1
|
Fishbein GA, Bois MC, d'Amati G, Glass C, Masuelli L, Rodriguez ER, Seidman MA. Ultrastructural cardiac pathology: the wide (yet so very small) world of cardiac electron microscopy. Cardiovasc Pathol 2024; 73:107670. [PMID: 38880163 DOI: 10.1016/j.carpath.2024.107670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024] Open
Abstract
Electron microscopy (EM) was a popular diagnostic tool in the 1970s and early 80s. With the adoption of newer, less expensive techniques, such as immunohistochemistry, the role of EM in diagnostic surgical pathology has dwindled substantially. Nowadays, even in academic centers, EM interpretation is relegated to renal pathologists and the handful of (aging) pathologists with experience using the technique. As such, EM interpretation is truly arcane-understood by few and mysterious to many. Nevertheless, there remain situations in which EM is the best or only ancillary test to ascertain a specific diagnosis. Thus, there remains a critical need for the younger generation of surgical pathologists to learn EM interpretation. Recognizing this need, cardiac EM was made the theme of the Cardiovascular Evening Specialty Conference at the 2023 United States and Canadian Academy of Pathology (USCAP) annual meeting in New Orleans, Louisiana. Each of the speakers contributed their part to this article, the purpose of which is to review EM as it pertains to myocardial tissue and provide illustrative examples of the spectrum of ultrastructural cardiac pathology seen in storage/metabolic diseases, cardiomyopathies, infiltrative disorders, and cardiotoxicities.
Collapse
Affiliation(s)
- Gregory A Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| | - Melanie C Bois
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Giulia d'Amati
- Department of Oncological, Radiological and Pathological Sciences, Sapienza Università di Roma, Rome, Italy
| | - Carolyn Glass
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza Università di Roma, Rome, Italy
| | - E Rene Rodriguez
- Department of Pathology, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Michael A Seidman
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Baldensperger T, Jung T, Heinze T, Schwerdtle T, Höhn A, Grune T. The age pigment lipofuscin causes oxidative stress, lysosomal dysfunction, and pyroptotic cell death. Free Radic Biol Med 2024; 225:871-880. [PMID: 39486751 DOI: 10.1016/j.freeradbiomed.2024.10.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Accumulation of the age pigment lipofuscin represents a ubiquitous hallmark of the aging process. However, our knowledge about cellular effects of lipofuscin accumulation is potentially flawed, because previous research mainly utilized highly artificial methods of lipofuscin generation. In order to address this tremendous problem, we developed a convenient protocol for isolation of authentic lipofuscin from human and equine cardiac tissue in high purity and quantity. Isolated lipofuscin aggregates contained elevated concentrations of proline and metals such as calcium or iron. The material was readily incorporated by fibroblasts and caused cell death at low concentrations (LC50 = 5.0 μg/mL) via a pyroptosis-like pathway. Lipofuscin boosted mitochondrial ROS production and caused lysosomal dysfunction by lysosomal membrane permeabilization leading to reduced lysosome quantity and impaired cathepsin D activity. In conclusion, this is the first study utilizing authentic lipofuscin to experimentally validate the concept of the lysosomal-mitochondrial axis theory of aging and cell death.
Collapse
Affiliation(s)
- Tim Baldensperger
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria.
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Tom Heinze
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany.
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| |
Collapse
|
3
|
Kondrachuck O, Ciccone P, Ford N, Hong K, Kimura Y, Zi J, Yusuf S, Alkousa A, Tailor N, Rajkumar R, Rappaport J, Gupta MK. HIV Protein Nef Induces Cardiomyopathy Through Induction of Bcl2 and p21. Int J Mol Sci 2024; 25:11401. [PMID: 39518954 PMCID: PMC11547003 DOI: 10.3390/ijms252111401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
HIV-associated cardiovascular diseases remain a leading cause of death in people living with HIV/AIDS (PLWHA). Although antiretroviral drugs suppress the viral load, they fail to remove the virus entirely. HIV-1 Nef protein is known to play a role in viral virulence and HIV latency. Expression of Nef protein can be detected in different organs, including cardiac tissue. Despite the established role of Nef protein in HIV-1 replication, its impact on organ function inside the human body is not clear. To understand the effect of Nef at the organ level, we created a new Nef-transgenic (Nef-TG) mouse that expresses Nef protein in the heart. Our study found that Nef expression caused inhibition of cardiac function and pathological changes in the heart with increased fibrosis, leading to heart failure and early mortality. Further, we found that cellular autophagy is significantly inhibited in the cardiac tissue of Nef-TG mice. Mechanistically, we found that Nef protein causes the accumulation of Bcl2 and Beclin-1 proteins in the tissue, which may affect the cellular autophagy system. Additionally, we found Nef expression causes upregulation of the cellular senescence marker p21 and senescence-associated β-galactosidase expression. Our findings suggest that the Nef-mediated inhibition of autophagy and induction of senescence markers may promote aging in PLWHA. Our mouse model could help us to understand the effect of Nef protein on organ function during latent HIV infection.
Collapse
Affiliation(s)
- Olena Kondrachuck
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Pierce Ciccone
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Nicole Ford
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Kim Hong
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Yuka Kimura
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Jorgo Zi
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Sumaya Yusuf
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Aya Alkousa
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Nishit Tailor
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Rithvik Rajkumar
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Jay Rappaport
- Division of Pathology, Tulane National Primate Research Center, Covington, LA 70118, USA
| | - Manish K. Gupta
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
4
|
Deng W, Wang Z, Jia Z, Liu F, Wu J, Yang J, An S, Yu Y, Han Y, Zhao R, Li X. Cardiac T1ρ Mapping Values Affected by Age and Sex in a Healthy Chinese Cohort. J Magn Reson Imaging 2024; 60:1617-1625. [PMID: 38168067 DOI: 10.1002/jmri.29196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND To facilitate the clinical use of cardiac T1ρ, it is important to understand the impact of age and sex on T1ρ values of the myocardium. PURPOSE To investigate the impact of age and gender on myocardial T1ρ values. STUDY TYPE Cross-sectional. POPULATION Two hundred ten healthy Han Chinese volunteers without cardiovascular risk factors (85 males, mean age 34.4 ± 12.5 years; 125 females, mean age 37.9 ± 14.8 years). FIELD STRENGTH/SEQUENCE 1.5 T; T1ρ-prepared steady-state free precession (T1ρ mapping) sequence. ASSESSMENT Basal, mid, and apical short-axis left ventricular T1ρ maps were acquired. T1ρ maps acquired with spin-lock frequencies of 5 and 400 Hz were subtracted to create a myocardial fibrosis index (mFI) map. T1ρ and mFI values across different age decades, sex, and slice locations were compared. STATISTICAL TESTS Shapiro-Wilk test, Student's t test, Mann-Whitney U test, linear regression analysis, one-way analysis of variance and intraclass correlation coefficient. SIGNIFICANCE P value <0.05. RESULTS Women had significantly higher T1ρ and mFI values than men (50.3 ± 2.0 msec vs. 47.7 ± 2.4 msec and 4.7 ± 1.0 msec vs. 4.3 ± 1.1 msec, respectively). Additionally, in males and females combined, there was a significant positive but weak correlation between T1ρ values and age (r = 0.27), while no correlation was observed between the mFI values and age (P = 0.969). DATA CONCLUSION We report potential reference values for cardiac T1ρ by sex, age distribution, and slice location in a Chinese population. T1ρ was significantly correlated with age and sex, while mFI was only associated with sex. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Wei Deng
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Zhen Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Zhuoran Jia
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fang Liu
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jian Wu
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jinxiu Yang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Shutian An
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Yuchi Han
- Cardiovascular Division, Wexner Medical Center, College of Medicine, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Ren Zhao
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaohu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| |
Collapse
|
5
|
Wang D, Chen K, Wang Z, Wu H, Li Y. Research progress on interferon and cellular senescence. FASEB J 2024; 38:e70000. [PMID: 39157951 DOI: 10.1096/fj.202400808rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Since the 12 major signs of aging were revealed in 2023, people's interpretation of aging will go further, which is of great significance for understanding the occurrence, development, and intervention in the aging process. As one of the 12 major signs of aging, cellular senescence refers to the process in which the proliferation and differentiation ability of cells decrease under stress stimulation or over time, often manifested as changes in cell morphology, cell cycle arrest, and decreased metabolic function. Interferon (IFN), as a secreted ligand for specific cell surface receptors, can trigger the transcription of interferon-stimulated genes (ISGs) and play an important role in cellular senescence. In addition, IFN serves as an important component of SASP, and the activation of the IFN signaling pathway has been shown to contribute to cell apoptosis and senescence. It is expected to delay cellular senescence by linking IFN with cellular senescence and studying the effects of IFN on cellular senescence and its mechanism. This article provides a review of the research on the relationship between IFN and cellular senescence by consulting relevant literature.
