMA intervention.
Collapse
Affiliation(s)
- Ying Zhang
- Xiangya School of Public Health, Central South University, Changsha 410128, China; (Y.Z.)
| | - Aiying Huang
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Jun Li
- School of Psychology, South China Normal University, Guangzhou 510631, China
| | - William Munthali
- Xiangya School of Public Health, Central South University, Changsha 410128, China; (Y.Z.)
| | - Saiying Cao
- Xiangya School of Public Health, Central South University, Changsha 410128, China; (Y.Z.)
| | | | - Lina Yang
- Xiangya School of Public Health, Central South University, Changsha 410128, China; (Y.Z.)
| |
Collapse
|
4
|
Changes in the Mucosa-Associated Microbiome and Transcriptome across Gut Segments Are Associated with Obesity in a Metabolic Syndrome Porcine Model. Microbiol Spectr 2022; 10:e0071722. [PMID: 35862956 PMCID: PMC9430857 DOI: 10.1128/spectrum.00717-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Obesity is a major risk factor for metabolic syndrome, which is the most common cause of death worldwide, especially in developed countries. The link between obesity and gut mucosa-associated microbiota is unclear due to challenges associated with the collection of intestinal samples from humans.
Collapse
|
5
|
Kanbay M, Copur S, Demiray A, Sag AA, Covic A, Ortiz A, Tuttle KR. Fatty kidney: A possible future for chronic kidney disease research. Eur J Clin Invest 2022; 52:e13748. [PMID: 35040119 DOI: 10.1111/eci.13748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Metabolic syndrome is a growing twenty-first century pandemic associated with multiple clinical comorbidities ranging from cardiovascular diseases, non-alcoholic fatty liver disease and polycystic ovary syndrome to kidney dysfunction. A novel area of research investigates the concept of fatty kidney in the pathogenesis of chronic kidney disease, especially in patients with diabetes mellitus or metabolic syndrome. AIM To review the most updated literature on fatty kidney and provide future research, diagnostic and therapeutic perspectives on a disease increasingly affecting the contemporary world. MATERIALS AND METHOD We performed an extensive literature search through three databases including Embase (Elsevier) and the Cochrane Central Register of Controlled Trials (Wiley) and PubMed/Medline Web of Science in November 2021 by using the following terms and their combinations: 'fatty kidney', 'ectopic fat', 'chronic kidney disease', 'cardiovascular event', 'cardio-metabolic risk', 'albuminuria' and 'metabolic syndrome'. Each study has been individually assessed by the authors. RESULTS Oxidative stress and inflammation, Klotho deficiency, endoplasmic reticulum stress, mitochondrial dysfunction and disruption of cellular energy balance appear to be the main pathophysiological mechanisms leading to tissue damage following fat accumulation. Despite the lack of large-scale comprehensive studies in this novel field of research, current clinical trials demonstrate fatty kidney as an independent risk factor for the development of chronic kidney disease and cardiovascular events. CONCLUSION The requirement for future studies investigating the pathophysiology, clinical outcomes and therapeutics of fatty kidney is clear.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Atalay Demiray
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Alan A Sag
- Division of Vascular and Interventional Radiology, Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Alberto Ortiz
- Department of Medicine, Universidad Autonoma de Madrid and IIS-Fundacion Jimenez Diaz, Madrid, Spain
| | - Kathherine R Tuttle
- Division of Nephrology, University of Washington, Seattle, Washington, USA.,Providence Medical Research Center, Providence Health Care, Spokane, Washington, USA
| |
Collapse
|
6
|
He Y, Tiezzi F, Jiang J, Howard JT, Huang Y, Gray K, Choi JW, Maltecca C. Use of Host Feeding Behavior and Gut Microbiome Data in Estimating Variance Components and Predicting Growth and Body Composition Traits in Swine. Genes (Basel) 2022; 13:genes13050767. [PMID: 35627152 PMCID: PMC9140470 DOI: 10.3390/genes13050767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/14/2022] [Accepted: 04/24/2022] [Indexed: 01/11/2023] Open
Abstract
The purpose of this study was to investigate the use of feeding behavior in conjunction with gut microbiome sampled at two growth stages in predicting growth and body composition traits of finishing pigs. Six hundred and fifty-one purebred boars of three breeds: Duroc (DR), Landrace (LR), and Large White (LW), were studied. Feeding activities were recorded individually from 99 to 163 days of age. The 16S rRNA gene sequences were obtained from each pig at 123 ± 4 and 158 ± 4 days of age. When pigs reached market weight, body weight (BW), ultrasound backfat thickness (BF), ultrasound loin depth (LD), and ultrasound intramuscular fat (IMF) content were measured on live animals. Three models including feeding behavior (Model_FB), gut microbiota (Model_M), or both (Model_FB_M) as predictors, were investigated. Prediction accuracies were evaluated through cross-validation across genetic backgrounds using the leave-one-breed-out strategy and across rearing environments using the leave-one-room-out approach. The proportions of phenotypic variance of growth and body composition traits explained by feeding behavior ranged from 0.02 to 0.30, and from 0.20 to 0.52 when using gut microbiota composition. Overall prediction accuracy (averaged over traits and time points) of phenotypes was 0.24 and 0.33 for Model_FB, 0.27 and 0.19 for Model_M, and 0.40 and 0.35 for Model_FB_M for the across-breed and across-room scenarios, respectively. This study shows how feeding behavior and gut microbiota composition provide non-redundant information in predicting growth in swine.
Collapse
Affiliation(s)
- Yuqing He
- Department of Animal Science, North Carolina State University, 120 W Broughton Dr, Raleigh, NC 27607, USA; (J.J.); (C.M.)
- Correspondence: (Y.H.); (F.T.)
| | - Francesco Tiezzi
- Department of Animal Science, North Carolina State University, 120 W Broughton Dr, Raleigh, NC 27607, USA; (J.J.); (C.M.)
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy
- Correspondence: (Y.H.); (F.T.)
| | - Jicai Jiang
- Department of Animal Science, North Carolina State University, 120 W Broughton Dr, Raleigh, NC 27607, USA; (J.J.); (C.M.)
| | - Jeremy T. Howard
- Smithfield Premium Genetics, Rose Hill, NC 28458, USA; (J.T.H.); (Y.H.); (K.G.)
| | - Yijian Huang
- Smithfield Premium Genetics, Rose Hill, NC 28458, USA; (J.T.H.); (Y.H.); (K.G.)
| | - Kent Gray
- Smithfield Premium Genetics, Rose Hill, NC 28458, USA; (J.T.H.); (Y.H.); (K.G.)
| | - Jung-Woo Choi
- College of Animal Life Sciences, Division of Animal Resource Science, 1 Gangwondaehak-gil, Chuncheon-si 24341, Gangwon-do, Korea;
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, 120 W Broughton Dr, Raleigh, NC 27607, USA; (J.J.); (C.M.)
| |
Collapse
|
7
|
Panahabadi R, Ahmadikhah A, McKee LS, Ingvarsson PK, Farrokhi N. Genome-wide association study for lignocellulosic compounds and fermentable sugar in rice straw. THE PLANT GENOME 2022; 15:e20174. [PMID: 34806838 DOI: 10.1002/tpg2.20174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Cellulose and lignin are the two main components of secondary plant cell walls with substantial impact on stalk in the field and on straw during industrial processing. The amount of fermentable sugar that can be accessed is another important parameter affecting various industrial applications. In the present study, genetic variability of rice (Oryza sativa L.) genotypes for cellulose, lignin, and fermentable sugars contents was analyzed in rice straw. A genome-wide association study of 33,484 single nucleotide polymorphisms (SNPs) with a minor allele frequency (MAF) >0.05 was performed. The genome-wide association study identified seven, three, and three genomic regions to be significantly associated with cellulose, lignin, and fermentable sugar contents, respectively. Candidate genes in the associated genomic regions were enzymes mainly involved in cell wall metabolism. Novel SNP markers associated with cellulose were tagged to GH16, peroxidase, GT6, GT8, and CSLD2. For lignin content, Villin protein, OsWAK1/50/52/53, and GH16 were identified. For fermentable sugar content, UTP-glucose-1-phosphate uridylyltransferase, BRASSINOSTEROID INSENSITIVE 1, and receptor-like protein kinase 5 were found. The results of this study should improve our understanding of the genetic basis of the factors that might be involved in biosynthesis, turnover, and modification of major cell wall components and saccharides in rice straw.
