1
|
Shekhovtsov SV, Bulakhova NA, Tsentalovich YP, Osik NA, Meshcheryakova EN, Poluboyarova TV, Berman DI. Metabolic stability of the Pallas' spadefoot Pelobates vespertinus under extreme hypoxia. J Comp Physiol B 2024; 194:855-867. [PMID: 39292257 DOI: 10.1007/s00360-024-01584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/17/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
The Pallas' spadefoot Pelobates vespertinus is a frog species native to eastern Europe and west Siberia. This species resists harsh winter conditions by moving up to 2 m underground. This amphibian is the first species known to withstand extreme air hypoxia. In this study, we investigated the metabolome of liver, heart, and brain of the Pallas' spadefoot after a month-long exposure of hypoxia, with oxygen levels reduced to approximately one-tenth of the air normal content. Surprisingly, our findings revealed a limited impact of hypoxia on the metabolomic profiles. Concentrations of glycolysis end products (lactate and alanine) increased only slightly compared to other amphibians under hypoxia, and no accumulation of succinate was observed. Furthermore, there were no notable changes in the content of adenosine phosphates. These results are consistent with a previous study, which indicated that the Pallas' spadefoot possesses relatively small glycogen and fat reserves before the winter compared to other frogs. It appears that this species conserves energy during winter by minimizing its metabolic activity. These findings corroborated the hypothesis that the survival of P. vespertinus under hypoxic conditions primarily relies on metabolic suppression rather than substantial energy reserves.
Collapse
Affiliation(s)
- S V Shekhovtsov
- Institute of Cytology and Genetics SB RAS, Lavrentieva av. 10, Novosibirsk, 630090, Russia.
- Institute of the Biological Problems of the North FEB RAS, Portovaya 18, Magadan, 685000, Russia.
| | - N A Bulakhova
- Institute of the Biological Problems of the North FEB RAS, Portovaya 18, Magadan, 685000, Russia
| | - Yu P Tsentalovich
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk, 630090, Russia
| | - N A Osik
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk, 630090, Russia
| | - E N Meshcheryakova
- Institute of the Biological Problems of the North FEB RAS, Portovaya 18, Magadan, 685000, Russia
| | - T V Poluboyarova
- Institute of Cytology and Genetics SB RAS, Lavrentieva av. 10, Novosibirsk, 630090, Russia
| | - D I Berman
- Institute of the Biological Problems of the North FEB RAS, Portovaya 18, Magadan, 685000, Russia
| |
Collapse
|
2
|
Scott MA, Fagernes CE, Nilsson GE, Stensløkken KO. Maintained mitochondrial integrity without oxygen in the anoxia-tolerant crucian carp. J Exp Biol 2024; 227:jeb247409. [PMID: 38779846 PMCID: PMC11418198 DOI: 10.1242/jeb.247409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Very few vertebrates survive without oxygen (anoxia) for more than a few minutes. Crucian carp (Carassius carassius) are one example, surviving months of anoxia at low temperatures, and we hypothesised that they maintain mitochondrial membrane potential and function. Isolated crucian carp cardiomyocytes indeed maintained mitochondrial membrane potential after blocking complex IV of the electron transport system with cyanide, while those of anoxia-intolerant trout depolarised. When complexes I-III were inhibited, crucian carp mitochondria depolarised, indicating that these complexes need to function during anoxia. Mitochondrial membrane potential depended on reversal of ATP synthase in chemical anoxia, as blocking with cyanide combined with oligomycin to inhibit ATP synthase led to depolarisation. ATP synthase activity was reduced in the heart after 1 week of anoxia in crucian carp, together with a downregulation of ATP synthase subunit gene expression. However, the morphology of cardiac mitochondria was not affected by 1 week of anoxia, even with a large increase in mitofusin 2 mRNA expression. Cardiac citrate synthase activity was not affected by anoxia, while cytochrome c oxidase activity was increased. We show how mitochondria respond to anoxia. A mechanistic understanding of how mitochondrial function can be maintained in anoxia may provide new perspectives to reduce mitochondrial damage in anoxia-sensitive organisms.
Collapse
Affiliation(s)
- Mark A. Scott
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, 0361 Oslo, Norway
| | - Cathrine E. Fagernes
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, 0361 Oslo, Norway
| | - Göran E. Nilsson
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, 0361 Oslo, Norway
| | - Kåre-Olav Stensløkken
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| |
Collapse
|
3
|
Camacho J, Bernal-Rivera A, Peña V, Morales-Sosa P, Robb SMC, Russell J, Yi K, Wang Y, Tsuchiya D, Murillo-García OE, Rohner N. Sugar assimilation underlying dietary evolution of Neotropical bats. Nat Ecol Evol 2024; 8:1735-1750. [PMID: 39198571 PMCID: PMC11383804 DOI: 10.1038/s41559-024-02485-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/27/2024] [Indexed: 09/01/2024]
Abstract
Dietary specializations in animals lead to adaptations in morphology, anatomy and physiology. Neotropical bats, with their high taxonomic and trophic diversity, offer a unique perspective on diet-driven evolutionary adaptations. Here we assess the metabolic response to different dietary sugars among wild-caught bats. We found that insectivorous bats had a pronounced metabolic response to trehalose, whereas bats with nectar and fruit-based diets showed significantly higher blood glucose levels in response to glucose and sucrose, reaching levels over 750 mg dl-1. The genomic analysis of 22 focal species and two outgroup species identified positive selection for the digestive enzyme trehalase in insect eaters, while sucrase-isomaltase showed selection in lineages with omnivorous and nectar diets. By examining anatomical and cellular features of the small intestine, we discovered that dietary sugar proportion strongly impacted numerous digestive traits, providing valuable insight into the physiological implications of molecular adaptations. Using hybridization chain reaction (HCR) RNA fluorescence in situ hybridization, we observed unusually high expression in the glucose transporter gene Slc2a2 in nectar bats, while fruit bats increased levels of Slc5a1 and Slc2a5. Overall, this study highlights the intricate interplay between molecular, morphological and physiological aspects of diet evolution, offering new insights into the mechanisms of dietary diversification and sugar assimilation in mammals.
Collapse
Affiliation(s)
- Jasmin Camacho
- Stowers Institute for Medical Research, Kansas City, MO, USA.
| | - Andrea Bernal-Rivera
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Grupo de Investigación en Ecología Animal, Departamento de Biología, Universidad del Valle, Cali, Colombia
| | - Valentina Peña
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Sofia M C Robb
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Kexi Yi
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Yongfu Wang
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Oscar E Murillo-García
- Grupo de Investigación en Ecología Animal, Departamento de Biología, Universidad del Valle, Cali, Colombia.
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
4
|
Yutsyschyna MA, Shaftoe JB, Gillis TE. Mitochondria from the systemic heart of Pacific hagfish (Eptatretus stoutii) are insensitive to one hour of anoxia followed by reoxygenation. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111022. [PMID: 39151663 DOI: 10.1016/j.cbpb.2024.111022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Pacific hagfish (Eptatretus stoutii) are an ancient agnathan vertebrate known to be anoxia tolerant. To study their metabolic organization and the role of the mitochondria in anoxia tolerance we developed a novel protocol to measure mitochondrial function in permeabilized cardiomyocytes and how this is affected by one hour of anoxia followed by reoxygenation. When measured at 10 °C the mitochondria had a respiration rate of 2.1 ± 0.1pmol/s/mg WW during OXPHOS with saturating concentrations of glutamate, malate, and succinate. This is comparatively low compared to other ectothermic species. The functional characteristics of the mitochondria were quantified with mitochondrial control ratios. These demonstrated that proton leak contributed to just under 50% of the oxygen flux, with the remainder going towards ATP phosphorylation. Finally, when the preparations were exposed to an anoxia-reoxygenation protocol there was no difference in respiration compared to that of a heart sample from the same animal maintained under normoxia for the same time. When Complex I alone or Complex I and II were stimulated following one hour of anoxia there was no decline in oxygen flux observed. However, if Complex II was activated alone there was a significant decline in respiration. This decrease was however also observed in the mitochondria maintained in normoxia for one hour. In conclusion, Pacific hagfish cardiac mitochondria demonstrated a low rate of oxygen consumption, a loosely coupled electron transfer system, and a resistance to one hour of anoxia.
Collapse
Affiliation(s)
| | - Jared B Shaftoe
- Department of Integrative Biology, University of Guelph, Ontario, Canada
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Ontario, Canada.
| |
Collapse
|
5
|
Wu F, Kong H, Xie L, Sokolova IM. Exposure to nanopollutants (nZnO) enhances the negative effects of hypoxia and delays recovery of the mussels' immune system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124112. [PMID: 38705446 DOI: 10.1016/j.envpol.2024.124112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
Aquatic environments face escalating challenges from multiple stressors like hypoxia and nanoparticle exposure, with impact of these combined stressors on mussel immunity being poorly understood. We investigated the individual and combined effects of short-term and long-term hypoxia and exposure to zinc oxide nanoparticles (nZnO) on immune system of the mussels (Mytilus edulis). Hemocyte functional traits (mortality, adhesion capacity, phagocytosis, lysosomal abundance, and oxidative burst), and transcript levels of immune-related genes involved in pathogen recognition (the Toll-like receptors, the complement system components, and the adaptor proteins MyD88) were assessed. Short-term hypoxia minimally affected hemocyte parameters, while prolonged exposure led to immunosuppression, impacting hemocyte abundance, viability, phagocytosis, and defensin gene expression. Under normoxia, nZnO stimulated immune responses of mussel hemocytes. However, combined nZnO and hypoxia induced more pronounced and rapid immunosuppression than hypoxia alone, indicating a synergistic interaction. nZnO exposure hindered immune parameter recovery during post-hypoxic reoxygenation, suggesting persistent impact. Opposing trends were observed in pathogen-sensing and pathogen-elimination mechanisms, with a positive correlation between pathogen-recognition system activation and hemocyte mortality. These findings underscore a complex relationship and potential conflict between pathogen-recognition ability, immune function, and cell survival in mussel hemocytes under hypoxia and nanopollutant stress, and emphasize the importance of considering multiple stressors in assessing the vulnerability and adaptability of mussel immune system under complex environmental conditions of anthropogenically modified coastal ecosystems.
Collapse
Affiliation(s)
- Fangli Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Hui Kong
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
6
|
Sorby-Adams A, Prime TA, Miljkovic JL, Prag HA, Krieg T, Murphy MP. A model of mitochondrial superoxide production during ischaemia-reperfusion injury for therapeutic development and mechanistic understanding. Redox Biol 2024; 72:103161. [PMID: 38677214 PMCID: PMC11066467 DOI: 10.1016/j.redox.2024.103161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024] Open
Abstract
Ischaemia-reperfusion (IR) injury is the paradoxical consequence of the rapid restoration of blood flow to an ischaemic organ. Although reperfusion is essential for tissue survival in conditions such as myocardial infarction and stroke, the excessive production of mitochondrial reactive oxygen species (ROS) upon reperfusion initiates the oxidative damage that underlies IR injury, by causing cell death and inflammation. This ROS production is caused by an accumulation of the mitochondrial metabolite succinate during ischaemia, followed by its rapid oxidation upon reperfusion by succinate dehydrogenase (SDH), driving superoxide production at complex I by reverse electron transport. Inhibitors of SDH, such as malonate, show therapeutic potential by decreasing succinate oxidation and superoxide production upon reperfusion. To better understand the mechanism of mitochondrial ROS production upon reperfusion and to assess potential therapies, we set up an in vitro model of IR injury. For this, isolated mitochondria were incubated anoxically with succinate to mimic ischaemia and then rapidly reoxygenated to replicate reperfusion, driving a burst of ROS formation. Using this system, we assess the factors that contribute to the magnitude of mitochondrial ROS production in heart, brain, and kidney mitochondria, as well as screening for inhibitors of succinate oxidation with therapeutic potential.