Collapse
Affiliation(s)
- Da Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Zheng Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, P.R. China
| | - Huali Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
6
|
Smyła-Gruca W, Szczurek-Wasilewicz W, Skrzypek M, Romuk E, Karmański A, Jurkiewicz M, Gąsior M, Osadnik T, Banach M, Jóźwiak JJ, Szyguła-Jurkiewicz B. Ceruloplasmin and Lipofuscin Serum Concentrations Are Associated with Presence of Hypertrophic Cardiomyopathy. Biomedicines 2024; 12:1767. [PMID: 39200231 PMCID: PMC11352126 DOI: 10.3390/biomedicines12081767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/28/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and cells' ability to neutralize them by antioxidant systems. The role of oxidative stress in hypertrophic cardiomyopathy (HCM) is not fully understood. The aim of the study was to examine selected parameters of oxidative stress in patients with HCM compared to the control group. We enrolled 85 consecutive HCM patients and 97 controls without HCM. The groups were matched for sex, the body mass index, and age. Oxidative stress markers included superoxide dismutase (SOD), ceruloplasmin (CER), and lipofuscin (LPS). The median age of the HCM patients was 53 (40-63) years, and 41.2% of them were male. HCM patients, compared to the control ones, had significantly increased levels of CER and LPS. The areas under the receiver operating characteristics curves (AUC) indicated a good discriminatory power of CER (AUC 0.924, sensitivity 84%, and specificity 88%), an acceptable discriminatory power of LPS (AUC 0.740, sensitivity 66%, and specificity 72%), and poor discriminatory power of SOD (AUC 0.556, sensitivity 34%, and specificity 94%) for HCM detection. CER with good predictive strength, as well as LPS with acceptable predictive power, allows for HCM detection. The utility of SOD for HCM detection is limited.
Collapse
Affiliation(s)
- Wiktoria Smyła-Gruca
- Student’s Scientific Society, 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (W.S.-G.); (M.J.)
| | | | - Michał Skrzypek
- Department of Biostatistics, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Ewa Romuk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Andrzej Karmański
- Department of Descriptive and Topographic Anatomy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Michał Jurkiewicz
- Student’s Scientific Society, 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (W.S.-G.); (M.J.)
| | - Mariusz Gąsior
- 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (M.G.); (B.S.-J.)
| | - Tadeusz Osadnik
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
- Cardiology and Lipid Disorders Clinic, Independent Public Health Care Institution “REPTY” Upper Silesian Rehabilitation Centre, 42-600 Tarnowskie Góry, Poland
| | - Maciej Banach
- Polish Mothers Memorial Hospital Research Institute, 90-419 Łódź, Poland;
- Department of Hypertension, Medical University of Lodz, 90-419 Łódź, Poland
- Cardiovascular Research Centre, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Jacek J. Jóźwiak
- Department of Family Medicine and Public Health, Faculty of Medicine, University of Opole, 45-040 Opole, Poland;
| | - Bożena Szyguła-Jurkiewicz
- 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (M.G.); (B.S.-J.)
| |
Collapse
|
7
|
Rattanaprukskul K, Xia XJ, Jiang M, Albuquerque-Souza E, Bandyopadhyay D, Sahingur S. Molecular Signatures of Senescence in Periodontitis: Clinical Insights. J Dent Res 2024; 103:800-808. [PMID: 38877743 PMCID: PMC11308264 DOI: 10.1177/00220345241255325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024] Open
Abstract
Most of the elderly population is afflicted by periodontal diseases, creating a health burden worldwide. Cellular senescence is one of the hallmarks of aging and associated with several chronic comorbidities. Senescent cells produce a variety of deleterious secretions, collectively termed the senescence-associated secretory phenotype (SASP). This disrupts neighboring cells, leading to further senescence propagation and inciting chronic inflammation, known as "inflammaging." Detrimental repercussions within the tissue microenvironment can trigger senescence at a younger age, accelerate biological aging, and drive the initiation or progression of diseases. Here, we investigated the biological signatures of senescence in healthy and diseased gingival tissues by assessing the levels of key senescence markers (p16, lipofuscin, and β-galactosidase) and inflammatory mediators (interleukin [IL]-1β, IL-6, IL-8, matrix metalloproteinase [MMP]-1, MMP-3, and tumor necrosis factor-α). Our results showed significantly increased senescence features including p16, lipofuscin, and β-galactosidase in both epithelial and connective tissues of periodontitis patients compared with healthy sites in all age groups, indicating that an inflammatory microenvironment can trigger senescence-like alterations in younger diseased gingival tissues as well. Subsequent analyses using double staining with specific cell markers noted the enrichment of β-galactosidase in fibroblasts and macrophages. Concurrently, inflammatory mediators consistent with SASP were increased in the gingival biopsies obtained from periodontitis lesions. Together, our findings provide the first clinical report revealing susceptibility to elevated senescence and inflammatory milieu consistent with senescence secretome in gingival tissues, thus introducing senescence as one of the drivers of pathological events in the oral mucosa and a novel strategy for targeted interventions.
Collapse
Affiliation(s)
- K. Rattanaprukskul
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - X.-J. Xia
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M. Jiang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E. Albuquerque-Souza
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lipid Mediator Unit, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - D. Bandyopadhyay
- Department of Biostatistics, School of Population Health, Virginia Commonwealth, Richmond, VA, USA
| | - S.E. Sahingur
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Palmer JA, Rosenthal N, Teichmann SA, Litvinukova M. Revisiting Cardiac Biology in the Era of Single Cell and Spatial Omics. Circ Res 2024; 134:1681-1702. [PMID: 38843288 PMCID: PMC11149945 DOI: 10.1161/circresaha.124.323672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Throughout our lifetime, each beat of the heart requires the coordinated action of multiple cardiac cell types. Understanding cardiac cell biology, its intricate microenvironments, and the mechanisms that govern their function in health and disease are crucial to designing novel therapeutical and behavioral interventions. Recent advances in single-cell and spatial omics technologies have significantly propelled this understanding, offering novel insights into the cellular diversity and function and the complex interactions of cardiac tissue. This review provides a comprehensive overview of the cellular landscape of the heart, bridging the gap between suspension-based and emerging in situ approaches, focusing on the experimental and computational challenges, comparative analyses of mouse and human cardiac systems, and the rising contextualization of cardiac cells within their niches. As we explore the heart at this unprecedented resolution, integrating insights from both mouse and human studies will pave the way for novel diagnostic tools and therapeutic interventions, ultimately improving outcomes for patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Jack A. Palmer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom (J.A.P., S.A.T.)
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus (J.A.P., S.A.T.), University of Cambridge, United Kingdom
| | - Nadia Rosenthal
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME (N.R.)
- National Heart and Lung Institute, Imperial College London, United Kingdom (N.R.)
| | - Sarah A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom (J.A.P., S.A.T.)
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus (J.A.P., S.A.T.), University of Cambridge, United Kingdom
- Theory of Condensed Matter Group, Department of Physics, Cavendish Laboratory (S.A.T.), University of Cambridge, United Kingdom
| | - Monika Litvinukova
- University Hospital Würzburg, Germany (M.L.)
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Germany (M.L.)
- Helmholtz Pioneer Campus, Helmholtz Munich, Germany (M.L.)
| |
Collapse
|
9
|
Jin DX, Jia CY, Yang B, Wu YH, Chen L, Liu R, Wu MG, Yu H, Ge QF. The ameliorative mechanism of Lactiplantibacillus plantarum NJAU-01 against D-galactose induced oxidative stress: a hepatic proteomics and gut microbiota analysis. Food Funct 2024; 15:6174-6188. [PMID: 38770619 DOI: 10.1039/d4fo00406j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Probiotic intervention is an effective strategy to alleviate oxidative stress-related diseases. Our previous studies found that Lactiplantibacillus plantarum NJAU-01 (NJAU-01) exhibited antioxidant effects in a D-galactose (D-gal)-induced aging mouse model. However, the underlying mechanism remains to be unveiled. This study was aimed to investigate the ameliorative effect and mechanism of NJAU-01 against oxidative stress induced by D-gal. The results showed that NJAU-01 could reverse the tendency of a slow body weight gain induced by D-gal. NJAU-01 relieved hepatic oxidative stress via increasing the hepatic total antioxidant capacity and antioxidant enzyme activities including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT). Moreover, the malondialdehyde (MDA) level was reversed after NJAU-01 supplementation. The proteomic results showed that there were 201 differentially expressed proteins (DEPs) between NJAU-01 and D-gal groups. NJAU-01 regulated the expressions of glutathione S-transferase Mu 5 (Gstm5), glutathione S-transferase P2 (Gstp2) and NADH dehydrogenase 1α subcomplex subunit 7 (Ndufa7) related to oxidative stress, and autophagy protein 5 (Atg5) and plasma alpha-L-fucosidase (Fuca2) involved in autophagy, etc. 16S rDNA sequencing results showed that NJAU-01 supplementation could regulate the gut microbiota dysbiosis induced by D-gal via increasing the relative abundances of the phylum Firmicutes and the genus Lactobacillus and reducing the relative abundances of the phylum Bacteroidetes and the genera Lachnospiraceae_NK4A136_group as well as Prevotellaceae_UCG-001, etc.. Spearman correlation analysis results showed that the altered gut microbiota composition had a significant correlation with antioxidant enzyme activities and the DEPs related to oxidative stress. Overall, NJAU-01 alleviated hepatic oxidative stress induced by D-gal via manipulating the gut microbiota composition and hepatic protein expression profile.