Collapse
Affiliation(s)
- Rahele Panahabadi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti Univ., Tehran, Iran
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, 106 91, Sweden
| | | | - Lauren S McKee
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, 106 91, Sweden
- Wallenberg Wood Science Centre, Teknikringen 56-58, Stockholm, 100 44, Sweden
| | - Pär K Ingvarsson
- Linnean Centre for Plant Biology, Dep. of Plant Biology, Swedish Univ. of Agricultural Sciences, Uppsala, Sweden
| | - Naser Farrokhi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti Univ., Tehran, Iran
| |
Collapse
|
8
|
Rouland M, Beaudoin L, Rouxel O, Bertrand L, Cagninacci L, Saffarian A, Pedron T, Gueddouri D, Guilmeau S, Burnol AF, Rachdi L, Tazi A, Mouriès J, Rescigno M, Vergnolle N, Sansonetti P, Christine Rogner U, Lehuen A. Gut mucosa alterations and loss of segmented filamentous bacteria in type 1 diabetes are associated with inflammation rather than hyperglycaemia. Gut 2022; 71:296-308. [PMID: 33593807 DOI: 10.1136/gutjnl-2020-323664] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of pancreatic β-cells producing insulin. Both T1D patients and animal models exhibit gut microbiota and mucosa alterations, although the exact cause for these remains poorly understood. We investigated the production of key cytokines controlling gut integrity, the abundance of segmented filamentous bacteria (SFB) involved in the production of these cytokines, and the respective role of autoimmune inflammation and hyperglycaemia. DESIGN We used several mouse models of autoimmune T1D as well as mice rendered hyperglycaemic without inflammation to study gut mucosa and microbiota dysbiosis. We analysed cytokine expression in immune cells, epithelial cell function, SFB abundance and microbiota composition by 16S sequencing. We assessed the role of anti-tumour necrosis factor α on gut mucosa inflammation and T1D onset. RESULTS We show in models of autoimmune T1D a conserved loss of interleukin (IL)-17A, IL-22 and IL-23A in gut mucosa. Intestinal epithelial cell function was altered and gut integrity was impaired. These defects were associated with dysbiosis including progressive loss of SFB. Transfer of diabetogenic T-cells recapitulated these gut alterations, whereas induction of hyperglycaemia with no inflammation failed to do so. Moreover, anti-inflammatory treatment restored gut mucosa and immune cell function and dampened diabetes incidence. CONCLUSION Our results demonstrate that gut mucosa alterations and dysbiosis in T1D are primarily linked to inflammation rather than hyperglycaemia. Anti-inflammatory treatment preserves gut homeostasis and protective commensal flora reducing T1D incidence.
Collapse
Affiliation(s)
- Matthieu Rouland
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Lucie Beaudoin
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Ophélie Rouxel
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Léo Bertrand
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Lucie Cagninacci
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | | | | | - Dalale Gueddouri
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Sandra Guilmeau
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | | | - Latif Rachdi
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Asmaa Tazi
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Juliette Mouriès
- Department of Biomedical Sciences - IRCCS, Via Rita Levi Montalcini, 20090 Pieve Emanuele, Humanitas University, Milan, Italy.,IRCCS, Via Manzoni 56, 20089 Rozzano, Humanitas Clinical and Research Center, Milan, Italy
| | - Maria Rescigno
- Department of Biomedical Sciences - IRCCS, Via Rita Levi Montalcini, 20090 Pieve Emanuele, Humanitas University, Milan, Italy.,IRCCS, Via Manzoni 56, 20089 Rozzano, Humanitas Clinical and Research Center, Milan, Italy
| | - Nathalie Vergnolle
- Université de Toulouse, Institut de Recherche en Santé Digestive, INSERM U1220, INRAE, ENVT, Toulouse, France
| | | | - Ute Christine Rogner
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Agnès Lehuen
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France .,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| |
Collapse
|
9
|
Marietta E, Horwath I, Meyer S, Khaleghi-Rostamkolaei S, Norman E, Luckey D, Balakrishnan B, Mangalam A, Choung RS, Taneja V, Murray JA. Administration of Human Derived Upper gut Commensal Prevotella histicola delays the onset of type 1 diabetes in NOD mice. BMC Microbiol 2022; 22:8. [PMID: 34983374 PMCID: PMC8729070 DOI: 10.1186/s12866-021-02406-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease that is increasing in prevalence worldwide. One of the contributing factors to the pathogenesis of T1D is the composition of the intestinal microbiota, as has been demonstrated. in T1D patients, with some studies demonstrating a deficiency in their levels of Prevotella. We have isolated a strain of Prevotella histicola from a duodenal biopsy that has anti-inflammatory properties, and in addition, alters the development of autoimmune diseases in mouse models. Therefore, our hypothesis is that the oral administration of P. histicola might delay the development of T1D in the non-obese diabetic (NOD) mice. To assess this, we used the following materials and methods. Female NOD mice (ages 5-8 weeks) were administered every other day P. histicola that was cultured in-house. Blood glucose levels were measured every other week. Mice were sacrificed at various time points for histopathological analysis of the pancreas. Modulation of immune response by the commensal was tested by analyzing regulatory T-cells and NKp46+ cells using flow cytometry and intestinal cytokine mRNA transcript levels using quantitative RT-PCR. For microbial composition, 16 s rRNA gene analysis was conducted on stool samples collected at various time points. RESULTS Administration of P. histicola in NOD mice delayed the onset of T1D. Beta diversity in the fecal microbiomes demonstrated that the microbial composition of the mice administered P. histicola was different from those that were not treated. Treatment with P. histicola led to a significant increase in regulatory T cells with a concomitant decrease in NKp46+ cells in the pancreatic lymph nodes as compared to the untreated group after 5 weeks of treatment. CONCLUSIONS These observations suggest that P. histicola treatment delayed onset of diabetes by increasing the levels of regulatory T cells in the pancreatic lymph nodes. This preliminary work supports the rationale that enteral exposure to a non pathogenic commensal P. histicola be tested as a future therapy for T1D.
Collapse
Affiliation(s)
- Eric Marietta
- grid.66875.3a0000 0004 0459 167XDepartment of Gastroenterology and Hepatology (Celiac Disease), Mayo Clinic, Rochester, MN USA ,grid.66875.3a0000 0004 0459 167XDepartment of Immunology, Mayo Clinic, Rochester, MN USA ,grid.66875.3a0000 0004 0459 167XDepartment of Dermatology, Mayo Clinic, Rochester, MN USA
| | - Irina Horwath
- grid.66875.3a0000 0004 0459 167XDepartment of Gastroenterology and Hepatology (Celiac Disease), Mayo Clinic, Rochester, MN USA
| | - Stephanie Meyer
- grid.66875.3a0000 0004 0459 167XDepartment of Gastroenterology and Hepatology (Celiac Disease), Mayo Clinic, Rochester, MN USA
| | - Shahryar Khaleghi-Rostamkolaei
- grid.66875.3a0000 0004 0459 167XDepartment of Gastroenterology and Hepatology (Celiac Disease), Mayo Clinic, Rochester, MN USA
| | - Eric Norman
- grid.66875.3a0000 0004 0459 167XDepartment of Gastroenterology and Hepatology (Celiac Disease), Mayo Clinic, Rochester, MN USA
| | - David Luckey
- grid.66875.3a0000 0004 0459 167XDepartment of Immunology, Mayo Clinic, Rochester, MN USA
| | - Baskar Balakrishnan
- grid.66875.3a0000 0004 0459 167XDepartment of Immunology, Mayo Clinic, Rochester, MN USA
| | - Ashutosh Mangalam
- grid.214572.70000 0004 1936 8294Department of Immunology, University of Iowa, Iowa City, Iowa USA
| | - Rok Seon Choung
- grid.66875.3a0000 0004 0459 167XDepartment of Gastroenterology and Hepatology (Celiac Disease), Mayo Clinic, Rochester, MN USA
| | - Veena Taneja
- grid.66875.3a0000 0004 0459 167XDepartment of Immunology, Mayo Clinic, Rochester, MN USA
| | - Joseph A. Murray
- grid.66875.3a0000 0004 0459 167XDepartment of Gastroenterology and Hepatology (Celiac Disease), Mayo Clinic, Rochester, MN USA ,grid.66875.3a0000 0004 0459 167XDepartment of Immunology, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
10
|
Zheng SJ, Luo Y, Xiao JH. The Impact of Intestinal Microorganisms and Their Metabolites on Type 1 Diabetes Mellitus. Diabetes Metab Syndr Obes 2022; 15:1123-1139. [PMID: 35431564 PMCID: PMC9012311 DOI: 10.2147/dmso.s355749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM) is an autoimmune disease with a complex etiology comprising numerous genetic and environmental factors; however, many of the mechanisms underlying disease development remain unclear. Nevertheless, a critical role has recently been assigned to intestinal microorganisms in T1DM disease pathogenesis. In particular, a decrease in intestinal microbial diversity, increase in intestinal permeability, and the translocation of intestinal bacteria to the pancreas have been reported in patients and animal models with T1DM. Moreover, intestinal microbial metabolites differ between healthy individuals and patients with T1DM. Specifically, short-chain fatty acid (SCFA) production, which contributes to intestinal barrier integrity and immune response regulation, is significantly reduced in patients with T1DM. Considering this correlation between intestinal microorganisms and T1DM, many studies have investigated the potential of intestinal microbiota in preventive and therapeutic strategies for T1DM. OBJECTIVE The aim of this review is to provide further support for the notion that intestinal microbiota contributes to the regulation of T1DM occurrence and development. In particular, this article reviews the involvement of the intestinal microbiota and the associated metabolites in T1DM pathogenesis, as well as recent studies on the involvement of the intestinal microbiota in T1DM prevention and treatment. CONCLUSION Intestinal microbes and their metabolites contribute to T1DM occurrence and development and may become a potential target for novel therapeutics.