Collapse
Affiliation(s)
- Annabel Sorby-Adams
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge, CB2 0XY, UK
| | - Tracy A Prime
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge, CB2 0XY, UK
| | - Jan Lj Miljkovic
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge, CB2 0XY, UK
| | - Hiran A Prag
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge, CB2 0XY, UK; Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
7
|
Ojaghi M, Pamenter ME. Hypoxia impairs blood glucose homeostasis in naked mole-rat adult subordinates but not queens. J Exp Biol 2024; 227:jeb247537. [PMID: 38680085 PMCID: PMC11166464 DOI: 10.1242/jeb.247537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024]
Abstract
Naked mole-rats (NMRs) are among the most hypoxia-tolerant mammals and metabolize only carbohydrates in hypoxia. Glucose is the primary building block of dietary carbohydrates, but how blood glucose is regulated during hypoxia has not been explored in NMRs. We hypothesized that NMRs mobilize glucose stores to support anaerobic energy metabolism in hypoxia. To test this, we treated newborn, juvenile and adult (subordinate and queen) NMRs in normoxia (21% O2) or hypoxia (7, 5 or 3% O2), while measuring metabolic rate, body temperature and blood [glucose]. We also challenged animals with glucose, insulin or insulin-like growth factor-1 (IGF-1) injections and measured the rate of glucose clearance in normoxia and hypoxia. We found that: (1) blood [glucose] increases in moderate hypoxia in queens and pups, but only in severe hypoxia in adult subordinates and juveniles; (2) glucose tolerance is similar between developmental stages in normoxia, but glucose clearance times are 2- to 3-fold longer in juveniles and subordinates than in queens or pups in hypoxia; and (3) reoxygenation accelerates glucose clearance in hypoxic subordinate adults. Mechanistically, (4) insulin and IGF-1 reduce blood [glucose] in subordinates in both normoxia but only IGF-1 impacts blood [glucose] in hypoxic queens. Our results indicate that insulin signaling is impaired by hypoxia in NMRs, but that queens utilize IGF-1 to overcome this limitation and effectively regulate blood glucose in hypoxia. This suggests that sexual maturation impacts blood glucose handling in hypoxic NMR queens, which may allow queens to spend longer periods of time in hypoxic nest chambers.
Collapse
Affiliation(s)
- Mohammad Ojaghi
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 9A7
| | - Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 9A7
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada, K1H 8M5
| |
Collapse
|
8
|
Niu Y, Zhang X, Men S, Xu T, Zhang H, Li X, Storey KB, Chen Q. Effects of hibernation on two important contractile tissues in tibetan frogs, Nanorana parkeri: a perspective from transcriptomics and metabolomics approaches. BMC Genomics 2024; 25:454. [PMID: 38720264 PMCID: PMC11080311 DOI: 10.1186/s12864-024-10357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND In response to seasonal cold and food shortage, the Xizang plateau frogs, Nanorana parkeri (Anura: Dicroglossidae), enter a reversible hypometabolic state where heart rate and oxygen consumption in skeletal muscle are strongly suppressed. However, the effect of winter hibernation on gene expression and metabolic profiling in these two tissues remains unknown. In the present study, we conducted transcriptomic and metabolomic analyses of heart and skeletal muscle from summer- and winter-collected N. parkeri to explore mechanisms involved in seasonal hibernation. RESULTS We identified 2407 differentially expressed genes (DEGs) in heart and 2938 DEGs in skeletal muscle. Enrichment analysis showed that shared DEGs in both tissues were enriched mainly in translation and metabolic processes. Of these, the expression of genes functionally categorized as "response to stress", "defense mechanisms", or "muscle contraction" were particularly associated with hibernation. Metabolomic analysis identified 24 and 22 differentially expressed metabolites (DEMs) in myocardium and skeletal muscle, respectively. In particular, pathway analysis showed that DEMs in myocardium were involved in the pentose phosphate pathway, glycerolipid metabolism, pyruvate metabolism, citrate cycle (TCA cycle), and glycolysis/gluconeogenesis. By contrast, DEMs in skeletal muscle were mainly involved in amino acid metabolism. CONCLUSIONS In summary, natural adaptations of myocardium and skeletal muscle in hibernating N. parkeri involved transcriptional alterations in translation, stress response, protective mechanisms, and muscle contraction processes as well as metabolic remodeling. This study provides new insights into the transcriptional and metabolic adjustments that aid winter survival of high-altitude frogs N. parkeri.
Collapse
Affiliation(s)
- Yonggang Niu
- School of Life Sciences, Dezhou University, Dezhou, 253023, Shandong, China.
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Xuejing Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Shengkang Men
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Tisen Xu
- School of Life Sciences, Dezhou University, Dezhou, 253023, Shandong, China
| | - Haiying Zhang
- School of Life Sciences, Dezhou University, Dezhou, 253023, Shandong, China
| | - Xiangyong Li
- School of Life Sciences, Dezhou University, Dezhou, 253023, Shandong, China
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Qiang Chen
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
9
|
Bundgaard A, Borowiec BG, Lau GY. Are reactive oxygen species always bad? Lessons from hypoxic ectotherms. J Exp Biol 2024; 227:jeb246549. [PMID: 38533673 DOI: 10.1242/jeb.246549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Oxygen (O2) is required for aerobic energy metabolism but can produce reactive oxygen species (ROS), which are a wide variety of oxidant molecules with a range of biological functions from causing cell damage (oxidative distress) to cell signalling (oxidative eustress). The balance between the rate and amount of ROS generated and the capacity for scavenging systems to remove them is affected by several biological and environmental factors, including oxygen availability. Ectotherms, and in particular hypoxia-tolerant ectotherms, are hypothesized to avoid oxidative damage caused by hypoxia, although it is unclear whether this translates to an increase in ecological fitness. In this Review, we highlight the differences between oxidative distress and eustress, the current mechanistic understanding of the two and how they may affect ectothermic physiology. We discuss the evidence of occurrence of oxidative damage with hypoxia in ectotherms, and that ectotherms may avoid oxidative damage through (1) high levels of antioxidant and scavenging systems and/or (2) low(ering) levels of ROS generation. We argue that the disagreements in the literature as to how hypoxia affects antioxidant enzyme activity and the variable metabolism of ectotherms makes the latter strategy more amenable to ectotherm physiology. Finally, we argue that observed changes in ROS production and oxidative status with hypoxia may be a signalling mechanism and an adaptive strategy for ectotherms encountering hypoxia.
Collapse
Affiliation(s)
- Amanda Bundgaard
- University of Cologne, CECAD, Joseph-Stelzmann-Straße 26, DE-50931 Köln, Germany
- Aarhus University, Department of Biology, CF Moellers Alle 3, DK-8000 Aarhus C, Denmark
| | - Brittney G Borowiec
- Wilfrid Laurier University, Department of Biology, 75 University Ave. W., Waterloo, ON, Canada, N2L 3C5
| | - Gigi Y Lau
- University of British Columbia, Department of Zoology, 6270 University Blvd, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
10
|
Ducros L, Touaibia M, Pichaud N, Lamarre SG. Resilience and phenotypic plasticity of Arctic char ( Salvelinus alpinus) facing cyclic hypoxia: insights into growth, energy stores and hepatic metabolism. CONSERVATION PHYSIOLOGY 2023; 11:coad099. [PMID: 38107465 PMCID: PMC10724465 DOI: 10.1093/conphys/coad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/13/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
Arctic char (Salvelinus alpinus) is facing the decline of its southernmost populations due to several factors including rising temperatures and eutrophication. These conditions are also conducive to episodes of cyclic hypoxia, another possible threat to this species. In fact, lack of oxygen and reoxygenation can both have serious consequences on fish as a result of altered ATP balance and an elevated risk of oxidative burst. Thus, fish must adjust their phenotype to survive and equilibrate their energetic budget. However, their energy allocation strategy could imply a reduction in growth which could be deleterious for their fitness. Although the impact of cyclic hypoxia is a major issue for ecosystems and fisheries worldwide, our knowledge on how salmonid deal with high oxygen fluctuations remains limited. Our objective was to characterize the effects of cyclic hypoxia on growth and metabolism in Arctic char. We monitored growth parameters (specific growth rate, condition factor), hepatosomatic and visceral indexes, relative heart mass and hematocrit of Arctic char exposed to 30 days of cyclic hypoxia. We also measured the hepatic protein synthesis rate, hepatic triglycerides as well as muscle glucose, glycogen and lactate and quantified hepatic metabolites during this treatment. The first days of cyclic hypoxia slightly reduce growth performance with a downward trend in specific growth rate in mass and condition factor variation compared to the control group. This acute exposure also induced a profound metabolome reorganization in the liver with an alteration of amino acid, carbohydrate and lipid metabolisms. However, fish rebalanced their metabolic activities and successfully maintained their growth and energetic reserves after 1 month of cyclic hypoxia. These results demonstrate the impressive ability of Arctic char to cope with its changing environment but also highlight a certain vulnerability of this species during the first days of a cyclic hypoxia event.
Collapse
Affiliation(s)
- Loïck Ducros
- Département de Biologie, Université de Moncton, 18 Antonine Maillet, Moncton E1A 3E9, NB, Canada
- Département de Chimie et Biochimie, Université de Moncton, 18 Antonine Maillet, Moncton E1A 3E9, NB, Canada
| | - Mohamed Touaibia
- Département de Chimie et Biochimie, Université de Moncton, 18 Antonine Maillet, Moncton E1A 3E9, NB, Canada
| | - Nicolas Pichaud
- Département de Chimie et Biochimie, Université de Moncton, 18 Antonine Maillet, Moncton E1A 3E9, NB, Canada
| | - Simon G Lamarre
- Département de Biologie, Université de Moncton, 18 Antonine Maillet, Moncton E1A 3E9, NB, Canada
| |
Collapse
|
11
|
Wang 王宇扬 Y, Little AG, Aristizabal MJ, Robertson RM. Low Glycolysis Is Neuroprotective during Anoxic Spreading Depolarization (SD) and Reoxygenation in Locusts. eNeuro 2023; 10:ENEURO.0325-23.2023. [PMID: 37932046 PMCID: PMC10683553 DOI: 10.1523/eneuro.0325-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Migratory locusts enter a reversible hypometabolic coma to survive environmental anoxia, wherein the cessation of CNS activity is driven by spreading depolarization (SD). While glycolysis is recognized as a crucial anaerobic energy source contributing to animal anoxia tolerance, its influence on the anoxic SD trajectory and recovery outcomes remains poorly understood. We investigated the effects of varying glycolytic capacity on adult female locust anoxic SD parameters, using glucose or the glycolytic inhibitors 2-deoxy-d-glucose (2DG) or monosodium iodoacetate (MIA). Surprisingly, 2DG treatment shared similarities with glucose yet had opposite effects compared with MIA. Specifically, although SD onset was not affected, both glucose and 2DG expedited the recovery of CNS electrical activity during reoxygenation, whereas MIA delayed it. Additionally, glucose and MIA, but not 2DG, increased tissue damage and neural cell death following anoxia-reoxygenation. Notably, glucose-induced injuries were associated with heightened CO2 output during the early phase of reoxygenation. Conversely, 2DG resulted in a bimodal response, initially dampening CO2 output and gradually increasing it throughout the recovery period. Given the discrepancies between effects of 2DG and MIA, the current results require cautious interpretations. Nonetheless, our findings present evidence that glycolysis is not a critical metabolic component in either anoxic SD onset or recovery and that heightened glycolysis during reoxygenation may exacerbate CNS injuries. Furthermore, we suggest that locust anoxic recovery is not solely dependent on energy availability, and the regulation of metabolic flux during early reoxygenation may constitute a strategy to mitigate damage.