Collapse
Affiliation(s)
- Du-Xin Jin
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China.
| | - Chao-Yang Jia
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China.
| | - Bo Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China.
| | - Yue-Hao Wu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China.
| | - Lei Chen
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China.
| | - Rui Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China.
| | - Man-Gang Wu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China.
| | - Hai Yu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China.
| | - Qing-Feng Ge
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China.
| |
Collapse
|
10
|
Sedmera D, Kvasilova A, Eckhardt A, Kacer P, Penicka M, Kocka M, Schindler D, Kaban R, Kockova R. Fibrosis and expression of extracellular matrix proteins in human interventricular septum in aortic valve stenosis and regurgitation. Histochem Cell Biol 2024; 161:367-379. [PMID: 38347221 PMCID: PMC11045568 DOI: 10.1007/s00418-024-02268-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2024] [Indexed: 04/28/2024]
Abstract
Valvular heart disease leads to ventricular pressure and/or volume overload. Pressure overload leads to fibrosis, which might regress with its resolution, but the limits and details of this reverse remodeling are not known. To gain more insight into the extent and nature of cardiac fibrosis in valve disease, we analyzed needle biopsies taken from the interventricular septum of patients undergoing surgery for valve replacement focusing on the expression and distribution of major extracellular matrix protein involved in this process. Proteomic analysis performed using mass spectrometry revealed an excellent correlation between the expression of collagen type I and III, but there was little correlation with the immunohistochemical staining performed on sister sections, which included antibodies against collagen I, III, fibronectin, sarcomeric actin, and histochemistry for wheat germ agglutinin. Surprisingly, the immunofluorescence intensity did not correlate significantly with the gold standard for fibrosis quantification, which was performed using Picrosirius Red (PSR) staining, unless multiplexed on the same tissue section. There was also little correlation between the immunohistochemical markers and pressure gradient severity. It appears that at least in humans, the immunohistochemical pattern of fibrosis is not clearly correlated with standard Picrosirius Red staining on sister sections or quantitative proteomic data, possibly due to tissue heterogeneity at microscale, comorbidities, or other patient-specific factors. For precise correlation of different types of staining, multiplexing on the same section is the best approach.
Collapse
Affiliation(s)
- David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 3, 128 00, Prague, Czech Republic.
- Institute of Physiology, The Czech Academy of Sciences, Videnska 1024, 142 00, Prague, Czech Republic.
| | - Alena Kvasilova
- Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 3, 128 00, Prague, Czech Republic
| | - Adam Eckhardt
- Institute of Physiology, The Czech Academy of Sciences, Videnska 1024, 142 00, Prague, Czech Republic
| | - Petr Kacer
- Department of Cardiac Surgery, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Martin Penicka
- Cardiovascular Center Aalst, OLV Clinic, 9300, Aalst, Belgium
| | - Matej Kocka
- Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 3, 128 00, Prague, Czech Republic
| | - Dana Schindler
- Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 3, 128 00, Prague, Czech Republic
| | - Ron Kaban
- Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 3, 128 00, Prague, Czech Republic
| | - Radka Kockova
- Na Homolce Hospital, Roentgenova 37/2, 150 30, Prague, Czech Republic
| |
Collapse
|
11
|
Valdes PA, Yu CC(J, Aronson J, Ghosh D, Zhao Y, An B, Bernstock JD, Bhere D, Felicella MM, Viapiano MS, Shah K, Chiocca EA, Boyden ES. Improved immunostaining of nanostructures and cells in human brain specimens through expansion-mediated protein decrowding. Sci Transl Med 2024; 16:eabo0049. [PMID: 38295184 PMCID: PMC10911838 DOI: 10.1126/scitranslmed.abo0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
Proteins are densely packed in cells and tissues, where they form complex nanostructures. Expansion microscopy (ExM) variants have been used to separate proteins from each other in preserved biospecimens, improving antibody access to epitopes. Here, we present an ExM variant, decrowding expansion pathology (dExPath), that can expand proteins away from each other in human brain pathology specimens, including formalin-fixed paraffin-embedded (FFPE) clinical specimens. Immunostaining of dExPath-expanded specimens reveals, with nanoscale precision, previously unobserved cellular structures, as well as more continuous patterns of staining. This enhanced molecular staining results in observation of previously invisible disease marker-positive cell populations in human glioma specimens, with potential implications for tumor aggressiveness. dExPath results in improved fluorescence signals even as it eliminates lipofuscin-associated autofluorescence. Thus, this form of expansion-mediated protein decrowding may, through improved epitope access for antibodies, render immunohistochemistry more powerful in clinical science and, perhaps, diagnosis.
Collapse
Affiliation(s)
- Pablo A. Valdes
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, 77555
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
| | - Chih-Chieh (Jay) Yu
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- Department of Biological Engineering, MIT, MA, USA, 02139
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
- RIKEN Center for Brain Science, Saitama, Japan, 351-0198
| | - Jenna Aronson
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
- RIKEN Center for Brain Science, Saitama, Japan, 351-0198
| | - Debarati Ghosh
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA, 02139
| | - Yongxin Zhao
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA, 15213
| | - Bobae An
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
- Koch Institute, MIT, Cambridge, MA, USA, 02139
| | - Deepak Bhere
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, SC, USA, 29209
- Center for Stem Cell and Translational Immunotherapy, Harvard Medical School/Brigham and Women’s Hospital, Boston, MA, USA, 02115
| | - Michelle M. Felicella
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA, 77555
| | - Mariano S. Viapiano
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA, 13210
| | - Khalid Shah
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
- Center for Stem Cell and Translational Immunotherapy, Harvard Medical School/Brigham and Women’s Hospital, Boston, MA, USA, 02115
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
| | - Edward S. Boyden
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- Department of Biological Engineering, MIT, MA, USA, 02139
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA, 02139
- Koch Institute, MIT, Cambridge, MA, USA, 02139
- MIT Center for Neurobiological Engineering and K. Lisa Yang Center for Bionics, MIT, Cambridge, MA, USA, 02139
- Howard Hughes Medical Institute, Cambridge, MA, USA, 02139
| |
Collapse
|
12
|
Linders AN, Dias IB, López Fernández T, Tocchetti CG, Bomer N, Van der Meer P. A review of the pathophysiological mechanisms of doxorubicin-induced cardiotoxicity and aging. NPJ AGING 2024; 10:9. [PMID: 38263284 PMCID: PMC10806194 DOI: 10.1038/s41514-024-00135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024]
Abstract
The population of cancer survivors is rapidly increasing due to improving healthcare. However, cancer therapies often have long-term side effects. One example is cancer therapy-related cardiac dysfunction (CTRCD) caused by doxorubicin: up to 9% of the cancer patients treated with this drug develop heart failure at a later stage. In recent years, doxorubicin-induced cardiotoxicity has been associated with an accelerated aging phenotype and cellular senescence in the heart. In this review we explain the evidence of an accelerated aging phenotype in the doxorubicin-treated heart by comparing it to healthy aged hearts, and shed light on treatment strategies that are proposed in pre-clinical settings. We will discuss the accelerated aging phenotype and the impact it could have in the clinic and future research.