Collapse
Affiliation(s)
- Shu-Juan Zheng
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Yi Luo
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
- Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Jian-Hui Xiao
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
- Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
- Correspondence: Jian-Hui Xiao, Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, HuiChuan District, Zunyi, 563003, People’s Republic of China, Email
| |
Collapse
|
11
|
Gomes GLB, Scortecci KC. Auxin and its role in plant development: structure, signalling, regulation and response mechanisms. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:894-904. [PMID: 34396657 DOI: 10.1111/plb.13303] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 05/04/2021] [Indexed: 05/28/2023]
Abstract
Auxins are plant hormones that play a central role in controlling plant growth and development across different environmental conditions. Even at low concentrations, auxins can regulate gene expression through specific transcription factors and proteins that are modulated to environmental responses in the signalling cascade. Auxins are synthesized in tissues with high cell division activity and distributed by specific transmembrane proteins that regulate efflux and influx. This review presents recent advances in understanding the biosynthetic pathways, both dependent and independent of tryptophan, highlighting the intermediate indole compounds (indole-3-acetamide, indole-3-acetaldoxime, indole-3-pyruvic acid and tryptamine) and the key enzymes for auxin biosynthesis, such as YUCs and TAAs. In relation to the signalling cascade, it has been shown that auxins influence gene expression regulation by the connection between synthesis and distribution. Moreover, the molecular action of the auxin response factors and auxin/indole-3-acetic acid transcription factors with the F-box TIR1/AFB auxin receptors regulates gene expression. In addition, the importance of microRNAs in the auxin signalling pathway and their influence on plant plasticity to environmental fluctuations is also demonstrated. Finally, this review describes the chemical and biological processes involving auxins in plants.
Collapse
Affiliation(s)
- G L B Gomes
- Programa de Pós-Graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Laboratório de Transformação de Plantas e Análises em Microscopia, Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - K C Scortecci
- Programa de Pós-Graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Laboratório de Transformação de Plantas e Análises em Microscopia, Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
12
|
Morse ZJ, Horwitz MS. Virus Infection Is an Instigator of Intestinal Dysbiosis Leading to Type 1 Diabetes. Front Immunol 2021; 12:751337. [PMID: 34721424 PMCID: PMC8554326 DOI: 10.3389/fimmu.2021.751337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
In addition to genetic predisposition, environmental determinants contribute to a complex etiology leading to onset of type 1 diabetes (T1D). Multiple studies have established the gut as an important site for immune modulation that can directly impact development of autoreactive cell populations against pancreatic self-antigens. Significant efforts have been made to unravel how changes in the microbiome function as a contributor to autoimmune responses and can serve as a biomarker for diabetes development. Large-scale longitudinal studies reveal that common environmental exposures precede diabetes pathology. Virus infections, particularly those associated with the gut, have been prominently identified as risk factors for T1D development. Evidence suggests recent-onset T1D patients experience pre-existing subclinical enteropathy and dysbiosis leading up to development of diabetes. The start of these dysbiotic events coincide with detection of virus infections. Thus viral infection may be a contributing driver for microbiome dysbiosis and disruption of intestinal homeostasis prior to T1D onset. Ultimately, understanding the cross-talk between viral infection, the microbiome, and the immune system is key for the development of preventative measures against T1D.
Collapse
Affiliation(s)
| | - Marc S. Horwitz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Wu Y, You Q, Fei J, Wu J. Changes in the gut microbiota: a possible factor influencing peripheral blood immune indexes in non-obese diabetic mice. Antonie van Leeuwenhoek 2021; 114:1669-1682. [PMID: 34370135 DOI: 10.1007/s10482-021-01632-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/23/2021] [Indexed: 12/17/2022]
Abstract
Intestinal flora changes were found in patients and animals with type 1 diabetes (T1D). However, few studies have provided any explicit clues of changes in highly disease related commensal microbiota before disease onset and their relationships with disordered peripheral immune cells. We conducted 16S rRNA microbiota analysis of non-obese diabetic (NOD) mice from weaning to diabetes onset to identify highly disease related microbes and performed Spearman correlation analysis between anomalous flora and peripheral immune cells. We found NOD mice had increased exclusive bacteria and decreased community richness or diversity, besides, with the features of decreased abundance of Bacteroidetes and increased abundance of Firmicutes, Proteobacteria or Deferribacteres and remarkable fluctuations of genus relative abundance. Furthermore, kinds of highly T1D related genus and their strong correlations with peripheral immune cells, especially neutrophils, were discovered. Microbial changes in NOD mice differed from that of ICR mice and highly disease associated microbes have strong correlations with the peripheral neutrophil ratio, which provide evidence that neutrophils are possibly involved in the pathogenesis of T1D.
Collapse
Affiliation(s)
- Yiling Wu
- School of Life Science and Technology, China Pharmaceutical University, No.639 Long Mian Street, Jiangning District, Nanjing, 211100, Jiangsu Province, China
| | - Qi You
- School of Life Science and Technology, China Pharmaceutical University, No.639 Long Mian Street, Jiangning District, Nanjing, 211100, Jiangsu Province, China
| | - Jingjin Fei
- School of Life Science and Technology, China Pharmaceutical University, No.639 Long Mian Street, Jiangning District, Nanjing, 211100, Jiangsu Province, China
| | - Jie Wu
- School of Life Science and Technology, China Pharmaceutical University, No.639 Long Mian Street, Jiangning District, Nanjing, 211100, Jiangsu Province, China.
| |
Collapse
|
14
|
de Oliveira GLV, Cardoso CRDB, Taneja V, Fasano A. Editorial: Intestinal Dysbiosis in Inflammatory Diseases. Front Immunol 2021; 12:727485. [PMID: 34394133 PMCID: PMC8362080 DOI: 10.3389/fimmu.2021.727485] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/19/2021] [Indexed: 01/14/2023] Open
Affiliation(s)
- Gislane Lelis Vilela de Oliveira
- Microbiology Program, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, Sao Jose do Rio Preto, Brazil.,Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, Sao Jose do Rio Preto, Brazil
| | - Cristina Ribeiro de Barros Cardoso
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Veena Taneja
- Department of Immunology and Department of Medicine, Division of Rheumatology, Mayo Clinic Rochester, Rochester, MN, United States
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States.,Gastroenterology and Nutrition, Harvard Medical School, Boston, MA, United States.,European Biomedical Research Institute of Salerno, Salerno, Italy
| |
Collapse
|
15
|
Huang J, Tan Q, Tai N, Pearson JA, Li Y, Chao C, Zhang L, Peng J, Xing Y, Zhang L, Hu Y, Zhou Z, Wong FS, Wen L. IL-10 Deficiency Accelerates Type 1 Diabetes Development via Modulation of Innate and Adaptive Immune Cells and Gut Microbiota in BDC2.5 NOD Mice. Front Immunol 2021; 12:702955. [PMID: 34394099 PMCID: PMC8362616 DOI: 10.3389/fimmu.2021.702955] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/05/2021] [Indexed: 01/02/2023] Open
Abstract
Type 1 diabetes is an autoimmune disease caused by T cell-mediated destruction of insulin-producing β cells. BDC2.5 T cells in BDC2.5 CD4+ T cell receptor transgenic Non-Obese Diabetic (NOD) mice (BDC2.5+ NOD mice) can abruptly invade the pancreatic islets resulting in severe insulitis that progresses rapidly but rarely leads to spontaneous diabetes. This prevention of diabetes is mediated by T regulatory (Treg) cells in these mice. In this study, we investigated the role of interleukin 10 (IL-10) in the inhibition of diabetes in BDC2.5+ NOD mice by generating Il-10-deficient BDC2.5+ NOD mice (BDC2.5+Il-10-/- NOD mice). Our results showed that BDC2.5+Il-10-/- NOD mice displayed robust and accelerated diabetes development. Il-10 deficiency in BDC2.5+ NOD mice promoted the generation of neutrophils in the bone marrow and increased the proportions of neutrophils in the periphery (blood, spleen, and islets), accompanied by altered intestinal immunity and gut microbiota composition. In vitro studies showed that the gut microbiota from BDC2.5+Il-10-/- NOD mice can expand neutrophil populations. Moreover, in vivo studies demonstrated that the depletion of endogenous gut microbiota by antibiotic treatment decreased the proportion of neutrophils. Although Il-10 deficiency in BDC2.5+ NOD mice had no obvious effects on the proportion and function of Treg cells, it affected the immune response and activation of CD4+ T cells. Moreover, the pathogenicity of CD4+ T cells was much increased, and this significantly accelerated the development of diabetes when these CD4+ T cells were transferred into immune-deficient NOD mice. Our study provides novel insights into the role of IL-10 in the modulation of neutrophils and CD4+ T cells in BDC2.5+ NOD mice, and suggests important crosstalk between gut microbiota and neutrophils in type 1 diabetes development.
