1
|
Wang W, Hong L, Shen Z, Zheng M, Meng H, Ye T, Lin Z, Chen L, Guo Y, He E. Molecular insights into the anti-spoilage effect of salicylic acid in Favorita potato processing. Food Chem 2024; 461:140823. [PMID: 39153374 DOI: 10.1016/j.foodchem.2024.140823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Salicylic acid is a commonly used anti-spoilage agent to prevent browning and quality degradation during potato processing, yet its precise mechanism remains unclear. This study elucidates the role of StuPPO2, a functional protein in Favorita potato shreds, in relation to the anti-browning and starch degradation effects of 52 SA analogues. By employing molecular docking and Gaussian computing, SA localizes within the hydrophobic cavity of StuPPO2, facilitated by hydroxyl and carboxyl groups. The inhibitory effect depends on the distribution pattern of the maximal electrostatic surface potential, requiring hydroxyl ion potentials of >56 kcal/mol and carboxyl ion potentials of >42 kcal/mol, respectively. Multiomics analysis, corroborated by validation tests, indicates that SA synthetically suppresses activities linked to defense response, root regeneration, starch degradation, glycoalkaloids metabolism, and potato shred discoloration, thereby preserving quality. Furthermore, SA enhances antimicrobial and insect-repellent aromas, thereby countering biotic threats in potato shreds. These collective mechanisms underscore SA's anti-spoilage properties, offering theoretical foundations and potential new anti-browning agents for agricultural preservatives.
Collapse
Affiliation(s)
- Wenhua Wang
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, Fujian 361006, China
| | - Liping Hong
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, Fujian 361006, China
| | - Zhijun Shen
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, Fujian 361006, China
| | - Mingqiong Zheng
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, Fujian 361006, China
| | - Hongyan Meng
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, Fujian 361006, China
| | - Ting Ye
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, Fujian 361006, China
| | - Zhikai Lin
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, Fujian 361006, China
| | - Lianghua Chen
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, Fujian 361006, China
| | - Ying Guo
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, Fujian 361006, China
| | - Enming He
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, Fujian 361006, China.
| |
Collapse
|
2
|
Yang J, Zhang Z, Li X, Guo L, Li C, Lai J, Han Y, Ye W, Miao Y, Deng M, Cao P, Zhang Y, Ding X, Zhang J, Yang J, Wang S. A gene cluster for polyamine transport and modification improves salt tolerance in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1706-1723. [PMID: 39401077 DOI: 10.1111/tpj.17074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/11/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
Polyamines act as protective compounds directly protecting plants from stress-related damage, while also acting as signaling molecules to participate in serious abiotic stresses. However, the molecular mechanisms underlying these effects are poorly understood. Here, we utilized metabolome genome-wide association study to investigate the polyamine content of wild and cultivated tomato accessions, and we discovered a new gene cluster that drove polyamine content during tomato domestication. The gene cluster contains two polyphenol oxidases (SlPPOE and SlPPOF), two BAHD acyltransferases (SlAT4 and SlAT5), a coumaroyl-CoA ligase (Sl4CL6), and a polyamine uptake transporter (SlPUT3). SlPUT3 mediates polyamine uptake and transport, while the five other genes are involved in polyamine modification. Further salt tolerance assays demonstrated that SlPPOE, SlPPOF, and SlAT5 overexpression lines showed greater phenolamide accumulation and salt tolerance as compared with wild-type (WT). Meanwhile, the exogenous application of Spm to SlPUT3-OE lines displayed salt tolerance compared with WT, while having the opposite effect in slput3 lines, confirms that the polyamine and phenolamide can play a protective role by alleviating cell damage. SlPUT3 interacted with SlPIP2;4, a H2O2 transport protein, to maintain H2O2 homeostasis. Polyamine-derived H2O2 linked Spm to stress responses, suggesting that Spm signaling activates stress response pathways. Collectively, our finding reveals that the H2O2-polyamine-phenolamide module coordinately enhanced tomato salt stress tolerance and provide a foundation for tomato stress-resistance breeding.
Collapse
Affiliation(s)
- Jie Yang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Zhonghui Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Xianggui Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Langchen Guo
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Chun Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Jun Lai
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Yige Han
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Weizhen Ye
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Yuanyuan Miao
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Meng Deng
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Peng Cao
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Yueran Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Xiangyu Ding
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Jianing Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Jun Yang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Shouchuang Wang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| |
Collapse
|
3
|
Pretzler M, Rompel A. Tyrosinases: a family of copper-containing metalloenzymes. CHEMTEXTS 2024; 10:12. [PMID: 39624788 PMCID: PMC11608171 DOI: 10.1007/s40828-024-00195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/15/2024] [Indexed: 12/08/2024]
Abstract
Tyrosinases (TYRs) are a family of copper-containing metalloenzymes that are present in all domains of life. TYRs catalyze the reactions that start the biosynthesis of melanin, the main pigment of the animal kingdom, and are also involved in the formation of the bright colors seen on the caps of mushrooms and in the petals of flowers. TYRs catalyze the ortho-hydroxylation and oxidation of phenols and the oxidation of catechols to the respective o-quinones. They only need molecular oxygen to do that, and the products of TYRs-o-quinones-are highly reactive and will usually react with the next available nucleophile. This reactivity can be harnessed for pharmaceutical applications as well as in environmental and food biotechnology. The majority of both basic and applied research on TYRs utilizes "mushroom tyrosinase", a crude enzyme preparation derived from button mushroom (Agaricus bisporus) fruiting bodies. Access to pure TYR preparations comes almost exclusively from the production of recombinant TYRs as the purification of these enzymes from the natural source is usually very laborious and plagued by low yields. In this text an introduction into the biochemistry of the enzyme TYR will be given, followed by an overview of available structural data of TYRs, the current model for the catalytic mechanism, a survey of reports on the recombinant production of this important metalloenzyme family, and a review of the applications of TYRs for the synthesis of catechols, as biosensors, in bioremediation, for the cross-linking of proteins and medical hydrogels as well as for melanoma treatment. Graphical Abstract
Collapse
Affiliation(s)
- Matthias Pretzler
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Annette Rompel
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
4
|
Zhang J, Tanaka Y, Ono A, Sato T, Suzuki T, Akimoto S, Tanaka Y, Iwami S, Iwamoto A, Tanaka N, Konno N, Suzuki T. Gene expression analysis for stem browning in the mushroom Lentinula edodes. MYCOSCIENCE 2024; 65:253-259. [PMID: 39720019 PMCID: PMC11666425 DOI: 10.47371/mycosci.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 12/26/2024]
Abstract
The mushroom Lentinula edodes, is consumed worldwide and has high industrial value because of its rich content of bioactive compounds such as ergothioneine and eritadenine. Currently, mainstream artificial cultivation methods for this mushroom typically use synthetic logs. However, browning of the stem's interior (stem browning) has been observed during the cultivation in some L. edodes strains. Although browning does not affect the taste or other qualities of the mushroom, it gives consumers a perception of "poor quality", and is a major challenge for producers. To identify the genes responsible for stem browning in this mushroom, we performed differential gene expression analysis during stem browning development and quantified it using real-time PCR. Our results indicated that certain oxidoreductases, such as tyrosinase and laccase, were significantly upregulated during the progression of stem browning. The results obtained in the present study provide valuable insights to address the problem of stem browning in mushroom L. edodes.
Collapse
Affiliation(s)
- Jili Zhang
- Center for Bioscience Research and Education, Utsunomiya University
| | - Yuki Tanaka
- Center for Bioscience Research and Education, Utsunomiya University
- Present address: Faculty of Food and Agricultural Sciences, Fukushima University
| | - Akiko Ono
- Center for Bioscience Research and Education, Utsunomiya University
- Present address: Faculty of Global Interdisciplinary Science and Innovation, Shizuoka University
| | - Takumi Sato
- Center for Bioscience Research and Education, Utsunomiya University
| | - Toshiyuki Suzuki
- Center for Bioscience Research and Education, Utsunomiya University
| | | | | | | | | | | | | | - Tomohiro Suzuki
- Center for Bioscience Research and Education, Utsunomiya University
| |
Collapse
|
5
|
Liu Y, Wang D, Li J, Zhang Z, Wang Y, Qiu C, Sun Y, Pan C. Research progress on the functions and biosynthesis of theaflavins. Food Chem 2024; 450:139285. [PMID: 38631203 DOI: 10.1016/j.foodchem.2024.139285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/28/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
Theaflavins are beneficial to human health due to various bioactivities. Biosynthesis of theaflavins using polyphenol oxidase (PPO) is advantageous due to cost effectiveness and environmental friendliness. In this review, studies on the mechanism of theaflavins formation, the procedures to screen and prepare PPOs, optimization of reaction systems and immobilization of PPOs were described. The challenges associated with the mass biosynthesis of theaflavins, such as poor enzyme activity, undesirable subproducts and inclusion bodies of recombinant PPOs were presented. Further strategies to solve these challenges and improve theaflavins production, including enzyme engineering, immobilization enzyme technology, water-immiscible solvent-water biphasic systems and recombinant enzyme technology, were proposed.
Collapse
Affiliation(s)
- Yufeng Liu
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Dongyang Wang
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Jing Li
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Zhen Zhang
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Yali Wang
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Chenxi Qiu
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Yujiao Sun
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Chunmei Pan
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China.
| |
Collapse
|
6
|
Shi C, Long H, Hu J, Guo X. Comparative Study of Flavonoid Profiles, Antioxidant, and Antiproliferative Activities in Hot-Air and Vacuum Drying of Different Parts of Pitaya ( Hylocereus undatus Britt) Flowers. Antioxidants (Basel) 2024; 13:956. [PMID: 39199202 PMCID: PMC11351529 DOI: 10.3390/antiox13080956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/03/2024] [Accepted: 08/04/2024] [Indexed: 09/01/2024] Open
Abstract
Pitaya flower, a medicinal and edible plant commonly used in tropical and subtropical regions, was the focus of this study, which compared the effects of hot-air drying (HAD) and vacuum drying (VD) on phytochemical profiles and biological activities of its four parts: calyx, petals, stamens, and pistils. Both drying methods significantly increased the total phenolic content (TPC) of pitaya flowers, with values ranging from 1.86 to 3.24 times higher than those of fresh samples. Twelve flavonoid compounds were identified in pitaya flowers, with the glycoside derivatives of three flavonols (kaempferol, isorhamnetin, and quercetin) being the most abundant. VD resulted in 1.15 times higher total flavonoid glycoside content than HAD, whereas in petals, HAD yielded a total flavonoid glycoside content 1.21 times higher than VD. Both HAD and VD effectively increased the antioxidant capacities of pitaya flowers, though the difference between the two methods was not significant. Additionally, both drying methods enhanced the antiproliferative activity of pitaya flowers, with HAD showing a more significant effect than VD. The present study emphasized the efficacy of drying methods for enhancing flavonoids in pitaya flowers and provided insights for functional products' innovation with different parts of pitaya flowers.
