1
|
Peck EG, Holleran KM, Curry AM, Holter KM, Estave PM, Sens JP, Locke JL, Ortelli OA, George BE, Dawes MH, West AM, Alexander NJ, Kiraly DD, Farris SP, Gould RW, McCool BA, Jones SR. Synaptogyrin-3 Prevents Cocaine Addiction and Dopamine Deficits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.27.605436. [PMID: 39211138 PMCID: PMC11361146 DOI: 10.1101/2024.07.27.605436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Synaptogyrin-3, a functionally obscure synaptic vesicle protein, interacts with vesicular monoamine and dopamine transporters, bringing together dopamine release and reuptake sites. Synaptogyrin-3 was reduced by chronic cocaine exposure in both humans and rats, and synaptogyrin-3 levels inversely correlated with motivation to take cocaine in rats. Synaptogyrin-3 overexpression in dopamine neurons reduced cocaine self-administration, decreased anxiety-like behavior, and enhanced cognitive flexibility. Overexpression also enhanced nucleus accumbens dopamine signaling and prevented cocaine-induced deficits, suggesting a putative therapeutic role for synaptogyrin-3 in cocaine use disorder.
Collapse
|
2
|
Siegel AE, Bianchi DW, Guedj F. Visual discrimination and inhibitory control deficits in mouse models of Down syndrome: A pilot study using rodent touchscreen technology. J Neurosci Res 2023; 101:492-507. [PMID: 36602162 PMCID: PMC10068543 DOI: 10.1002/jnr.25160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023]
Abstract
Several non-verbal cognitive and behavioral tests have been developed to assess learning deficits in humans with Down syndrome (DS). Here we used rodent touchscreen paradigms in adult male mice to investigate visual discrimination (VD) learning and inhibitory control in the Dp(16)1/Yey (C57BL/6J genetic background), Ts65Dn (mixed B6 X C3H genetic background) and Ts1Cje (C57BL/6J genetic background) mouse models of DS. Dp(16)1/Yey and Ts1Cje models did not exhibit motivation or learning deficits during early pre-training, however, Ts1Cje mice showed a significant learning delay after the introduction of the incorrect stimulus (late pre-training), suggesting prefrontal cortex defects in this model. Dp(16)1/Yey and Ts1Cje mice display learning deficits in VD but these deficits were more pronounced in the Dp(16)1/Yey model. Both models also exhibited compulsive behavior and abnormal cortical inhibitory control during Extinction compared to WT littermates. Finally, Ts65Dn mice outperformed WT littermates in pre-training stages by initiating a significantly higher number of trials due to their hyperactive behavior. Both Ts65Dn and WT littermates showed poor performance during late pre-training and were not tested in VD. These studies demonstrate significant learning deficits and compulsive behavior in the Ts1Cje and Dp(16)1/Yey mouse models of DS. They also demonstrate that the mouse genetic background (C57BL/6J vs. mixed B6 X C3H) and the absence of hyperactive behavior are key determinants of successful learning in touchscreen behavioral testing. These data will be used to select the mouse model that best mimics cognitive deficits in humans with DS and evaluate the effects of future therapeutic interventions.
Collapse
Affiliation(s)
- Ashley Emily Siegel
- Prenatal Genomics and Therapy (PGT) Section, Center for Precision Health Research (CPHR), National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Mother Infant Research Institute (MIRI), Tufts Medical Center (TMC), Boston, Massachusetts, USA
| | - Diana W. Bianchi
- Prenatal Genomics and Therapy (PGT) Section, Center for Precision Health Research (CPHR), National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Mother Infant Research Institute (MIRI), Tufts Medical Center (TMC), Boston, Massachusetts, USA
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Faycal Guedj
- Prenatal Genomics and Therapy (PGT) Section, Center for Precision Health Research (CPHR), National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Mother Infant Research Institute (MIRI), Tufts Medical Center (TMC), Boston, Massachusetts, USA
| |
Collapse
|
3
|
Eleftheriou C, Clarke T, Poon V, Zechner M, Duguid I. Visiomode: An open-source platform for building rodent touchscreen-based behavioral assays. J Neurosci Methods 2023; 386:109779. [PMID: 36621552 PMCID: PMC10375831 DOI: 10.1016/j.jneumeth.2022.109779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Touchscreen-based behavioral assays provide a robust method for assessing cognitive behavior in rodents, offering great flexibility and translational potential. The development of touchscreen assays presents a significant programming and mechanical engineering challenge, where commercial solutions can be prohibitively expensive and open-source solutions are underdeveloped, with limited adaptability. NEW METHOD Here, we present Visiomode (www.visiomode.org), an open-source platform for building rodent touchscreen-based behavioral tasks. Visiomode leverages the inherent flexibility of touchscreens to offer a simple yet adaptable software and hardware platform. The platform is built on the Raspberry Pi computer combining a web-based interface and powerful plug-in system with an operant chamber that can be adapted to generate a wide range of behavioral tasks. RESULTS As a proof of concept, we use Visiomode to build both simple stimulus-response and more complex visual discrimination tasks, showing that mice display rapid sensorimotor learning including switching between different motor responses (i.e., nose poke versus reaching). COMPARISON WITH EXISTING METHODS Commercial solutions are the 'go to' for rodent touchscreen behaviors, but the associated costs can be prohibitive, limiting their uptake by the wider neuroscience community. While several open-source solutions have been developed, efforts so far have focused on reducing the cost, rather than promoting ease of use and adaptability. Visiomode addresses these unmet needs providing a low-cost, extensible platform for creating touchscreen tasks. CONCLUSIONS Developing an open-source, rapidly scalable and low-cost platform for building touchscreen-based behavioral assays should increase uptake across the science community and accelerate the investigation of cognition, decision-making and sensorimotor behaviors both in health and disease.