Collapse
Affiliation(s)
- Yuyang Wang 王宇扬
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | - Maria J Aristizabal
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - R Meldrum Robertson
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
12
|
Shekhovtsov SV, Bulakhova NA, Tsentalovich YP, Zelentsova EA, Osik NA, Meshcheryakova EN, Poluboyarova TV, Berman DI. Metabolomic Profiling Reveals Differences in Hypoxia Response between Far Eastern and Siberian Frogs. Animals (Basel) 2023; 13:3349. [PMID: 37958105 PMCID: PMC10647746 DOI: 10.3390/ani13213349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/08/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Anoxia is a significant challenge for most animals, as it can lead to tissue damage and death. Among amphibians, the Siberian frog Rana amurensis is the only known species capable of surviving near-zero levels of oxygen in water for a prolonged period. In this study, we aimed to compare metabolomic profiles of the liver, brain, and heart of the Siberian frog exposed to long-term oxygen deprivation (approximately 0.2 mg/L water) with those of the susceptible Far Eastern frog (Rana dybowskii) subjected to short-term hypoxia to the limits of its tolerance. One of the most pronounced features was that the organs of the Far Eastern frog contained more lactate than those of the Siberian frog despite a much shorter exposure time. The amounts of succinate were similar between the two species. Interestingly, glycerol and 2,3-butanediol were found to be significantly accumulated under hypoxia in the Siberian frog, but not in the Far Eastern frog. The role and biosynthesis of these substances are still unclear, but they are most likely formed in certain side pathways of glycolysis. Based on the obtained data, we suggest a pathway for metabolic changes in the Siberian frog under anoxia.
Collapse
Affiliation(s)
- Sergei V. Shekhovtsov
- Institute of Cytology and Genetics SB RAS, Lavrentieva av. 10, 630090 Novosibirsk, Russia;
- Institute of the Biological Problems of the North FEB RAS, Portovaya 18, 685000 Magadan, Russia; (N.A.B.); (E.N.M.); (D.I.B.)
| | - Nina A. Bulakhova
- Institute of the Biological Problems of the North FEB RAS, Portovaya 18, 685000 Magadan, Russia; (N.A.B.); (E.N.M.); (D.I.B.)
| | - Yuri P. Tsentalovich
- International Tomography Center SB RAS, Institutskaya 3a, 630090 Novosibirsk, Russia; (Y.P.T.); (E.A.Z.); (N.A.O.)
| | - Ekaterina A. Zelentsova
- International Tomography Center SB RAS, Institutskaya 3a, 630090 Novosibirsk, Russia; (Y.P.T.); (E.A.Z.); (N.A.O.)
| | - Nataliya A. Osik
- International Tomography Center SB RAS, Institutskaya 3a, 630090 Novosibirsk, Russia; (Y.P.T.); (E.A.Z.); (N.A.O.)
| | - Ekaterina N. Meshcheryakova
- Institute of the Biological Problems of the North FEB RAS, Portovaya 18, 685000 Magadan, Russia; (N.A.B.); (E.N.M.); (D.I.B.)
| | | | - Daniil I. Berman
- Institute of the Biological Problems of the North FEB RAS, Portovaya 18, 685000 Magadan, Russia; (N.A.B.); (E.N.M.); (D.I.B.)
| |
Collapse
|
13
|
Prag HA, Murphy MP, Krieg T. Preventing mitochondrial reverse electron transport as a strategy for cardioprotection. Basic Res Cardiol 2023; 118:34. [PMID: 37639068 PMCID: PMC10462584 DOI: 10.1007/s00395-023-01002-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023]
Abstract
In the context of myocardial infarction, the burst of superoxide generated by reverse electron transport (RET) at complex I in mitochondria is a crucial trigger for damage during ischaemia/reperfusion (I/R) injury. Here we outline the necessary conditions for superoxide production by RET at complex I and how it can occur during reperfusion. In addition, we explore various pathways that are implicated in generating the conditions for RET to occur and suggest potential therapeutic strategies to target RET, aiming to achieve cardioprotection.
Collapse
Affiliation(s)
- Hiran A Prag
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Michael P Murphy
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK.
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
14
|
Aboouf MA, Thiersch M, Soliz J, Gassmann M, Schneider Gasser EM. The Brain at High Altitude: From Molecular Signaling to Cognitive Performance. Int J Mol Sci 2023; 24:10179. [PMID: 37373327 DOI: 10.3390/ijms241210179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The brain requires over one-fifth of the total body oxygen demand for normal functioning. At high altitude (HA), the lower atmospheric oxygen pressure inevitably challenges the brain, affecting voluntary spatial attention, cognitive processing, and attention speed after short-term, long-term, or lifespan exposure. Molecular responses to HA are controlled mainly by hypoxia-inducible factors. This review aims to summarize the cellular, metabolic, and functional alterations in the brain at HA with a focus on the role of hypoxia-inducible factors in controlling the hypoxic ventilatory response, neuronal survival, metabolism, neurogenesis, synaptogenesis, and plasticity.
Collapse
Affiliation(s)
- Mostafa A Aboouf
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Markus Thiersch
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Jorge Soliz
- Institute Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Faculty of Medicine, Université Laval, Québec, QC G1V 4G5, Canada
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Edith M Schneider Gasser
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Institute Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Faculty of Medicine, Université Laval, Québec, QC G1V 4G5, Canada
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
15
|
Shekhovtsov SV, Zelentsova EA, Bulakhova NA, Meshcheryakova EN, Shishikina KI, Tsentalovich YP, Berman DI. Biochemical response of two earthworm taxa exposed to freezing. J Comp Physiol B 2023:10.1007/s00360-023-01500-w. [PMID: 37266592 DOI: 10.1007/s00360-023-01500-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Several earthworm species are known to be able to withstand freezing. At the biochemical level, this ability is based on cryoprotectant accumulation as well as several other mechanisms. In this study, we used 1H NMR to investigate metabolomic changes in two freeze-tolerant earthworm taxa, Dendrobaena octaedra and one of the genetic lineages of Eisenia sp. aff. nordenskioldi f. pallida. A total of 45 metabolites were quantified. High concentrations of glucose were present in frozen tissues of both taxa. No other putative cryoprotectants were found. We detected high levels of glycolysis end products and succinate in frozen animals, indicating the activation of glycolysis. Concentrations of many other substances also significantly increased. On the whole, metabolic change in response to freezing was much more pronounced in the specimens of Eisenia sp. aff. nordenskioldi f. pallida, including signs of nucleotide degradation.
Collapse
Affiliation(s)
- Sergei V Shekhovtsov
- Institute of the Biological Problems of the North FEB RAS, Magadan, 685000, Russia.
- Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia.
| | - Ekaterina A Zelentsova
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia
- Department of Chemical and Biological Physics, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Nina A Bulakhova
- Institute of the Biological Problems of the North FEB RAS, Magadan, 685000, Russia
| | | | - Ksenia I Shishikina
- Institute of the Biological Problems of the North FEB RAS, Magadan, 685000, Russia
| | | | - Daniil I Berman
- Institute of the Biological Problems of the North FEB RAS, Magadan, 685000, Russia
| |
Collapse
|
16
|
Bundgaard A, Gruszczyk AV, Prag HA, Williams C, McIntyre A, Ruhr IM, James AM, Galli GLJ, Murphy MP, Fago A. Low production of mitochondrial reactive oxygen species after anoxia and reoxygenation in turtle hearts. J Exp Biol 2023; 226:jeb245516. [PMID: 37066839 PMCID: PMC10184768 DOI: 10.1242/jeb.245516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
Extremely anoxia-tolerant animals, such as freshwater turtles, survive anoxia and reoxygenation without sustaining tissue damage to their hearts. In contrast, for mammals, the ischemia-reperfusion (IR) injury that leads to tissue damage during a heart attack is initiated by a burst of superoxide (O2·-) production from the mitochondrial respiratory chain upon reperfusion of ischemic tissue. Whether turtles avoid oxidative tissue damage because of an absence of mitochondrial superoxide production upon reoxygenation, or because the turtle heart is particularly protected against this damage, is unclear. Here, we investigated whether there was an increase in mitochondrial O2·- production upon the reoxygenation of anoxic red-eared slider turtle hearts in vivo and in vitro. This was done by measuring the production of H2O2, the dismutation product of O2·-, using the mitochondria-targeted mass-spectrometric probe in vivo MitoB, while in parallel assessing changes in the metabolites driving mitochondrial O2·- production, succinate, ATP and ADP levels during anoxia, and H2O2 consumption and production rates of isolated heart mitochondria. We found that there was no excess production of in vivo H2O2 during 1 h of reoxygenation in turtles after 3 h anoxia at room temperature, suggesting that turtle hearts most likely do not suffer oxidative injury after anoxia because their mitochondria produce no excess O2·- upon reoxygenation. Instead, our data support the conclusion that both the low levels of succinate accumulation and the maintenance of ADP levels in the anoxic turtle heart are key factors in preventing the surge of O2·- production upon reoxygenation.
Collapse
Affiliation(s)
- Amanda Bundgaard
- CECAD, University of Cologne, 50931 Cologne, Germany
- Department of Biology, Aarhus University, DK-8000 Aarhus, Denmark
| | - Anja V. Gruszczyk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Hiran A. Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | | | - Angela McIntyre
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Ilan M. Ruhr
- Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Andrew M. James
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Gina L. J. Galli
- Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Michael P. Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Angela Fago
- Department of Biology, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
17
|
Johansen A, Thiede B, Anonsen JH, Nilsson GE. Surviving without oxygen involves major tissue specific changes in the proteome of crucian carp ( Carassius carassius). PeerJ 2023; 11:e14890. [PMID: 36915662 PMCID: PMC10007964 DOI: 10.7717/peerj.14890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 03/10/2023] Open
Abstract
The crucian carp (Carassius carassius) can survive complete oxygen depletion (anoxia) for several months at low temperatures, making it an excellent model for studying molecular adaptations to anoxia. Still, little is known about how its global proteome responds to anoxia and reoxygenation. By applying mass spectrometry-based proteome analyses on brain, heart and liver tissue from crucian carp exposed to normoxia, five days anoxia, and reoxygenation, we found major changes in particularly cardiac and hepatic protein levels in response to anoxia and reoxygenation. These included tissue-specific differences in mitochondrial proteins involved in aerobic respiration and mitochondrial membrane integrity. Enzymes in the electron transport system (ETS) decreased in heart and increased massively in liver during anoxia and reoxygenation but did not change in the brain. Importantly, the data support a special role for the liver in succinate handling upon reoxygenation, as suggested by a drastic increase of components of the ETS and uncoupling protein 2, which could allow for succinate metabolism without excessive formation of reactive oxygen species (ROS). Also during reoxygenation, the levels of proteins involved in the cristae junction organization of the mitochondria changed in the heart, possibly functioning to suppress ROS formation. Furthermore, proteins involved in immune (complement) system activation changed in the anoxic heart compared to normoxic controls. The results emphasize that responses to anoxia are highly tissue-specific and related to organ function.