Collapse
Affiliation(s)
- Juan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Qiyuan Tan
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
- Department of Endocrinology and Metabolism, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Ningwen Tai
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - James Alexander Pearson
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Yangyang Li
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, China
| | - Chen Chao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lucy Zhang
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Jian Peng
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Yanpeng Xing
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Luyao Zhang
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Youjia Hu
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - F. Susan Wong
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
16
|
Gut microbiota in pancreatic diseases: possible new therapeutic strategies. Acta Pharmacol Sin 2021; 42:1027-1039. [PMID: 33093569 DOI: 10.1038/s41401-020-00532-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic diseases such as pancreatitis, type 1 diabetes and pancreatic cancer impose substantial health-care costs and contribute to marked morbidity and mortality. Recent studies have suggested a link between gut microbiota dysbiosis and pancreatic diseases; however, the potential roles and mechanisms of action of gut microbiota in pancreatic diseases remain to be fully elucidated. In this review, we summarize the evidence that supports relationship between alterations of gut microbiota and development of pancreatic diseases, and discuss the potential molecular mechanisms of gut microbiota dysbiosis in the pathogenesis of pancreatic diseases. We also propose current strategies toward gut microbiota to advance a developing research field that has clinical potential to reduce the cost of pancreatic diseases.
Collapse
|
17
|
Pearson JA, Wong FS, Wen L. Inflammasomes and Type 1 Diabetes. Front Immunol 2021; 12:686956. [PMID: 34177937 PMCID: PMC8219953 DOI: 10.3389/fimmu.2021.686956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/17/2021] [Indexed: 01/10/2023] Open
Abstract
Microbiota have been identified as an important modulator of susceptibility in the development of Type 1 diabetes in both animal models and humans. Collectively these studies highlight the association of the microbiota composition with genetic risk, islet autoantibody development and modulation of the immune responses. However, the signaling pathways involved in mediating these changes are less well investigated, particularly in humans. Importantly, understanding the activation of signaling pathways in response to microbial stimulation is vital to enable further development of immunotherapeutics, which may enable enhanced tolerance to the microbiota or prevent the initiation of the autoimmune process. One such signaling pathway that has been poorly studied in the context of Type 1 diabetes is the role of the inflammasomes, which are multiprotein complexes that can initiate immune responses following detection of their microbial ligands. In this review, we discuss the roles of the inflammasomes in modulating Type 1 diabetes susceptibility, from genetic associations to the priming and activation of the inflammasomes. In addition, we also summarize the available inhibitors for therapeutically targeting the inflammasomes, which may be of future use in Type 1 diabetes.
Collapse
Affiliation(s)
- James Alexander Pearson
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - F Susan Wong
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Li Wen
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
18
|
Sathkumara HD, Eaton JL, Field MA, Govan BL, Ketheesan N, Kupz A. A murine model of tuberculosis/type 2 diabetes comorbidity for investigating the microbiome, metabolome and associated immune parameters. Animal Model Exp Med 2021; 4:181-188. [PMID: 34179725 PMCID: PMC8212822 DOI: 10.1002/ame2.12159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/01/2021] [Indexed: 01/02/2023] Open
Abstract
Tuberculosis (TB) is one of the deadliest infectious diseases in the world. The metabolic disease type 2 diabetes (T2D) significantly increases the risk of developing active TB. Effective new TB vaccine candidates and novel therapeutic interventions are required to meet the challenges of global TB eradication. Recent evidence suggests that the microbiota plays a significant role in how the host responds to infection, injury and neoplastic changes. Animal models that closely reflect human physiology are crucial in assessing new treatments and to decipher the underlying immunological defects responsible for increased TB susceptibility in comorbid patients. In this study, using a diet-induced murine T2D model that reflects the etiopathogenesis of clinical T2D and increased TB susceptibility, we investigated how the intestinal microbiota may impact the development of T2D, and how the gut microbial composition changes following a very low-dose aerosol infection with Mycobacterium tuberculosis (Mtb). Our data revealed a substantial intestinal microbiota dysbiosis in T2D mice compared to non-diabetic animals. The observed differences were comparable to previous clinical reports in TB patients, in which it was shown that Mtb infection causes rapid loss of microbial diversity. Furthermore, diversity index and principle component analyses demonstrated distinct clustering of Mtb-infected non-diabetic mice vs. Mtb-infected T2D mice. Our findings support a broad applicability of T2D mice as a tractable small animal model for studying distinct immune parameters, microbiota and the immune-metabolome of TB/T2D comorbidity. This model may also enable answers to be found to critical outstanding questions about targeted interventions of the gut microbiota and the gut-lung axis.
Collapse
Affiliation(s)
- Harindra D. Sathkumara
- Centre for Molecular TherapeuticsAustralian Institute of Tropical Health and MedicineJames Cook UniversityCairns & TownsvilleQLDAustralia
| | - Janet L. Eaton
- College of Public Health, Medical and Veterinary SciencesJames Cook UniversityTownsvilleQLDAustralia
| | - Matt A. Field
- Centre for Molecular TherapeuticsAustralian Institute of Tropical Health and MedicineJames Cook UniversityCairns & TownsvilleQLDAustralia
- Centre for Tropical Bioinformatics and Molecular BiologyJames Cook UniversityCairnsQLDAustralia
- John Curtin School of Medical ResearchAustralian National UniversityCanberraACTAustralia
| | - Brenda L. Govan
- Centre for Molecular TherapeuticsAustralian Institute of Tropical Health and MedicineJames Cook UniversityCairns & TownsvilleQLDAustralia
- College of Public Health, Medical and Veterinary SciencesJames Cook UniversityTownsvilleQLDAustralia
| | | | - Andreas Kupz
- Centre for Molecular TherapeuticsAustralian Institute of Tropical Health and MedicineJames Cook UniversityCairns & TownsvilleQLDAustralia
| |
Collapse
|
19
|
Yang Y, Zhao M, He X, Wu Q, Li DL, Zang WJ. Pyridostigmine Protects Against Diabetic Cardiomyopathy by Regulating Vagal Activity, Gut Microbiota, and Branched-Chain Amino Acid Catabolism in Diabetic Mice. Front Pharmacol 2021; 12:647481. [PMID: 34084135 PMCID: PMC8167056 DOI: 10.3389/fphar.2021.647481] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
The disruption of gut microbes is associated with diabetic cardiomyopathy, but the mechanism by which gut microbes affect cardiac damage remains unclear. We explored gut microbes and branched-chain amino acid (BCAA) metabolite catabolism in diabetic cardiomyopathy mice and investigated the cardioprotective effect of pyridostigmine. The experiments were conducted using a model of diabetic cardiomyopathy induced by a high-fat diet + streptozotocin in C57BL/6 mice. The results of high-throughput sequencing showed that diabetic cardiomyopathy mice exhibited decreased gut microbial diversity, altered abundance of the diabetes-related microbes, and increased abundance of the BCAA-producing microbes Clostridiales and Lachnospiraceae. In addition, diabetes downregulated tight junction proteins (ZO-1, occludin, and claudin-1) and increased intestinal permeability to impair the intestinal barrier. These impairments were accompanied by reduction in vagal activity that manifested as increased acetylcholinesterase levels, decreased acetylcholine levels, and heart rate variability, which eventually led to cardiac damage. Pyridostigmine enhanced vagal activity, restored gut microbiota homeostasis, decreased BCAA-producing microbe abundance, and improved the intestinal barrier to reduce circulating BCAA levels. Pyridostigmine also upregulated BCAT2 and PP2Cm and downregulated p-BCKDHA/BCKDHA and BCKDK to improve cardiac BCAA catabolism. Moreover, pyridostigmine alleviated abnormal mitochondrial structure; increased ATP production; decreased reactive oxygen species and mitochondria-related apoptosis; and attenuated cardiac dysfunction, hypertrophy, and fibrosis in diabetic cardiomyopathy mice. In conclusion, the gut microbiota, BCAA catabolism, and vagal activity were impaired in diabetic cardiomyopathy mice but were improved by pyridostigmine. These results provide novel insights for the development of a therapeutic strategy for diabetes-induced cardiac damage that targets gut microbes and BCAA catabolism.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ming Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xi He
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Qing Wu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Dong-Ling Li
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wei-Jin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
20
|
Zhou H, Sun L, Zhang S, Zhao X, Gang X, Wang G. The crucial role of early-life gut microbiota in the development of type 1 diabetes. Acta Diabetol 2021; 58:249-265. [PMID: 32712802 DOI: 10.1007/s00592-020-01563-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
Early-life healthy gut microbiota has a profound implication on shaping the mucosal immune system as well as maintaining healthy status later in life, especially at the prenatal or neonatal stages, while intestinal dysbiosis in early life is associated with several autoimmune diseases, including type 1 diabetes (T1D). Since the gut microbiome is potentially modifiable, optimizing the intestinal bacterial composition in early life may be a novel option for T1D prevention. In this review, we will review current data depicting the crucial role of early-life intestinal microbiome in the development of T1D and discuss the possible mechanisms whereby early-life intestinal microbiome influences the T1D progression. We also summarize recent findings on environmental factors affecting gut microbiota colonization and interventions that may successfully alter microbial composition to discuss potential means of preventing T1D progression in at-risk children.