Collapse
Affiliation(s)
- Constantinos Eleftheriou
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK; Centre for Discovery Brain Sciences and Patrick Wild Centre, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| | - Thomas Clarke
- Centre for Discovery Brain Sciences and Patrick Wild Centre, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - V Poon
- Centre for Discovery Brain Sciences and Patrick Wild Centre, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Marie Zechner
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK
| | - Ian Duguid
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK; Centre for Discovery Brain Sciences and Patrick Wild Centre, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
4
|
Cotter KM, Bancroft GL, Haas HA, Shi R, Clarkson AN, Croxall ME, Stowe AM, Yun S, Eisch AJ. Use of an Automated Mouse Touchscreen Platform for Quantification of Cognitive Deficits After Central Nervous System Injury. Methods Mol Biol 2023; 2616:279-326. [PMID: 36715942 DOI: 10.1007/978-1-0716-2926-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Analyzing cognitive performance is an important aspect of assessing physiological deficits after stroke or other central nervous system (CNS) injuries in both humans and in basic science animal models. Cognitive testing on an automated touchscreen operant platform began in humans but is now increasingly popular in preclinical studies as it enables testing in many cognitive domains in a highly reproducible way while minimizing stress to the laboratory animal. Here, we describe the step-by-step setup and application of four operant touchscreen tests used on adult mice. In brief, mice are trained to touch a graphical image on a lit screen and initiate subsequent trials for a reward. Following initial training, mice can be tested on tasks that probe performance in many cognitive domains and thus infer the integrity of brain circuits and regions. There are already many outstanding published protocols on touchscreen cognitive testing. This chapter is designed to add to the literature in two specific ways. First, this chapter provides in a single location practical, behind-the-scenes tips for setup and testing of mice in four touchscreen tasks that are useful to assess in CNS injury models: Paired Associates Learning (PAL), a task of episodic, associative (object-location) memory; Location Discrimination Reversal (LDR), a test for mnemonic discrimination (also called behavioral pattern separation) and cognitive flexibility; Autoshaping (AUTO), a test of Pavlovian or classical conditioning; and Extinction (EXT), tasks of stimulus-response and response inhibition, respectively. Second, this chapter summarizes issues to consider when performing touchscreen tests in mouse models of CNS injury. Quantifying gross and fine aspects of cognitive function is essential to improved treatment for brain dysfunction after stroke or CNS injury as well as other brain diseases, and touchscreen testing provides a sensitive, reliable, and robust way to achieve this.
Collapse
Affiliation(s)
- Katherine M Cotter
- Department of Neurology, Department of Neuroscience, The University of Kentucky, Lexington, KY, USA
| | | | | | - Raymon Shi
- University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew N Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | | | - Ann M Stowe
- Department of Neurology, Department of Neuroscience, The University of Kentucky, Lexington, KY, USA
| | - Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA. .,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Amelia J Eisch
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA. .,Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Glutamatergic dysfunction leads to a hyper-dopaminergic phenotype through deficits in short-term habituation: a mechanism for aberrant salience. Mol Psychiatry 2023; 28:579-587. [PMID: 36460723 PMCID: PMC9908551 DOI: 10.1038/s41380-022-01861-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 12/05/2022]
Abstract
Psychosis in disorders like schizophrenia is commonly associated with aberrant salience and elevated striatal dopamine. However, the underlying cause(s) of this hyper-dopaminergic state remain elusive. Various lines of evidence point to glutamatergic dysfunction and impairments in synaptic plasticity in the etiology of schizophrenia, including deficits associated with the GluA1 AMPAR subunit. GluA1 knockout (Gria1-/-) mice provide a model of impaired synaptic plasticity in schizophrenia and exhibit a selective deficit in a form of short-term memory which underlies short-term habituation. As such, these mice are unable to reduce attention to recently presented stimuli. In this study we used fast-scan cyclic voltammetry to measure phasic dopamine responses in the nucleus accumbens of Gria1-/- mice to determine whether this behavioral phenotype might be a key driver of a hyper-dopaminergic state. There was no effect of GluA1 deletion on electrically-evoked dopamine responses in anaesthetized mice, demonstrating normal endogenous release properties of dopamine neurons in Gria1-/- mice. Furthermore, dopamine signals were initially similar in Gria1-/- mice compared to controls in response to both sucrose rewards and neutral light stimuli. They were also equally sensitive to changes in the magnitude of delivered rewards. In contrast, however, these stimulus-evoked dopamine signals failed to habituate with repeated presentations in Gria1-/- mice, resulting in a task-relevant, hyper-dopaminergic phenotype. Thus, here we show that GluA1 dysfunction, resulting in impaired short-term habituation, is a key driver of enhanced striatal dopamine responses, which may be an important contributor to aberrant salience and psychosis in psychiatric disorders like schizophrenia.
Collapse
|
6
|
Dogra S, Conn PJ. Metabotropic Glutamate Receptors As Emerging Targets for the Treatment of Schizophrenia. Mol Pharmacol 2022; 101:275-285. [PMID: 35246479 PMCID: PMC9092465 DOI: 10.1124/molpharm.121.000460] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
Accumulating evidence of glutamatergic abnormalities in the brains of schizophrenia patients has led to efforts to target various components of glutamatergic signaling as potential new approaches for schizophrenia. Exciting research suggests that metabotropic glutamate (mGlu) receptors could provide a fundamentally new approach for better symptomatic relief in patients with schizophrenia. In preclinical studies, the mGlu5 receptor positive allosteric modulators (PAMs) show efficacy in animal models relevant for all symptom domains in schizophrenia. Interestingly, biased pure mGlu5 receptor PAMs that do not potentiate coupling of mGlu5 receptors to N-methyl-D-aspartate (NMDA) receptors lack neurotoxic effects associated with mGlu5 PAMs that enhance coupling to NMDA receptors or have allosteric agonist activity. This provides a better therapeutic profile for treating schizophrenia-like symptoms. Additionally, the mGlu1 receptor PAMs modulate dopamine release in the striatum, which may contribute to their antipsychotic-like effects. Besides group I mGlu (mGlu1 and mGlu5) receptors, agonists of mGlu2/3 receptors also induce robust antipsychotic-like and procognitive effects in rodents and may be effective in treating symptoms of schizophrenia in a selective group of patients. Additionally, mGlu2/4 receptor heterodimers modulate glutamatergic neurotransmission in the prefrontal cortex at selective synapses activated in schizophrenia and therefore hold potential as novel antipsychotics. Excitingly, the mGlu3 receptor activation can enhance cognition in rodents, suggesting that mGlu3 receptor agonist/PAM could provide a novel approach for the treatment of cognitive deficits in schizophrenia. Collectively, the development of mGlu receptor-specific ligands may provide an alternative approach to meet the clinical need for safer and more efficacious therapeutics for schizophrenia. SIGNIFICANCE STATEMENT: The currently available antipsychotic medications do not show significant efficacy for treating negative symptoms and cognitive deficits in schizophrenia. Emerging preclinical and clinical literature suggests that pharmacological targeting of metabotropic glutamate receptors could potentially provide an alternative approach for designing safer and more efficacious therapeutics for treating schizophrenia.