Collapse
Affiliation(s)
| | | | | | - Xinbo Guo
- School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Guangzhou 510640, China; (C.S.); (H.L.); (J.H.)
| |
Collapse
|
7
|
Di Costanzo LF. Structural characterization of tyrosinases and an update on human enzymes. Enzymes 2024; 56:55-83. [PMID: 39304291 DOI: 10.1016/bs.enz.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Tyrosinase, a pivotal enzyme in melanin biosynthesis, orchestrates the pigmentation process in humans, affecting skin, hair, and eye color. This chapter examines the three-dimensional structure and functional aspects of tyrosinases from various sources, highlighting their di-metal ion coordination crucial for catalytic activity. I explore the biochemical pathwayscheme catalyzed by tyrosinase, specifically the oxidation of L-tyrosine to L-dopaquinone, a precursor in melanin synthesis. Detailed structural analyses, including 3D structures obtained from X-ray crystallography and computational modeling, reveal key insights into the enzyme's active site, variations among tyrosinases, and substrate binding mechanisms. Furthermore, the chapter investigates the role of human tyrosinase variants, their inhibitors, essential for developing therapeutic and cosmetic applications targeting hyperpigmentation disorders. Structural characterizations of tyrosinase-inhibitor complexes provide a foundation for designing effective inhibitors, with compounds like kojic acid, L-mimosine, and (S)-3-amino-tyrosine demonstrating significant inhibitory potential. This comprehensive examination of the structure, function, and inhibition mechanisms of tyrosinase offers avenues for innovative treatments in biotechnology, health, and beyond.
Collapse
Affiliation(s)
- Luigi Franklin Di Costanzo
- Department of Agriculture, Department of Excellence, University of Naples Federico II, Palace of Portici, Piazza Carlo di Borbone, Portici NA, Italy.
| |
Collapse
|
8
|
Liu Y, Han X, Zhao M, Liu L, Deng Z, Zhao Q, Yu Y. Functional characterization of polyphenol oxidase OfPPO2 supports its involvement in parallel biosynthetic pathways of acteoside. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:927-941. [PMID: 38872484 DOI: 10.1111/tpj.16807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024]
Abstract
Acteoside is a bioactive phenylethanoid glycoside widely distributed throughout the plant kingdom. Because of its two catechol moieties, acteoside displays a variety of beneficial activities. The biosynthetic pathway of acteoside has been largely elucidated, but the assembly logic of two catechol moieties in acteoside remains unclear. Here, we identified a novel polyphenol oxidase OfPPO2 from Osmanthus fragrans, which could hydroxylate various monophenolic substrates, including tyrosine, tyrosol, tyramine, 4-hydroxyphenylacetaldehyde, salidroside, and osmanthuside A, leading to the formation of corresponding catechol-containing intermediates for acteoside biosynthesis. OfPPO2 could also convert osmanthuside B into acteoside, creating catechol moieties directly via post-modification of the acteoside skeleton. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis and subcellular localization assay further support the involvement of OfPPO2 in acteoside biosynthesis in planta. These findings suggest that the biosynthesis of acteoside in O. fragrans may follow "parallel routes" rather than the conventionally considered linear route. In support of this hypothesis, the glycosyltransferase OfUGT and the acyltransferase OfAT could direct the flux of diphenolic intermediates generated by OfPPO2 into acteoside. Significantly, OfPPO2 and its orthologs constitute a functionally conserved enzyme family that evolved independently from other known biosynthetic enzymes of acteoside, implying that the substrate promiscuity of this PPO family may offer acteoside-producing plants alternative ways to synthesize acteoside. Overall, this work expands our understanding of parallel pathways plants may employ to efficiently synthesize acteoside, a strategy that may contribute to plants' adaptation to environmental challenges.
Collapse
Affiliation(s)
- Yating Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan, P.R. China
| | - Xiaoyang Han
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan, P.R. China
| | - Mengya Zhao
- Department of Gynecologic Oncology, Zhongnan Hospital of Wuhan University; Women and Children's Hospital Affiliated to Zhongnan Hospital of Wuhan University, 185 East Lake Road, Wuhan, P.R. China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan, P.R. China
| | - Zixin Deng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan, P.R. China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan, P.R. China
| | - Yi Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan, P.R. China
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, 530007, China
| |
Collapse
|
9
|
Ferreira S, Balola A, Sveshnikova A, Hatzimanikatis V, Vilaça P, Maia P, Carreira R, Stoney R, Carbonell P, Souza CS, Correia J, Lousa D, Soares CM, Rocha I. Computer-aided design and implementation of efficient biosynthetic pathways to produce high added-value products derived from tyrosine in Escherichia coli. Front Bioeng Biotechnol 2024; 12:1360740. [PMID: 38978715 PMCID: PMC11228882 DOI: 10.3389/fbioe.2024.1360740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Developing efficient bioprocesses requires selecting the best biosynthetic pathways, which can be challenging and time-consuming due to the vast amount of data available in databases and literature. The extension of the shikimate pathway for the biosynthesis of commercially attractive molecules often involves promiscuous enzymes or lacks well-established routes. To address these challenges, we developed a computational workflow integrating enumeration/retrosynthesis algorithms, a toolbox for pathway analysis, enzyme selection tools, and a gene discovery pipeline, supported by manual curation and literature review. Our focus has been on implementing biosynthetic pathways for tyrosine-derived compounds, specifically L-3,4-dihydroxyphenylalanine (L-DOPA) and dopamine, with significant applications in health and nutrition. We selected one pathway to produce L-DOPA and two different pathways for dopamine-one already described in the literature and a novel pathway. Our goal was either to identify the most suitable gene candidates for expression in Escherichia coli for the known pathways or to discover innovative pathways. Although not all implemented pathways resulted in the accumulation of target compounds, in our shake-flask experiments we achieved a maximum L-DOPA titer of 0.71 g/L and dopamine titers of 0.29 and 0.21 g/L for known and novel pathways, respectively. In the case of L-DOPA, we utilized, for the first time, a mutant version of tyrosinase from Ralstonia solanacearum. Production of dopamine via the known biosynthesis route was accomplished by coupling the L-DOPA pathway with the expression of DOPA decarboxylase from Pseudomonas putida, resulting in a unique biosynthetic pathway never reported in literature before. In the context of the novel pathway, dopamine was produced using tyramine as the intermediate compound. To achieve this, tyrosine was initially converted into tyramine by expressing TDC from Levilactobacillus brevis, which, in turn, was converted into dopamine through the action of the enzyme encoded by ppoMP from Mucuna pruriens. This marks the first time that an alternative biosynthetic pathway for dopamine has been validated in microbes. These findings underscore the effectiveness of our computational workflow in facilitating pathway enumeration and selection, offering the potential to uncover novel biosynthetic routes, thus paving the way for other target compounds of biotechnological interest.
Collapse
Affiliation(s)
- Sofia Ferreira
- Systems and Synthetic Biology Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Alexandra Balola
- Systems and Synthetic Biology Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Anastasia Sveshnikova
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Paulo Vilaça
- SilicoLife-Computational Biology Solutions for the Life Sciences, Braga, Portugal
| | - Paulo Maia
- SilicoLife-Computational Biology Solutions for the Life Sciences, Braga, Portugal
| | - Rafael Carreira
- SilicoLife-Computational Biology Solutions for the Life Sciences, Braga, Portugal
| | - Ruth Stoney
- Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Pablo Carbonell
- Institute of Industrial Control Systems and Computing (AI2), Universitat Politècnica de València (UPV), Valencia, Spain
- Institute for Integrative Systems Biology I2SysBio, Universitat de València-CSIC: Consejo Superior de Investigaciones Científicas, Paterna, Spain
| | - Caio Silva Souza
- Protein Modelling Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - João Correia
- Protein Modelling Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Diana Lousa
- Protein Modelling Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Cláudio M Soares
- Protein Modelling Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Isabel Rocha
- Systems and Synthetic Biology Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|
10
|
Faure C, Min Ng Y, Belle C, Soler-Lopez M, Khettabi L, Saïdi M, Berthet N, Maresca M, Philouze C, Rachidi W, Réglier M, du Moulinet d'Hardemare A, Jamet H. Interactions of Phenylalanine Derivatives with Human Tyrosinase: Lessons from Experimental and Theoretical tudies. Chembiochem 2024; 25:e202400235. [PMID: 38642076 DOI: 10.1002/cbic.202400235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/22/2024]
Abstract
The pigmentation of the skin, modulated by different actors in melanogenesis, is mainly due to the melanins (protective pigments). In humans, these pigments' precursors are synthetized by an enzyme known as tyrosinase (TyH). The regulation of the enzyme activity by specific modulators (inhibitors or activators) can offer a means to fight hypo- and hyper-pigmentations responsible for medical, psychological and societal handicaps. Herein, we report the investigation of phenylalanine derivatives as TyH modulators. Interacting with the binuclear copper active site of the enzyme, phenylalanine derivatives combine effects induced by combination with known resorcinol inhibitors and natural substrate/intermediate (amino acid part). Computational studies including docking, molecular dynamics and free energy calculations combined with biological activity assays on isolated TyH and in human melanoma MNT-1 cells, and X-ray crystallography analyses with the TyH analogue Tyrp1, provide conclusive evidence of the interactions of phenylalanine derivatives with human tyrosinase. In particular, our findings indicate that an analogue of L-DOPA, namely (S)-3-amino-tyrosine, stands out as an amino phenol derivative with inhibitory properties against TyH.