Collapse
Affiliation(s)
- Annet Nicole Linders
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, Groningen, The Netherlands
| | - Itamar Braga Dias
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, Groningen, The Netherlands
| | - Teresa López Fernández
- Division of Cardiology, Cardiac Imaging and Cardio-Oncology Unit, La Paz University Hospital, IdiPAZ Research Institute, Madrid, Spain
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences (DISMET), Federico II University, Naples, Italy
- Centre for Basic and Clinical Immunology Research (CISI), Federico II University, Naples, Italy
- Interdepartmental Centre of Clinical and Translational Sciences (CIRCET), Federico II University, Naples, Italy
- Interdepartmental Hypertension Research Centre (CIRIAPA), Federico II University, Naples, Italy
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, Groningen, The Netherlands
| | - Peter Van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, Groningen, The Netherlands.
| |
Collapse
|
13
|
Różanowska MB. Lipofuscin, Its Origin, Properties, and Contribution to Retinal Fluorescence as a Potential Biomarker of Oxidative Damage to the Retina. Antioxidants (Basel) 2023; 12:2111. [PMID: 38136230 PMCID: PMC10740933 DOI: 10.3390/antiox12122111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Lipofuscin accumulates with age as intracellular fluorescent granules originating from incomplete lysosomal digestion of phagocytosed and autophagocytosed material. The purpose of this review is to provide an update on the current understanding of the role of oxidative stress and/or lysosomal dysfunction in lipofuscin accumulation and its consequences, particularly for retinal pigment epithelium (RPE). Next, the fluorescence of lipofuscin, spectral changes induced by oxidation, and its contribution to retinal fluorescence are discussed. This is followed by reviewing recent developments in fluorescence imaging of the retina and the current evidence on the prognostic value of retinal fluorescence for the progression of age-related macular degeneration (AMD), the major blinding disease affecting elderly people in developed countries. The evidence of lipofuscin oxidation in vivo and the evidence of increased oxidative damage in AMD retina ex vivo lead to the conclusion that imaging of spectral characteristics of lipofuscin fluorescence may serve as a useful biomarker of oxidative damage, which can be helpful in assessing the efficacy of potential antioxidant therapies in retinal degenerations associated with accumulation of lipofuscin and increased oxidative stress. Finally, amendments to currently used fluorescence imaging instruments are suggested to be more sensitive and specific for imaging spectral characteristics of lipofuscin fluorescence.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| |
Collapse
|
14
|
García-Mendívil L, Pérez-Zabalza M, Oliver-Gelabert A, Vallejo-Gil JM, Fañanás-Mastral J, Vázquez-Sancho M, Bellido-Morales JA, Vaca-Núñez AS, Ballester-Cuenca C, Diez E, Ordovás L, Pueyo E. Interindividual Age-Independent Differences in Human CX43 Impact Ventricular Arrhythmic Risk. RESEARCH (WASHINGTON, D.C.) 2023; 6:0254. [PMID: 38023417 PMCID: PMC10650968 DOI: 10.34133/research.0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023]
Abstract
Connexin 43 (CX43) is one of the major components of gap junctions, the structures responsible for the intercellular communication and transmission of the electrical impulse in the left ventricle. There is limited information on the histological changes of CX43 with age and their effect on electrophysiology, especially in humans. Here, we analyzed left ventricular biopsies from living donors starting at midlife to characterize age-related CX43 remodeling. We assessed its quantity, degree of lateralization, and spatial heterogeneity together with fibrotic deposition. We observed no significant age-related remodeling of CX43. Only spatial heterogeneity increased slightly with age, and this increase was better explained by biological age than by chronological age. Importantly, we found that CX43 features varied considerably among individuals in our population with no relevant relationship to age or fibrosis content, in contrast to animal species. We used our experimental results to feed computational models of human ventricular electrophysiology and to assess the effects of interindividual differences in specific features of CX43 and fibrosis on conduction velocity, action potential duration, and arrhythmogenicity. We found that larger amounts of fibrosis were associated with the highest arrhythmic risk, with this risk being increased when fibrosis deposition was combined with a reduction in CX43 amount and/or with an increase in CX43 spatial heterogeneity. These mechanisms underlying high arrhythmic risk in some individuals were not associated with age in our study population. In conclusion, our data rule out CX43 remodeling as an age-related arrhythmic substrate in the population beyond midlife, but highlight its potential as a proarrhythmic factor at the individual level, especially when combined with increased fibrosis.
Collapse
Affiliation(s)
- Laura García-Mendívil
- Biomedical Signal Interpretation and Computational Simulation group (BSICoS), Aragón Institute of Engineering Research,
University of Zaragoza, Zaragoza 50018, Spain
- BSICoS, Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza 50018, Spain
| | - María Pérez-Zabalza
- Biomedical Signal Interpretation and Computational Simulation group (BSICoS), Aragón Institute of Engineering Research,
University of Zaragoza, Zaragoza 50018, Spain
- BSICoS, Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza 50018, Spain
- Centro Universitario de la Defensa (CUD), Zaragoza 50090, Spain
| | - Antoni Oliver-Gelabert
- Biomedical Signal Interpretation and Computational Simulation group (BSICoS), Aragón Institute of Engineering Research,
University of Zaragoza, Zaragoza 50018, Spain
- BSICoS, Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza 50018, Spain
| | - José María Vallejo-Gil
- Department of Cardiovascular Surgery,
University Hospital Miguel Servet, Zaragoza 50009, Spain
| | - Javier Fañanás-Mastral
- Department of Cardiovascular Surgery,
University Hospital Miguel Servet, Zaragoza 50009, Spain
| | - Manuel Vázquez-Sancho
- Department of Cardiovascular Surgery,
University Hospital Miguel Servet, Zaragoza 50009, Spain
| | | | | | - Carlos Ballester-Cuenca
- Department of Cardiovascular Surgery,
University Hospital Miguel Servet, Zaragoza 50009, Spain
| | - Emiliano Diez
- Institute of Experimental Medicine and Biology of Cuyo (IMBECU), CONICET, Mendoza 5500, Argentina
| | - Laura Ordovás
- Biomedical Signal Interpretation and Computational Simulation group (BSICoS), Aragón Institute of Engineering Research,
University of Zaragoza, Zaragoza 50018, Spain
- BSICoS, Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza 50018, Spain
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), Zaragoza 50018, Spain
| | - Esther Pueyo
- Biomedical Signal Interpretation and Computational Simulation group (BSICoS), Aragón Institute of Engineering Research,
University of Zaragoza, Zaragoza 50018, Spain
- BSICoS, Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza 50018, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza 50018, Spain
| |
Collapse
|
15
|
Yang J, Liu L, Zhang J, Wang W, Xiao CY. The possible transport and exclusion mode of lipofuscin in rat myocardium under electron microscopy. J Comp Pathol 2023; 207:66-82. [PMID: 37977048 DOI: 10.1016/j.jcpa.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/11/2022] [Accepted: 09/29/2023] [Indexed: 11/19/2023]
Abstract
Lipofuscin accumulation has been observed in human coronary arteries but whether or not myocardial tissue can release lipofuscin generated within cardiomyocytes must be clarified, as this may provide indicators for future anti-ageing research. The hearts of Sprague Dawley rats, aged 6-24 months, were embedded in resin and ultrathin sections cut for electron microscopy. Lipofuscin granules were abundant in cardiomyocytes. Cardiomyocytes were seen to release lipofuscin granules into the myocardial interstitium as cytoplasmic fragments with irregular protrusions on the sarcolemma surface. The cytoplasmic fragments entering the stroma fused directly with the endothelial cells of adjacent capillaries, delivering lipofuscin to the vessel wall. These fragments were also seen to be engulfed by stromal macrophages or fused with fibroblasts, which then combined with capillary endothelial cells to deliver lipofuscin to the vessel wall. Some cytoplasmic fragments disaggregated and formed membrane-like waste, which travelled to the vessel wall from the myocardial stroma as soluble fine particles via diffusion or pinocytosis of capillary endothelial cells. Lipofuscin entered the vascular wall and endothelial cells, forming large and small protrusions or folds that transported the lipofuscin to the vascular lumen and bloodstream.