Collapse
Affiliation(s)
- Shalini Dogra
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - P Jeffrey Conn
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
7
|
Santos RPM, Ribeiro R, Ferreira-Vieira TH, Aires RD, de Souza JM, Oliveira BS, Lima ALD, de Oliveira ACP, Reis HJ, de Miranda AS, Vieira EML, Ribeiro FM, Vieira LB. Metabotropic glutamate receptor 5 knockout rescues obesity phenotype in a mouse model of Huntington's disease. Sci Rep 2022; 12:5621. [PMID: 35379852 PMCID: PMC8980063 DOI: 10.1038/s41598-022-08924-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity represents a global health problem and is characterized by metabolic dysfunctions and a low-grade chronic inflammatory state, which can increase the risk of comorbidities, such as atherosclerosis, diabetes and insulin resistance. Here we tested the hypothesis that the genetic deletion of metabotropic glutamate receptor 5 (mGluR5) may rescue metabolic and inflammatory features present in BACHD mice, a mouse model of Huntington's disease (HD) with an obese phenotype. For that, we crossed BACHD and mGluR5 knockout mice (mGluR5-/-) in order to obtain the following groups: Wild type (WT), mGluR5-/-, BACHD and BACHD/mGluR5-/- (double mutant mice). Our results showed that the double mutant mice present decreased body weight as compared to BACHD mice in all tested ages and reduced visceral adiposity as compared to BACHD at 6 months of age. Additionally, 12-month-old double mutant mice present increased adipose tissue levels of adiponectin, decreased leptin levels, and increased IL-10/TNF ratio as compared to BACHD mice. Taken together, our preliminary data propose that the absence of mGluR5 reduce weight gain and visceral adiposity in BACHD mice, along with a decrease in the inflammatory state in the visceral adipose tissue (VAT), which may indicate that mGluR5 may play a role in adiposity modulation.
Collapse
Affiliation(s)
- Rebeca P M Santos
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Roberta Ribeiro
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Talita H Ferreira-Vieira
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
- Faculdade Sete Lagoas, Sete Lagoas, Brazil
| | - Rosaria D Aires
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
- Faculdade Sete Lagoas, Sete Lagoas, Brazil
| | - Jessica M de Souza
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Bruna S Oliveira
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anna Luiza D Lima
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Antônio Carlos P de Oliveira
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Helton J Reis
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Aline S de Miranda
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Erica M L Vieira
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Fabiola M Ribeiro
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil.
| | - Luciene B Vieira
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil.
| |
Collapse
|
8
|
Openshaw RL, Pratt JA, Morris BJ. The schizophrenia risk gene Map2k7 regulates responding in a novel contingency-shifting rodent touchscreen gambling task. Dis Model Mech 2022; 15:274684. [PMID: 35275161 PMCID: PMC8922023 DOI: 10.1242/dmm.049310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/22/2021] [Indexed: 11/20/2022] Open
Abstract
In schizophrenia, subjects show reduced ability to evaluate and update risk/reward contingencies, showing correspondingly suboptimal performance in the Iowa gambling task. JNK signalling gene variants are associated with schizophrenia risk, and JNK modulates aspects of cognition. We therefore studied the performance of mice hemizygous for genetic deletion of the JNK activator MKK7 (Map2k7+/- mice) in a touchscreen version of the Iowa gambling task, additionally incorporating a novel contingency-switching stage. Map2k7+/- mice performed slightly better than wild-type (WT) littermates in acquisition and performance of the task. Although Map2k7+/- mice adapted well to subtle changes in risk/reward contingencies, they were profoundly impaired when the positions of 'best' and 'worst' choice selections were switched, and still avoided the previous 'worst' choice location weeks after the switch. This demonstrates a precise role for MKK7-JNK signalling in flexibility of risk/reward assessment and suggests that genetic variants affecting this molecular pathway may underlie impairment in this cognitive domain in schizophrenia. Importantly, this new contingency shift adaptation of the rodent touchscreen gambling task has translational utility for characterising these cognitive subprocesses in models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rebecca L Openshaw
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Judith A Pratt
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Brian J Morris
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
9
|
Groman SM, Thompson SL, Lee D, Taylor JR. Reinforcement learning detuned in addiction: integrative and translational approaches. Trends Neurosci 2022; 45:96-105. [PMID: 34920884 PMCID: PMC8770604 DOI: 10.1016/j.tins.2021.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/04/2021] [Accepted: 11/19/2021] [Indexed: 02/03/2023]
Abstract
Suboptimal decision-making strategies have been proposed to contribute to the pathophysiology of addiction. Decision-making, however, arises from a collection of computational components that can independently influence behavior. Disruptions in these different components can lead to decision-making deficits that appear similar behaviorally, but differ at the computational, and likely the neurobiological, level. Here, we discuss recent studies that have used computational approaches to investigate the decision-making processes underlying addiction. Studies in animal models have found that value updating following positive, but not negative, outcomes is predictive of drug use, whereas value updating following negative, but not positive, outcomes is disrupted following drug self-administration. We contextualize these findings with studies on the circuit and biological mechanisms of decision-making to develop a framework for revealing the biobehavioral mechanisms of addiction.