Collapse
Affiliation(s)
- Clarisse Faure
- Université Grenoble Alpes, CNRS, Department of Molecular Chemistry (DCM, UMR 5250), 38058, Grenoble Cedex 9, France
| | - Yi Min Ng
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38053, Grenoble, France
| | - Catherine Belle
- Université Grenoble Alpes, CNRS, Department of Molecular Chemistry (DCM, UMR 5250), 38058, Grenoble Cedex 9, France
| | - Montserrat Soler-Lopez
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38053, Grenoble, France
| | - Lyna Khettabi
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38053, Grenoble, France
| | - Mélissa Saïdi
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38053, Grenoble, France
| | - Nathalie Berthet
- Université Grenoble Alpes, CNRS, Department of Molecular Chemistry (DCM, UMR 5250), 38058, Grenoble Cedex 9, France
| | - Marc Maresca
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France)
| | - Christian Philouze
- Université Grenoble Alpes, CNRS, Department of Molecular Chemistry (DCM, UMR 5250), 38058, Grenoble Cedex 9, France
| | - Walid Rachidi
- IRIG-BGE U1038, INSERM, Univ. Grenoble Alpes, Biomics, 38054, Grenoble, France
| | - Marius Réglier
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France)
| | | | - Hélène Jamet
- Université Grenoble Alpes, CNRS, Department of Molecular Chemistry (DCM, UMR 5250), 38058, Grenoble Cedex 9, France
| |
Collapse
|
11
|
Klčová B, Balarynová J, Trněný O, Krejčí P, Cechová MZ, Leonova T, Gorbach D, Frolova N, Kysil E, Orlova A, Ihling С, Frolov A, Bednář P, Smýkal P. Domestication has altered gene expression and secondary metabolites in pea seed coat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2269-2295. [PMID: 38578789 DOI: 10.1111/tpj.16734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/09/2024] [Indexed: 04/07/2024]
Abstract
The mature seed in legumes consists of an embryo and seed coat. In contrast to knowledge about the embryo, we know relatively little about the seed coat. We analyzed the gene expression during seed development using a panel of cultivated and wild pea genotypes. Gene co-expression analysis identified gene modules related to seed development, dormancy, and domestication. Oxidoreductase genes were found to be important components of developmental and domestication processes. Proteomic and metabolomic analysis revealed that domestication favored proteins involved in photosynthesis and protein metabolism at the expense of seed defense. Seed coats of wild peas were rich in cell wall-bound metabolites and the protective compounds predominated in their seed coats. Altogether, we have shown that domestication altered pea seed development and modified (mostly reduced) the transcripts along with the protein and metabolite composition of the seed coat, especially the content of the compounds involved in defense. We investigated dynamic profiles of selected identified phenolic and flavonoid metabolites across seed development. These compounds usually deteriorated the palatability and processing of the seeds. Our findings further provide resources to study secondary metabolism and strategies for improving the quality of legume seeds which comprise an important part of the human protein diet.
Collapse
Affiliation(s)
- Barbora Klčová
- Department of Botany, Faculty of Sciences, Palacky University, Šlechtitelů 27, Olomouc, 773 71, Czech Republic
| | - Jana Balarynová
- Department of Botany, Faculty of Sciences, Palacky University, Šlechtitelů 27, Olomouc, 773 71, Czech Republic
| | - Oldřich Trněný
- Agricultural Research Ltd., Zemědělská 1, Troubsko, 664 41, Czech Republic
| | - Petra Krejčí
- Department of Analytical Chemistry, Faculty of Sciences, Palacky University, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
| | - Monika Zajacová Cechová
- Department of Analytical Chemistry, Faculty of Sciences, Palacky University, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
| | - Tatiana Leonova
- Department of Bioorganic Chemistry, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, Halle (Saale), 06120, Germany
| | - Daria Gorbach
- Department of Bioorganic Chemistry, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, Halle (Saale), 06120, Germany
| | - Nadezhda Frolova
- Laboratory of Analytical Biochemistry, Timiryazev Institute of Plant Physiology, Botanicheskaja 36, Moscow, 127276, Russia
| | - Elana Kysil
- Department of Bioorganic Chemistry, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, Halle (Saale), 06120, Germany
| | - Anastasia Orlova
- Laboratory of Analytical Biochemistry, Timiryazev Institute of Plant Physiology, Botanicheskaja 36, Moscow, 127276, Russia
| | - Сhristian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle (Saale), 06120, Germany
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry, Timiryazev Institute of Plant Physiology, Botanicheskaja 36, Moscow, 127276, Russia
| | - Petr Bednář
- Department of Analytical Chemistry, Faculty of Sciences, Palacky University, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
| | - Petr Smýkal
- Department of Botany, Faculty of Sciences, Palacky University, Šlechtitelů 27, Olomouc, 773 71, Czech Republic
| |
Collapse
|
12
|
Derardja AE, Pretzler M, Barkat M, Rompel A. Extraction, Purification, and Characterization of Olive ( Olea europaea L., cv. Chemlal) Polyphenol Oxidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3099-3112. [PMID: 38291573 PMCID: PMC10870767 DOI: 10.1021/acs.jafc.3c07776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/10/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024]
Abstract
Among fruits susceptible to enzymatic browning, olive polyphenol oxidase (OePPO) stood out as being unisolated from a natural source until this study, wherein we successfully purified and characterized the enzyme. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of heated and nonheated OePPO revealed distinct molecular weights of 35 and 54 kDa, respectively, indicative of its oligomeric nature comprising active and C-terminal subunits. OePPO displayed latency, fully activating with 5 mM SDS under optimal conditions of pH 7.5 and 15 °C. The enzyme demonstrated monophenolase activity and showcased the highest efficiency toward hydroxytyrosol. Despite its low optimal temperature, OePPO exhibited high thermal resistance, maintaining stability up to 90 °C. However, beyond this threshold, the oligomeric enzyme disassociated, yielding a denatured main subunit and C-terminal fragments. Six OePPO genes were found in the fruits. Tryptic digestion identified the enzyme as mature OePPO1 (INSDC OY733096), while mass spectrometry detected the active form mass alongside several C-terminal fragments, revealing potential cleavage sites (Gly407, Tyr408).
Collapse
Affiliation(s)
- Ala eddine Derardja
- Universität
Wien, Fakultät für Chemie,
Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090 Wien, Austria
- Laboratoire
Bioqual, INATAA, Université Frères
Mentouri, Constantine
1, Route de Ain El-Bey, 25000 Constantine, Algeria
| | - Matthias Pretzler
- Universität
Wien, Fakultät für Chemie,
Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090 Wien, Austria
| | - Malika Barkat
- Laboratoire
Bioqual, INATAA, Université Frères
Mentouri, Constantine
1, Route de Ain El-Bey, 25000 Constantine, Algeria
| | - Annette Rompel
- Universität
Wien, Fakultät für Chemie,
Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090 Wien, Austria
| |
Collapse
|
13
|
Zou C, Zhang X, Xu Y, Yin J. Recent Advances Regarding Polyphenol Oxidase in Camellia sinensis: Extraction, Purification, Characterization, and Application. Foods 2024; 13:545. [PMID: 38397522 PMCID: PMC10887689 DOI: 10.3390/foods13040545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Polyphenol oxidase (PPO) is an important metalloenzyme in the tea plant (Camellia sinensis). However, there has recently been a lack of comprehensive reviews on Camellia sinensis PPO. In this study, the methods for extracting PPO from Camellia sinensis, including acetone extraction, buffer extraction, and surfactant extraction, are compared in detail. The main purification methods for Camellia sinensis PPO, such as ammonium sulfate precipitation, three-phase partitioning, dialysis, ultrafiltration, ion exchange chromatography, gel filtration chromatography, and affinity chromatography, are summarized. PPOs from different sources of tea plants are characterized and systematically compared in terms of optimal pH, optimal temperature, molecular weight, substrate specificity, and activators and inhibitors. In addition, the applications of PPO in tea processing and the in vitro synthesis of theaflavins are outlined. In this review, detailed research regarding the extraction, purification, properties, and application of Camellia sinensis PPO is summarized to provide a reference for further research on PPO.
Collapse
Affiliation(s)
- Chun Zou
- Key Laboratory of Biology, Tea Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xin Zhang
- Key Laboratory of Biology, Tea Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Yongquan Xu
- Key Laboratory of Biology, Tea Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Junfeng Yin
- National Engineering Research Center for Tea Processing, Hangzhou 310008, China
| |
Collapse
|
14
|
Pham TN, Cazier EA, Gormally E, Lawrence P. Valorization of biomass polyphenols as potential tyrosinase inhibitors. Drug Discov Today 2024; 29:103843. [PMID: 38000718 DOI: 10.1016/j.drudis.2023.103843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Tyrosinases (TYRs; EC 1.14.18.1) catalyze two sequential oxidative reactions of the melanin biosynthesis pathway and play an important role in mammalian pigmentation and enzymatic browning of fruit and vegetables. Inhibition of TYR activity is therefore an attractive target for new drugs and/or food ingredients. In addition, increasing evidence suggests that TYR regulation could be a novel target for treatments of cancer and Parkinson's disease. Biomasses, notably industrial byproducts and biowaste, are good sustainable sources of phytochemicals that may be valorized into bioactive compounds including TYR inhibitors. This review presents potential applications of biomass-derived polyphenols targeting TYR inhibition. Insights into structure-activity relationships of several polyphenols and their glycosides are highlighted. Finally, some remarks and perspectives on research into new TYR inhibitors from biomass waste are provided.
Collapse
Affiliation(s)
- Thanh-Nhat Pham
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE: Sciences et Humanités (EA 1598), Lyon, France.
| | - Elisabeth A Cazier
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE: Sciences et Humanités (EA 1598), Lyon, France; Nantes Université, Oniris, GEPEA, UMR 6144, F-44600 Saint-Nazaire, France
| | - Emmanuelle Gormally
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE: Sciences et Humanités (EA 1598), Lyon, France
| | - Philip Lawrence
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE: Sciences et Humanités (EA 1598), Lyon, France
| |
Collapse
|
15
|
Fekry M, Dave KK, Badgujar D, Hamnevik E, Aurelius O, Dobritzsch D, Danielson UH. The Crystal Structure of Tyrosinase from Verrucomicrobium spinosum Reveals It to Be an Atypical Bacterial Tyrosinase. Biomolecules 2023; 13:1360. [PMID: 37759761 PMCID: PMC10526336 DOI: 10.3390/biom13091360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Tyrosinases belong to the type-III copper enzyme family, which is involved in melanin production in a wide range of organisms. Despite similar overall characteristics and functions, their structures, activities, substrate specificities and regulation vary. The tyrosinase from the bacterium Verrucomicrobium spinosum (vsTyr) is produced as a pre-pro-enzyme in which a C-terminal extension serves as an inactivation domain. It does not require a caddie protein for copper ion incorporation, which makes it similar to eukaryotic tyrosinases. To gain an understanding of the catalytic machinery and regulation of vsTyr activity, we determined the structure of the catalytically active "core domain" of vsTyr by X-ray crystallography. The analysis showed that vsTyr is an atypical bacterial tyrosinase not only because it is independent of a caddie protein but also because it shows the highest structural (and sequence) similarity to plant-derived members of the type-III copper enzyme family and is more closely related to fungal tyrosinases regarding active site features. By modelling the structure of the pre-pro-enzyme using AlphaFold, we observed that Phe453, located in the C-terminal extension, is appropriately positioned to function as a "gatekeeper" residue. Our findings raise questions concerning the evolutionary origin of vsTyr.