Collapse
Affiliation(s)
- He Zhou
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, China
| | - Siwen Zhang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
21
|
Elhag DA, Kumar M, Al Khodor S. Exploring the Triple Interaction between the Host Genome, the Epigenome, and the Gut Microbiome in Type 1 Diabetes. Int J Mol Sci 2020; 22:ijms22010125. [PMID: 33374418 PMCID: PMC7795494 DOI: 10.3390/ijms22010125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes (T1D) is an auto-immune disorder characterized by a complex interaction between the host immune system and various environmental factors in genetically susceptible individuals. Genome-wide association studies (GWAS) identified different T1D risk and protection alleles, however, little is known about the environmental factors that can be linked to these alleles. Recent evidence indicated that, among those environmental factors, dysbiosis (imbalance) in the gut microbiota may play a role in the pathogenesis of T1D, affecting the integrity of the gut and leading to systemic inflammation and auto-destruction of the pancreatic β cells. Several studies have identified changes in the gut microbiome composition in humans and animal models comparing T1D subjects with controls. Those changes were characterized by a higher abundance of Bacteroides and a lower abundance of the butyrate-producing bacteria such as Clostridium clusters IV and XIVa. The mechanisms by which the dysbiotic bacteria and/or their metabolites interact with the genome and/or the epigenome of the host leading to destructive autoimmunity is still not clear. As T1D is a multifactorial disease, understanding the interaction between different environmental factors such as the gut microbiome, the genetic and the epigenetic determinants that are linked with the early appearance of autoantibodies can expand our knowledge about the disease pathogenesis. This review aims to provide insights into the interaction between the gut microbiome, susceptibility genes, epigenetic factors, and the immune system in the pathogenesis of T1D.
Collapse
|
22
|
Vaginal Microbiota Diversity of Patients with Embryonic Miscarriage by Using 16S rDNA High-Throughput Sequencing. Int J Genomics 2020; 2020:1764959. [PMID: 33299847 PMCID: PMC7704210 DOI: 10.1155/2020/1764959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/31/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
Embryonic miscarriage severely affects the life quality and physical and mental state of pregnant women. However, the detailed mechanism underlying embryonic miscarriage is not fully understood. This study is aimed at analyzing embryonic miscarriage. We collected samples from 25 normal pregnant women and 25 embryonic miscarriage patients of similar age to analyze microbiota isolated from the vagina. Crude examination of the vagina isolates showed that compared with the control group, 80% of the embryonic miscarriage group contained a significantly lower number of Lactobacillus, the major healthy microbe in the vagina. Furthermore, the levels of Th1 and Th2 secreted cytokine interleukin 2 (IL-2) and interleukin10 (IL-10), respectively, were examined. Results showed that the IL2 level was higher, and IL10 level was lower in the embryonic miscarriage group than in the control group, whereas the IL2/IL10 level was higher in the embryonic miscarriage group than in the control group. This finding suggested that the immune response was suppressed in the embryonic miscarriage group. To further dissect the microbiota of the vagina in the two groups, 16S rDNA sequencing was performed. Bioinformatics analysis showed that 1096 and 998 overlapped operational taxonomic units were identified from the embryonic miscarriage and control groups, respectively. At the genus level, the relative abundance of Fam_Finegoldia, Lac_Coprococcus_3, and Lac_Roseburia significantly differed in the embryonic miscarriage group. Overall, our analyses provided potential biomarkers for embryonic miscarriage and elucidated the causative relationship between microbiota and immune responses and may enable the possible diagnosis and therapeutics of early pregnancy loss.
Collapse
|
23
|
Abstract
AbstractThis article aims to provide a thorough overview of the use of Artificial Intelligence (AI) techniques in studying the gut microbiota and its role in the diagnosis and treatment of some important diseases. The association between microbiota and diseases, together with its clinical relevance, is still difficult to interpret. The advances in AI techniques, such as Machine Learning (ML) and Deep Learning (DL), can help clinicians in processing and interpreting these massive data sets. Two research groups have been involved in this Scoping Review, working in two different areas of Europe: Florence and Sarajevo. The papers included in the review describe the use of ML or DL methods applied to the study of human gut microbiota. In total, 1109 papers were considered in this study. After elimination, a final set of 16 articles was considered in the scoping review. Different AI techniques were applied in the reviewed papers. Some papers applied ML, while others applied DL techniques. 11 papers evaluated just different ML algorithms (ranging from one to eight algorithms applied to one dataset). The remaining five papers examined both ML and DL algorithms. The most applied ML algorithm was Random Forest and it also exhibited the best performances.
Collapse
|
24
|
Rosicka K, Mierzejewska-Krzyżowska B, Mrówczyński W. Comparison of different MyotonPRO probes for skin stiffness evaluation in young women. Skin Res Technol 2020; 27:332-339. [PMID: 33078499 DOI: 10.1111/srt.12946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/05/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Stiffness of skin is widely used parameter in many research areas, for example cosmetic industry, dermatology or rheumatology for assessing of skin condition as well as changes occurring in skin. In this pioneering study, we conducted measurements of skin stiffness using MyotonPRO -novel tool, which was mainly used to evaluate biomechanical properties of muscles, ligaments and tendons. We expected that MyotonPRO , which shows great reproducibility in previous studies, will also be able to measure skin stiffness. MATERIALS AND METHODS Four replaceable probes designed by MyotonPRO (L-shape short and medium arm, standard cylindrical flat-end probe and the same standard probe with disc attachment ) were tested for measurement of skin stiffness in young women (30 healthy females) at three different locations (clavicula, volar forearm and shin). RESULTS There was no significant difference between stiffness values obtained with L-shape short and L-shape medium arm probes in all investigated areas. Stiffness values recorded by regular probe and regular probe with disc attachment differ significantly from those collected with L-shape probes. There was also significant difference between values of stiffness obtained by standard with disc attachment and standard probes. CONCLUSION Both L-shape probes show a great reliability for skin stiffness assessment. Therefore, MyotonPRO can be considered a reliable device for assessing skin stiffness.
Collapse
Affiliation(s)
- Katarzyna Rosicka
- Department of Biological Sciences, Faculty of Physical Culture in Gorzów Wlkp., Poznań University of Physical Education, Gorzów Wlkp., Poland
| | - Barbara Mierzejewska-Krzyżowska
- Department of Biological Sciences, Faculty of Physical Culture in Gorzów Wlkp., Poznań University of Physical Education, Gorzów Wlkp., Poland
| | | |
Collapse
|
25
|
Al Theyab A, Almutairi T, Al-Suwaidi AM, Bendriss G, McVeigh C, Chaari A. Epigenetic Effects of Gut Metabolites: Exploring the Path of Dietary Prevention of Type 1 Diabetes. Front Nutr 2020; 7:563605. [PMID: 33072796 PMCID: PMC7541812 DOI: 10.3389/fnut.2020.563605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) has increased over the past half century and has now become the second most frequent autoimmune disease in childhood and one of major public health concern worldwide. Evidence suggests that modern lifestyles and rapid environmental changes are driving factors that underlie this increase. The integration of these two factors brings about changes in food intake. This, in turn, alters epigenetic regulations of the genome and intestinal microbiota composition, which may ultimately play a role in pathogenesis of T1D. Recent evidence shows that dysbiosis of the gut microbiota is closely associated with T1D and that a dietary intervention can influence epigenetic changes associated with this disease and may modify gene expression patterns through epigenetic mechanisms. In this review focus on how a diet can shape the gut microbiome, its effect on the epigenome in T1D, and the future of T1D management by microbiome therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Ali Chaari
- Premedical Division, Weill Cornell Medicine Qatar, Doha, Qatar
| |
Collapse
|
26
|
Huang J, Pearson JA, Peng J, Hu Y, Sha S, Xing Y, Huang G, Li X, Hu F, Xie Z, Xiao Y, Luo S, Chao C, Wong FS, Zhou Z, Wen L. Gut microbial metabolites alter IgA immunity in type 1 diabetes. JCI Insight 2020; 5:135718. [PMID: 32298241 DOI: 10.1172/jci.insight.135718] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/09/2020] [Indexed: 12/31/2022] Open
Abstract
The incidence of type 1 diabetes (T1D) has been increasing among children and adolescents, in which environmental factors, including gut microbiota, play an important role. However, the underlying mechanisms are yet to be determined. Here, we show that patients with newly diagnosed T1D displayed not only a distinct profile of gut microbiota associated with decreased short-chain fatty acids (SCFAs) production, but also an altered IgA-mediated immunity compared with healthy control subjects. Using germ-free NOD mice, we demonstrate that gut microbiota from patients with T1D promoted different IgA-mediated immune responses compared with healthy control gut microbiota. Treatment with the SCFA, acetate, reduced gut bacteria-induced IgA response accompanied by decreased severity of insulitis in NOD mice. We believe our study provides new insights into the functional effects of gut microbiota on inducing IgA immune response in T1D, suggesting that SCFAs might be potential therapeutic agents in T1D prevention and/or treatment.