Collapse
Affiliation(s)
- Stephanie M. Groman
- Department of Neuroscience, University of Minnesota,Department of Psychiatry, Yale University,Correspondence to be directed to: Stephanie Groman, 321 Church Street SE, 4-125 Jackson Hall Minneapolis MN 55455,
| | | | - Daeyeol Lee
- The Zanvyl Krieger Mind/Brain Institute, The Solomon H Snyder Department of Neuroscience, Department of Psychological and Brain Sciences, Kavli Neuroscience Discovery Institute, Johns Hopkins University
| | - Jane R. Taylor
- Department of Psychiatry, Yale University,Department of Neuroscience, Yale University,Department of Psychology, Yale University
| |
Collapse
|
10
|
Lopez-Cruz L, Bussey TJ, Saksida LM, Heath CJ. Using touchscreen-delivered cognitive assessments to address the principles of the 3Rs in behavioral sciences. Lab Anim (NY) 2021; 50:174-184. [PMID: 34140683 DOI: 10.1038/s41684-021-00791-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023]
Abstract
Despite considerable advances in both in silico and in vitro approaches, in vivo studies that involve animal model systems remain necessary in many research disciplines. Neuroscience is one such area, with studies often requiring access to a complete nervous system capable of dynamically selecting between and then executing a full range of cognitive and behavioral outputs in response to a given stimulus or other manipulation. The involvement of animals in research studies is an issue of active public debate and concern and is therefore carefully regulated. Such regulations are based on the principles of the 3Rs of Replacement, Reduction and Refinement. In the sub-specialty of behavioral neuroscience, Full/Absolute Replacement remains a major challenge, as the complete ex vivo recapitulation of a system as complex and dynamic as the nervous system has yet to be achieved. However, a number of very positive developments have occurred in this area with respect to Relative Replacement and to both Refinement and Reduction. In this review, we discuss the Refinement- and Reduction-related benefits yielded by the introduction of touchscreen-based behavioral assessment apparatus. We also discuss how data generated by a specific panel of behavioral tasks developed for this platform might substantially enhance monitoring of laboratory animal welfare and provide robust, quantitative comparisons of husbandry techniques to define and ensure maintenance of best practice.
Collapse
Affiliation(s)
- Laura Lopez-Cruz
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK. .,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK.
| | - Timothy J Bussey
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.,Robarts Research Institute & Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,The Brain and Mind Institute, Western University, London, Ontario, Canada
| | - Lisa M Saksida
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.,Robarts Research Institute & Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,The Brain and Mind Institute, Western University, London, Ontario, Canada
| | - Christopher J Heath
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| |
Collapse
|
11
|
Tran BN, Valek L, Wilken-Schmitz A, Fuhrmann DC, Namgaladze D, Wittig I, Tegeder I. Reduced exploratory behavior in neuronal nucleoredoxin knockout mice. Redox Biol 2021; 45:102054. [PMID: 34198070 PMCID: PMC8254043 DOI: 10.1016/j.redox.2021.102054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/07/2022] Open
Abstract
Nucleoredoxin is a thioredoxin-like redoxin that has been recognized as redox modulator of WNT signaling. Using a Yeast-2-Hybrid screen, we identified calcium calmodulin kinase 2a, Camk2a, as a prominent prey in a brain library. Camk2a is crucial for nitric oxide dependent processes of neuronal plasticity of learning and memory. Therefore, the present study assessed functions of NXN in neuronal Nestin-NXN-/- deficient mice. The NXN-Camk2a interaction was confirmed by coimmunoprecipitation, and by colocalization in neuropil and dendritic spines. Functionally, Camk2a activity was reduced in NXN deficient neurons and restored with recombinant NXN. Proteomics revealed reduced oxidation in the hippocampus of Nestin-NXN-/- deficient mice, including Camk2a, further synaptic and mitochondrial proteins, and was associated with a reduction of mitochondrial respiration. Nestin-NXN-/- mice were healthy and behaved normally in behavioral tests of anxiety, activity and sociability. They had no cognitive deficits in touchscreen based learning & memory tasks, but omitted more trials showing a lower interest in the reward. They also engaged less in rewarding voluntary wheel running, and in exploratory behavior in IntelliCages. Accuracy was enhanced owing to the loss of exploration. The data suggested that NXN maintained the oxidative state of Camk2a and thereby its activity. In addition, it supported oxidation of other synaptic and mitochondrial proteins, and mitochondrial respiration. The loss of NXN-dependent pro-oxidative functions manifested in a loss of exploratory drive and reduced interest in reward in behaving mice.
Collapse
Affiliation(s)
- Bao Ngoc Tran
- Institute of Clinical Pharmacology, Goethe-University, Medical Faculty, Frankfurt, Germany
| | - Lucie Valek
- Institute of Clinical Pharmacology, Goethe-University, Medical Faculty, Frankfurt, Germany
| | - Annett Wilken-Schmitz
- Institute of Clinical Pharmacology, Goethe-University, Medical Faculty, Frankfurt, Germany
| | | | - Dimitry Namgaladze
- Institute of Biochemistry I, Goethe-University, Medical Faculty, Frankfurt, Germany
| | - Ilka Wittig
- Functional Proteomics Group, Institute of Cardiovascular Physiology, Goethe-University, Medical Faculty, Frankfurt, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University, Medical Faculty, Frankfurt, Germany.
| |
Collapse
|
12
|
Palmer D, Dumont JR, Dexter TD, Prado MAM, Finger E, Bussey TJ, Saksida LM. Touchscreen cognitive testing: Cross-species translation and co-clinical trials in neurodegenerative and neuropsychiatric disease. Neurobiol Learn Mem 2021; 182:107443. [PMID: 33895351 DOI: 10.1016/j.nlm.2021.107443] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 02/06/2021] [Accepted: 02/26/2021] [Indexed: 01/06/2023]
Abstract
Translating results from pre-clinical animal studies to successful human clinical trials in neurodegenerative and neuropsychiatric disease presents a significant challenge. While this issue is clearly multifaceted, the lack of reproducibility and poor translational validity of many paradigms used to assess cognition in animal models are central contributors to this challenge. Computer-automated cognitive test batteries have the potential to substantially improve translation between pre-clinical studies and clinical trials by increasing both reproducibility and translational validity. Given the structured nature of data output, computer-automated tests also lend themselves to increased data sharing and other open science good practices. Over the past two decades, computer automated, touchscreen-based cognitive testing methods have been developed for non-human primate and rodent models. These automated methods lend themselves to increased standardization, hence reproducibility, and have become increasingly important for the elucidation of the neurobiological basis of cognition in animal models. More recently, there have been increased efforts to use these methods to enhance translational validity by developing task batteries that are nearly identical across different species via forward (i.e., translating animal tasks to humans) and reverse (i.e., translating human tasks to animals) translation. An additional benefit of the touchscreen approach is that a cross-species cognitive test battery makes it possible to implement co-clinical trials-an approach developed initially in cancer research-for novel treatments for neurodegenerative disorders. Co-clinical trials bring together pre-clinical and early clinical studies, which facilitates testing of novel treatments in mouse models with underlying genetic or other changes, and can help to stratify patients on the basis of genetic, molecular, or cognitive criteria. This approach can help to determine which patients should be enrolled in specific clinical trials and can facilitate repositioning and/or repurposing of previously approved drugs. This has the potential to mitigate the resources required to study treatment responses in large numbers of human patients.