Collapse
Affiliation(s)
- Mostafa Fekry
- Department of Chemistry—BMC, Uppsala University, SE 751 23 Uppsala, Sweden; (M.F.); (K.K.D.); (D.B.); (E.H.); (D.D.)
- Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Khyati K. Dave
- Department of Chemistry—BMC, Uppsala University, SE 751 23 Uppsala, Sweden; (M.F.); (K.K.D.); (D.B.); (E.H.); (D.D.)
| | - Dilip Badgujar
- Department of Chemistry—BMC, Uppsala University, SE 751 23 Uppsala, Sweden; (M.F.); (K.K.D.); (D.B.); (E.H.); (D.D.)
| | - Emil Hamnevik
- Department of Chemistry—BMC, Uppsala University, SE 751 23 Uppsala, Sweden; (M.F.); (K.K.D.); (D.B.); (E.H.); (D.D.)
| | | | - Doreen Dobritzsch
- Department of Chemistry—BMC, Uppsala University, SE 751 23 Uppsala, Sweden; (M.F.); (K.K.D.); (D.B.); (E.H.); (D.D.)
| | - U. Helena Danielson
- Department of Chemistry—BMC, Uppsala University, SE 751 23 Uppsala, Sweden; (M.F.); (K.K.D.); (D.B.); (E.H.); (D.D.)
- Science for Life Laboratory, Drug Discovery & Development Platform, Uppsala University, SE 751 23 Uppsala, Sweden
| |
Collapse
|
16
|
Liu Q, Wang C, Cui Q, Fan Y, Zhang J, Rao G. Genome-Wide Analysis of the Polyphenol Oxidase Gene Family in Olea europaea Provides Insights into the Mechanism of Enzymatic Browning in Olive Fruit. Antioxidants (Basel) 2023; 12:1661. [PMID: 37759964 PMCID: PMC10525835 DOI: 10.3390/antiox12091661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Browning of olive (Olea europaea L.) fruit reduces the sensory and nutritional qualities of olive oil, thereby increasing production costs. Polyphenol oxidases (PPOs) are the key enzymes that catalyze phenolic substance oxidation and mediate enzymatic browning in olive fruit, but the exact regulatory mechanism remains unclear. The main challenge is the lack of comprehensive information on OePPOs at the genome-wide level. In this study, 18 OePPO genes were identified. Subsequently, we performed a bioinformatic analysis on them. We also analyzed the expression patterns and determined the relationship among browning degree, PPO activity, and expression of OePPOs in the fruits of three olive varieties. Based on our analysis, we identified the four most conserved motifs. OePPOs were classified into two groups, with OePPOs from Group 1 showing only diphenolase activity and OePPOs from Group 2 exhibiting both mono-/diphenolase activities. Seven pairs of gene duplication events were identified, and purifying selection was found to have played a critical role in the evolution of the OePPO gene family. A positive correlation was observed between the browning degree of olive fruit and PPO activity across different olive varieties. Moreover, two important genes were found: OePPO-5 the main effector gene responsible for fruit browning, and OePPO-8, a key gene associated with specialized metabolite synthesis in the olive fruit. In short, our discoveries provide a basis for additional functional studies on OePPO genes and can help elucidate the mechanism of enzymatic browning in olive fruit in the future.
Collapse
Affiliation(s)
- Qingqing Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Q.L.)
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Chenhe Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Q.L.)
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Qizhen Cui
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Q.L.)
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yutong Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Q.L.)
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Q.L.)
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Guodong Rao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Q.L.)
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
17
|
Cherubino Ribeiro TH, de Oliveira RR, das Neves TT, Santiago WD, Mansur BL, Saczk AA, Vilela de Resende ML, Chalfun-Junior A. Metabolic Pathway Reconstruction Indicates the Presence of Important Medicinal Compounds in Coffea Such as L-DOPA. Int J Mol Sci 2023; 24:12466. [PMID: 37569839 PMCID: PMC10419165 DOI: 10.3390/ijms241512466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The use of transcriptomic data to make inferences about plant metabolomes is a useful tool to help the discovery of important compounds in the available biodiversity. To unveil previously undiscovered metabolites of Coffea, of phytotherapeutic and economic value, we employed 24 RNAseq libraries. These libraries were sequenced from leaves exposed to a diverse range of environmental conditions. Subsequently, the data were meticulously processed to create models of putative metabolic networks, which shed light on the production of potential natural compounds of significant interest. Then, we selected one of the predicted compounds, the L-3,4-dihydroxyphenylalanine (L-DOPA), to be analyzed by LC-MS/MS using three biological replicates of flowers, leaves, and fruits from Coffea arabica and Coffea canephora. We were able to identify metabolic pathways responsible for producing several compounds of economic importance. One of the identified pathways involved in isoquinoline alkaloid biosynthesis was found to be active and producing L-DOPA, which is a common product of POLYPHENOL OXIDASES (PPOs, EC 1.14.18.1 and EC 1.10.3.1). We show that coffee plants are a natural source of L-DOPA, a widely used medicine for treatment of the human neurodegenerative condition called Parkinson's disease. In addition, dozens of other compounds with medicinal significance were predicted as potential natural coffee products. By further refining analytical chemistry techniques, it will be possible to enhance the characterization of coffee metabolites, enabling a deeper understanding of their properties and potential applications in medicine.
Collapse
Affiliation(s)
- Thales Henrique Cherubino Ribeiro
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil; (T.H.C.R.); (R.R.d.O.)
| | - Raphael Ricon de Oliveira
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil; (T.H.C.R.); (R.R.d.O.)
| | - Taís Teixeira das Neves
- Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil;
| | - Wilder Douglas Santiago
- National Institute of Coffee Science and Technology (INCT-CAFÉ), Federal University of Lavras (UFLA), Lavras 37200-000, Brazil;
| | - Bethania Leite Mansur
- Multiuser Instrumental Analysis Laboratory (LabMAI), Federal University of Lavras (UFLA), Lavras 37200-000, Brazil;
| | - Adelir Aparecida Saczk
- Analytical and Electroanalytical Laboratory (LAE), Federal University of Lavras (UFLA), Lavras 37200-000, Brazil;
| | | | - Antonio Chalfun-Junior
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil; (T.H.C.R.); (R.R.d.O.)
| |
Collapse
|
18
|
Liao J, Wei X, Tao K, Deng G, Shu J, Qiao Q, Chen G, Wei Z, Fan M, Saud S, Fahad S, Chen S. Phenoloxidases: catechol oxidase - the temporary employer and laccase - the rising star of vascular plants. HORTICULTURE RESEARCH 2023; 10:uhad102. [PMID: 37786731 PMCID: PMC10541563 DOI: 10.1093/hr/uhad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/16/2023] [Accepted: 05/05/2023] [Indexed: 10/04/2023]
Abstract
Phenolics are vital for the adaptation of plants to terrestrial habitats and for species diversity. Phenoloxidases (catechol oxidases, COs, and laccases, LACs) are responsible for the oxidation and polymerization of phenolics. However, their origin, evolution, and differential roles during plant development and land colonization are unclear. We performed the phylogeny, domain, amino acids, compositional biases, and intron analyses to clarify the origin and evolution of COs and LACs, and analysed the structure, selective pressure, and chloroplast targeting to understand the species-dependent distribution of COs. We found that Streptophyta COs were not homologous to the Chlorophyta tyrosinases (TYRs), and might have been acquired by horizontal gene transfer from bacteria. COs expanded in bryophytes. Structural-functionality and selective pressure were partially responsible for the species-dependent retention of COs in embryophytes. LACs emerged in Zygnemaphyceae, having evolved from ascorbate oxidases (AAOs), and prevailed in the vascular plants and strongly expanded in seed plants. COs and LACs coevolved with the phenolic metabolism pathway genes. These results suggested that TYRs and AAOs were the first-stage phenoloxidases in Chlorophyta. COs might be the second key for the early land colonization. LACs were the third one (dominating in the vascular plants) and might be advantageous for diversified phenol substrates and the erect growth of plants. This work provided new insights into how phenoloxidases evolved and were devoted to plant evolution.
Collapse
Affiliation(s)
- Jugou Liao
- School of Ecology and Environmental Sciences, Yunnan University; Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming 650091, China
| | - Xuemei Wei
- School of Engineering, Dali University, Dali, Yunnan Province, 671003, China
| | - Keliang Tao
- School of Life Science, Yunnan University, Yunnan Province, Kunming 650091, China
| | - Gang Deng
- College of Horticulture and Landscape, Yunnan Agricultural University, Yunnan Province, Kunming 650091, China
| | - Jie Shu
- School of Life Science, Yunnan University, Yunnan Province, Kunming 650091, China
| | - Qin Qiao
- College of Horticulture and Landscape, Yunnan Agricultural University, Yunnan Province, Kunming 650091, China
| | - Gonglin Chen
- School of Ecology and Environmental Sciences, Yunnan University; Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming 650091, China
| | - Zhuo Wei
- School of Ecology and Environmental Sciences, Yunnan University; Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming 650091, China
| | - Meihui Fan
- School of Ecology and Environmental Sciences, Yunnan University; Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming 650091, China
| | - Shah Saud
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Suiyun Chen
- School of Ecology and Environmental Sciences, Yunnan University; Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming 650091, China
| |
Collapse
|
19
|
Al-Khayri JM, Rashmi R, Toppo V, Chole PB, Banadka A, Sudheer WN, Nagella P, Shehata WF, Al-Mssallem MQ, Alessa FM, Almaghasla MI, Rezk AAS. Plant Secondary Metabolites: The Weapons for Biotic Stress Management. Metabolites 2023; 13:716. [PMID: 37367873 DOI: 10.3390/metabo13060716] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
The rise in global temperature also favors the multiplication of pests and pathogens, which calls into question global food security. Plants have developed special coping mechanisms since they are sessile and lack an immune system. These mechanisms use a variety of secondary metabolites as weapons to avoid obstacles, adapt to their changing environment, and survive in less-than-ideal circumstances. Plant secondary metabolites include phenolic compounds, alkaloids, glycosides, and terpenoids, which are stored in specialized structures such as latex, trichomes, resin ducts, etc. Secondary metabolites help the plants to be safe from biotic stressors, either by repelling them or attracting their enemies, or exerting toxic effects on them. Modern omics technologies enable the elucidation of the structural and functional properties of these metabolites along with their biosynthesis. A better understanding of the enzymatic regulations and molecular mechanisms aids in the exploitation of secondary metabolites in modern pest management approaches such as biopesticides and integrated pest management. The current review provides an overview of the major plant secondary metabolites that play significant roles in enhancing biotic stress tolerance. It examines their involvement in both indirect and direct defense mechanisms, as well as their storage within plant tissues. Additionally, this review explores the importance of metabolomics approaches in elucidating the significance of secondary metabolites in biotic stress tolerance. The application of metabolic engineering in breeding for biotic stress resistance is discussed, along with the exploitation of secondary metabolites for sustainable pest management.