Collapse
Affiliation(s)
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jan Haug Anonsen
- Department of Biosciences, University of Oslo, Oslo, Norway
- Climate & Environment Department, NORCE, Norwegian Research Centre AS, Stavanger, Norway
| | | |
Collapse
|
18
|
Montaña-Lozano P, Balaguera-Reina SA, Prada-Quiroga CF. Comparative analysis of codon usage of mitochondrial genomes provides evolutionary insights into reptiles. Gene 2023; 851:146999. [DOI: 10.1016/j.gene.2022.146999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 11/04/2022]
|
19
|
Melvin SD, Chaousis S, Finlayson K, Carroll AR, van de Merwe JP. Field-scale monitoring of green sea turtles (Chelonia mydas): Influence of site characteristics and capture technique on the blood metabolome. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 44:101026. [PMID: 36191476 DOI: 10.1016/j.cbd.2022.101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 01/27/2023]
Abstract
Given their threatened status, there is considerable interest in establishing monitoring techniques that can be used to evaluate the health of sea turtles in the wild. The present study represents a methodological contribution towards field-scale metabolomic assessment of sea turtles, by exploring differences in blood biochemistry associated with site characteristics and capture technique. We compared the metabolome of blood from animals at three locations (two coastal and one reefal), collected from turtles that were either resting or active, and sampled across multiple seasons at one location. Our results show clear differences in the metabolome of turtles from the three locations, some of which are likely attributable to differences in diet or forage quality and others which may reflect differences in other factors (e.g., occurrence of land-based contaminants or other biotic and/or abiotic stressors) between coastal and reefal sites. Our analysis also revealed the influence of capture technique on metabolite profiles, with numerous markers of physical exertion in animals captured while active that were absent in turtles sampled while resting. We observed a modest potential for temporal differences in the metabolome, but controlling for sampling time did not change the overall conclusions of our study. This suggests that temporal differences in the metabolome warrant consideration when designing studies to evaluate the status of sea turtles in the wild, but that site characteristics and capture technique are bigger drivers. However, sample size for this comparison was relatively small and further investigation of seasonal differences in the metabolome are warranted. Research exploring each of these factors more closely will further contribute towards achieving robust metabolomics analysis of sea turtles across large spatial and temporal scales.
Collapse
Affiliation(s)
- Steven D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia.
| | - Stephanie Chaousis
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
| | - Kimberly Finlayson
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
| | - Anthony R Carroll
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Southport, QLD, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia. https://twitter.com/@DrVanders
| |
Collapse
|
20
|
Influence of Ecological Factors on the Metabolomic Composition of Fish Lenses. BIOLOGY 2022; 11:biology11121709. [PMID: 36552218 PMCID: PMC9774591 DOI: 10.3390/biology11121709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
Multiple stressors related to changes in environmental conditions (such as water temperature, salinity, and natural and anthropogenic pollution) may cause biological responses of aquatic organisms that lead to significant variations in the biochemical reactions in their tissues and thereby change the concentrations of metabolites. We used a quantitative NMR-based metabolomic analysis of the fish lens for the evaluation of the influence of environmental factors on metabolic processes in aquatic animals. For this purpose, three species of freshwater fish-Perca fluviatilis, Rutilus rutilus lacustris, and Gymnocephalus cernua-were caught at approximately the same time at three locations in Siberia (Russia) that differed in levels of dissolved oxygen (LDO) and water purity, and the concentrations of 57 major metabolites in the fish lenses were determined. We found that the metabolomic profiles of the fish lenses strongly depended on the location. The obtained data demonstrated that two typical stressors for aquatic animals-a reduced LDO and anthropogenic water pollution-caused a largely similar metabolic response in the fish lenses that led to an increase in the concentrations of several amino acids and a decrease in sarcosine and phosphoethanolamine. At the same time, the composition of the major lens osmolytes depended mostly on the oxygen level, while variations in AMP (decrease) and NAD (increase) corresponded to the water pollution. We suggest that the eye lens is a very convenient tissue for studying the impact of ecological factors on the metabolic state of aquatic animals, fish in particular.
Collapse
|
21
|
Hawrysh PJ, Myrka AM, Buck LT. Review: A history and perspective of mitochondria in the context of anoxia tolerance. Comp Biochem Physiol B Biochem Mol Biol 2022; 260:110733. [PMID: 35288242 DOI: 10.1016/j.cbpb.2022.110733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 01/01/2023]
Abstract
Symbiosis is found throughout nature, but perhaps nowhere is it more fundamental than mitochondria in all eukaryotes. Since mitochondria were discovered and mechanisms of oxygen reduction characterized, an understanding gradually emerged that these organelles were involved not just in the combustion of oxygen, but also in the sensing of oxygen. While multiple hypotheses exist to explain the mitochondrial involvement in oxygen sensing, key elements are developing that include potassium channels and reactive oxygen species. To understand how mitochondria contribute to oxygen sensing, it is informative to study a model system which is naturally adapted to survive extended periods without oxygen. Amongst air-breathing vertebrates, the most highly adapted are western painted turtles (Chrysemys picta bellii), which overwinter in ice-covered and anoxic water bodies. Through research of this animal, it was postulated that metabolic rate depression is key to anoxic survival and that mitochondrial regulation is a key aspect. When faced with anoxia, excitatory neurotransmitter receptors in turtle brain are inhibited through mitochondrial calcium release, termed "channel arrest". Simultaneously, inhibitory GABAergic signalling contributes to the "synaptic arrest" of excitatory action potential firing through a pathway dependent on mitochondrial depression of ROS generation. While many pathways are implicated in mitochondrial oxygen sensing in turtles, such as those of adenosine, ATP turnover, and gaseous transmitters, an apparent point of intersection is the mitochondria. In this review we will explore how an organelle that was critical for organismal complexity in an oxygenated world has also become a potentially important oxygen sensor.
Collapse
Affiliation(s)
- Peter John Hawrysh
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Alexander Morley Myrka
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Leslie Thomas Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
22
|
Shekhovtsov SV, Bulakhova NA, Tsentalovich YP, Zelentsova EA, Meshcheryakova EN, Poluboyarova TV, Berman DI. Metabolomic Analysis Reveals That the Moor Frog Rana arvalis Uses Both Glucose and Glycerol as Cryoprotectants. Animals (Basel) 2022; 12:ani12101286. [PMID: 35625132 PMCID: PMC9137551 DOI: 10.3390/ani12101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022] Open
Abstract
Simple Summary The moor frog Rana arvalis can tolerate freezing to low temperatures, up to −16 °C. We performed metabolomic analysis of the liver and hindlimb muscles of frozen and control R. arvalis. We found that the moor frog synthesizes glucose and glycerol in similar concentrations as low molecular weight cryoprotectants. This is the first such case reported for the genus Rana, which was believed to use glucose only. We found that freezing upregulates glycolysis, with the accumulation of several end products: lactate, alanine, ethanol, and, possibly, 2,3-butanediol. To our knowledge, this is also the first report of ethanol as an end product of glycolysis in terrestrial vertebrates. We observed highly increased concentrations of nucleotide degradation products, implying high level of stress. We found almost no signs of adaptations to reoxygenation stress, with overall low levels of antioxidants. We also performed metabolomics analysis of subcutaneous ice that was found to contain glucose, glycerol, and several other substances. Abstract The moor frog Rana arvalis is one of a few amphibians that can tolerate freezing to low temperatures, up to −16 °C. In this study, we performed metabolomic analysis of the liver and hindlimb muscles of frozen and control R. arvalis. We found that the moor frog synthesizes glucose and glycerol in similar concentrations as low molecular weight cryoprotectants. This is the first such case reported for the genus Rana, which was believed to use glucose only. We found that freezing upregulates glycolysis, with the accumulation of several end products: lactate, alanine, ethanol, and, possibly, 2,3-butanediol. To our knowledge, this is also the first report of ethanol as an end product of glycolysis in terrestrial vertebrates. We observed highly increased concentrations of nucleotide degradation products, implying high level of stress. The Krebs cycle arrest resulted in high concentrations of succinate, which is common for animals. However, we found almost no signs of adaptations to reoxygenation stress, with overall low levels of antioxidants. We also performed metabolomics analysis of subcutaneous ice that was found to contain glucose, glycerol, and several other substances.
Collapse
Affiliation(s)
- Sergei V. Shekhovtsov
- Institute of the Biological Problems of the North FEB RAS, 685000 Magadan, Russia; (N.A.B.); (E.N.M.); (D.I.B.)
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
- Correspondence:
| | - Nina A. Bulakhova
- Institute of the Biological Problems of the North FEB RAS, 685000 Magadan, Russia; (N.A.B.); (E.N.M.); (D.I.B.)
| | - Yuri P. Tsentalovich
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (Y.P.T.); (E.A.Z.)
| | - Ekaterina A. Zelentsova
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (Y.P.T.); (E.A.Z.)
- Department of Chemical and Biological Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ekaterina N. Meshcheryakova
- Institute of the Biological Problems of the North FEB RAS, 685000 Magadan, Russia; (N.A.B.); (E.N.M.); (D.I.B.)
| | | | - Daniil I. Berman
- Institute of the Biological Problems of the North FEB RAS, 685000 Magadan, Russia; (N.A.B.); (E.N.M.); (D.I.B.)
| |
Collapse
|
23
|
Fago A. New insights into survival strategies to oxygen deprivation in anoxia-tolerant vertebrates. Acta Physiol (Oxf) 2022; 235:e13841. [PMID: 35548887 PMCID: PMC9287066 DOI: 10.1111/apha.13841] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022]
Abstract
Hypoxic environments pose a severe challenge to vertebrates and even short periods of oxygen deprivation are often lethal as they constrain aerobic ATP production. However, a few ectotherm vertebrates are capable of surviving long‐term hypoxia or even anoxia with little or no damage. Among these, freshwater turtles and crucian carp are the recognized champions of anoxia tolerance, capable of overwintering in complete oxygen deprivation for months at freezing temperatures by entering a stable hypometabolic state. While all steps of the oxygen cascade are adjusted in response to oxygen deprivation, this review draws from knowledge of freshwater turtles and crucian carp to highlight mechanisms regulating two of these steps, namely oxygen transport in the blood and oxygen utilization in mitochondria during three sequential phases: before anoxia, when hypoxia develops, during anoxia, and after anoxia at reoxygenation. In cold hypoxia, reduced red blood cell concentration of ATP plays a crucial role in increasing blood oxygen affinity and/or reducing oxygen unloading to tissues, to adjust aerobic metabolism to decrease ambient oxygen. In anoxia, metabolic rewiring of oxygen utilization keeps largely unaltered NADH/NAD+ ratios and limits ADP degradation and succinate buildup. These critical adjustments make it possible to restart mitochondrial respiration and energy production with little generation of reactive oxygen species at reoxygenation when oxygen is again available. Inhibition of key metabolic enzymes seems to play crucial roles in these responses, in particular mitochondrial complex V, although identifying the nature of such inhibition(s) in vivo remains a challenge for future studies.