Collapse
Affiliation(s)
- Daniel Palmer
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada.
| | - Julie R Dumont
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; BrainsCAN, The University of Western Ontario, Ontario, Canada
| | - Tyler D Dexter
- Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada; Graduate Program in Neuroscience, The University of Western Ontario, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada; Graduate Program in Neuroscience, The University of Western Ontario, Ontario, Canada; Department of Anatomy and Cell Biology, The University of Western Ontario, Ontario, Canada
| | - Elizabeth Finger
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Clinical Neurological Sciences, The University of Western Ontario, Ontario, Canada; Lawson Health Research Institute, Ontario, Canada; Parkwood Institute, St. Josephs Health Care, Ontario, Canada
| | - Timothy J Bussey
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada; Brain and Mind Institute, The University of Western Ontario, Ontario, Canada
| | - Lisa M Saksida
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada; Brain and Mind Institute, The University of Western Ontario, Ontario, Canada
| |
Collapse
|
13
|
Gregory KJ, Goudet C. International Union of Basic and Clinical Pharmacology. CXI. Pharmacology, Signaling, and Physiology of Metabotropic Glutamate Receptors. Pharmacol Rev 2020; 73:521-569. [PMID: 33361406 DOI: 10.1124/pr.119.019133] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors respond to glutamate, the major excitatory neurotransmitter in the mammalian brain, mediating a modulatory role that is critical for higher-order brain functions such as learning and memory. Since the first mGlu receptor was cloned in 1992, eight subtypes have been identified along with many isoforms and splice variants. The mGlu receptors are transmembrane-spanning proteins belonging to the class C G protein-coupled receptor family and represent attractive targets for a multitude of central nervous system disorders. Concerted drug discovery efforts over the past three decades have yielded a wealth of pharmacological tools including subtype-selective agents that competitively block or mimic the actions of glutamate or act allosterically via distinct sites to enhance or inhibit receptor activity. Herein, we review the physiologic and pathophysiological roles for individual mGlu receptor subtypes including the pleiotropic nature of intracellular signal transduction arising from each. We provide a comprehensive analysis of the in vitro and in vivo pharmacological properties of prototypical and commercially available orthosteric agonists and antagonists as well as allosteric modulators, including ligands that have entered clinical trials. Finally, we highlight emerging areas of research that hold promise to facilitate rational design of highly selective mGlu receptor-targeting therapeutics in the future. SIGNIFICANCE STATEMENT: The metabotropic glutamate receptors are attractive therapeutic targets for a range of psychiatric and neurological disorders. Over the past three decades, intense discovery efforts have yielded diverse pharmacological tools acting either competitively or allosterically, which have enabled dissection of fundamental biological process modulated by metabotropic glutamate receptors and established proof of concept for many therapeutic indications. We review metabotropic glutamate receptor molecular pharmacology and highlight emerging areas that are offering new avenues to selectively modulate neurotransmission.
Collapse
Affiliation(s)
- Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| | - Cyril Goudet
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| |
Collapse
|
14
|
Hatzipantelis C, Langiu M, Vandekolk TH, Pierce TL, Nithianantharajah J, Stewart GD, Langmead CJ. Translation-Focused Approaches to GPCR Drug Discovery for Cognitive Impairments Associated with Schizophrenia. ACS Pharmacol Transl Sci 2020; 3:1042-1062. [PMID: 33344888 PMCID: PMC7737210 DOI: 10.1021/acsptsci.0c00117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Indexed: 01/07/2023]
Abstract
There are no effective therapeutics for cognitive impairments associated with schizophrenia (CIAS), which includes deficits in executive functions (working memory and cognitive flexibility) and episodic memory. Compounds that have entered clinical trials are inadequate in terms of efficacy and/or tolerability, highlighting a clear translational bottleneck and a need for a cohesive preclinical drug development strategy. In this review we propose hippocampal-prefrontal-cortical (HPC-PFC) circuitry underlying CIAS-relevant cognitive processes across mammalian species as a target source to guide the translation-focused discovery and development of novel, procognitive agents. We highlight several G protein-coupled receptors (GPCRs) enriched within HPC-PFC circuitry as therapeutic targets of interest, including noncanonical approaches (biased agonism and allosteric modulation) to conventional clinical targets, such as dopamine and muscarinic acetylcholine receptors, along with prospective novel targets, including the orphan receptors GPR52 and GPR139. We also describe the translational limitations of popular preclinical cognition tests and suggest touchscreen-based assays that probe cognitive functions reliant on HPC-PFC circuitry and reflect tests used in the clinic, as tests of greater translational relevance. Combining pharmacological and behavioral testing strategies based in HPC-PFC circuit function creates a cohesive, translation-focused approach to preclinical drug development that may improve the translational bottleneck currently hindering the development of treatments for CIAS.