Collapse
Affiliation(s)
- Jameel M Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ramakrishnan Rashmi
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Varsha Toppo
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Pranjali Bajrang Chole
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Akshatha Banadka
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Wudali Narasimha Sudheer
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Wael Fathi Shehata
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Muneera Qassim Al-Mssallem
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fatima Mohammed Alessa
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mustafa Ibrahim Almaghasla
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Plant Pests, and Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Adel Abdel-Sabour Rezk
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Virus and Phytoplasma, Plant Pathology Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
20
|
Wei X, Shu J, Fahad S, Tao K, Zhang J, Chen G, Liang Y, Wang M, Chen S, Liao J. Polyphenol oxidases regulate pollen development through modulating flavonoids homeostasis in tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107702. [PMID: 37099880 DOI: 10.1016/j.plaphy.2023.107702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 05/07/2023]
Abstract
Pollen development is critical in plant reproduction. Polyphenol oxidases (PPOs) genes encode defense-related enzymes, but the role of PPOs in pollen development remains largely unexplored. Here, we characterized NtPPO genes, and then investigated their function in pollen via creating NtPPO9/10 double knockout mutant (cas-1), overexpression 35S::NtPPO10 (cosp) line and RNAi lines against all NtPPOs in Nicotiana tabacum. NtPPOs were abundantly expressed in the anther and pollen (especially NtPPO9/10). The pollen germination, polarity ratio and fruit weights were significantly reduced in the NtPPO-RNAi and cosp lines, while they were normal in cas-1 likely due to compensation by other NtPPO isoforms. Comparisons of metabolites and transcripts between the pollen of WT and NtPPO-RNAi, or cosp showed that decreased enzymatic activity of NtPPOs led to hyper-accumulation of flavonoids. This accumulation might reduce the content of ROS. Ca2+ and actin levels also decreased in pollen of the transgenic lines.Thus, the NtPPOs regulate pollen germination through the flavonoid homeostasis and ROS signal pathway. This finding provides novel insights into the native physiological functions of PPOs in pollen during reproduction.
Collapse
Affiliation(s)
- Xuemei Wei
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China; School of Engineering, Dali University, Dali, Yunnan Province, China
| | - Jie Shu
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| | - Keliang Tao
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China
| | - Jingwen Zhang
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China
| | - Gonglin Chen
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China
| | - Yingchong Liang
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China
| | | | - Suiyun Chen
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China.
| | - Jugou Liao
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China.
| |
Collapse
|
21
|
Cai H, Zhong Z, Chen Y, Zhang S, Ling H, Fu H, Zhang L. Genes cloning, sequencing and function identification of recombinant polyphenol oxidase isozymes for production of monomeric theaflavins from Camellia sinensis. Int J Biol Macromol 2023; 240:124353. [PMID: 37059281 DOI: 10.1016/j.ijbiomac.2023.124353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
Theaflavins (TFs) are important quality compounds in black tea with a variety of biological activities. However, direct extraction of TFs from black tea is inefficient and costly. Therefore, we cloned two PPO isozymes from Huangjinya tea, termed HjyPPO1 and HjyPPO3. Both isozymes oxidized corresponding catechin substrates for the formation of four TFs (TF1, TF2A, TF2B, TF3), and the optimal catechol-type catechin to pyrogallol-type catechin oxidation rate of both isozymes was 1:2. In particular, the oxidation efficiency of HjyPPO3 was higher than that of HjyPPO1. The optimum pH and temperature of HjyPPO1 were 6.0 and 35 °C, respectively, while those of HjyPPO3 were 5.5 and 30 °C, respectively. Molecular docking simulation indicated that the unique residue of HjyPPO3 at Phe260 was more positive and formed a π-π stacked structure with His108 to stabilize the active region. In addition, the active catalytic cavity of HjyPPO3 was more conducive for substrate binding by extensive hydrogen bonding.
Collapse
Affiliation(s)
- Hongli Cai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Zhuoheng Zhong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yiran Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Shuyao Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Hao Ling
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Hongwei Fu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Lin Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
22
|
Recent Advances of Polyphenol Oxidases in Plants. Molecules 2023; 28:molecules28052158. [PMID: 36903403 PMCID: PMC10004730 DOI: 10.3390/molecules28052158] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Polyphenol oxidase (PPO) is present in most higher plants, but also in animals and fungi. PPO in plants had been summarized several years ago. However, recent advances in studies of PPO in plants are lacking. This review concludes new researches on PPO distribution, structure, molecular weights, optimal temperature, pH, and substrates. And, the transformation of PPO from latent to active state was also discussed. This state shift is a vital reason for elevating PPO activity, but the activation mechanism in plants has not been elucidated. PPO has an important role in plant stress resistance and physiological metabolism. However, the enzymatic browning reaction induced by PPO is a major problem in the production, processing, and storage of fruits and vegetables. Meanwhile, we summarized various new methods that had been invented to decrease enzymatic browning by inhibiting PPO activity. In addition, our manuscript included information on several important biological functions and the transcriptional regulation of PPO in plants. Furthermore, we also prospect some future research areas of PPO and hope they will be useful for future research in plants.
Collapse
|
23
|
Olive Polyphenol Oxidase Gene Family. Int J Mol Sci 2023; 24:ijms24043233. [PMID: 36834644 PMCID: PMC9962951 DOI: 10.3390/ijms24043233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
The phenolic compounds containing hydroxytyrosol are the minor components of virgin olive oil (VOO) with the greatest impact on its functional properties and health benefits. Olive breeding for improving the phenolic composition of VOO is strongly dependent on the identification of the key genes determining the biosynthesis of these compounds in the olive fruit and also their transformation during the oil extraction process. In this work, olive polyphenol oxidase (PPO) genes have been identified and fully characterized in order to evaluate their specific role in the metabolism of hydroxytyrosol-derived compounds by combining gene expression analysis and metabolomics data. Four PPO genes have been identified, synthesized, cloned and expressed in Escherichia coli, and the functional identity of the recombinant proteins has been verified using olive phenolic substrates. Among the characterized genes, two stand out: (i) OePPO2 with its diphenolase activity, which is very active in the oxidative degradation of phenols during oil extraction and also seems to be highly involved in the natural defense mechanism in response to biotic stress, and (ii) OePPO3, which codes for a tyrosinase protein, having diphenolase but also monophenolase activity, which catalyzes the hydroxylation of tyrosol to form hydroxytyrosol.
Collapse
|
24
|
Li Y, Wu H, Zhao H, Tang D, Aisa HA, Hou X. Synthesis and Anti-Hepatocarcinoma Effects of Peracetyl Glycosyl Aurone Derivatives. RUSS J GEN CHEM+ 2023. [DOI: 10.1134/s1070363223010206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
25
|
Ruckthong L, Pretzler M, Kampatsikas I, Rompel A. Biochemical characterization of Dimocarpus longan polyphenol oxidase provides insights into its catalytic efficiency. Sci Rep 2022; 12:20322. [PMID: 36434079 PMCID: PMC9700842 DOI: 10.1038/s41598-022-20616-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/15/2022] [Indexed: 11/27/2022] Open
Abstract
The "dragon-eye" fruits produced by the tropical longan tree are rich in nutrients and antioxidants. They suffer from post-harvest enzymatic browning, a process for which mainly the polyphenol oxidase (PPO) family of enzymes is responsible. In this study, two cDNAs encoding the PPO have been cloned from leaves of Dimocarpus longan (Dl), heterologously expressed in Escherichia coli and purified by affinity chromatography. The prepro-DlPPO1 contains two signal peptides at its N-terminal end that facilitate transportation of the protein into the chloroplast stroma and to the thylakoid lumen. Removal of the two signal peptides from prepro-DlPPO1 yields pro-DlPPO1. The prepro-DlPPO1 exhibited higher thermal tolerance than pro-DlPPO1 (unfolding at 65 °C vs. 40 °C), suggesting that the signal peptide may stabilize the fold of DlPPO1. DlPPO1 can be classified as a tyrosinase because it accepts both monophenolic and diphenolic substrates. The pro-DlPPO1 exhibited the highest specificity towards the natural diphenol (-)-epicatechin (kcat/KM of 800 ± 120 s-1 mM-1), which is higher than for 4-methylcatechol (590 ± 99 s-1 mM-1), pyrogallol (70 ± 9.7 s-1 mM-1) and caffeic acid (4.3 ± 0.72 s-1 mM-1). The kinetic efficiencies of prepro-DlPPO1 are 23, 36, 1.7 and 4.7-fold lower, respectively, than those observed with pro-DlPPO1 for the four aforementioned diphenolic substrates. Additionally, docking studies showed that (-)-epicatechin has a lower binding energy than any other investigated substrate. Both kinetic and in-silico studies strongly suggest that (-)-epicatechin is a good substrate of DlPPO1 and ascertain the affinity of PPOs towards specific flavonoid compounds.
Collapse
Affiliation(s)
- Leela Ruckthong
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090, Wien, Austria
- Faculty of Science, Department of Chemistry, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, 10140, Thailand
| | - Matthias Pretzler
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090, Wien, Austria
| | - Ioannis Kampatsikas
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090, Wien, Austria
| | - Annette Rompel
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090, Wien, Austria.
| |
Collapse
|
26
|
Wei S, Xiang Y, Zhang Y, Fu R. The unexpected flavone synthase-like activity of polyphenol oxidase in tomato. Food Chem 2022; 377:131958. [PMID: 34990951 DOI: 10.1016/j.foodchem.2021.131958] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 11/04/2022]
Abstract
The biosynthesis of flavones has drawn considerable attention. However, the presence of flavones and their biosynthesis in tomato (Solanum lycopersicum) remain unclear. Here, we confirmed that flavones are present in MicroTom tomato and unexpectedly found that a tomato polyphenol oxidase (SlPPO F) possesses a flavone synthase-like activity and catalyzes the conversion of eriodictyol to luteolin without the need for any cofactor. SlPPO F showed a similar Km value to that of other polyphenol oxidases, and could be inhibited by ascorbic acid. The flavone synthase-like activity of SlPPO F exhibited strict substrate specificity and only accepted flavanones with two hydroxyl groups (3' and 4') on the B ring as substrates. SlPPO F showed higher catalytic efficiency and better thermostability than type I flavone synthase from Apium graveolens, suggesting its possible application in enzyme engineering. In summary, we identified flavones in tomato and unraveled a polyphenol oxidase exhibiting flavone synthase-like activity.