Collapse
Affiliation(s)
- Angela Fago
- Department of Biology Aarhus University Aarhus Denmark
| |
Collapse
|
24
|
Sparks K, Couturier CS, Buskirk J, Flores A, Hoeferle A, Hoffman J, Stecyk JAW. Gene expression of hypoxia-inducible factor (HIF), HIF regulators, and putative HIF targets in ventricle and telencephalon of Trachemys scripta acclimated to 21 °C or 5 °C and exposed to normoxia, anoxia or reoxygenation. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111167. [PMID: 35182763 PMCID: PMC8977064 DOI: 10.1016/j.cbpa.2022.111167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022]
Abstract
In anoxia-sensitive mammals, hypoxia inducible factor (HIF) promotes cellular survival in hypoxia, but also tumorigenesis. By comparison, anoxia-tolerant vertebrates likely need to circumvent a prolonged upregulation of HIF to survive long-term anoxia, making them attractive biomedical models for investigating HIF regulation. To lend insight into the role of HIF in anoxic Trachemys scripta ventricle and telencephalon, 21 °C- and 5 °C-acclimated turtles were exposed to normoxia, anoxia (24 h at 21 °C; 24 h or 14 d at 5 °C) or anoxia + reoxygenation and the gene expression of HIF-1α (hif1a) and HIF-2α (hif2a), two regulators of HIF, and eleven putative downstream targets of HIF quantified by qPCR. Changes in gene expression with anoxia at 21 °C differentially aligned with a circumvention of HIF activity. Whereas hif1a and hif2a expression was unaffected in ventricle and telencephalon, and BCL2 interacting protein 3 gene expression reduced by 30% in telencephalon, gene expression of vascular endothelial growth factor-A increased in ventricle (4.5-fold) and telencephalon (1.5-fold), and hexokinase 1 (2-fold) and hexokinase 2 (3-fold) gene expression increased in ventricle. At 5 °C, the pattern of gene expression in ventricle or telencephalon was unaltered with oxygenation state. However, cold acclimation in normoxia induced downregulation of HIF-1α, HIF-2α, and HIF target gene expression in telencephalon. Overall, the findings lend support to the postulation that prolonged activation of HIF is counterproductive for long-term anoxia survival. Nevertheless, quantification of the effect of anoxia and acclimation temperature on HIF binding activity and regulation at the protein level are needed to provide a strong scientific framework whereby new strategies for oxygen related pathologies can be developed.
Collapse
Affiliation(s)
- Kenneth Sparks
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States
| | - Christine S Couturier
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States
| | - Jacob Buskirk
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States
| | - Alicia Flores
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States
| | - Aurora Hoeferle
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States
| | - Jessica Hoffman
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States
| | - Jonathan A W Stecyk
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States.
| |
Collapse
|
25
|
Holcombe J, Weavers H. The role of preconditioning in the development of resilience: mechanistic insights. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
A “Weird” Mitochondrial Fatty Acid Oxidation as a Metabolic “Secret” of Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2339584. [PMID: 35178152 PMCID: PMC8847026 DOI: 10.1155/2022/2339584] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
Cancer metabolism is an extensively studied field since the discovery of the Warburg effect about 100 years ago and continues to be increasingly intriguing and enigmatic so far. It has become clear that glycolysis is not the only abnormally activated metabolic pathway in the cancer cells, but the same is true for the fatty acid synthesis (FAS) and mevalonate pathway. In the last decade, a lot of data have been accumulated on the pronounced mitochondrial fatty acid oxidation (mFAO) in many types of cancer cells. In this article, we discuss how mFAO can escape normal regulation under certain conditions and be overactivated. Such abnormal activation of mitochondrial β-oxidation can also be combined with mutations in certain enzymes of the Krebs cycle that are common in cancer. If overactivated β-oxidation is combined with other common cancer conditions, such as dysfunctions in the electron transport complexes, and/or hypoxia, this may alter the redox state of the mitochondrial matrix. We propose the idea that the altered mitochondrial redox state and/or inhibited Krebs cycle at certain segments may link mitochondrial β-oxidation to the citrate-malate shuttle instead to the Krebs cycle. We call this abnormal metabolic condition “β-oxidation shuttle”. It is unconventional mFAO, a separate metabolic pathway, unexplored so far as a source of energy, as well as a source of cataplerosis, leading to biomass accumulation, accelerated oxygen consumption, and ultimately a source of proliferation. It is inefficient as an energy source and must consume significantly more oxygen per mole of ATP produced when combined with acetyl-CoA consuming pathways, such as the FAS and mevalonate pathway.
Collapse
|
27
|
Prag HA, Pala L, Kula-Alwar D, Mulvey JF, Luping D, Beach TE, Booty LM, Hall AR, Logan A, Sauchanka V, Caldwell ST, Robb EL, James AM, Xu Z, Saeb-Parsy K, Hartley RC, Murphy MP, Krieg T. Ester Prodrugs of Malonate with Enhanced Intracellular Delivery Protect Against Cardiac Ischemia-Reperfusion Injury In Vivo. Cardiovasc Drugs Ther 2022; 36:1-13. [PMID: 32648168 PMCID: PMC8770414 DOI: 10.1007/s10557-020-07033-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2020] [Indexed: 12/01/2022]
Abstract
PURPOSE Mitochondrial reactive oxygen species (ROS) production upon reperfusion of ischemic tissue initiates the ischemia/reperfusion (I/R) injury associated with heart attack. During ischemia, succinate accumulates and its oxidation upon reperfusion by succinate dehydrogenase (SDH) drives ROS production. Inhibition of succinate accumulation and/or oxidation by dimethyl malonate (DMM), a cell permeable prodrug of the SDH inhibitor malonate, can decrease I/R injury. However, DMM is hydrolysed slowly, requiring administration to the heart prior to ischemia, precluding its administration to patients at the point of reperfusion, for example at the same time as unblocking a coronary artery following a heart attack. To accelerate malonate delivery, here we developed more rapidly hydrolysable malonate esters. METHODS We synthesised a series of malonate esters and assessed their uptake and hydrolysis by isolated mitochondria, C2C12 cells and in mice in vivo. In addition, we assessed protection against cardiac I/R injury by the esters using an in vivo mouse model of acute myocardial infarction. RESULTS We found that the diacetoxymethyl malonate diester (MAM) most rapidly delivered large amounts of malonate to cells in vivo. Furthermore, MAM could inhibit mitochondrial ROS production from succinate oxidation and was protective against I/R injury in vivo when added at reperfusion. CONCLUSIONS The rapidly hydrolysed malonate prodrug MAM can protect against cardiac I/R injury in a clinically relevant mouse model.
Collapse
Affiliation(s)
- Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Laura Pala
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - John F Mulvey
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Du Luping
- Tianjin Medical University, Tianjin, 300070, China
| | - Timothy E Beach
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Lee M Booty
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Andrew R Hall
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Angela Logan
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Volha Sauchanka
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | | | - Ellen L Robb
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Andrew M James
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Zhelong Xu
- Tianjin Medical University, Tianjin, 300070, China
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | | | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
28
|
Adzigbli L, Sokolov EP, Ponsuksili S, Sokolova IM. Tissue- and substrate-dependent mitochondrial responses to acute hypoxia-reoxygenation stress in a marine bivalve Crassostrea gigas (Thunberg, 1793). J Exp Biol 2021; 225:273950. [PMID: 34904172 DOI: 10.1242/jeb.243304] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022]
Abstract
Hypoxia is a major stressor for aquatic organisms, yet intertidal organisms like the oyster Crassostrea gigas are adapted to frequent oxygen fluctuations by metabolically adjusting to shifts in oxygen and substrate availability during hypoxia-reoxygenation (H/R). We investigated the effects of acute H/R stress (15 min at ∼0% O2, and 10 min reoxygenation) on isolated mitochondria from the gill and the digestive gland of C. gigas respiring on different substrates (pyruvate, glutamate, succinate, palmitate and their mixtures). Gill mitochondria showed better capacity for amino acid and fatty acid oxidation compared to the mitochondria from the digestive gland. Mitochondrial responses to H/R stress strongly depended on the substrate and the activity state of mitochondria. In mitochondria oxidizing NADH-linked substrates exposure to H/R stress suppressed oxygen consumption and ROS generation in the resting state, whereas in the ADP-stimulated state, ROS production increased despite little change in respiration. As a result, electron leak (measured as H2O2 to O2 ratio) increased after H/R stress in the ADP-stimulated mitochondria with NADH-linked substrates. In contrast, H/R exposure stimulated succinate-driven respiration without an increase in electron leak. Reverse electron transport (RET) did not significantly contribute to succinate-driven ROS production in oyster mitochondria except for a slight increase in the OXPHOS state during post-hypoxic recovery. A decrease in NADH-driven respiration and ROS production, enhanced capacity for succinate oxidation and resistance to RET might assist in post-hypoxic recovery of oysters mitigating oxidative stress and supporting rapid ATP re-synthesis during oxygen fluctuations such as commonly observed in estuaries and intertidal zones.
Collapse
Affiliation(s)
- Linda Adzigbli
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany.,Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Eugene P Sokolov
- Leibniz Institute for Baltic Sea Research, Leibniz Science Campus Phosphorus Research, Warnemünde, Rostock, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany.,Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
29
|
Biochemical Response to Freezing in the Siberian Salamander Salamandrella keyserlingii. BIOLOGY 2021; 10:biology10111172. [PMID: 34827165 PMCID: PMC8614755 DOI: 10.3390/biology10111172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022]
Abstract
Simple Summary The Siberian salamander is a unique amphibian that is capable to survive long-term freezing at −55 °C. We used 1H-NMR analysis to study quantitative changes of multiple metabolites in liver and hindlimb muscle of the Siberian salamander in response to freezing. For the majority of molecules we observed significant changes in concentrations. Glycerol content in frozen organs was as high as 2% w/w, which confirms its role as a cryoprotectant. No other putative cryoprotectants were detected. Freezing resulted in increased concentrations of glycolysis products: lactate and alanine. Unexpectedly, we detected no increase in concentrations of succinate, which accumulates under ischemia in various tetrapods. Freezing proved to be a dramatic stress with high levels of nucleotide degradation products. There was also significant increase in the concentrations of choline and glycerophosphocholine, which may be interpreted as the degradation of biomembranes. Thus, we found that freezing results not only in macroscopical damage due to ice formation, but also to degradation of DNA and biomembranes. Abstract The Siberian salamander Salamandrella keyserlingii Dybowski, 1870 is a unique amphibian that is capable to survive long-term freezing at −55 °C. Nothing is known on the biochemical basis of this remarkable freezing tolerance, except for the fact that it uses glycerol as a low molecular weight cryoprotectant. We used 1H-NMR analysis to study quantitative changes of multiple metabolites in liver and hindlimb muscle of S. keyserlingii in response to freezing. For the majority of molecules we observed significant changes in concentrations. Glycerol content in frozen organs was as high as 2% w/w, which confirms its role as a cryoprotectant. No other putative cryoprotectants were detected. Freezing resulted in ischemia manifested as increased concentrations of glycolysis products: lactate and alanine. Unexpectedly, we detected no increase in concentrations of succinate, which accumulates under ischemia in various tetrapods. Freezing proved to be a dramatic stress with reduced adenosine phosphate pool and high levels of nucleotide degradation products (hypoxanthine, β-alanine, and β-aminoisobutyrate). There was also significant increase in the concentrations of choline and glycerophosphocholine, which may be interpreted as the degradation of biomembranes. Thus, we found that freezing results not only in macroscopical damage due to ice formation, but also to degradation of DNA and biomembranes.