Collapse
Affiliation(s)
- Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443003, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang 443003, China
| | - Li Liu
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang 443003, China; Department of Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443003, China
| | - Jing Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443003, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang 443003, China
| | - Wei Wang
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang 443003, China; Department of Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443003, China
| | - Chang-Yi Xiao
- Department of Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443003, China; Department of Histology & Embryology, Medical College of China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
16
|
Tran L, Xie B, Assaf E, Ferrari R, Pipinos II, Casale GP, Alvidrez RIM, Watkins S, Sachdev U. Transcriptomic Profiling Identifies Ferroptosis-Related Gene Signatures in Ischemic Muscle Satellite Cells Affected by Peripheral Artery Disease-Brief Report. Arterioscler Thromb Vasc Biol 2023; 43:2023-2029. [PMID: 37675635 PMCID: PMC10549760 DOI: 10.1161/atvbaha.123.319518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/01/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND We hypothesized that transcriptomic profiling of muscle satellite cells in peripheral artery disease (PAD) would identify damage-related pathways contributing to skeletal muscle myopathy. We identified a potential role for ferroptosis-a form of programmed lytic cell death by iron-mediated lipid peroxidation-as one such pathway. Ferroptosis promotes myopathy in ischemic cardiac muscle but has an unknown role in PAD. METHODS Muscle satellite cells from donors with PAD were obtained during surgery. cDNA libraries were processed for single-cell RNA sequencing using the 10X Genomics platform. Protein expression was confirmed based on pathways inferred by transcriptomic analysis. RESULTS Unsupervised cluster analysis of over 25 000 cells aggregated from 8 donor samples yielded distinct cell populations grouped by a shared unique transcriptional fingerprint. Quiescent cells were diminished in ischemic muscle while myofibroblasts and apoptotic cells were prominent. Differential gene expression demonstrated a surprising increase in genes associated with iron transport and oxidative stress and a decrease in GPX4 (glutathione peroxidase 4) in ischemic PAD-derived cells. Release of the danger signal HMGB1 (high mobility group box-1) correlated with ferroptotic markers including surface transferrin receptor and were higher in ischemia. Furthermore, lipid peroxidation in muscle satellite cells was modulated by ferrostatin, a ferroptosis inhibitor. Histology confirmed iron deposition and lipofuscin, an inducer of ferroptosis in PAD-affected muscle. CONCLUSIONS This report presents a novel finding that genes known to be involved in ferroptosis are differentially expressed in human skeletal muscle affected by PAD. Targeting ferroptosis may be a novel therapeutic strategy to reduce PAD myopathy.
Collapse
Affiliation(s)
- Lillian Tran
- University of Pittsburgh Medical Center Department of Surgery
| | - Bowen Xie
- University of Pittsburgh Medical Center Department of Surgery
| | - Edwyn Assaf
- University of Pittsburgh Medical Center Department of Surgery
| | - Ricardo Ferrari
- University of Pittsburgh Medical Center Department of Surgery
| | - Iraklis I. Pipinos
- University of Nebraska Medical Center Department of Surgery and the VAResearch Service, VA Nebraska-Western Iowa Health Care System
| | - George P. Casale
- University of Nebraska Medical Center Department of Surgery and the VAResearch Service, VA Nebraska-Western Iowa Health Care System
| | | | - Simon Watkins
- University of Pittsburgh Center for Biologic Imaging
| | - Ulka Sachdev
- University of Pittsburgh Medical Center Department of Surgery
| |
Collapse
|
17
|
Chou SM, Yen YH, Yuan F, Zhang SC, Chong CM. Neuronal Senescence in the Aged Brain. Aging Dis 2023; 14:1618-1632. [PMID: 37196117 PMCID: PMC10529744 DOI: 10.14336/ad.2023.0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/14/2023] [Indexed: 05/19/2023] Open
Abstract
Cellular senescence is a highly complicated cellular state that occurs throughout the lifespan of an organism. It has been well-defined in mitotic cells by various senescent features. Neurons are long-lived post-mitotic cells with special structures and functions. With age, neurons display morphological and functional changes, accompanying alterations in proteostasis, redox balance, and Ca2+ dynamics; however, it is ambiguous whether these neuronal changes belong to the features of neuronal senescence. In this review, we strive to identify and classify changes that are relatively specific to neurons in the aging brain and define them as features of neuronal senescence through comparisons with common senescent features. We also associate them with the functional decline of multiple cellular homeostasis systems, proposing the possibility that these systems are the main drivers of neuronal senescence. We hope this summary will serve as a steppingstone for further inputs on a comprehensive but relatively specific list of phenotypes for neuronal senescence and in particular their underlying molecular events during aging. This will in turn shine light on the association between neuronal senescence and neurodegeneration and lead to the development of strategies to perturb the processes.
Collapse
Affiliation(s)
- Shu-Min Chou
- Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, 169857 Singapore, Singapore.
| | - Yu-Hsin Yen
- Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, 169857 Singapore, Singapore.
| | - Fang Yuan
- Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, 169857 Singapore, Singapore.
| | - Su-Chun Zhang
- Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, 169857 Singapore, Singapore.
- Department of Neuroscience, Department of Neurology, Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
18
|
Li A, Shami GJ, Griffiths L, Lal S, Irving H, Braet F. Giant mitochondria in cardiomyocytes: cellular architecture in health and disease. Basic Res Cardiol 2023; 118:39. [PMID: 37775647 PMCID: PMC10541842 DOI: 10.1007/s00395-023-01011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Giant mitochondria are frequently observed in different disease models within the brain, kidney, and liver. In cardiac muscle, these enlarged organelles are present across diverse physiological and pathophysiological conditions including in ageing and exercise, and clinically in alcohol-induced heart disease and various cardiomyopathies. This mitochondrial aberration is widely considered an early structural hallmark of disease leading to adverse organ function. In this thematic paper, we discuss the current state-of-knowledge on the presence, structure and functional implications of giant mitochondria in heart muscle. Despite its demonstrated reoccurrence in different heart diseases, the literature on this pathophysiological phenomenon remains relatively sparse since its initial observations in the early 60s. We review historical and contemporary investigations from cultured cardiomyocytes to human tissue samples to address the role of giant mitochondria in cardiac health and disease. Finally, we discuss their significance for the future development of novel mitochondria-targeted therapies to improve cardiac metabolism and functionality.
Collapse
Affiliation(s)
- Amy Li
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia.
- Centre for Healthy Futures, Torrens University Australia, Surry Hills, NSW, Australia.
- School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia.
| | - Gerald J Shami
- School of Medical Sciences (Molecular and Cellular Biomedicine), The University of Sydney, Camperdown, NSW, Australia
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Camperdown, NSW, Australia
| | - Lisa Griffiths
- Anatomical Pathology, PathWest, QEII Medical Centre, Nedlands, WA, Australia
| | - Sean Lal
- School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Helen Irving
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia
| | - Filip Braet
- School of Medical Sciences (Molecular and Cellular Biomedicine), The University of Sydney, Camperdown, NSW, Australia.
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
19
|
Suárez-Carrillo A, Álvarez-Córdoba M, Romero-González A, Talaverón-Rey M, Povea-Cabello S, Cilleros-Holgado P, Piñero-Pérez R, Reche-López D, Gómez-Fernández D, Romero-Domínguez JM, Munuera-Cabeza M, Díaz A, González-Granero S, García-Verdugo JM, Sánchez-Alcázar JA. Antioxidants Prevent Iron Accumulation and Lipid Peroxidation, but Do Not Correct Autophagy Dysfunction or Mitochondrial Bioenergetics in Cellular Models of BPAN. Int J Mol Sci 2023; 24:14576. [PMID: 37834028 PMCID: PMC11340724 DOI: 10.3390/ijms241914576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023] Open
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a group of rare neurogenetic disorders frequently associated with iron accumulation in the basal nuclei of the brain. Among NBIA subtypes, β-propeller protein-associated neurodegeneration (BPAN) is associated with mutations in the autophagy gene WDR45. The aim of this study was to demonstrate the autophagic defects and secondary pathological consequences in cellular models derived from two patients harboring WDR45 mutations. Both protein and mRNA expression levels of WDR45 were decreased in patient-derived fibroblasts. In addition, the increase of LC3B upon treatments with autophagy inducers or inhibitors was lower in mutant cells compared to control cells, suggesting decreased autophagosome formation and impaired autophagic flux. A transmission electron microscopy (TEM) analysis showed mitochondrial vacuolization associated with the accumulation of lipofuscin-like aggregates containing undegraded material. Autophagy dysregulation was also associated with iron accumulation and lipid peroxidation. In addition, mutant fibroblasts showed altered mitochondrial bioenergetics. Antioxidants such as pantothenate, vitamin E and α-lipoic prevented lipid peroxidation and iron accumulation. However, antioxidants were not able to correct the expression levels of WDR45, neither the autophagy defect nor cell bioenergetics. Our study demonstrated that WDR45 mutations in BPAN cellular models impaired autophagy, iron metabolism and cell bioenergetics. Antioxidants partially improved cell physiopathology; however, autophagy and cell bioenergetics remained affected.