Collapse
Affiliation(s)
- Cassandra
J. Hatzipantelis
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Monica Langiu
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Teresa H. Vandekolk
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Tracie L. Pierce
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jess Nithianantharajah
- Florey
Institute of Neuroscience
and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Gregory D. Stewart
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Christopher J. Langmead
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
15
|
Houlton J, Barwick D, Clarkson AN. Frontal cortex stroke-induced impairment in spatial working memory on the trial-unique nonmatching-to-location task in mice. Neurobiol Learn Mem 2020; 177:107355. [PMID: 33276070 DOI: 10.1016/j.nlm.2020.107355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/27/2020] [Accepted: 11/29/2020] [Indexed: 12/21/2022]
Abstract
Stroke-induced cognitive impairments are of significant concern, however mechanisms that underpin these impairments remain poorly understood and researched. To further characterise cognitive impairments in our frontal cortex stroke model, and to align our assessments with what is used clinically, we tested young C57BL/6J mice trained in operant touchscreen chambers to complete the trial-unique nonmatched-to-location (TUNL) task. Based on baseline performance, animals were given either stroke (n = 12) or sham (n = 12) surgery using a photothrombosis model, bilaterally targeting the frontal cortex. Upon recovery, post-stroke spatial working memory was assessed by varying the degree of separation and delay within TUNL trials. Seven weeks after surgery, animals received a prelimbic injection of the retrograde tracer cholera toxin B (CTB) to access thalamo-PFC connectivity. Tissue was then processed histologically and immunohistochemically to assess infarct volume, astrogliosis and thalamocortical connectivity. Assessment of TUNL probes revealed sensitivity to a frontal cortex stroke (separation: p = 0.0003, delay: p < 0.0001), with stroke animals taking significantly longer (p = 0.0170) during reacquisition of the TUNL task, relative to shams. CTB-positive cell counts revealed a stroke-induced loss of thalamo-PFC connectivity. In addition, quantification of reactive astrogliosis revealed a positive correlation between the degree of astrogliosis expanding into white matter tracts and the development of cognitive impairments. This study reveals a stroke-induced impairment in mice completing the TUNL task. Our findings also demonstrate a significant loss of thalamo-PFC connections and a correlation between white matter reactive astrogliosis and cognitive impairment. Future experiments will investigate therapeutic interventions in the hope of promoting functional improvement in cognition.
Collapse
Affiliation(s)
- Josh Houlton
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand
| | - Deanna Barwick
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand
| | - Andrew N Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
16
|
Gubert C, Kong G, Uzungil V, Zeleznikow-Johnston AM, Burrows EL, Renoir T, Hannan AJ. Microbiome Profiling Reveals Gut Dysbiosis in the Metabotropic Glutamate Receptor 5 Knockout Mouse Model of Schizophrenia. Front Cell Dev Biol 2020; 8:582320. [PMID: 33195226 PMCID: PMC7658610 DOI: 10.3389/fcell.2020.582320] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/08/2020] [Indexed: 01/03/2023] Open
Abstract
Schizophrenia (SZ) is a psychiatric disorder that constitutes one of the top 10 global causes of disability. More recently, a potential pathogenic role for the gut microbial community (microbiota) has been highlighted, with numerous studies describing dysregulated microbial profiles in SZ patients when compared to healthy controls. However, no animal model of SZ has previously recapitulated the gut dysbiosis observed clinically. Since the metabotropic glutamate receptor 5 (mGlu5) knockout mice provide a preclinical model of SZ with strong face and predictive validity, in the present study we performed gut microbiome profiling of mGlu5 knockout (KO) and wild-type (WT) mice by 16S rRNA sequencing of bacterial genomic DNA from fecal samples, analyzing bacterial diversity and taxonomic composition, as well as gastrointestinal parameters as indicators of gut function. We found a significant genotype difference in microbial beta diversity. Analysis of composition of microbiomes (ANCOM) models were performed to evaluate microbiota compositions, which identified a decreased relative abundance of the Erysipelotrichaceae family and Allobaculum genus in this mouse model of SZ. We also identified a signature of bacteria discriminating between the genotypes (KO and WT), consisting of the Erysipelotrichales, Bacteroidales, and Clostridiales orders and macroscopic gut differences. We thus uncovered global differential community composition in the gut microbiota profile between mGlu5 KO and WT mice, outlining the first evidence for gut dysbiosis in a genetic animal model of SZ. Our findings suggest that this widely used preclinical model of SZ also has substantial utility for investigations of gut dysbiosis and associated signaling via the microbiota-gut-brain axis, as potential modulators of SZ pathogenesis. Our discovery opens up new avenues to explore gut dysbiosis and its proposed links to brain dysfunction in SZ, as well as novel therapeutic approaches to this devastating disorder.
Collapse
Affiliation(s)
- Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Geraldine Kong
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Volkan Uzungil
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | | | - Emma L. Burrows
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Anthony J. Hannan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
17
|
Mosser CA, Haqqee Z, Nieto-Posadas A, Murai KK, Stifani S, Williams S, Brandon MP. The McGill-Mouse-Miniscope platform: A standardized approach for high-throughput imaging of neuronal dynamics during behavior. GENES BRAIN AND BEHAVIOR 2020; 20:e12686. [PMID: 32691490 DOI: 10.1111/gbb.12686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Understanding the rules that govern neuronal dynamics throughout the brain to subserve behavior and cognition remains one of the biggest challenges in neuroscience research. Recent technical advances enable the recording of increasingly larger neuronal populations to produce increasingly more sophisticated datasets. Despite bold and important open-science and data-sharing policies, these datasets tend to include unique data acquisition methods, behaviors, and file structures. Discrepancies between experimental protocols present key challenges in comparing data between laboratories and across different brain regions and species. Here, we discuss our recent efforts to create a standardized and high-throughput research platform to address these issues. The McGill-Mouse-Miniscope (M3) platform is an initiative to combine miniscope calcium imaging with standardized touchscreen-based animal behavioral testing. The goal is to curate an open-source and standardized framework for acquiring, analyzing, and accessing high-quality data of the neuronal dynamics that underly cognition throughout the brain in mice, marmosets, and models of disease. We end with a discussion of future developments and a call for users to adopt this standardized approach.