Collapse
|
30
|
Omotoso O, Gladyshev VN, Zhou X. Lifespan Extension in Long-Lived Vertebrates Rooted in Ecological Adaptation. Front Cell Dev Biol 2021; 9:704966. [PMID: 34733838 PMCID: PMC8558438 DOI: 10.3389/fcell.2021.704966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/02/2021] [Indexed: 01/21/2023] Open
Abstract
Contemporary studies on aging and longevity have largely overlooked the role that adaptation plays in lifespan variation across species. Emerging evidence indicates that the genetic signals of extended lifespan may be maintained by natural selection, suggesting that longevity could be a product of organismal adaptation. The mechanisms of adaptation in long-lived animals are believed to account for the modification of physiological function. Here, we first review recent progress in comparative biology of long-lived animals, together with the emergence of adaptive genetic factors that control longevity and disease resistance. We then propose that hitchhiking of adaptive genetic changes is the basis for lifespan changes and suggest ways to test this evolutionary model. As individual adaptive or adaptation-linked mutations/substitutions generate specific forms of longevity effects, the cumulative beneficial effect is largely nonrandom and is indirectly favored by natural selection. We consider this concept in light of other proposed theories of aging and integrate these disparate ideas into an adaptive evolutionary model, highlighting strategies in decoding genetic factors of lifespan control.
Collapse
Affiliation(s)
- Olatunde Omotoso
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Xuming Zhou
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China
| |
Collapse
|
31
|
Gupta A, Varma A, Storey KB. New Insights to Regulation of Fructose-1,6-bisphosphatase during Anoxia in Red-Eared Slider, Trachemys scripta elegans. Biomolecules 2021; 11:biom11101548. [PMID: 34680181 PMCID: PMC8534150 DOI: 10.3390/biom11101548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/22/2022] Open
Abstract
The red-eared slider (Trachemys scripta elegans) undergoes numerous changes to its physiological and metabolic processes to survive without oxygen. During anoxic conditions, its metabolic rate drops drastically to minimize energy requirements. The alterations in the central metabolic pathways are often accomplished by the regulation of key enzymes. The regulation of one such enzyme, fructose-1,6-bisphosphatase (FBPase; EC 3.1.3.11), was characterized in the present study during anoxia in liver. FBPase is a crucial enzyme of gluconeogenesis. The FBPase was purified from liver tissue in both control and anoxic conditions and subsequently assayed to determine the kinetic parameters of the enzyme. The study revealed the relative degree of post-translational modifications in the FBPase from control and anoxic turtles. Further, this study demonstrated a significant decrease in the maximal activity in anoxic FBPase and decreased sensitivity to its substrate Fructose-1,6-bisphosphate (FBP) when compared to the control. Immunoblotting demonstrated increased threonine phosphorylation (~1.4-fold) in the anoxic FBPase. Taken together, these results suggest that the phosphorylation of liver FBPase is an important step in suppressing FBPase activity, ultimately leading to the inhibition of gluconeogenesis in the liver of the red-eared slider during anaerobic conditions.
Collapse
|
32
|
Hypoxia Tolerant Species: The Wisdom of Nature Translated into Targets for Stroke Therapy. Int J Mol Sci 2021; 22:ijms222011131. [PMID: 34681788 PMCID: PMC8537001 DOI: 10.3390/ijms222011131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Human neurons rapidly die after ischemia and current therapies for stroke management are limited to restoration of blood flow to prevent further brain damage. Thrombolytics and mechanical thrombectomy are the available reperfusion treatments, but most of the patients remain untreated. Neuroprotective therapies focused on treating the pathogenic cascade of the disease have widely failed. However, many animal species demonstrate that neurons can survive the lack of oxygen for extended periods of time. Here, we reviewed the physiological and molecular pathways inherent to tolerant species that have been described to contribute to hypoxia tolerance. Among them, Foxo3 and Eif5A were reported to mediate anoxic survival in Drosophila and Caenorhabditis elegans, respectively, and those results were confirmed in experimental models of stroke. In humans however, the multiple mechanisms involved in brain cell death after a stroke causes translation difficulties to arise making necessary a timely and coordinated control of the pathological changes. We propose here that, if we were able to plagiarize such natural hypoxia tolerance through drugs combined in a pharmacological cocktail it would open new therapeutic opportunities for stroke and likely, for other hypoxic conditions.
Collapse
|
33
|
Ruhr I, Bierstedt J, Rhen T, Das D, Singh SK, Miller S, Crossley DA, Galli GLJ. Developmental programming of DNA methylation and gene expression patterns is associated with extreme cardiovascular tolerance to anoxia in the common snapping turtle. Epigenetics Chromatin 2021; 14:42. [PMID: 34488850 PMCID: PMC8420019 DOI: 10.1186/s13072-021-00414-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
Background Environmental fluctuation during embryonic and fetal development can permanently alter an organism’s morphology, physiology, and behaviour. This phenomenon, known as developmental plasticity, is particularly relevant to reptiles that develop in subterranean nests with variable oxygen tensions. Previous work has shown hypoxia permanently alters the cardiovascular system of snapping turtles and may improve cardiac anoxia tolerance later in life. The mechanisms driving this process are unknown but may involve epigenetic regulation of gene expression via DNA methylation. To test this hypothesis, we assessed in situ cardiac performance during 2 h of acute anoxia in juvenile turtles previously exposed to normoxia (21% oxygen) or hypoxia (10% oxygen) during embryogenesis. Next, we analysed DNA methylation and gene expression patterns in turtles from the same cohorts using whole genome bisulfite sequencing, which represents the first high-resolution investigation of DNA methylation patterns in any reptilian species. Results Genome-wide correlations between CpG and CpG island methylation and gene expression patterns in the snapping turtle were consistent with patterns observed in mammals. As hypothesized, developmental hypoxia increased juvenile turtle cardiac anoxia tolerance and programmed DNA methylation and gene expression patterns. Programmed differences in expression of genes such as SCN5A may account for differences in heart rate, while genes such as TNNT2 and TPM3 may underlie differences in calcium sensitivity and contractility of cardiomyocytes and cardiac inotropy. Finally, we identified putative transcription factor-binding sites in promoters and in differentially methylated CpG islands that suggest a model linking programming of DNA methylation during embryogenesis to differential gene expression and cardiovascular physiology later in life. Binding sites for hypoxia inducible factors (HIF1A, ARNT, and EPAS1) and key transcription factors activated by MAPK and BMP signaling (RREB1 and SMAD4) are implicated. Conclusions Our data strongly suggests that DNA methylation plays a conserved role in the regulation of gene expression in reptiles. We also show that embryonic hypoxia programs DNA methylation and gene expression patterns and that these changes are associated with enhanced cardiac anoxia tolerance later in life. Programming of cardiac anoxia tolerance has major ecological implications for snapping turtles, because these animals regularly exploit anoxic environments throughout their lifespan. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00414-7.
Collapse
Affiliation(s)
- Ilan Ruhr
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, M13 9NT, UK
| | - Jacob Bierstedt
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Turk Rhen
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA.
| | - Debojyoti Das
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Sunil Kumar Singh
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Soleille Miller
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Gina L J Galli
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, M13 9NT, UK
| |
Collapse
|
34
|
Myrka A, Buck L. Cytoskeletal Arrest: An Anoxia Tolerance Mechanism. Metabolites 2021; 11:metabo11080561. [PMID: 34436502 PMCID: PMC8401981 DOI: 10.3390/metabo11080561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/16/2022] Open
Abstract
Polymerization of actin filaments and microtubules constitutes a ubiquitous demand for cellular adenosine-5′-triphosphate (ATP) and guanosine-5′-triphosphate (GTP). In anoxia-tolerant animals, ATP consumption is minimized during overwintering conditions, but little is known about the role of cell structure in anoxia tolerance. Studies of overwintering mammals have revealed that microtubule stability in neurites is reduced at low temperature, resulting in withdrawal of neurites and reduced abundance of excitatory synapses. Literature for turtles is consistent with a similar downregulation of peripheral cytoskeletal activity in brain and liver during anoxic overwintering. Downregulation of actin dynamics, as well as modification to microtubule organization, may play vital roles in facilitating anoxia tolerance. Mitochondrial calcium release occurs during anoxia in turtle neurons, and subsequent activation of calcium-binding proteins likely regulates cytoskeletal stability. Production of reactive oxygen species (ROS) formation can lead to catastrophic cytoskeletal damage during overwintering and ROS production can be regulated by the dynamics of mitochondrial interconnectivity. Therefore, suppression of ROS formation is likely an important aspect of cytoskeletal arrest. Furthermore, gasotransmitters can regulate ROS levels, as well as cytoskeletal contractility and rearrangement. In this review we will explore the energetic costs of cytoskeletal activity, the cellular mechanisms regulating it, and the potential for cytoskeletal arrest being an important mechanism permitting long-term anoxia survival in anoxia-tolerant species, such as the western painted turtle and goldfish.
Collapse
Affiliation(s)
- Alexander Myrka
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada;
| | - Leslie Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada;
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Correspondence: ; Tel.: +1-416-978-3506
| |
Collapse
|
35
|
Stecyk JAW, Barber RG, Cussins J, Hall D. Indirect evidence that anoxia exposure and cold acclimation alter transarcolemmal Ca 2+ flux in the cardiac pacemaker, right atrium and ventricle of the red-eared slider turtle (Trachemys scripta). Comp Biochem Physiol A Mol Integr Physiol 2021; 261:111043. [PMID: 34332046 DOI: 10.1016/j.cbpa.2021.111043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022]
Abstract
We indirectly assessed if altered transarcolemmal Ca2+ flux accompanies the decreased cardiac activity displayed by Trachemys scripta with anoxia exposure and cold acclimation. Turtles were first acclimated to 21 °C or 5 °C and held under normoxic (21N; 5N) or anoxic conditions (21A; 5A). We then compared the response of intrinsic heart rate (fH) and maximal developed force of spontaneously contracting right atria (Fmax,RA), and maximal developed force of isometrically-contracting ventricular strips (Fmax,V), to Ni2+ (0.1-10 mM), which respectively blocks T-type Ca2+ channels, L-type Ca2+ channels and the Na+-Ca2+-exchanger at the low, intermediate and high concentrations employed. Dose-response curves were established in simulated in vivo normoxic (Sim Norm) or simulated in vivo anoxic extracellular conditions (Sim Anx; 21A and 5A preparations). Ni2+ decreased intrinsic fH, Fmax,RA and Fmax,V of 21N tissues in a concentration-dependent manner, but the responses were blunted in 21A tissues in Sim Norm. Similarly, dose-response curves for Fmax,RA and Fmax,V of 5N tissues were right-shifted, whereas anoxia exposure at 5 °C did not further alter the responses. The influence of Sim Anx was acclimation temperature-, cardiac chamber- and contractile parameter-dependent. Combined, the findings suggest that: (1) reduced transarcolemmal Ca2+ flux in the cardiac pacemaker is a potential mechanism underlying the slowed intrinsic fH of anoxic turtles at 21 °C, but not 5 °C, (2) a downregulation of transarcolemmal Ca2+ flux may aid cardiac anoxia survival at 21 °C and prime the turtle myocardium for winter anoxia and (3) confirm that altered extracellular conditions with anoxia exposure can modify turtle cardiac transarcolemmal Ca2+ flux.