Collapse
Affiliation(s)
- Shuo Wei
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yuting Xiang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yang Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China.
| | - Rao Fu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
27
|
Quantifying up to 90 polyphenols simultaneously in human bio-fluids by LC-MS/MS. Anal Chim Acta 2022; 1216:339977. [DOI: 10.1016/j.aca.2022.339977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/27/2022] [Accepted: 05/21/2022] [Indexed: 11/17/2022]
|
28
|
Fan X. Chemical inhibition of polyphenol oxidase and cut surface browning of fresh-cut apples. Crit Rev Food Sci Nutr 2022; 63:8737-8751. [PMID: 35416745 DOI: 10.1080/10408398.2022.2061413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fresh-cut apples, which offer consumers health benefits and convenience, have become popular in recent years. One of the main challenges for processing fresh-cut apples is rapid development of cut surface browning, immediately after fruits are cut. Browning, a physiological response that impacts organoleptic properties and deters consumer purchase of fresh-cut fresh produce, is mainly a result of enzymatic reaction of phenolic compounds with oxygen catalyzed by polyphenol oxidase (PPO), a decapper enzyme. Many antibrowning agents have been developed and evaluated to inhibit PPO activities by using reducing agents (antioxidants), chelating agents, acidulants, etc. The present manuscript reviews the diverse characteristics of PPO (such as optimum pH and temperature, and molecular weight) in apples reported in the literature and the enzyme's latency, multiplicity and copper states in the active site. It also summarizes the latest development in the investigation and formulations of antibrowning compounds, and discusses future research needs. This review should stimulate further research to discover more effective, low cost, and natural antibrowning compounds to meet the demand of consumers as well as the food industry for clean label and long shelf-life of fresh-cut apples.
Collapse
Affiliation(s)
- Xuetong Fan
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, PA, USA
| |
Collapse
|
29
|
De Jaegere I, Cornelis Y, De Clercq T, Goossens A, Van de Poel B. Overview of Witloof Chicory ( Cichorium intybus L.) Discolorations and Their Underlying Physiological and Biochemical Causes. FRONTIERS IN PLANT SCIENCE 2022; 13:843004. [PMID: 35283895 PMCID: PMC8905253 DOI: 10.3389/fpls.2022.843004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Many fruits and vegetables suffer from unwanted discolorations that reduce product quality, leading to substantial losses along the supply chain. Witloof chicory (Cichorium intybus L. var. foliosum), a specialty crop characterized by its unique bitter taste and crunchiness, is particularly sensitive to various types of red and brown discolorations. The etiolated vegetable suffers from three predominant color disorders, i.e., core browning, internal leaf reddening, and leaf edge browning. Additionally, several less frequently observed color disorders such as hollow pith, external red, and point noir can also negatively affect crop quality. In this article, we bring together fragmented literature and present a comprehensive overview of the different discoloration types in chicory, and discuss their potential underlying physiological causes, including laticifer rupture, calcium deficiency, and a disturbed water distribution. We also describe the role of environmental cues that influence discoloration incidence, including cultivation and postharvest storage conditions such as forcing and storage temperature, root ripeness and the duration of the forcing process. Finally, we zoom in on the underlying biochemical pathways that govern color disorders in witloof chicory, with a strong emphasis on polyphenol oxidase.
Collapse
Affiliation(s)
- Isabel De Jaegere
- Laboratory of Molecular Plant Hormone Physiology, Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| | | | - Tim De Clercq
- Praktijkpunt Landbouw Vlaams-Brabant, Herent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Bram Van de Poel
- Laboratory of Molecular Plant Hormone Physiology, Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Han Q, Liu F, Ni Y. Cloning, sequencing and structural analysis of membrane‐bound polyphenol oxidase from Granny Smith apples (
Malus
×
domestica
Borkh). Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qian‐Yun Han
- College of Food Science and Nutritional Engineering China Agricultural University 17 Qinghua East Road Beijing 100083 China
- National Engineering Research Center for Fruits and Vegetables Processing Beijing 100083 China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture Beijing 100083 China
| | - Fang Liu
- College of Food Science and Engineering Northwest A & F University Yang Ling Shaanxi 712100 China
| | - Yuan‐Ying Ni
- College of Food Science and Nutritional Engineering China Agricultural University 17 Qinghua East Road Beijing 100083 China
- National Engineering Research Center for Fruits and Vegetables Processing Beijing 100083 China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture Beijing 100083 China
| |
Collapse
|
31
|
Derardja AE, Pretzler M, Kampatsikas I, Radovic M, Fabisikova A, Zehl M, Barkat M, Rompel A. Polyphenol oxidase and enzymatic browning in apricot (Prunus armeniaca L.): Effect on phenolic composition and deduction of main substrates. Curr Res Food Sci 2022; 5:196-206. [PMID: 35106484 PMCID: PMC8789516 DOI: 10.1016/j.crfs.2021.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022] Open
Abstract
In this study, we investigate the effect of enzymatic browning on the phenolic composition of apricot in vivo and in vitro. The in vitro browning was caused by the recombinant latent apricot polyphenol oxidase (L-PaPPO). Successful heterologous expression of PaPPO in Escherichia coli yielded substantial amounts of enzyme containing both copper ions in the catalytic active site. The expressed L-PaPPO was characterized with regard to its molecular mass (56531.3 Da), pH optimum (7.0), activation by SDS, and enzyme kinetics. LC-MS/MS was used to compare the phenolic profiles of brown and non-brown apricots. The browning reactions did significantly decrease total phenolics and antioxidant capacity (measured with DPPH and CUPRAC assays). Catechin, epicatechin, and B-type procyanidins were the individual phenolics most affected by browning, followed by chlorogenic and neochlorogenic acid. These phenolics are most likely the main endogenous substrates of L-PaPPO, as they were oxidized much faster than the other identified phenolics. Enzymatic browning greatly reduces the amount of phenols in apricots. This decrease in phenols causes a marked reduction of the antioxidant capacity. Apricot phenols do not contribute evenly to enzymatic browning. Catechins and (neo)chlorogenic acids are the main endogenous substrates of PaPPO.
Collapse
Affiliation(s)
- Ala eddine Derardja
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria
- Laboratoire Bioqual, INATAA, Université Frères Mentouri Constantine1, Route de Ain El-Bey, 25000, Constantine, Algeria
| | - Matthias Pretzler
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria
| | - Ioannis Kampatsikas
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria
| | - Milena Radovic
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria
| | - Anna Fabisikova
- University of Vienna, Faculty of Chemistry, Mass Spectrometry Center, Währinger Straße 38, A-1090, Vienna, Austria
| | - Martin Zehl
- University of Vienna, Faculty of Chemistry, Mass Spectrometry Center, Währinger Straße 38, A-1090, Vienna, Austria
- University of Vienna, Faculty of Chemistry, Department of Analytical Chemistry, Währinger Straße 38, A-1090, Vienna, Austria
| | - Malika Barkat
- Laboratoire Bioqual, INATAA, Université Frères Mentouri Constantine1, Route de Ain El-Bey, 25000, Constantine, Algeria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria
- Corresponding author.
| |
Collapse
|
32
|
Mydy LS, Chigumba DN, Kersten RD. Plant Copper Metalloenzymes As Prospects for New Metabolism Involving Aromatic Compounds. FRONTIERS IN PLANT SCIENCE 2021; 12:692108. [PMID: 34925392 PMCID: PMC8672867 DOI: 10.3389/fpls.2021.692108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/11/2021] [Indexed: 06/14/2023]
Abstract
Copper is an important transition metal cofactor in plant metabolism, which enables diverse biocatalysis in aerobic environments. Multiple classes of plant metalloenzymes evolved and underwent genetic expansions during the evolution of terrestrial plants and, to date, several representatives of these copper enzyme classes have characterized mechanisms. In this review, we give an updated overview of chemistry, structure, mechanism, function and phylogenetic distribution of plant copper metalloenzymes with an emphasis on biosynthesis of aromatic compounds such as phenylpropanoids (lignin, lignan, flavonoids) and cyclic peptides with macrocyclizations via aromatic amino acids. We also review a recent addition to plant copper enzymology in a copper-dependent peptide cyclase called the BURP domain. Given growing plant genetic resources, a large pool of copper biocatalysts remains to be characterized from plants as plant genomes contain on average more than 70 copper enzyme genes. A major challenge in characterization of copper biocatalysts from plant genomes is the identification of endogenous substrates and catalyzed reactions. We highlight some recent and future trends in filling these knowledge gaps in plant metabolism and the potential for genomic discovery of copper-based enzymology from plants.
Collapse
Affiliation(s)
| | | | - Roland D. Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
33
|
Ghorbanian N, Mousavi A, Marefatjoo MJ, Ghofrani NS, Lohrasebi T, Haghbeen K. Toward more specific inhibitor for Solanum tuberosum polyphenol oxidase through a structural insight into its activities and inhibition. J Food Biochem 2021; 45:e13949. [PMID: 34558084 DOI: 10.1111/jfbc.13949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
To prevent enzymatic browning, applying a polyphenol oxidase (PPO) inhibitor is more desirable, especially when the freshness of the product matters. Most of the inhibition studies were done on mushroom tyrosinase (MT) while the literature indicates that MT and PPO of Solanum tuberosum (PPOsol ) respond differently to the same modulator despite their similar active sites. This research was conducted to deepen our knowledge about PPOsol and introduce a more specific inhibitor for this enzyme to be used in controlling the enzymatic browning of potatoes. A modified procedure was developed for PPOsol purification. The enzyme was subjected to some essential physicochemical and kinetics studies. In parallel to the comparable physicochemical properties, homology modeling revealed high structural similarity between Solanum lycopersicum PPO (PPOsly ) and PPOsol except for their active site pockets. Accordingly, PPOsol showed 5.1- and 34-fold higher affinity toward chlorogenic acid compared with two PPOsly isozymes. Alike PPOsly , PPOsol showed monophenolase activity but it was inactive toward L-tyrosine and p-coumaric acid. Based on structural criteria, phthalic acid, cinnamic acid, ferulic acid, and vanillin were selected and thoroughly examined for inhibition of the catecholase activity of PPOsol . Although all these substances inhibited PPOsol in mixed-inhibition mode, the results were strongly in favor of vanillin with IC50 < 1.37 mM and Ki < 1.2 mM. PRACTICAL APPLICATIONS: There are subtle structural differences in the active site pockets of polyphenol oxidase (PPOs) of various fruits, vegetables, and crops. Consequently, to introduce an efficient inhibitor for hindering enzymatic browning of crop products, it is essential to have detailed knowledge about the structure and activity of its PPO as the main player of this undesirable phenomenon. Results of this study not only shed light on the physicochemical properties of PPOsol but can also be used in making various formulations for safe controlling enzymatic browning of potatoes, especially fresh-cut and minimally processed products, and similar crops products during postharvest and the processes of products preparations.