Collapse
Affiliation(s)
- Juan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China.,Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - James A Pearson
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jian Peng
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Youjia Hu
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sha Sha
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yanpeng Xing
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Gan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Xia Li
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Fang Hu
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Zhiguo Xie
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Yang Xiao
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Shuoming Luo
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Chen Chao
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - F Susan Wong
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
27
|
Lv W, Graves DT, He L, Shi Y, Deng X, Zhao Y, Dong X, Ren Y, Liu X, Xiao E, Zhang Y. Depletion of the diabetic gut microbiota resistance enhances stem cells therapy in type 1 diabetes mellitus. Theranostics 2020; 10:6500-6516. [PMID: 32483466 PMCID: PMC7255019 DOI: 10.7150/thno.44113] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Microbiome, considered as the "second genome" of the host, is altered in type 1 diabetes mellitus (T1DM) patients to a state of dysbiosis. Mesenchymal stem cell (MSC) transplantation is a promising treatment for T1DM but is limited by several factors in the diabetic host. In this study, we tested the hypothesis that dysbiotic gut microbiota may limit MSC therapy, and modulating gut microbiota may help to improve the effects of MSC transplantation. Methods: NOD/Ltj mice, treated with adipose-derived stem cells (ADSCs), were fed with an antibiotics cocktails (Abx) for 1 week. The blood glucose levels, insulitis, intestinal permeability and gut bacteria translocation to the pancreas were evaluated. 16s rRNA and colon tissue transcription sequencing were performed to analyze beneficial bacteria and reactive host biomolecules in the ADSCs+Abx group. Based on the sequencing results, specific bacteria were gavaged orally to diabetic mice to confirm their effect on ADSCs transplantation in T1DM was determined. Results: We found that the recolonized the diabetic gut microbiota abolished the therapeutic effect of ADSCs. On the contrary, depletion of the diabetic gut microbiota by antibiotics treatment in diabetic mice significantly enhanced the therapeutic effects of ADSCs as measured by reversal of hyperglycemia, insulitis, and increased insulin output. Mechanistically, treatment with antibiotics increased the abundance of Bifidobacterium in the gut and reduced bacterial translocation to the pancreas by promoting Mucin2 expression and thickening the mucus layer through TRPM7. The mechanism was confirmed the re-colonization of the gut by B.breve through oral gavage that produced similar results. Conclusions: These results provide the rationale for a new approach to improve MSC therapy for T1DM by altering the gut microbiota.
Collapse
MESH Headings
- Animals
- Anti-Bacterial Agents/pharmacology
- Bifidobacterium/growth & development
- Cells, Cultured/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/microbiology
- Diabetes Mellitus, Experimental/therapy
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/microbiology
- Diabetes Mellitus, Type 1/therapy
- Disease Models, Animal
- Female
- Gastrointestinal Microbiome/drug effects
- Gastrointestinal Microbiome/genetics
- Humans
- Mesenchymal Stem Cell Transplantation
- Mesenchymal Stem Cells
- Mice
- Mice, Inbred NOD
- RNA, Ribosomal, 16S/genetics
Collapse
Affiliation(s)
- Wanqi Lv
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie, Haidian District, Beijing 100081, People's Republic of China
| | - Dana T. Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Linhai He
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie, Haidian District, Beijing 100081, People's Republic of China
- Peking University Hospital of Stomatology First Clinical Division, 37 Xishikudajie, Xicheng District, Beijing 100034, People's Republic of China
| | - Yan Shi
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xuliang Deng
- Department of Geriatric Dentistry, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Peking University, Beijing 100081, People's Republic of China
| | - Yajun Zhao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie, Haidian District, Beijing 100081, People's Republic of China
| | - Xian Dong
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie, Haidian District, Beijing 100081, People's Republic of China
| | - Yi Ren
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie, Haidian District, Beijing 100081, People's Republic of China
| | - Xinhua Liu
- The First People's Hospital of Jinzhong, ShanXi Province 030600, People's Republic of China
| | - E Xiao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie, Haidian District, Beijing 100081, People's Republic of China
| | - Yi Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie, Haidian District, Beijing 100081, People's Republic of China
| |
Collapse
|
28
|
Nelson AS, Maddaloni M, Abbott JR, Hoffman C, Akgul A, Ohland C, Gharaibeh RZ, Jobin C, Brusko TM, Pascual DW. Oral therapy with colonization factor antigen I prevents development of type 1 diabetes in Non-obese Diabetic mice. Sci Rep 2020; 10:6156. [PMID: 32273533 PMCID: PMC7145799 DOI: 10.1038/s41598-020-62881-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/21/2020] [Indexed: 01/09/2023] Open
Abstract
Antigen (Ag)-specific tolerization prevents type 1 diabetes (T1D) in non-obese diabetic (NOD) mice but proved less effective in humans. Several auto-Ags are fundamental to disease development, suggesting T1D etiology is heterogeneous and may limit the effectiveness of Ag-specific therapies to distinct disease endotypes. Colonization factor antigen I (CFA/I) fimbriae from Escherichia coli can inhibit autoimmune diseases in murine models by inducing bystander tolerance. To test if Ag-independent stimulation of regulatory T cells (Tregs) can prevent T1D onset, groups of NOD mice were orally treated with Lactococcus lactis (LL) expressing CFA/I. LL-CFA/I treatment beginning at 6 weeks of age reduced disease incidence by 50% (p < 0.05) and increased splenic Tregs producing both IL-10 and IFN-γ 8-fold (p < 0.005) compared to LL-vehicle treated controls. To further describe the role of these Tregs in preventing T1D, protective phenotypes were examined at different time-points. LL-CFA/I treatment suppressed splenic TNF-α+CD8+ T cells 6-fold at 11 weeks (p < 0.005) and promoted a distinct microbiome. At 17 weeks, IFN-γ+CD4+ T cells were suppressed 10-fold (p < 0.005), and at 30 weeks, pancreatic Tbet+CD4+ T cells were suppressed (p < 0.05). These results show oral delivery of modified commensal organisms, such as LL-CFA/I, may be harnessed to restrict Th1 cell-mediated immunity and protect against T1D.
Collapse
Affiliation(s)
- Andrew S. Nelson
- 0000 0004 1936 8091grid.15276.37Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL United States
| | - Massimo Maddaloni
- 0000 0004 1936 8091grid.15276.37Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL United States
| | - Jeffrey R. Abbott
- 0000 0004 1936 8091grid.15276.37Department of Comparative, Diagnostic, and Population Medicine, University of Florida, Gainesville, FL United States
| | - Carol Hoffman
- 0000 0004 1936 8091grid.15276.37Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL United States
| | - Ali Akgul
- 0000 0004 1936 8091grid.15276.37Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL United States
| | - Christina Ohland
- 0000 0004 1936 8091grid.15276.37Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL United States
| | - Raad Z. Gharaibeh
- 0000 0004 1936 8091grid.15276.37Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL United States
| | - Christian Jobin
- 0000 0004 1936 8091grid.15276.37Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL United States ,0000 0004 1936 8091grid.15276.37Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL United States
| | - Todd M. Brusko
- 0000 0004 1936 8091grid.15276.37Department of Pathology, Immunology, & Laboratory Medicine, University of Florida Diabetes Institute, University of Florida, Gainesville, FL United States
| | - David W. Pascual
- 0000 0004 1936 8091grid.15276.37Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL United States
| |
Collapse
|
29
|
Wang Y, Ouyang M, Gao X, Wang S, Fu C, Zeng J, He X. Phocea, Pseudoflavonifractor and Lactobacillus intestinalis: Three Potential Biomarkers of Gut Microbiota That Affect Progression and Complications of Obesity-Induced Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2020; 13:835-850. [PMID: 32256098 PMCID: PMC7090210 DOI: 10.2147/dmso.s240728] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/29/2020] [Indexed: 01/10/2023] Open
Abstract
PURPOSE The purpose of this study was to explore the difference and association between intestinal microbiota and plasma metabolomics between type 2 diabetes mellitus (T2DM) and normal group and to identify potential microbiota biomarkers that contribute the most to the difference in metabolites. METHODS Six male ZDF model (fa/fa) rats were fed by a Purina #5008 Lab Diet (crude protein 23.5%, crude fat 6.5%) for 3 weeks and their age-matched 6 ZDF control (fa/+) rats were fed by normal rodent diet. Their stool and blood samples were collected at 12 weeks. To analyze the microbial populations in these samples, we used a 16S rRNA gene sequencing approach. Liquid chromatography-mass spectrometry (LC-MS) followed by multivariate statistical analysis was applied to the plasma metabolites profiling. Correlation analysis of them was calculated by Pearson statistical method. RESULTS Twelve potential biomarkers of intestinal microbial flora and 357 differential metabolites were found in ZDF fa/fa rats, among which there are three flora that contributed the most to the perturbation of metabolites, including genus Phocea, Pseudoflavonifractor and species Lactobacillus intestinalis. CONCLUSION Our study demonstrates the alterations of the abundance and diversity of the intestinal microbiota and the perturbation of metabolites in ZDF rats (fa/fa). We found three potential biomarkers of intestinal microbiota that may lead to perturbation in plasma metabolites. This may prompt new pathogenesis of obesity-related T2DM, but we also need to study further about the causal relationship between intestinal microbe and T2DM, so as to find the target of T2DM treatment or preventive measures.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Physical and Chemical Inspection, School of Public Health, Shandong University, Jinan, Shandong250012, People’s Republic of China
| | - Meishuo Ouyang
- Department of Public Health, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Xibao Gao
- Department of Physical and Chemical Inspection, School of Public Health, Shandong University, Jinan, Shandong250012, People’s Republic of China
| | - Shuai Wang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong250012, People’s Republic of China
| | - Chunyang Fu
- Department of Physical and Chemical Inspection, School of Public Health, Shandong University, Jinan, Shandong250012, People’s Republic of China
| | - Jiayi Zeng
- Department of Physical and Chemical Inspection, School of Public Health, Shandong University, Jinan, Shandong250012, People’s Republic of China
| | - Xiaodong He
- Department of Physical and Chemical Inspection, School of Public Health, Shandong University, Jinan, Shandong250012, People’s Republic of China
- Shandong Provincial Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Shandong University, Jinan, Shandong250012, People’s Republic of China
| |
Collapse
|
30
|
Yu N, Van Dyke TE. Periodontitis: a host mediated disruption of microbial homeostasis. CURRENT ORAL HEALTH REPORTS 2020; 7:3-11. [PMID: 34113536 PMCID: PMC8189440 DOI: 10.1007/s40496-020-00256-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW In a prolific scientific career, Dr. Robert J. Genco dedicated himself to enriching our understanding of the pathogenesis of periodontitis. During a period of time in the 1970s and 1980s, when periodontitis was considered a classic infectious disease, Bob had the foresight to investigate and characterize the immune/inflammatory response in periodontitis, particularly Juvenile Periodontitis. His leadership in this area brought to the fore our appreciation of host-microbiome interactions that many years later (2008) culminated in the realization that periodontitis is a fundamental inflammatory disease. In this review, the question of how the host regulates the inflammatory response will be addressed in the context of how more recently-discovered pathways of resolution of inflammation play a role in disease pathogenesis. RECENT FINDINGS The host inflammatory response to commensal organisms creates excess inflammation in susceptible individuals and likely drives the dysbiosis of the oral microbiome observed in people with Periodontitis. In periodontal health, the oral microbiome is in balance with the host response. It is the loss of this symbiotic relationship with excess inflammation and microbiome dysbiosis that characterizes progressive disease. In recent years, the role of mediators of resolution of inflammation in the loss of balance and their potential use as therapeutics to restore homeostasis has extended our knowledge of how the host drives immune responses to affect oral dysbiosis. SUMMARY Dr. Genco provided the foundation for our ever-emerging understanding host-microbial interactions. The discovery of inflammation resolution pathways has furthered our knowledge in periodontal homeostasis. More studies are needed to understand how the host regulates the microbiome to fulfill the ultimate goal of more efficient therapeutics for periodontitis and related inflammatory diseases.