Collapse
Affiliation(s)
- Jonathan A W Stecyk
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States of America.
| | - Riley G Barber
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States of America
| | - Jace Cussins
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States of America
| | - Diarmid Hall
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States of America
| |
Collapse
|
36
|
Guimarães ATB, Malafaia G. Multiple toxicity endpoints induced by carbon nanofibers in Amazon turtle juveniles: Outspreading warns about toxicological risks to reptiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146514. [PMID: 34030253 DOI: 10.1016/j.scitotenv.2021.146514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
The toxicity of carbon-based nanomaterials (CNs) has been observed in different organisms; however, little is known about the impact of water polluted with carbon nanofibers (CNFs) on reptiles. Thus, the aim of the current study was to assess the chronic effects (7.5 months) of 1 and 10 mg/L of CNF on Podocnemis expansa (Amazon turtle) juveniles (4 months old) based on different biomarkers. Increased total organic carbon (TOC) concentrations observed in the liver and brain (which suggests CNF uptake) were closely correlated to changes in REDOX systems of turtles exposed to CNFs, mainly to higher nitrite, hydrogen peroxide and lipid peroxidation levels. Increased levels of antioxidants such as total glutathione, catalase and superoxide dismutase in the exposed animals were also observed. The uptake of CNFs and the observed biochemical changes were associated with higher frequency of erythrocyte nuclear abnormalities (assessed through micronucleus assays), as well as with both damage in erythrocyte DNA (assessed through comet assays) and higher apoptosis and necrosis rates in erythrocytes of exposed turtles. Cerebral and hepatic acetylcholinesterase (AChE) increased in turtles exposed to CNFs, and this finding suggested the neurotoxic effect of these nanomaterials. Data in the current study reinforced the toxic potential of CNFs and evidenced the biochemical, mutagenic, genotoxic, cytotoxic, and neurotoxic effects of CNFs on P. expansa.
Collapse
Affiliation(s)
- Abraão Tiago Batista Guimarães
- Post-Graduation Program in Biotechnology and Biodiversity, Goiano Federal Institute and Federal University of Goiás, GO, Brazil; Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urataí Campus, GO, Brazil
| | - Guilherme Malafaia
- Post-Graduation Program in Biotechnology and Biodiversity, Goiano Federal Institute and Federal University of Goiás, GO, Brazil; Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urataí Campus, GO, Brazil; Post-Graduate Program in Ecology and Conservation of Natural Resources, Federal University of Uberlândia, MG, Brazil.
| |
Collapse
|
37
|
Dahl HA, Johansen A, Nilsson GE, Lefevre S. The Metabolomic Response of Crucian Carp ( Carassius carassius) to Anoxia and Reoxygenation Differs between Tissues and Hints at Uncharacterized Survival Strategies. Metabolites 2021; 11:435. [PMID: 34357329 PMCID: PMC8304758 DOI: 10.3390/metabo11070435] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 01/15/2023] Open
Abstract
The anoxia-tolerant crucian carp (Carassius carassius) has been studied in detail for numerous years, with particular focus on unravelling the underlying physiological mechanisms of anoxia tolerance. However, relatively little work has been focused on what occurs beyond anoxia, and often the focus is a single organ or tissue type. In this study, we quantified more than 100 metabolites by capillary electrophoresis-mass spectrometry (CE-MS) in brain, heart, liver, and blood plasma from four experimental groups, being normoxic (control) fish, anoxia-exposed fish, and two groups that had been exposed to anoxia followed by reoxygenation for either 3 h or 24 h. The heart, which maintains cardiac output during anoxia, unexpectedly, was slower to recover compared to the brain and liver, mainly due to a slower return to control concentrations of the energy-carrying compounds ATP, GTP, and phosphocreatine. Crucian carp accumulated amino acids in most tissues, and also surprisingly high levels of succinate in all tissues investigated during anoxia. Purine catabolism was enhanced, leading to accumulation of uric acid during anoxia and increasing urea formation that continued into 24 h of reoxygenation. These tissue-specific differences in accumulation and distribution of the metabolites may indicate an intricate system of transport between tissues, opening for new avenues of investigation of possible mechanisms aimed at reducing the generation of reactive oxygen species (ROS) and resultant tissue damage during reoxygenation.
Collapse
Affiliation(s)
| | | | | | - Sjannie Lefevre
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, 0371 Oslo, Norway; (H.-A.D.); (A.J.); (G.E.N.)
| |
Collapse
|
38
|
Breedon SA, Hadj-Moussa H, Storey KB. Nrf2 activates antioxidant enzymes in the anoxia-tolerant red-eared slider turtle, Trachemys scripta elegans. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:426-435. [PMID: 33773070 DOI: 10.1002/jez.2458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/26/2021] [Accepted: 03/13/2021] [Indexed: 12/30/2022]
Abstract
The freshwater red-eared slider turtle, Trachemys scripta elegans, experiences weeks to months of anoxia at the bottom of ice-locked bodies of water in the winter. While this introduces anoxia-reoxygenation cycles similar to the ischemia-reperfusion events that mammals experience, T. s. elegans does not suffer any apparent tissue damage. To survive prolonged anoxia and prevent cellular damage associated with reactive oxygen species, these turtles have developed numerous adaptions, including highly effective antioxidant defenses. Herein, we examined the subcellular localization and protein expression of nuclear factor erythroid-2-related factor 2 (Nrf2), a central transcription factor responsible for modulating cellular antioxidant responses, that was found to be upregulated and localized to the nucleus in anoxic turtles. Additionally, we examined protein levels of glutathione S-transferases (GSTs) and manganese superoxide dismutase (MnSOD) antioxidant enzymes in anoxic liver, kidney, heart, and skeletal muscle tissues. MnSOD levels were significantly higher in heart and muscle during anoxia, and the four GST isozymes (GSTK1, GSTT1, GSTP1, and GSTM3) were elevated in a tissue-specific manner during anoxia and/or aerobic recovery. Together, these results indicate that Nrf2 is likely involved in activating downstream antioxidant genes in response to anoxic stress. These results provide a possible Nrf2-mediated transcriptional mechanism that supports existing findings of enhanced antioxidant defenses that allow T. s. elegans to cope with anoxia-reoxygenation cycles, and subsequent oxidative stress.
Collapse
Affiliation(s)
- Sarah A Breedon
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Hanane Hadj-Moussa
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Kenneth B Storey
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
39
|
Little AG, Pamenter ME, Sitaraman D, Templeman NM, Willmore WG, Hedrick MS, Moyes CD. WITHDRAWN: Utilizing comparative models in biomedical research. Comp Biochem Physiol A Mol Integr Physiol 2021; 256:110938. [PMID: 33737041 DOI: 10.1016/j.cbpa.2021.110938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published in Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, Volume 255, 2021, 110593, https://doi.org/10.1016/j.cbpb.2021.110593. The duplicate article has therefore been withdrawn.
The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
| | | | - Divya Sitaraman
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | | | | | - Michael S Hedrick
- Department of Biological Sciences, California State University, East Bay, Hayward, CA, USA.
| | | |
Collapse
|
40
|
Little AG, Pamenter ME, Sitaraman D, Templeman NM, Willmore WG, Hedrick MS, Moyes CD. Utilizing comparative models in biomedical research. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110593. [PMID: 33779562 DOI: 10.1016/j.cbpb.2021.110593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review serves as an introduction to a Special Issue of Comparative Biochemistry and Physiology, focused on using non-human models to study biomedical physiology. The concept of a model differs across disciplines. For example, several models are used primarily to gain an understanding of specific human pathologies and disease states, whereas other models may be focused on gaining insight into developmental or evolutionary mechanisms. It is often the case that animals initially used to gain knowledge of some unique biochemical or physiological process finds foothold in the biomedical community and becomes an established model. The choice of a particular model for biomedical research is an ongoing process and model validation must keep pace with existing and emerging technologies. While the importance of non-mammalian models, such as Caenorhabditis elegans, Drosophila melanogaster, Danio rerio and Xenopus laevis, is well known, we also seek to bring attention to emerging alternative models of both invertebrates and vertebrates, which are less established but of interest to the comparative biochemistry and physiology community.
Collapse
Affiliation(s)
| | | | - Divya Sitaraman
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | | | | | - Michael S Hedrick
- Department of Biological Sciences, California State University, East Bay, Hayward, CA, USA
| | | |
Collapse
|
41
|
Bundgaard A, Jensen BS, Jensen FB, Fago A. Exploring pathways of NO and H2S signaling in metabolic depression: The case of anoxic turtles. Comp Biochem Physiol A Mol Integr Physiol 2021; 253:110857. [DOI: 10.1016/j.cbpa.2020.110857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
|
42
|
Ouillon N, Sokolov EP, Otto S, Rehder G, Sokolova IM. Effects of variable oxygen regimes on mitochondrial bioenergetics and reactive oxygen species production in a marine bivalve, Mya arenaria. J Exp Biol 2021; 224:jeb.237156. [PMID: 33436367 DOI: 10.1242/jeb.237156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
Estuarine and coastal benthic organisms often experience fluctuations in oxygen levels that can negatively impact their mitochondrial function and aerobic metabolism. To study these impacts, we exposed a common sediment-dwelling bivalve, the soft-shell clam Mya arenaria, for 21 days to chronic hypoxia (P O2 ∼4.1 kPa), cyclic hypoxia (P O2 ∼12.7-1.9 kPa, mean 5.7 kPa) or normoxia (P O2 ∼21.1 kPa). pH was manipulated to mimic the covariation in CO2/pH and oxygen levels in coastal hypoxic zones. Mitochondrial respiration, including proton leak, the capacity for oxidative phosphorylation (OXPHOS), the maximum activity of the electron transport system (ETS), reactive oxygen species (ROS) production, and activity and oxygen affinity of cytochrome c oxidase (CCO) were assessed. Acclimation to constant hypoxia did not affect the studied mitochondrial traits except for a modest decrease in the OXPHOS coupling efficiency. Cyclic hypoxia had no effect on OXPHOS or ETS capacity, but increased proton leak and lowered mitochondrial OXPHOS coupling efficiency. Furthermore, mitochondria of clams acclimated to cyclic hypoxia had higher rates of ROS generation compared with the clams acclimated to normoxia or chronic hypoxia. CCO activity was upregulated under cyclic hypoxia, but oxygen affinity of CCO did not change. These findings indicate that long-term cyclic hypoxia has a stronger impact on the mitochondria of M. arenaria than chronic hypoxia and might lead to impaired ATP synthesis, higher costs of mitochondrial maintenance and oxidative stress. These changes might negatively affect populations of M. arenaria in the coastal Baltic Sea under increasing hypoxia pressure.
Collapse
Affiliation(s)
- Natascha Ouillon
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock 18057, Germany
| | - Eugene P Sokolov
- Leibniz Institute for Baltic Research, Leibniz Science Campus Phosphorus Research Rostock, Rostock 18119, Germany
| | - Stefan Otto
- Department of Marine Chemistry, Leibniz Institute for Baltic Research, Rostock 18119, Germany
| | - Gregor Rehder
- Department of Marine Chemistry, Leibniz Institute for Baltic Research, Rostock 18119, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock 18057, Germany .,Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
43
|
Tang ZH, Chen BJ, Niu CJ. Antioxidant defense response during hibernation and arousal in Chinese soft-shelled turtle Pelodiscus sinensis juveniles. Cryobiology 2021; 99:46-54. [PMID: 33524338 DOI: 10.1016/j.cryobiol.2021.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/29/2022]
Abstract
Antioxidant defense is essential for animals to cope with homeostasis disruption during hibernation. The present study aimed to investigate the antioxidant defense response of juvenile soft-shelled turtle Pelodiscus sinensis during hibernation and following arousal. Turtle brain, liver, and kidney samples were collected at pre-hibernation (17 °C mud temperature; MT), during hibernation (5.8 °C MT) and after arousal (20.1 °C MT) in the field. Transcript levels of NF-E2-related factor 2 (Nrf2) decreased significantly during hibernation and recovered after arousal in all tissues. Cerebral and nephric copper-zinc superoxide dismutase (Cu/Zn SOD), catalase (CAT), glutathione peroxidase 3 (GPx3) and nephric GPx4 mRNA showed similar changing patterns as Nrf2. Cerebral Mn SOD, GPx1 and nephric GPx1 up-regulated after arousal. Hepatic Cu/Zn SOD, GPx1 and GPx3 mRNA kept stable, except hepatic GPx4 increased during hibernation. Hepatic Mn SOD and CAT increased after arousal. In the GSH system, mRNA levels of glutathione synthetases (GSs) kept stable during hibernation and up-regulated after arousal in most tissues except nephric GS2 mRNA remained unchanged. Gene expressions of glutathione reductase (GR) exhibited a tissue specific changing pattern, while those of glutathione-S-Transferase (GST) shared a similar pattern among tissues: remained stable or down-regulated during hibernation then recovered in arousal. In contrast to these diverse responses in gene expressions, most of the antioxidant enzyme activities maintained high and stable. Overall, no preparation for oxidative stress (POS) strategy was found in enzymatic antioxidant system in P. sinensis juveniles during hibernation, the Chinese soft-shelled turtles were able to stay safe from potential oxidative stress during hibernation by maintaining high level activities/concentrations of the antioxidant enzymes/antioxidants.