Collapse
Affiliation(s)
- Coralie-Anne Mosser
- Psychiatry Department, McGill University, Douglas Hospital Research Center, Montreal, Quebec, Canada
| | - Zeeshan Haqqee
- Psychiatry Department, McGill University, Douglas Hospital Research Center, Montreal, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Andrés Nieto-Posadas
- Psychiatry Department, McGill University, Douglas Hospital Research Center, Montreal, Quebec, Canada
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sylvain Williams
- Psychiatry Department, McGill University, Douglas Hospital Research Center, Montreal, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Mark P Brandon
- Psychiatry Department, McGill University, Douglas Hospital Research Center, Montreal, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Prevention of age-associated neuronal hyperexcitability with improved learning and attention upon knockout or antagonism of LPAR2. Cell Mol Life Sci 2020; 78:1029-1050. [PMID: 32468095 PMCID: PMC7897625 DOI: 10.1007/s00018-020-03553-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/16/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022]
Abstract
Recent studies suggest that synaptic lysophosphatidic acids (LPAs) augment glutamate-dependent cortical excitability and sensory information processing in mice and humans via presynaptic LPAR2 activation. Here, we studied the consequences of LPAR2 deletion or antagonism on various aspects of cognition using a set of behavioral and electrophysiological analyses. Hippocampal neuronal network activity was decreased in middle-aged LPAR2−/− mice, whereas hippocampal long-term potentiation (LTP) was increased suggesting cognitive advantages of LPAR2−/− mice. In line with the lower excitability, RNAseq studies revealed reduced transcription of neuronal activity markers in the dentate gyrus of the hippocampus in naïve LPAR2−/− mice, including ARC, FOS, FOSB, NR4A, NPAS4 and EGR2. LPAR2−/− mice behaved similarly to wild-type controls in maze tests of spatial or social learning and memory but showed faster and accurate responses in a 5-choice serial reaction touchscreen task requiring high attention and fast spatial discrimination. In IntelliCage learning experiments, LPAR2−/− were less active during daytime but normally active at night, and showed higher accuracy and attention to LED cues during active times. Overall, they maintained equal or superior licking success with fewer trials. Pharmacological block of the LPAR2 receptor recapitulated the LPAR2−/− phenotype, which was characterized by economic corner usage, stronger daytime resting behavior and higher proportions of correct trials. We conclude that LPAR2 stabilizes neuronal network excitability upon aging and allows for more efficient use of resting periods, better memory consolidation and better performance in tasks requiring high selective attention. Therapeutic LPAR2 antagonism may alleviate aging-associated cognitive dysfunctions.
Collapse
|
19
|
Charlton AJ, May C, Luikinga SJ, Burrows EL, Hyun Kim J, Lawrence AJ, Perry CJ. Chronic voluntary alcohol consumption causes persistent cognitive deficits and cortical cell loss in a rodent model. Sci Rep 2019; 9:18651. [PMID: 31819151 PMCID: PMC6901469 DOI: 10.1038/s41598-019-55095-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic alcohol use is associated with cognitive decline that impedes behavioral change during rehabilitation. Despite this, addiction therapy does not address cognitive deficits, and there is poor understanding regarding the mechanisms that underlie this decline. We established a rodent model of chronic voluntary alcohol use to measure ensuing cognitive effects and underlying pathology. Rats had intermittent access to alcohol or an isocaloric solution in their home cage under voluntary 2-bottle choice conditions. In Experiments 1 and 2 cognition was assessed using operant touchscreen chambers. We examined performance in a visual discrimination and reversal task (Experiment 1), and a 5-choice serial reaction time task (Experiment 2). For Experiment 3, rats were perfused immediately after cessation of alcohol access period, and volume, cell density and microglial populations were assessed in the prefrontal cortex and striatum. Volume was assessed using the Cavalieri probe, while cell and microglial counts were estimated using unbiased stereology with an optical fractionator. Alcohol-exposed and control rats showed comparable acquisition of pairwise discrimination; however, performance was impaired when contingencies were reversed indicating reduced behavioral flexibility. When tested in a 5-choice serial reaction time task alcohol-exposed rats showed increased compulsivity and increased attentional bias towards a reward associated cue. Consistent with these changes, we observed decreased cell density in the prefrontal cortex. These findings confirm a detrimental effect of chronic alcohol and establish a model of alcohol-induced cognitive decline following long-term voluntary intake that may be used for future intervention studies.
Collapse
Affiliation(s)
- Annai J Charlton
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Carlos May
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Sophia J Luikinga
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Emma L Burrows
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jee Hyun Kim
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Andrew J Lawrence
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Christina J Perry
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
20
|
Rogers J, Chen F, Stanic D, Farzana F, Li S, Zeleznikow-Johnston AM, Nithianantharajah J, Churilov L, Adlard PA, Lanfumey L, Hannan AJ, Renoir T. Paradoxical effects of exercise on hippocampal plasticity and cognition in mice with a heterozygous null mutation in the serotonin transporter gene. Br J Pharmacol 2019; 176:3279-3296. [PMID: 31167040 DOI: 10.1111/bph.14760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Exercise is known to improve cognitive function, but the exact synaptic and cellular mechanisms remain unclear. We investigated the potential role of the serotonin (5-HT) transporter (SERT) in mediating these effects. EXPERIMENTAL APPROACH Hippocampal long-term potentiation (LTP) and neurogenesis were measured in standard-housed and exercising (wheel running) wild-type (WT) and SERT heterozygous (HET) mice. We also assessed hippocampal-dependent cognition using the Morris water maze (MWM) and a spatial pattern separation touchscreen task. KEY RESULTS SERT HET mice had impaired hippocampal LTP regardless of the housing conditions. Exercise increased hippocampal neurogenesis in WT mice. However, this was not observed in SERT HET animals, even though both genotypes used the running wheels to a similar extent. We also found that standard-housed SERT HET mice displayed altered cognitive flexibility than WT littermate controls in the MWM reversal learning task. However, SERT HET mice no longer exhibited this phenotype after exercise. Cognitive changes, specific to SERT HET mice in the exercise condition, were also revealed on the touchscreen spatial pattern separation task, especially when the cognitive pattern separation load was at its highest. CONCLUSIONS AND IMPLICATIONS Our study is the first evidence of reduced hippocampal LTP in SERT HET mice. We also show that functional SERT is required for exercise-induced increase in adult neurogenesis. Paradoxically, exercise had a negative impact on hippocampal-dependent cognitive tasks, especially in SERT HET mice. Taken together, our results suggest unique complex interactions between exercise and altered 5-HT homeostasis.