Collapse
Affiliation(s)
- Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Ana Romero-González
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - David Gómez-Fernández
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - José Manuel Romero-Domínguez
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Antonio Díaz
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461, USA;
- Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Susana González-Granero
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46100 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46100 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| |
Collapse
|
20
|
Nurani AM, Kikuchi K, Iino M, Shirasugi Y, Sonoki A, Fujimura T, Hasegawa K, Shibata T. Development of a method for evaluating skin dullness: A mathematical model explaining dullness by the color, optical properties, and microtopography of the skin. Skin Res Technol 2023; 29:e13407. [PMID: 37522508 PMCID: PMC10337531 DOI: 10.1111/srt.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/21/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Skin dullness has long been a major concern of Japanese women. It is usually evaluated and judged visually by experts. Although several factors are recognized to play a role, it is unclear to what extent such physiological characteristics contribute to skin dullness. The purpose of this study is to establish an objective method for evaluation, which will assist in developing cosmetics products targeting skin dullness. METHODS We conducted a skin measurement study on 50 Japanese women in their 30-50s, where skin dullness was visually assessed by a group of experts to obtain an average dullness score, and several skin parameters were obtained. We then developed a regression model that explains the visual assessment score using these physiological parameters. RESULTS The results of partial least squares analysis of the dullness perception and physiological characteristics showed that skin dullness can be defined by colorimetric, optical, and skin surface microtopography parameters. Additionally, the contribution of each parameter to the model was determined. Our results suggest that dullness perception is highly affected by the melanin content and yellowness of the skin, followed by skin reddishness, roughness, and translucency score, whereas glossiness has less effect. Strikingly, the contribution ratio of each parameter varied among age groups. Furthermore, we confirmed that the predicted value of skin dullness increases with age. CONCLUSION Our results will help the design of cosmetics targeting factors specific to age groups in developing effective solutions for skin dullness.
Collapse
Affiliation(s)
- Alif Meem Nurani
- Shiseido Co., Ltd.MIRAI Technology Institute, 1‐2‐11, Takashima, Nishi‐kuYokohamaJapan
| | - Kumiko Kikuchi
- Shiseido Co., Ltd.MIRAI Technology Institute, 1‐2‐11, Takashima, Nishi‐kuYokohamaJapan
| | - Masato Iino
- Shiseido Co., Ltd.MIRAI Technology Institute, 1‐2‐11, Takashima, Nishi‐kuYokohamaJapan
| | - Yutaka Shirasugi
- Shiseido Co., Ltd.MIRAI Technology Institute, 1‐2‐11, Takashima, Nishi‐kuYokohamaJapan
| | - Aska Sonoki
- Shiseido Co., Ltd.MIRAI Technology Institute, 1‐2‐11, Takashima, Nishi‐kuYokohamaJapan
| | - Takako Fujimura
- Shiseido Co., Ltd.Brand Value R&D Institute, 1‐2‐11, Takashima, Nishi‐kuYokohamaJapan
| | - Kiyotaka Hasegawa
- Shiseido Co., Ltd.MIRAI Technology Institute, 1‐2‐11, Takashima, Nishi‐kuYokohamaJapan
| | - Takako Shibata
- Shiseido Co., Ltd.MIRAI Technology Institute, 1‐2‐11, Takashima, Nishi‐kuYokohamaJapan
| |
Collapse
|
21
|
Yang M, Liu C, Jiang N, Liu Y, Luo S, Li C, Zhao H, Han Y, Chen W, Li L, Xiao L, Sun L. Mitochondrial homeostasis: a potential target for delaying renal aging. Front Pharmacol 2023; 14:1191517. [PMID: 37397494 PMCID: PMC10308014 DOI: 10.3389/fphar.2023.1191517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Mitochondria, which are the energy factories of the cell, participate in many life activities, and the kidney is a high metabolic organ that contains abundant mitochondria. Renal aging is a degenerative process associated with the accumulation of harmful processes. Increasing attention has been given to the role of abnormal mitochondrial homeostasis in renal aging. However, the role of mitochondrial homeostasis in renal aging has not been reviewed in detail. Here, we summarize the current biochemical markers associated with aging and review the changes in renal structure and function during aging. Moreover, we also review in detail the role of mitochondrial homeostasis abnormalities, including mitochondrial function, mitophagy and mitochondria-mediated oxidative stress and inflammation, in renal aging. Finally, we describe some of the current antiaging compounds that target mitochondria and note that maintaining mitochondrial homeostasis is a potential strategy against renal aging.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
22
|
Benvenuti LA, Marcondes-Braga FG, Bacal F. Cumulative Disorder of Myocardial Lipofuscin after Long-Term Heart Transplantation: A Study Based on Endomyocardial Biopsies. Arq Bras Cardiol 2023; 120:e20220313. [PMID: 37042874 PMCID: PMC10263452 DOI: 10.36660/abc.20220313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 03/30/2023] Open
Affiliation(s)
- Luiz Alberto Benvenuti
- Universidade de São PauloFaculdade de MedicinaHospital das ClínicasSão PauloSPBrasilInstituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP – Brasil
| | - Fabiana G. Marcondes-Braga
- Universidade de São PauloFaculdade de MedicinaHospital das ClínicasSão PauloSPBrasilInstituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP – Brasil
| | - Fernando Bacal
- Universidade de São PauloFaculdade de MedicinaHospital das ClínicasSão PauloSPBrasilInstituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP – Brasil
| |
Collapse
|
23
|
Fluorescence intensity and lifetime imaging of lipofuscin-like autofluorescence for label-free predicting clinical drug response in cancer. Redox Biol 2022; 59:102578. [PMID: 36566738 PMCID: PMC9804248 DOI: 10.1016/j.redox.2022.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Conventional techniques for in vitro cancer drug screening require labor-intensive formalin fixation, paraffin embedding, and dye staining of tumor tissues at fixed endpoints. This way of assessment discards the valuable pharmacodynamic information in live cells over time. Here, we found endogenous lipofuscin-like autofluorescence acutely accumulated in the cell death process. Its unique red autofluorescence could report the apoptosis without labeling and continuously monitor the treatment responses in 3D tumor-culture models. Lifetime imaging of lipofuscin-like red autofluorescence could further distinguish necrosis from apoptosis of cells. Moreover, this endogenous fluorescent marker could visualize the apoptosis in live zebrafish embryos during development. Overall, this study validates that lipofuscin-like autofluorophore is a generic cell death marker. Its characteristic autofluorescence could label-free predict the efficacy of anti-cancer drugs in organoids or animal models.
Collapse
|
24
|
Brandenburg S, Drews L, Schönberger HL, Jacob CF, Paulke NJ, Beuthner BE, Topci R, Kohl T, Neuenroth L, Kutschka I, Urlaub H, Kück F, Leha A, Friede T, Seidler T, Jacobshagen C, Toischer K, Puls M, Hasenfuß G, Lenz C, Lehnart SE. Direct proteomic and high-resolution microscopy biopsy analysis identifies distinct ventricular fates in severe aortic stenosis. J Mol Cell Cardiol 2022; 173:1-15. [PMID: 36084744 DOI: 10.1016/j.yjmcc.2022.08.363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/03/2022] [Accepted: 08/31/2022] [Indexed: 01/06/2023]
Abstract
The incidence of aortic valve stenosis (AS), the most common reason for aortic valve replacement (AVR), increases with population ageing. While untreated AS is associated with high mortality, different hemodynamic subtypes range from normal left-ventricular function to severe heart failure. However, the molecular nature underlying four different AS subclasses, suggesting vastly different myocardial fates, is unknown. Here, we used direct proteomic analysis of small left-ventricular biopsies to identify unique protein expression profiles and subtype-specific AS mechanisms. Left-ventricular endomyocardial biopsies were harvested from patients during transcatheter AVR, and inclusion criteria were based on echocardiographic diagnosis of severe AS and guideline-defined AS-subtype classification: 1) normal ejection fraction (EF)/high-gradient; 2) low EF/high-gradient; 3) low EF/low-gradient; and 4) paradoxical low-flow/low-gradient AS. Samples from non-failing donor hearts served as control. We analyzed 25 individual left-ventricular biopsies by data-independent acquisition mass spectrometry (DIA-MS), and 26 biopsies by histomorphology and cardiomyocytes by STimulated Emission Depletion (STED) superresolution microscopy. Notably, DIA-MS reliably detected 2273 proteins throughout each individual left-ventricular biopsy, of which 160 proteins showed significant abundance changes between AS-subtype and non-failing samples including the cardiac ryanodine receptor (RyR2). Hierarchical clustering segregated unique proteotypes that identified three hemodynamic AS-subtypes. Additionally, distinct proteotypes were linked with AS-subtype specific differences in cardiomyocyte hypertrophy. Furthermore, superresolution microscopy of immunolabeled biopsy sections showed subcellular RyR2-cluster fragmentation and disruption of the functionally important association with transverse tubules, which occurred specifically in patients with systolic dysfunction and may hence contribute to depressed left-ventricular function in AS.