Collapse
Affiliation(s)
- Ning Yu
- Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA, USA; The Forsyth Institute, 245 First Street, Cambridge, MA, 02142
| | - Thomas E. Van Dyke
- Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
31
|
Thomas RM, Jobin C. Microbiota in pancreatic health and disease: the next frontier in microbiome research. Nat Rev Gastroenterol Hepatol 2020; 17:53-64. [PMID: 31811279 DOI: 10.1038/s41575-019-0242-7] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2019] [Indexed: 12/12/2022]
Abstract
Diseases intrinsic to the pancreas such as pancreatitis, pancreatic cancer and type 1 diabetes mellitus impart substantial health and financial burdens on society but identification of novel mechanisms contributing to these pathologies are slow to emerge. A novel area of research suggests that pancreatic-specific disorders might be modulated by the gut microbiota, either through a local (direct pancreatic influence) or in a remote (nonpancreatic) fashion. In this Perspectives, we examine literature implicating microorganisms in diseases of the pancreas, specifically pancreatitis, type 1 diabetes mellitus and pancreatic ductal adenocarcinoma. We also discuss evidence of an inherent pancreatic microbiota and the influence of the intestinal microbiota as it relates to disease association and development. In doing so, we address pitfalls in the current literature and areas of investigation that are needed to advance a developing field of research that has clinical potential to reduce the societal burden of pancreatic diseases.
Collapse
Affiliation(s)
- Ryan M Thomas
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA.,Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Christian Jobin
- Department of Medicine, Division of Gastroenterology, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
32
|
Falcone M, Fousteri G. Role of the PD-1/PD-L1 Dyad in the Maintenance of Pancreatic Immune Tolerance for Prevention of Type 1 Diabetes. Front Endocrinol (Lausanne) 2020; 11:569. [PMID: 32973682 PMCID: PMC7466754 DOI: 10.3389/fendo.2020.00569] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
The human pancreas, like almost all organs in the human body, is immunologically tolerated despite the presence of innate and adaptive immune cells that promptly mediate protective immune responses against pathogens in situ. The PD-1/PD-L1 inhibitory pathway seems to play a key role in the maintenance of immune tolerance systemically and within the pancreatic tissue. Tissue resident memory T cells (TRM), T regulatory cells (Treg), macrophages and even β cells exhibit PD-1 or PD-L1 expression that contributes in controlling pancreatic immune homeostasis and tolerance. Dysregulation of the PD-1/PD-L1 axis as shown by animal studies and our recent experience with checkpoint inhibitory blockade in humans can lead to immune dysfunctions leading to chronic inflammatory disease and to type 1 diabetes (T1D) in genetically susceptible individuals. In this review, we discuss the role of the PD-1/PD-L1 axis in pancreatic tissue homeostasis and tolerance, speculate how genetic and environmental factors can regulate the PD-1/PD-L1 pathway, and discuss PD-1/PD-L1-based therapeutic approaches for pancreatic islet transplantation and T1D treatment.
Collapse
|
33
|
Pearson JA, Tai N, Ekanayake-Alper DK, Peng J, Hu Y, Hager K, Compton S, Wong FS, Smith PC, Wen L. Norovirus Changes Susceptibility to Type 1 Diabetes by Altering Intestinal Microbiota and Immune Cell Functions. Front Immunol 2019; 10:2654. [PMID: 31798584 PMCID: PMC6863139 DOI: 10.3389/fimmu.2019.02654] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/28/2019] [Indexed: 01/10/2023] Open
Abstract
Environmental factors contribute to Type 1 diabetes (T1D) susceptibility. The gut microbiome, which includes bacteria, viruses, and fungi, contributes to this environmental influence, and can induce immunological changes. The gut viral component of the microbiome, related to T1D has mostly focused on coxsackieviruses and rotavirus. The role of norovirus, another common enteric virus, in susceptibility to T1D was hitherto unknown. Norovirus is highly infectious and encountered by many children. We studied the mouse norovirus 4 (MNV4), related to human noroviruses, in the Non-obese diabetic (NOD) mouse model, to determine its role in influencing susceptibility to T1D. We infected MNV-free NOD mice with MNV4 by exposing the mice to MNV4-positive bedding from an endemically-infected mouse colony to mimic a natural infection. Control MNV-free NOD mice were exposed to MNV-free bedding from the same colony. Interestingly, MNV4 infection protected NOD mice from the development of T1D and was associated with an expansion of Tregs and reduced proinflammatory T cells. We also found MNV4 significantly modified the gut commensal bacteria composition, promoting increased α-diversity and Firmicutes/Bacteroidetes ratio. To elucidate whether T1D protection was directly related to MNV4, or indirectly through modulating gut microbiota, we colonized germ-free (GF) NOD mice with the MNV4-containing or non-MNV4-containing viral filtrate, isolated from filtered fecal material. We found that MNV4 induced significant changes in mucosal immunity, including altered Tuft cell markers, cytokine secretion, antiviral immune signaling markers, and the concentration of mucosal antibodies. Systemically, MNV4-infection altered the immune cells including B cell subsets, macrophages and T cells, and especially induced an increase in Treg number and function. Furthermore, in vitro primary exposure of the norovirus filtrate to naïve splenocytes identified significant increases in the proportion of activated and CTLA4-expressing Tregs. Our data provide novel knowledge that norovirus can protect NOD mice from T1D development by inducing the expansion of Tregs and reducing inflammatory T cells. Our study also highlights the importance of distinguishing the mucosal immunity mediated by bacteria from that by enteric viruses.
Collapse
Affiliation(s)
- James A. Pearson
- Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Ningwen Tai
- Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Dilrukshi K. Ekanayake-Alper
- Colombia Center for Transplant Immunology and Institute of Comparative Medicine, Columbia University Medical Center, Colombia University, New York, NY, United States
- Department of Comparative Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Jian Peng
- Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Youjia Hu
- Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Karl Hager
- Department of Lab Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Susan Compton
- Department of Comparative Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - F. Susan Wong
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Peter C. Smith
- Department of Comparative Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Li Wen
- Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
34
|
Zheng S, Zhao T, Yuan S, Yang L, Ding J, Cui L, Xu M. Immunodeficiency Promotes Adaptive Alterations of Host Gut Microbiome: An Observational Metagenomic Study in Mice. Front Microbiol 2019; 10:2415. [PMID: 31781050 PMCID: PMC6853035 DOI: 10.3389/fmicb.2019.02415] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/07/2019] [Indexed: 12/15/2022] Open
Abstract
The crosstalk between the gut microbiota and immune state of the host is an essential focus in academia and clinics. To explore the dynamic role of the microbiota in response to immune deficiency, we comprehensively assessed the microbiome of 90 mouse fecal samples, across three time points including two immunodeficiency models, namely severe combined immunodeficient (SCID) mice and non-obese diabetic SCID (NOD/SCID) mice, with BALB/cA as a control strain. Metagenomic analysis revealed a decrease in alpha diversity and the existence of a clear structural separation in the microbiota of immunodeficient mice. Although nuances exist between SCID and NOD/SCID mice, an increase in the protective microbiota, in particular Lactobacillus, contributed the most to the discrimination of immunodeficient and control mice. Further data regarding the red blood cell (RBC) concentration and serum IgA level during different stages of development support the concept of the microbiota alleviating the advancement of immune deficiency, which is called microbial compensation. Taken together, these results demonstrate the dynamic impact of immunodeficiency on the gut microbiota and the adaptive alteration of the microbiota that may influence the host state.