Collapse
Affiliation(s)
- Narges Ghorbanian
- National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Amir Mousavi
- National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | | | | | - Tahmineh Lohrasebi
- National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Kamahldin Haghbeen
- National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
34
|
Roohigohar S, Clarke AR, Prentis PJ. Gene selection for studying frugivore-plant interactions: a review and an example using Queensland fruit fly in tomato. PeerJ 2021; 9:e11762. [PMID: 34434644 PMCID: PMC8359797 DOI: 10.7717/peerj.11762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Fruit production is negatively affected by a wide range of frugivorous insects, among them tephritid fruit flies are one of the most important. As a replacement for pesticide-based controls, enhancing natural fruit resistance through biotechnology approaches is a poorly researched but promising alternative. The use of quantitative reverse transcription PCR (RT-qPCR) is an approach to studying gene expression which has been widely used in studying plant resistance to pathogens and non-frugivorous insect herbivores, and offers a starting point for fruit fly studies. In this paper, we develop a gene selection pipe-line for known induced-defense genes in tomato fruit, Solanum lycopersicum, and putative detoxification genes in Queensland fruit fly, Bactrocera tryoni, as a basis for future RT-qPCR research. The pipeline started with a literature review on plant/herbivore and plant/pathogen molecular interactions. With respect to the fly, this was then followed by the identification of gene families known to be associated with insect resistance to toxins, and then individual genes through reference to annotated B. tryoni transcriptomes and gene identity matching with related species. In contrast for tomato, a much better studied species, individual defense genes could be identified directly through literature research. For B. tryoni, gene selection was then further refined through gene expression studies. Ultimately 28 putative detoxification genes from cytochrome P450 (P450), carboxylesterase (CarE), glutathione S-transferases (GST), and ATP binding cassette transporters (ABC) gene families were identified for B. tryoni, and 15 induced defense genes from receptor-like kinase (RLK), D-mannose/L-galactose, mitogen-activated protein kinase (MAPK), lipoxygenase (LOX), gamma-aminobutyric acid (GABA) pathways and polyphenol oxidase (PPO), proteinase inhibitors (PI) and resistance (R) gene families were identified from tomato fruit. The developed gene selection process for B. tryoni can be applied to other herbivorous and frugivorous insect pests so long as the minimum necessary genomic information, an annotated transcriptome, is available.
Collapse
Affiliation(s)
- Shirin Roohigohar
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Anthony R Clarke
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Peter J Prentis
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| |
Collapse
|
35
|
Panis F, Krachler RF, Krachler R, Rompel A. Expression, Purification, and Characterization of a Well-Adapted Tyrosinase from Peatlands Identified by Partial Community Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11445-11454. [PMID: 34156250 PMCID: PMC8375020 DOI: 10.1021/acs.est.1c02514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 05/30/2023]
Abstract
In peatlands, bacterial tyrosinases (TYRs) are proposed to act as key regulators of carbon storage by removing phenolic compounds, which inhibit the degradation of organic carbon. Historically, TYR activity has been blocked by anoxia resulting from persistent waterlogging; however, recent events of prolonged summer drought have boosted TYR activity and, consequently, the release of carbon stored in the form of organic compounds from peatlands. Since 30% of the global soil carbon stock is stored in peatlands, a profound understanding of the production and activity of TYRs is essential to assess the impact of carbon dioxide emitted from peatlands on climate change. TYR partial sequences identified by degenerated primers suggest a versatile TYR enzyme community naturally present in peatlands, which is produced by a phylogenetically diverse spectrum of bacteria, including Proteobacteria and Actinobacteria. One full-length sequence of an extracellular TYR (SzTYR) identified from a soda-rich inland salt marsh has been heterologously expressed and purified. SzTYR exhibits a molecular mass of 30 891.8 Da and shows a pH optimum of 9.0. Spectroscopic studies and kinetic investigations characterized SzTYR as a tyrosinase and proved its activity toward monophenols (coumaric acid), diphenols (caffeic acid, protocatechuic acid), and triphenols (gallic acid) naturally present in peatlands.
Collapse
Affiliation(s)
- Felix Panis
- Universität
Wien, Fakultät
für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria
| | - Rudolf F. Krachler
- Fakultät
für Chemie, Institut für Anorganische Chemie, Universität Wien, Althanstraße 14, 1090 Wien, Austria
| | - Regina Krachler
- Fakultät
für Chemie, Institut für Anorganische Chemie, Universität Wien, Althanstraße 14, 1090 Wien, Austria
| | - Annette Rompel
- Universität
Wien, Fakultät
für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria
| |
Collapse
|
36
|
Matoba Y, Oda K, Muraki Y, Masuda T. The basicity of an active-site water molecule discriminates between tyrosinase and catechol oxidase activity. Int J Biol Macromol 2021; 183:1861-1870. [PMID: 34089758 DOI: 10.1016/j.ijbiomac.2021.05.206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 11/26/2022]
Abstract
Tyrosinase (Ty) and catechol oxidase (CO) are members of type-3 copper enzymes. While Ty catalyzes both phenolase and catecholase reactions, CO catalyzes only the latter reaction. In the present study, Ty was found to catalyze the catecholase reaction, but hardly the phenolase reaction in the presence of the metallochaperon called "caddie protein (Cad)". The ability of the substrates to dissociate the motif shielding the active-site pocket seems to contribute critically to the substrate specificity of Ty. In addition, a mutation at the N191 residue, which forms a hydrogen bond with a water molecule near the active center, decreased the inherent ratio of phenolase versus catecholase activity. Unlike the wild-type complex, reaction intermediates were not observed when the catalytic reaction toward the Y98 residue of Cad was progressed in the crystalline state. The increased basicity of the water molecule may be necessary to inhibit the proton transfer from the conjugate acid to a hydroxide ion bridging the two copper ions. The deprotonation of the substrate hydroxyl by the bridging hydroxide seems to be significant for the efficient catalytic cycle of the phenolase reaction.
Collapse
Affiliation(s)
- Yasuyuki Matoba
- Faculty of Pharmacy, Yasuda Women's University, Yasuhigashi 6-13-1, Asaminami-ku, Hiroshima, 731-0153, Japan.
| | - Kosuke Oda
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Yoshimi Muraki
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Taro Masuda
- Division of Applied Biological Science, Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
37
|
Kampatsikas I, Rompel A. Similar but Still Different: Which Amino Acid Residues Are Responsible for Varying Activities in Type-III Copper Enzymes? Chembiochem 2021; 22:1161-1175. [PMID: 33108057 PMCID: PMC8049008 DOI: 10.1002/cbic.202000647] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/25/2020] [Indexed: 12/23/2022]
Abstract
Type-III copper enzymes like polyphenol oxidases (PPOs) are ubiquitous among organisms and play a significant role in the formation of pigments. PPOs comprise different enzyme groups, including tyrosinases (TYRs) and catechol oxidases (COs). TYRs catalyze the o-hydroxylation of monophenols and the oxidation of o-diphenols to the corresponding o-quinones (EC 1.14.18.1). In contrast, COs only catalyze the oxidation of o-diphenols to the corresponding o-quinones (EC 1.10.3.1). To date (August 2020), 102 PDB entries encompassing 18 different proteins from 16 organisms and several mutants have been reported, identifying key residues for tyrosinase activity. The structural similarity between TYRs and COs, especially within and around the active center, complicates the elucidation of their modes of action on a structural basis. However, mutagenesis studies illuminate residues that influence the two activities and show that crystallography on its own cannot elucidate the enzymatic activity mode. Several amino acid residues around the dicopper active center have been proposed to play an essential role in the two different activities. Herein, we critically review the role of all residues identified so far that putatively affect the two activities of PPOs.
Collapse
Affiliation(s)
- Ioannis Kampatsikas
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Annette Rompel
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| |
Collapse
|
38
|
Agaricus bisporus Crude Extract: Characterization and Analytical Application. Molecules 2020; 25:molecules25245996. [PMID: 33352884 PMCID: PMC7765987 DOI: 10.3390/molecules25245996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022] Open
Abstract
In the present work crude Agaricus bisporus extract (ABE) has been prepared and characterized by its tyrosinase activity, protein composition and substrate specificity. The presence of mushroom tyrosinase (PPO3) in ABE has been confirmed using two-dimensional electrophoresis, followed by MALDI TOF/TOF MS-based analysis. GH27 alpha-glucosidases, GH47 alpha-mannosidases, GH20 hexosaminidases, and alkaline phosphatases have been also detected in ABE. ABE substrate specificity has been studied using 19 phenolic compounds: polyphenols (catechol, gallic, caffeic, chlorogenic, and ferulic acids, quercetin, rutin, dihydroquercetin, l-dihydroxyphenylalanine, resorcinol, propyl gallate) and monophenols (l-tyrosine, phenol, p-nitrophenol, o-nitrophenol, guaiacol, o-cresol, m-cresol, p-cresol). The comparison of ABE substrate specificity and affinity to the corresponding parameters of purified A. bisporus tyrosinase has revealed no major differences. The conditions for spectrophotometric determination have been chosen and the analytical procedures for determination of 1.4 × 10-4-1.0 × 10-3 M l-tyrosine, 3.1 × 10-6-1.0 × 10-4 M phenol, 5.4 × 10-5-1.0 × 10-3 M catechol, 8.5 × 10-5-1.0 × 10-3 M caffeic acid, 1.5 × 10-4-7.5 × 10-4 M chlorogenic acid, 6.8 × 10-5-1.0 × 10-3 M l-DOPA have been proposed. The procedures have been applied for the determination of l-tyrosine in food supplements, l-DOPA in synthetic serum, and phenol in waste water from the food manufacturing plant. Thus, we have demonstrated the possibility of using ABE as a substitute for tyrosinase in such analytical applications, as food supplements, medical and environmental analysis.