Collapse
Affiliation(s)
- Jake Rogers
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Feng Chen
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Davor Stanic
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Farheen Farzana
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Shanshan Li
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Ariel M Zeleznikow-Johnston
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Jess Nithianantharajah
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Leonid Churilov
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia.,School of Mathematical and Geospatial Sciences, RMIT University, Melbourne, VIC, Australia
| | - Paul A Adlard
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Laurence Lanfumey
- UMR S894, Université Paris Descartes, Paris, France.,Centre de Psychiatrie et Neurosciences, Inserm UMR 894, Paris, France
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Huang X, Wang M, Zhang Q, Chen X, Wu J. The role of glutamate receptors in attention-deficit/hyperactivity disorder: From physiology to disease. Am J Med Genet B Neuropsychiatr Genet 2019; 180:272-286. [PMID: 30953404 DOI: 10.1002/ajmg.b.32726] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/12/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is the most common psychiatric disorder in children and adolescents, which is characterized by behavioral problems such as attention deficit, hyperactivity, and impulsivity. As the receptors of the major excitatory neurotransmitter in the mammalian central nervous system (CNS), glutamate receptors (GluRs) are strongly linked to normal brain functioning and pathological processes. Extensive investigations have been made about the structure, function, and regulation of GluR family, describing evidences that support the disruption of these mechanisms in mental disorders, including ADHD. In this review, we briefly described the family and function of GluRs in the CNS, and discussed what is recently known about the role of GluRs in ADHD, that including GluR genes, animal models, and the treatment, which would help us further elucidate the etiology of ADHD.
Collapse
Affiliation(s)
- Xin Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinzhen Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Lim J, Kim E, Noh HJ, Kang S, Phillips BU, Kim DG, Bussey TJ, Saksida L, Heath CJ, Kim CH. Assessment of mGluR5 KO mice under conditions of low stress using a rodent touchscreen apparatus reveals impaired behavioural flexibility driven by perseverative responses. Mol Brain 2019; 12:37. [PMID: 30971312 PMCID: PMC6458840 DOI: 10.1186/s13041-019-0441-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/05/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic and pharmacological manipulations targeting metabotropic glutamate receptor 5 (mGluR5) affect performance in behavioural paradigms that depend on cognitive flexibility. Many of these studies involved exposing mice to highly stressful conditions including electric foot shocks or water immersion and forced swimming. Because mGluR5 is also implicated in resilience and stress responses, however, apparent impairments in inhibitory learning may have been an artifact of manipulation-induced changes in affective state. To address this, we present here a characterization of cognitive flexibility in mGluR5 knockout (KO) mice conducted with a rodent touchscreen cognitive assessment apparatus in which the animals experience significantly less stress. Our results indicate a significant reversal learning impairment relative to wild-type (WT) controls in the two-choice Visual Discrimination-Reversal (VDR) paradigm. Upon further analysis, we found that this deficit is primarily driven by a prolonged period of perseveration in the early phase of reversal. We also observed a similar perseveration phenotype in the KO mice in the Extinction (EXT) paradigm. In addition, mGluR5 KO mice show higher breakpoints in the touchscreen Progressive Ratio (PR) and altered decision making in the Effort-related Choice (ERC) tasks. Interestingly, this impairment in PR is an additional manifestation of an increased propensity to perseverate on the emission of relatively simplistic behavioural outputs. Together, these findings suggest that under conditions of low stress, mGluR5 KO mice exhibit a pronounced perseverative phenotype that blunts cognitive flexibility.
Collapse
Affiliation(s)
- Jisoo Lim
- Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Eosu Kim
- Department of Psychiatry, Institute of Behavioural Science in Medicine, BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Hyun Jong Noh
- Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Shinwon Kang
- Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Benjamin U Phillips
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| | - Dong Goo Kim
- Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Timothy J Bussey
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,Molecular Medicine Research Laboratories, Robarts Research Institute & Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Brain and Mind Institute, Western University, London, ON, Canada
| | - Lisa Saksida
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,Molecular Medicine Research Laboratories, Robarts Research Institute & Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Brain and Mind Institute, Western University, London, ON, Canada
| | - Christopher J Heath
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | - Chul Hoon Kim
- Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea. .,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
23
|
Ayabe T, Ohya R, Ano Y. Hop-Derived Iso-α-Acids in Beer Improve Visual Discrimination and Reversal Learning in Mice as Assessed by a Touch Panel Operant System. Front Behav Neurosci 2019; 13:67. [PMID: 31001094 PMCID: PMC6454052 DOI: 10.3389/fnbeh.2019.00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022] Open
Abstract
Dementia and cognitive decline have become worldwide health problems due to rapid growth of the aged population in many countries. We previously demonstrated that single or short-term administration of iso-α-acids, hop-derived bitter acids in beer, improves the spatial memory of scopolamine-induced amnesia model mice in the Y-maze and enhances novel object recognition in normal mice via activation of the vagus nerve and hippocampal dopaminergic system. However, these behavioral tests do not replicate the stimulus conditions or response requirements of human memory tests, and so may have poor translational validity. In this report, we investigated the effects of iso-α-acids on visual discrimination (VD) and reversal discrimination (RD) using a touch panel-based operant system similar to that used for human working memory tests. In the VD task, scopolamine treatment reduced correct response rate and prolonged response latency in mice, deficits reversed by prior oral administration of iso-α-acids. In the RD task, administration of iso-α-acids significantly increased correct response rate compared to vehicle administration. Previous studies have reported that dopamine signaling is involved in both VD and RD learning, suggesting that enhancement of dopamine release contributes to improved memory performance in mice treated with iso-α-acids. Taken together, iso-α-acids improve VD and RD learning, which are considered high-order cognitive functions. Given the translational advantages of the touch panel-based operant system, the present study suggests that iso-α-acids could be effective for improvement of working memory in human dementia patients.
Collapse
Affiliation(s)
- Tatsuhiro Ayabe
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd., Yokohama, Japan
| | - Rena Ohya
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd., Yokohama, Japan
| | - Yasuhisa Ano
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd., Yokohama, Japan
| |
Collapse
|