Collapse
Affiliation(s)
- Shuyu Zheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Zhao
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuijuan Yuan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lingyu Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jinmei Ding
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Cui
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Mingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Holohan DR, Van Gool F, Bluestone JA. Thymically-derived Foxp3+ regulatory T cells are the primary regulators of type 1 diabetes in the non-obese diabetic mouse model. PLoS One 2019; 14:e0217728. [PMID: 31647813 PMCID: PMC6812862 DOI: 10.1371/journal.pone.0217728] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/03/2019] [Indexed: 01/07/2023] Open
Abstract
Regulatory T cells (Tregs) are an immunosuppressive population that are identified based on the stable expression of the fate-determining transcription factor forkhead box P3 (Foxp3). Tregs can be divided into distinct subsets based on whether they developed in the thymus (tTregs) or in the periphery (pTregs). Whether there are unique functional roles that distinguish pTregs and tTregs remains largely unclear. To elucidate these functions, efforts have been made to specifically identify and modify individual Treg subsets. Deletion of the conserved non-coding sequence (CNS)1 in the Foxp3 locus leads to selective impairment of pTreg generation without disrupting tTreg generation in the C57BL/6J background. Using CRISPR-Cas9 genome editing technology, we removed the Foxp3 CNS1 region in the non-obese diabetic (NOD) mouse model of spontaneous type 1 diabetes mellitus (T1D) to determine if pTregs contribute to autoimmune regulation. Deletion of CNS1 impaired in vitro induction of Foxp3 in naïve NOD CD4+ T cells, but it did not alter Tregs in most lymphoid and non-lymphoid tissues analyzed except for the large intestine lamina propria, where a small but significant decrease in RORγt+ Tregs and corresponding increase in Helios+ Tregs was observed in NOD CNS1-/- mice. CNS1 deletion also did not alter the development of T1D or glucose tolerance despite increased pancreatic insulitis in pre-diabetic female NOD CNS1-/- mice. Furthermore, the proportions of autoreactive Tregs and conventional T cells (Tconvs) within pancreatic islets were unchanged. These results suggest that pTregs dependent on the Foxp3 CNS1 region are not the dominant regulatory population controlling T1D in the NOD mouse model.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- DNA-Binding Proteins/metabolism
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Disease Models, Animal
- Female
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Forkhead Transcription Factors/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Transcription Factors/genetics
- Transcription Factors/immunology
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Daniel R. Holohan
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States of America
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, United States of America
| | - Frédéric Van Gool
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States of America
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, United States of America
| | - Jeffrey A. Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States of America
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
36
|
Depletion of dietary aryl hydrocarbon receptor ligands alters microbiota composition and function. Sci Rep 2019; 9:14724. [PMID: 31604984 PMCID: PMC6789125 DOI: 10.1038/s41598-019-51194-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
The intestinal microbiota is critical for maintaining homeostasis. Dysbiosis, an imbalance in the microbial community, contributes to the susceptibility of several diseases. Many factors are known to influence gut microbial composition, including diet. We have previously shown that fecal immunoglobulin (Ig) A levels are decreased in mice fed a diet free of aryl hydrocarbon receptor (AhR) ligands. Here, we hypothesize this IgA decrease is secondary to diet-induced dysbiosis. We assigned mice to a conventional diet, an AhR ligand-free diet, or an AhR ligand-free diet supplemented with the dietary AhR ligand indole-3-carbinol (I3C). We observed a global alteration of fecal microbiota upon dietary AhR ligand deprivation. Compared to mice on the conventional diet, family Erysipelotrichaceae was enriched in the feces of mice on the AhR ligand-free diet but returned to normal levels upon dietary supplementation with I3C. Faecalibaculum rodentium, an Erysipelotrichaceae species, depleted its growth media of AhR ligands. Cultured fecal bacteria from mice on the AhR ligand-free diet, but not the other two diets, were able to alter IgA levels in vitro, as was F. rodentium alone. Our data point to the critical role of AhR dietary ligands in shaping the composition and proper functioning of gut microbiota.
Collapse
|
37
|
Li BY, Xu XY, Gan RY, Sun QC, Meng JM, Shang A, Mao QQ, Li HB. Targeting Gut Microbiota for the Prevention and Management of Diabetes Mellitus by Dietary Natural Products. Foods 2019; 8:E440. [PMID: 31557941 PMCID: PMC6835620 DOI: 10.3390/foods8100440] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus is one of the biggest public health concerns worldwide, which includes type 1 diabetes mellitus, type 2 diabetes mellitus, gestational diabetes mellitus, and other rare forms of diabetes mellitus. Accumulating evidence has revealed that intestinal microbiota is closely associated with the initiation and progression of diabetes mellitus. In addition, various dietary natural products and their bioactive components have exhibited anti-diabetic activity by modulating intestinal microbiota. This review addresses the relationship between gut microbiota and diabetes mellitus, and discusses the effects of natural products on diabetes mellitus and its complications by modulating gut microbiota, with special attention paid to the mechanisms of action. It is hoped that this review paper can be helpful for better understanding of the relationships among natural products, gut microbiota, and diabetes mellitus.
Collapse
Affiliation(s)
- Bang-Yan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China.
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Quan-Cai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jin-Ming Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Evidence is mounting that disturbances in the gut microbiota play a role in the rising incidence of type 1 diabetes (T1D) and new technologies are expanding our ability to understand microbial function and host interactions. Longitudinal data from large cohorts of children at risk of T1D are nor solidifying our understanding of the function of the microbiota in this disease. RECENT FINDINGS Although taxonomic changes in the gut microbiota associated with T1D are relatively modest, a functional defect in production of short-chain fatty acids (SCFAs) remains as a unifying feature across multiple studies and populations. Dysbiosis of the microbiota in T1D has been linked to decreased gut barrier and exocrine pancreas function. We explore factors contributing to the disturbed microbiota in T1D such as infant diet, probiotic use and genetic risk linked to defective immune regulation. We also discuss the interplay between immunotherapy, the gut immune response and the microbiota. SUMMARY Functional alterations in the microbiota are linked to pathogenesis of T1D and these findings provide a rationale for future investigations aimed at establishing a healthy microbiota and promoting SCFA production and prevention of T1D.
Collapse
Affiliation(s)
- Patrick G Gavin
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | | |
Collapse
|
39
|
Miranda MCG, Oliveira RP, Torres L, Aguiar SLF, Pinheiro-Rosa N, Lemos L, Guimarães MA, Reis D, Silveira T, Ferreira Ê, Moreira TG, Cara DC, Maioli TU, Kelsall BL, Carlos D, Faria AMC. Frontline Science: Abnormalities in the gut mucosa of non-obese diabetic mice precede the onset of type 1 diabetes. J Leukoc Biol 2019; 106:513-529. [PMID: 31313381 DOI: 10.1002/jlb.3hi0119-024rr] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 06/06/2019] [Accepted: 06/27/2019] [Indexed: 12/15/2022] Open
Abstract
Alterations in the composition of the intestinal microbiota have been associated with development of type 1 diabetes (T1D), but little is known about changes in intestinal homeostasis that contribute to disease pathogenesis. Here, we analyzed oral tolerance induction, components of the intestinal barrier, fecal microbiota, and immune cell phenotypes in non-obese diabetic (NOD) mice during disease progression compared to non-obese diabetes resistant (NOR) mice. NOD mice failed to develop oral tolerance and had defective protective/regulatory mechanisms in the intestinal mucosa, including decreased numbers of goblet cells, diminished mucus production, and lower levels of total and bacteria-bound secretory IgA, as well as an altered IEL profile. These disturbances correlated with bacteria translocation to the pancreatic lymph node possibly contributing to T1D onset. The composition of the fecal microbiota was altered in pre-diabetic NOD mice, and cross-fostering of NOD mice by NOR mothers corrected their defect in mucus production, indicating a role for NOD microbiota in gut barrier dysfunction. NOD mice had a reduction of CD103+ dendritic cells (DCs) in the MLNs, together with an increase of effector Th17 cells and ILC3, as well as a decrease of Th2 cells, ILC2, and Treg cells in the small intestine. Importantly, most of these gut alterations precede the onset of insulitis. Disorders in the intestinal mucosa of NOD mice can potentially interfere with the development of T1D due the close relationship between the gut and the pancreas. Understanding these early alterations is important for the design of novel therapeutic strategies for T1D prevention.
Collapse
Affiliation(s)
- Mariana Camila Gonçalves Miranda
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Lícia Torres
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sarah Leão Fiorini Aguiar
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Natalia Pinheiro-Rosa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luísa Lemos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro Andrade Guimarães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela Reis
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiany Silveira
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ênio Ferreira
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thaís Garcias Moreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Denise Carmona Cara
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiani Uceli Maioli
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Brian L Kelsall
- Laboratory of Molecular Immunology, NIAID, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniela Carlos
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana Maria Caetano Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Instituto de Investigação em Imunologia (iii), São Paulo, Brazil
| |
Collapse
|