Collapse
Affiliation(s)
- Zhong-Hua Tang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Bo-Jian Chen
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200082, China
| | - Cui-Juan Niu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
44
|
Zhang CL, Long TY, Bi SS, Sheikh SA, Li F. CircPAN3 ameliorates myocardial ischaemia/reperfusion injury by targeting miR-421/Pink1 axis-mediated autophagy suppression. J Transl Med 2021; 101:89-103. [PMID: 32929177 DOI: 10.1038/s41374-020-00483-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 11/08/2022] Open
Abstract
Cardiovascular diseases are considered the leading cause of death worldwide. Myocardial ischaemia/reperfusion (I/R) injury is recognized as a critical risk factor for cardiovascular diseases. Although increasing advances have been made recently in understanding the mechanisms of I/R injury, they remain largely unknown. In this study, we found that the expression of circPAN3 (circular RNA PAN3) was decreased in a mouse model of myocardial I/R. Overexpression of circPAN3 significantly inhibited autophagy and alleviated cell apoptosis of cardiomyocytes, which was further verified in vivo by decreased autophagic vacuoles and reduced myocardial infarct sizes. Moreover, miR-421 (microRNA-421) was identified as a downstream target involved in circPAN3-mediated myocardial I/R injury. Additionally, miR-421 could negatively regulate Pink1 (phosphatase and tensin homologue-induced putative kinase 1) via a direct binding relationship. Furthermore, the mitigating effects of circPAN3 overexpression on myocardial I/R injury by suppressing autophagy and apoptosis were abolished by knockdown of Pink1. Our findings reveal a novel role for circPAN3 in modulating autophagy and apoptosis in myocardial I/R injury and the circPAN3-miR-421-Pink1 axis as a regulatory network, which might provide potential therapeutic targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Cheng-Long Zhang
- Department of Cardiology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, P.R. China
| | - Tian-Yi Long
- Department of Cardiology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, P.R. China
| | - Si-Si Bi
- Department of Cardiology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, P.R. China
| | - Sayed-Ali Sheikh
- Department of Cardiology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, P.R. China
- Internal Medicine Department, Cardiology, College of Medicine, Jouf University, Sakakah, Saudi Arabia
| | - Fei Li
- Department of Cardiology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, P.R. China.
| |
Collapse
|
45
|
Dittrich A, Hansen K, Simonsen MIT, Busk M, Alstrup AKO, Lauridsen H. Intrinsic Heart Regeneration in Adult Vertebrates May be Strictly Limited to Low-Metabolic Ectotherms. Bioessays 2020; 42:e2000054. [PMID: 32914411 DOI: 10.1002/bies.202000054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/12/2020] [Indexed: 01/24/2023]
Abstract
The heart has a high-metabolic rate, and its "around-the-clock" vital role to sustain life sets it apart in a regenerative setting from other organs and appendages. The landscape of vertebrate species known to perform intrinsic heart regeneration is strongly biased toward ectotherms-for example, fish, salamanders, and embryonic/neonatal ectothermic mammals. It is hypothesized that intrinsic heart regeneration is exclusively limited to the low-metabolic hearts of ectotherms. The biomedical field of regenerative medicine seeks to devise biologically inspired regenerative therapies to diseased human hearts. Falsification of the ectothermy dependency for heart regeneration hypothesis may be a crucial prerequisite to meaningfully seek inspiration in established ectothermic regenerative animal models. Otherwise, engineering approaches to construct artificial heart components may constitute a more viable path toward regenerative therapies. A more strict definition of regenerative phenomena is generated and several testable sub-hypotheses and experimental avenues are put forward to elucidate the link between heart regeneration and metabolism. Also see the video abstract here https://youtu.be/fZcanaOT5z8.
Collapse
Affiliation(s)
- Anita Dittrich
- Department of Clinical Medicine (Comparative Medicine Lab), Aarhus University, Aarhus N, 8200, Denmark
| | - Kasper Hansen
- Department of Clinical Medicine (Comparative Medicine Lab), Aarhus University, Aarhus N, 8200, Denmark.,Department of Forensic Medicine, Aarhus University, Aarhus N, 8200, Denmark.,Department of Biology (Zoophysiology), Aarhus University, Aarhus C, 8000, Denmark.,Leicester Royal Infirmary (East Midlands Forensic Pathology Unit), University of Leicester, Leicester, LE2 7LX, UK
| | | | - Morten Busk
- Department of Oncology (Experimental Clinical Oncology), Aarhus University Hospital, Aarhus N, 8200, Denmark.,Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus N, 8200, Denmark
| | | | - Henrik Lauridsen
- Department of Clinical Medicine (Comparative Medicine Lab), Aarhus University, Aarhus N, 8200, Denmark
| |
Collapse
|
46
|
Shekhovtsov SV, Bulakhova NA, Tsentalovich YP, Zelentsova EA, Yanshole LV, Meshcheryakova EN, Berman DI. Metabolic response of the Siberian wood frog Rana amurensis to extreme hypoxia. Sci Rep 2020; 10:14604. [PMID: 32884088 PMCID: PMC7471963 DOI: 10.1038/s41598-020-71616-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/17/2020] [Indexed: 11/19/2022] Open
Abstract
The Siberian wood frog Rana amurensis is a recently discovered example of extreme hypoxia tolerance that is able to survive several months without oxygen. We studied metabolomic profiles of heart and liver of R. amurensis exposed to 17 days of extreme hypoxia. Without oxygen, the studied tissues experience considerable stress with a drastic decrease of ATP, phosphocreatine, and NAD+ concentrations, and concomitant increase of AMP, creatine, and NADH. Heart and liver switch to different pathways of glycolysis with differential accumulation of lactate, alanine, succinate, as well as 2,3-butanediol (previously not reported for vertebrates as an end product of glycolysis) and depletion of aspartate. We also observed statistically significant changes in concentrations of certain osmolytes and choline-related compounds. Low succinate/fumarate ratio and high glutathione levels indicate adaptations to reoxygenation stress. Our data suggest that maintenance of the ATP/ADP pool is not required for survival of R. amurensis, in contrast to anoxia-tolerant turtles.
Collapse
Affiliation(s)
- Sergei V Shekhovtsov
- Institute of the Biological Problems of the North FEB RAS, Magadan, Russia.
- Kurchatov Genomic Center, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
| | - Nina A Bulakhova
- Institute of the Biological Problems of the North FEB RAS, Magadan, Russia
- Tomsk State University, Tomsk, Russia
| | | | - Ekaterina A Zelentsova
- International Tomography Center SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | | | - Daniil I Berman
- Institute of the Biological Problems of the North FEB RAS, Magadan, Russia
| |
Collapse
|
47
|
Cox GK, Gillis TE. Surviving anoxia: the maintenance of energy production and tissue integrity during anoxia and reoxygenation. J Exp Biol 2020; 223:223/13/jeb207613. [DOI: 10.1242/jeb.207613] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABSTRACT
The development of anoxia within tissues represents a significant challenge to most animals because of the decreased capacity for aerobic ATP production, the associated loss of essential cellular functions and the potential for detrimental tissue oxidation upon reoxygenation. Despite these challenges, there are many animals from multiple phyla that routinely experience anoxia and can fully recover. In this Review, we integrate knowledge gained from studies of anoxia-tolerant species across many animal taxa. We primarily focus on strategies used to reduce energy requirements, minimize the consequences of anaerobic ATP production and reduce the adverse effects of reactive oxygen species, which are responsible for tissue damage with reoxygenation. We aim to identify common strategies, as well as novel solutions, to the challenges of anoxia exposure. This Review chronologically examines the challenges faced by animals as they enter anoxia, as they attempt to maintain physiological function during prolonged anoxic exposure and, finally, as they emerge from anoxia. The capacity of animals to survive anoxia is also considered in relation to the increasing prevalence of anoxic zones within marine and freshwater environments, and the need to understand what limits survival.
Collapse
Affiliation(s)
- Georgina K. Cox
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Todd E. Gillis
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
48
|
Bundgaard A, James AM, Harbour ME, Murphy MP, Fago A. Stable mitochondrial CICIII 2 supercomplex interactions in reptiles versus homeothermic vertebrates. J Exp Biol 2020; 223:jeb223776. [PMID: 32393546 PMCID: PMC7328143 DOI: 10.1242/jeb.223776] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022]
Abstract
The association of complex I (CI), complex III (CIII) and complex IV (CIV) of the mitochondrial electron transport chain into stable high molecular weight supercomplexes (SCs) has been observed in several prokaryotes and eukaryotes, but among vertebrates it has only been examined in mammals. The biological role of these SCs is unclear but suggestions so far include enhanced electron transfer between complexes, decreased production of the reactive oxygen species (ROS) O2- and H2O2, or enhanced structural stability. Here, we provide the first overview on the stability, composition and activity of mitochondrial SCs in representative species of several vertebrate classes to determine patterns of SC variation across endotherms and ectotherms. We found that the stability of the CICIII2 SC and the inclusion of CIV within the SC varied considerably. Specifically, when solubilized by the detergent DDM, mitochondrial CICIII2 SCs were unstable in endotherms (birds and mammals) and highly stable in reptiles. Using mass-spectrometric complexomics, we confirmed that the CICIII2 is the major SC in the turtle, and that 90% of CI is found in this highly stable SC. Interestingly, the presence of stable SCs did not prevent mitochondrial H2O2 production and was not associated with elevated respiration rates of mitochondria isolated from the examined species. Together, these data show that SC stability varies among vertebrates and is greatest in poikilothermic reptiles and weakest in endotherms. This pattern suggests an adaptive role of SCs to varying body temperature, but not necessarily a direct effect on electron transfer or in the prevention of ROS production.
Collapse
Affiliation(s)
| | - Andrew M James
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Michael E Harbour
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Angela Fago
- Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
49
|
Reiterer M, Milton SL. Induction of foxo3a protects turtle neurons against oxidative stress. Comp Biochem Physiol A Mol Integr Physiol 2020; 243:110671. [DOI: 10.1016/j.cbpa.2020.110671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/17/2022]
|
50
|
Bundgaard A, Ruhr IM, Fago A, Galli GL. Metabolic adaptations to anoxia and reoxygenation: New lessons from freshwater turtles and crucian carp. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.coemr.2020.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|