Collapse
|
39
|
Staszek P, Krasuska U, Bederska-Błaszczyk M, Gniazdowska A. Canavanine Increases the Content of Phenolic Compounds in Tomato ( Solanum lycopersicum L.) Roots. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1595. [PMID: 33213049 PMCID: PMC7698470 DOI: 10.3390/plants9111595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 05/02/2023]
Abstract
Canavanine (CAN) is a nonproteinogenic amino acid, and its toxicity comes from its utilization instead of arginine in many cellular processes. As presented in previous experiments, supplementation of tomato (Solanum lycopersicum L.) with CAN led to decreased nitric oxide (NO) level and induced secondary oxidative stress. CAN improved total antioxidant capacity in roots, with parallel inhibition of enzymatic antioxidants. The aim of this work was to determine how CAN-dependent limitation of NO emission and reactive oxygen species overproduction impact content, localization, and metabolism of phenolic compounds (PCs) in tomato roots. Tomato seedlings were fed with CAN (10 and 50 µM) for 24 or 72 h. Inhibition of root growth due to CAN supplementation correlated with increased concentration of total PCs; CAN (50 µM) led to the homogeneous accumulation of PCs all over the roots. CAN increased also flavonoids content in root tips. The activity of polyphenol oxidases and phenylalanine ammonia-lyase increased only after prolonged treatment with 50 µM CAN, while expressions of genes encoding these enzymes were modified variously, irrespectively of CAN dosage and duration of the culture. PCs act as the important elements of the cellular antioxidant system under oxidative stress induced by CAN.
Collapse
Affiliation(s)
- Pawel Staszek
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Urszula Krasuska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Magdalena Bederska-Błaszczyk
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Agnieszka Gniazdowska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| |
Collapse
|
40
|
Kampatsikas I, Pretzler M, Rompel A. Die Erzeugung von Tyrosinaseaktivität in einer Catecholoxidase erlaubt die Identifizierung der für die C‐H‐Aktivierung in Typ‐III‐Kupferenzymen verantwortlichen Aminosäurereste. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ioannis Kampatsikas
- Universität Wien Fakultät für Chemie Institut für Biophysikalische Chemie Althanstraße 14 1090 Wien Österreich
| | - Matthias Pretzler
- Universität Wien Fakultät für Chemie Institut für Biophysikalische Chemie Althanstraße 14 1090 Wien Österreich
| | - Annette Rompel
- Universität Wien Fakultät für Chemie Institut für Biophysikalische Chemie Althanstraße 14 1090 Wien Österreich
| |
Collapse
|
41
|
Kampatsikas I, Pretzler M, Rompel A. Identification of Amino Acid Residues Responsible for C-H Activation in Type-III Copper Enzymes by Generating Tyrosinase Activity in a Catechol Oxidase. Angew Chem Int Ed Engl 2020; 59:20940-20945. [PMID: 32701181 PMCID: PMC7693034 DOI: 10.1002/anie.202008859] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 12/12/2022]
Abstract
Tyrosinases (TYRs) catalyze the hydroxylation of phenols and the oxidation of the resulting o-diphenols to o-quinones, while catechol oxidases (COs) exhibit only the latter activity. Aurone synthase (AUS) is not able to react with classical tyrosinase substrates, such as tyramine and l-tyrosine, while it can hydroxylate its natural substrate isoliquiritigenin. The structural difference of TYRs, COs, and AUS at the heart of their divergent catalytic activities is still a puzzle. Therefore, a library of 39 mutants of AUS from Coreopsis grandiflora (CgAUS) was generated and the activity studies showed that the reactivity of the three conserved histidines (HisA2 , HisB1 , and HisB2 ) is tuned by their adjacent residues (HisB1 +1, HisB2 +1, and waterkeeper residue) either to react as stronger bases or / and to stabilize a position permissive for substrate proton shuffling. This provides the understanding for C-H activation based on the type-III copper center to be used in future biotechnological processes.
Collapse
Affiliation(s)
- Ioannis Kampatsikas
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Matthias Pretzler
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Annette Rompel
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| |
Collapse
|
42
|
Panis F, Rompel A. Identification of the amino acid position controlling the different enzymatic activities in walnut tyrosinase isoenzymes (jrPPO1 and jrPPO2). Sci Rep 2020; 10:10813. [PMID: 32616720 PMCID: PMC7331820 DOI: 10.1038/s41598-020-67415-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/08/2020] [Indexed: 01/25/2023] Open
Abstract
Polyphenol oxidases (PPOs) are ubiquitously distributed among plants, bacteria, fungi and animals. They catalyze the hydroxylation of monophenols (monophenolase activity) and the oxidation of o-diphenols (diphenolase activity) to o-quinones. PPOs are commonly present as an isoenzyme family. In walnut (Juglans regia), two different genes (jrPPO1 and jrPPO2) encoding PPOs have been identified. In this study, jrPPO2 was, for the first time, heterologously expressed in E. coli and characterized as a tyrosinase (TYR) by substrate scope assays and kinetic investigations, as it accepted tyramine and L-tyrosine as substrates. Moreover, the substrate acceptance and kinetic parameters (kcat and Km values) towards 16 substrates naturally present in walnut were assessed for jrPPO2 (TYR) and its isoenzyme jrPPO1 (TYR). The two isoenzymes prefer different substrates, as jrPPO1 shows a higher activity towards monophenols, whereas jrPPO2 is more active towards o-diphenols. Molecular docking studies performed herein revealed that the amino acid residue in the position of the 1st activity controller (HisB1 + 1; in jrPPO1 Asn240 and jrPPO2 Gly240) is responsible for the different enzymatic activities. Additionally, interchanging the 1st activity controller residue of the two enzymes in two mutants (jrPPO1-Asn240Gly and jrPPO2-Gly240Asn) proved that the amino acid residue located in this position allows plants to selectively target or dismiss substrates naturally present in walnut.
Collapse
Affiliation(s)
- Felix Panis
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria.
| |
Collapse
|
43
|
Masuda T, Baba S, Matsuo K, Ito S, Mikami B. The high-resolution crystal structure of lobster hemocyanin shows its enzymatic capability as a phenoloxidase. Arch Biochem Biophys 2020; 688:108370. [DOI: 10.1016/j.abb.2020.108370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 02/04/2023]
|
44
|
Affiliation(s)
| | - Ivanhoe K. H. Leung
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Centre for Green Chemical Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
45
|
Chen J, Li Q, Ye Y, Huang Z, Ruan Z, Jin N. Phloretin as both a substrate and inhibitor of tyrosinase: Inhibitory activity and mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 226:117642. [PMID: 31614273 DOI: 10.1016/j.saa.2019.117642] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Tyrosinase is the rate-limiting enzyme for controlling the production of melanin in the human body, and overproduction of melanin can lead to a variety of skin disorders. In this paper, the inhibitory kinetics of phloretin on tyrosinase and their binding mechanism were determined using spectroscopy, molecular docking, antioxidant assays and chromatography. The spectroscopic results indicate that phloretin reversibly inhibits tyrosinase in a mix-type manner through a multiphase kinetic process with the IC50 of 169.36 μmol/L. It is shown that phloretin has a strong ability to quench the intrinsic fluorescence of tyrosinase mainly through a static quenching procedure, suggesting that a stable phloretin-tyrosinase complex is generated. Molecular docking results suggest that the dominant conformation of phloretin binds to the gate of the active site of tyrosinase. Moreover, the antioxidant assays demonstrate that phloretin has powerful antioxidant capacity and has the ability to reduce o-dopaquinone to l-dopa just like ascorbic acid. Interestingly, the results of spectroscopy and chromatography indicate that phloretin is a substrate of tyrosinase but also an inhibitor. The possible inhibitory mechanism is proposed, which will be helpful to design and search for tyrosinase inhibitors.
Collapse
Affiliation(s)
- Jianmin Chen
- School of Pharmacy and Medical Technology, Putian University, Fujian, China; Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Fujian, China.
| | - Qinglian Li
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Yaling Ye
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Ziyao Huang
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Zhipeng Ruan
- School of Pharmacy and Medical Technology, Putian University, Fujian, China; Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Fujian, China
| | - Nan Jin
- School of Pharmacy and Medical Technology, Putian University, Fujian, China; Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Fujian, China
| |
Collapse
|
46
|
González MN, Massa GA, Andersson M, Turesson H, Olsson N, Fält AS, Storani L, Décima Oneto CA, Hofvander P, Feingold SE. Reduced Enzymatic Browning in Potato Tubers by Specific Editing of a Polyphenol Oxidase Gene via Ribonucleoprotein Complexes Delivery of the CRISPR/Cas9 System. FRONTIERS IN PLANT SCIENCE 2019; 10:1649. [PMID: 31998338 PMCID: PMC6962139 DOI: 10.3389/fpls.2019.01649] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/22/2019] [Indexed: 05/05/2023]
Abstract
Polyphenol Oxidases (PPOs) catalyze the conversion of phenolic substrates to quinones, leading to the formation of dark-colored precipitates in fruits and vegetables. This process, known as enzymatic browning, is the cause of undesirable changes in organoleptic properties and the loss of nutritional quality in plant-derived products. In potato (Solanum tubersoum L.), PPOs are encoded by a multi-gene family with different expression patterns. Here, we have studied the application of the CRISPR/Cas9 system to induce mutations in the StPPO2 gene in the tetraploid cultivar Desiree. We hypothesized that the specific editing of this target gene would result in a lower PPO activity in the tuber with the consequent reduction of the enzymatic browning. Ribonucleoprotein complexes (RNPs), formed by two sgRNAs and Cas9 nuclease, were transfected to potato protoplasts. Up to 68% of regenerated plants contained mutations in at least one allele of the target gene, while 24% of edited lines carried mutations in all four alleles. No off-target mutations were identified in other analyzed StPPO genes. Mutations induced in the four alleles of StPPO2 gene, led to lines with a reduction of up to 69% in tuber PPO activity and a reduction of 73% in enzymatic browning, compared to the control. Our results demonstrate that the CRISPR/Cas9 system can be applied to develop potato varieties with reduced enzymatic browning in tubers, by the specific editing of a single member of the StPPO gene family.
Collapse
Affiliation(s)
- Matías Nicolás González
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Agrobiotecnología, INTA - EEA Balcarce, Balcarce, Argentina
- *Correspondence: Matías Nicolás González,
| | - Gabriela Alejandra Massa
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Agrobiotecnología, INTA - EEA Balcarce, Balcarce, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - Mariette Andersson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Helle Turesson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Niklas Olsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Ann-Sofie Fält
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Leonardo Storani
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Agrobiotecnología, INTA - EEA Balcarce, Balcarce, Argentina
| | | | - Per Hofvander
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | |
Collapse
|