Collapse
Affiliation(s)
- Sören Brandenburg
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany; Cellular Biophysics & Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany; Collaborative Research Center SFB1002 "Modulatory Units in Heart Failure", University of Göttingen, Germany.
| | - Lena Drews
- Cellular Biophysics & Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Germany
| | - Hanne-Lea Schönberger
- Cellular Biophysics & Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Germany
| | - Christoph F Jacob
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany; Cellular Biophysics & Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Germany
| | - Nora Josefine Paulke
- Cellular Biophysics & Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Germany
| | - Bo E Beuthner
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Rodi Topci
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany
| | - Tobias Kohl
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany; Cellular Biophysics & Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Germany
| | - Lisa Neuenroth
- Department of Clinical Chemistry, University Medical Center Göttingen, Germany
| | - Ingo Kutschka
- Clinic of Cardiothoracic & Vascular Surgery, University Medical Center Göttingen, Germany
| | - Henning Urlaub
- Department of Clinical Chemistry, University Medical Center Göttingen, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Collaborative Research Center SFB1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, Germany
| | - Fabian Kück
- Department of Medical Statistics, University Medical Center Göttingen, Germany
| | - Andreas Leha
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany; Department of Medical Statistics, University Medical Center Göttingen, Germany
| | - Tim Friede
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany; Department of Medical Statistics, University Medical Center Göttingen, Germany
| | - Tim Seidler
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Claudius Jacobshagen
- Department of Cardiology, Intensive Care & Angiology, Vincentius-Diakonissen-Hospital Karlsruhe, Germany
| | - Karl Toischer
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany; Collaborative Research Center SFB1002 "Modulatory Units in Heart Failure", University of Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Miriam Puls
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Gerd Hasenfuß
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany; Cellular Biophysics & Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany; Collaborative Research Center SFB1002 "Modulatory Units in Heart Failure", University of Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Christof Lenz
- Collaborative Research Center SFB1002 "Modulatory Units in Heart Failure", University of Göttingen, Germany; Department of Clinical Chemistry, University Medical Center Göttingen, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany; Leducq Transatlantic Network of Excellence CURE-PLaN, Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany
| | - Stephan E Lehnart
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany; Cellular Biophysics & Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany; Collaborative Research Center SFB1002 "Modulatory Units in Heart Failure", University of Göttingen, Germany; Collaborative Research Center SFB1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany; Leducq Transatlantic Network of Excellence CURE-PLaN, Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany.
| |
Collapse
|
25
|
Autophagy and polyphenol intervention strategy in aging. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Vellasamy DM, Lee SJ, Goh KW, Goh BH, Tang YQ, Ming LC, Yap WH. Targeting Immune Senescence in Atherosclerosis. Int J Mol Sci 2022; 23:13059. [PMID: 36361845 PMCID: PMC9658319 DOI: 10.3390/ijms232113059] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 10/29/2023] Open
Abstract
Atherosclerosis is one of the main underlying causes of cardiovascular diseases (CVD). It is associated with chronic inflammation and intimal thickening as well as the involvement of multiple cell types including immune cells. The engagement of innate or adaptive immune response has either athero-protective or atherogenic properties in exacerbating or alleviating atherosclerosis. In atherosclerosis, the mechanism of action of immune cells, particularly monocytes, macrophages, dendritic cells, and B- and T-lymphocytes have been discussed. Immuno-senescence is associated with aging, viral infections, genetic predispositions, and hyperlipidemia, which contribute to atherosclerosis. Immune senescent cells secrete SASP that delays or accelerates atherosclerosis plaque growth and associated pathologies such as aneurysms and coronary artery disease. Senescent cells undergo cell cycle arrest, morphological changes, and phenotypic changes in terms of their abundances and secretome profile including cytokines, chemokines, matrix metalloproteases (MMPs) and Toll-like receptors (TLRs) expressions. The senescence markers are used in therapeutics and currently, senolytics represent one of the emerging treatments where specific targets and clearance of senescent cells are being considered as therapy targets for the prevention or treatment of atherosclerosis.
Collapse
Affiliation(s)
- Danusha Michelle Vellasamy
- School of Biosciences, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Sin-Jye Lee
- School of Biosciences, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yin-Quan Tang
- School of Biosciences, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Wei Hsum Yap
- School of Biosciences, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| |
Collapse
|
27
|
Villalón-García I, Povea-Cabello S, Álvarez-Córdoba M, Talaverón-Rey M, Suárez-Rivero JM, Suárez-Carrillo A, Munuera-Cabeza M, Reche-López D, Cilleros-Holgado P, Piñero-Pérez R, Sánchez-Alcázar JA. Vicious cycle of lipid peroxidation and iron accumulation in neurodegeneration. Neural Regen Res 2022; 18:1196-1202. [PMID: 36453394 PMCID: PMC9838166 DOI: 10.4103/1673-5374.358614] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Lipid peroxidation and iron accumulation are closely associated with neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases, or neurodegeneration with brain iron accumulation disorders. Mitochondrial dysfunction, lipofuscin accumulation, autophagy disruption, and ferroptosis have been implicated as the critical pathomechanisms of lipid peroxidation and iron accumulation in these disorders. Currently, the connection between lipid peroxidation and iron accumulation and the initial cause or consequence in neurodegeneration processes is unclear. In this review, we have compiled the known mechanisms by which lipid peroxidation triggers iron accumulation and lipofuscin formation, and the effect of iron overload on lipid peroxidation and cellular function. The vicious cycle established between both pathological alterations may lead to the development of neurodegeneration. Therefore, the investigation of these mechanisms is essential for exploring therapeutic strategies to restrict neurodegeneration. In addition, we discuss the interplay between lipid peroxidation and iron accumulation in neurodegeneration, particularly in PLA2G6-associated neurodegeneration, a rare neurodegenerative disease with autosomal recessive inheritance, which belongs to the group of neurodegeneration with brain iron accumulation disorders.
Collapse
Affiliation(s)
- Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Juan M. Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain,Correspondence to: José A. Sánchez-Alcázar, MD, PhD, .
| |
Collapse
|
28
|
Wang L, Xiao CY, Li JH, Tang GC, Xiao SS. Transport and Possible Outcome of Lipofuscin in Mouse Myocardium. ADVANCES IN GERONTOLOGY 2022. [DOI: 10.1134/s207905702203016x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Stress-Induced Premature Senescence Related to Oxidative Stress in the Developmental Programming of Nonalcoholic Fatty Liver Disease in a Rat Model of Intrauterine Growth Restriction. Antioxidants (Basel) 2022; 11:antiox11091695. [PMID: 36139771 PMCID: PMC9495674 DOI: 10.3390/antiox11091695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolic syndrome (MetS) refers to cardiometabolic risk factors, such as visceral obesity, dyslipidemia, hyperglycemia/insulin resistance, arterial hypertension and non-alcoholic fatty liver disease (NAFLD). Individuals born after intrauterine growth restriction (IUGR) are particularly at risk of developing metabolic/hepatic disorders later in life. Oxidative stress and cellular senescence have been associated with MetS and are observed in infants born following IUGR. However, whether these mechanisms could be particularly associated with the development of NAFLD in these individuals is still unknown. IUGR was induced in rats by a maternal low-protein diet during gestation versus. a control (CTRL) diet. In six-month-old offspring, we observed an increased visceral fat mass, glucose intolerance, and hepatic alterations (increased transaminase levels, triglyceride and neutral lipid deposit) in male rats with induced IUGR compared with the CTRL males; no differences were found in females. In IUGR male livers, we identified some markers of stress-induced premature senescence (SIPS) (lipofuscin deposit, increased protein expression of p21WAF, p16INK4a and Acp53, but decreased pRb/Rb ratio, foxo-1 and sirtuin-1 protein and mRNA expression) associated with oxidative stress (higher superoxide anion levels, DNA damages, decreased Cu/Zn SOD, increased catalase protein expression, increased nfe2 and decreased keap1 mRNA expression). Impaired lipogenesis pathways (decreased pAMPK/AMPK ratio, increased pAKT/AKT ratio, SREBP1 and PPARγ protein expression) were also observed in IUGR male livers. At birth, no differences were observed in liver histology, markers of SIPS and oxidative stress between CTRL and IUGR males. These data demonstrate that the livers of IUGR males at adulthood display SIPS and impaired liver structure and function related to oxidative stress and allow the identification of specific therapeutic strategies to limit or prevent adverse consequences of IUGR, particularly metabolic and hepatic disorders.
Collapse
|
30
|
Kumar S, Praneet NS, Suchiang K. Lactobacillus brevis MTCC 1750 enhances oxidative stress resistance and lifespan extension with improved physiological and functional capacity in Caenorhabditis elegans via the DAF-16 pathway. Free Radic Res 2022; 56:555-571. [PMID: 36480684 DOI: 10.1080/10715762.2022.2155518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Redox imbalance plays a crucial role in the development of age-related diseases, and resistance to oxidative stress is crucial for optimum longevity and healthy aging. Using the wild-type, mutant and transgenic strains, this study explored the antioxidative potential and lifespan extension benefits of different Lactobacillus strains in Caenorhabditis elegans (C. elegans). We observed that Lactobacillus brevis MTCC 1750 could enhance the resistance of C. elegans against juglone induced oxidative stress by reducing its intracellular reactive oxygen species (ROS) accumulation. Also, live L. brevis MTCC 1750 could prolong the worm's lifespan. These effects are dependent on transcription factor DAF-16 evident with significant upregulation of its target gene sod-3. This also explained the significant improvements in different age-associated changes in physiological and mechanical parameters of the worm by L. brevis MTCC 1750. Further investigations revealed that DAF-16 activation and, its enhanced translocation in the nucleus is independent of DAF-2 or JNK pathway. These findings highlighted L. brevis MTCC 1750 as a potent anti-oxidant source for complementing current antioxidant therapeutic strategies. Nonetheless, the findings showed how different signaling events are regulated based on an organism's diet component, and their consequences on the aging process in multiple species.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Nalla Sai Praneet
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Kitlangki Suchiang
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| |
Collapse
|
31
|
Remofuscin induces xenobiotic detoxification via a lysosome-to-nucleus signaling pathway to extend the Caenorhabditis elegans lifespan. Sci Rep 2022; 12:7161. [PMID: 35504961 PMCID: PMC9064964 DOI: 10.1038/s41598-022-11325-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/15/2022] [Indexed: 11/09/2022] Open
Abstract
Lipofuscin is a representative biomarker of aging that is generated naturally over time. Remofuscin (soraprazan) improves age-related eye diseases by removing lipofuscin from retinal pigment epithelium (RPE) cells. In this study, the effect of remofuscin on longevity in Caenorhabditis elegans and the underlying mechanism were investigated. The results showed that remofuscin significantly (p < 0.05) extended the lifespan of C. elegans (N2) compared with the negative control. Aging biomarkers were improved in remofuscin-treated worms. The expression levels of genes related to lysosomes (lipl-1 and lbp-8), a nuclear hormone receptor (nhr-234), fatty acid beta-oxidation (ech-9), and xenobiotic detoxification (cyp-34A1, cyp-35A1, cyp-35A2, cyp-35A3, cyp-35A4, cyp-35A5, cyp-35C1, gst-28, and gst-5) were increased in remofuscin-treated worms. Moreover, remofuscin failed to extend the lives of C. elegans with loss-of-function mutations (lipl-1, lbp-8, nhr-234, nhr-49, nhr-8, cyp-35A1, cyp-35A2, cyp-35A3, cyp-35A5, and gst-5), suggesting that these genes are associated with lifespan extension in remofuscin-treated C. elegans. In conclusion, remofuscin activates the lysosome-to-nucleus pathway in C. elegans, thereby increasing the expression levels of xenobiotic detoxification genes resulted in extending their lifespan.
Collapse
|
32
|
Câmara N, Fernández A, Herráez P, Arbelo M, Andrada M, Suárez-Santana CM, Sierra E. Microscopic Findings in the Cardiac Muscle of Stranded Extreme Deep-Diving Cuvier's Beaked Whales ( Ziphius cavirostris). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-8. [PMID: 35467498 DOI: 10.1017/s1431927622000605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Considerable information has been gained over the last few decades on several disease processes afflicting free-ranging cetaceans from a pathologist's point of view. Nonetheless, there is still a dearth of studies on the hearts of these species. For this reason, we aimed to improve our understanding of cardiac histological lesions occurring in free-ranging stranded cetaceans and, more specifically, in deep-diving Cuvier's beaked whales. The primary cardiac lesions that have been described include vascular changes, such as congestion, edema, hemorrhage, leukocytosis, and intravascular coagulation; acute degenerative changes, which consist of contraction band necrosis, wavy fibers, cytoplasmic hypereosinophilia, and perinuclear vacuolization; infiltration of inflammatory cells; and finally, the presence and/or deposition of different substances, such as interstitial myoglobin globules, lipofuscin pigment, polysaccharide complexes, and intra- and/or extravascular gas emboli and vessel dilation. This study advances our current knowledge about the histopathological findings in the cardiac muscle of cetaceans, and more specifically, of Cuvier's beaked whales.
Collapse
Affiliation(s)
- Nakita Câmara
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas of Gran Canaria, Campus Universitario Cardones de Arucas, Trasmontaña s/n, Arucas, Las Palmas, Gran Canaria35413, Spain
- Plataforma Oceánica de Canarias (PLOCAN), Carretera de Taliarte s/n, Telde, Las Palmas, Gran Canaria35214, Spain
- Loro Parque Foundation, Avenida Loro Parque s/n, Puerto de la Cruz, Tenerife38400, Spain
| | - Antonio Fernández
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas of Gran Canaria, Campus Universitario Cardones de Arucas, Trasmontaña s/n, Arucas, Las Palmas, Gran Canaria35413, Spain
| | - Pedro Herráez
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas of Gran Canaria, Campus Universitario Cardones de Arucas, Trasmontaña s/n, Arucas, Las Palmas, Gran Canaria35413, Spain
| | - Manuel Arbelo
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas of Gran Canaria, Campus Universitario Cardones de Arucas, Trasmontaña s/n, Arucas, Las Palmas, Gran Canaria35413, Spain
| | - Marisa Andrada
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas of Gran Canaria, Campus Universitario Cardones de Arucas, Trasmontaña s/n, Arucas, Las Palmas, Gran Canaria35413, Spain
| | - Cristian M Suárez-Santana
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas of Gran Canaria, Campus Universitario Cardones de Arucas, Trasmontaña s/n, Arucas, Las Palmas, Gran Canaria35413, Spain
| | - Eva Sierra
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas of Gran Canaria, Campus Universitario Cardones de Arucas, Trasmontaña s/n, Arucas, Las Palmas, Gran Canaria35413, Spain
| |
Collapse
|
33
|
General Rehabilitation Program after Knee or Hip Replacement Significantly Influences Erythrocytes Oxidative Stress Markers and Serum ST2 Levels. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1358858. [PMID: 35401921 PMCID: PMC8986427 DOI: 10.1155/2022/1358858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/12/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
The survival of erythrocytes in the circulating blood depends on their membranes' structural and functional integrity. One of the mechanisms that may underlie the process of joint degeneration is the imbalance of prooxidants and antioxidants, promoting cellular oxidative stress. The study is aimed at observing the effects of the 21-day general rehabilitation program on the erythrocytes redox status and serum ST2 marker in patients after knee or hip replacement in the course of osteoarthritis. Erythrocytes and serum samples were collected from 36 patients. We analyzed the selected markers of the antioxidant system in the erythrocytes: catalase (CAT), glutathione reductase (glutathione disulfide reductase (GR, GSR)), total superoxide dismutase activity (SOD), glutathione peroxidase (GPx), glutathione transferase (GST) activity, and cholesterol and lipofuscin (LPS) concentration. In serum, we analyzed the concentration of the suppression of tumorigenicity 2 (ST2) marker. After the 21-day general rehabilitation program, the total SOD and GPx activity, measured in the hemolysates, significantly increased (p < 0.001) while LPS, cholesterol, and ST2 levels in serum significantly decreased (p < 0.001). General rehabilitation reduces oxidative stress in patients after knee or hip replacement in the course of osteoarthritis. Individually designed, regular physical activity is the essential element of the postoperative protocol, which improves the redox balance helping patients recover after the s4urgery effectively.
Collapse
|
34
|
Satoh F, Irie W, Sasaki C. Assessing age-related heart changes by comparing cases of sudden death during bathing and control cases in Japan. Leg Med (Tokyo) 2022; 57:102057. [PMID: 35344880 DOI: 10.1016/j.legalmed.2022.102057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
We analyzed 400 deaths that occurred in the bathtub during a 10-year period in the central area of Kanagawa prefecture in Japan. There were 72 (18%) medico-legal autopsy cases. The average age at death was 76.4 ± 11.9 years. Drowning (n = 21, 70.8%) was the most common cause of death in the 72 autopsy cases. The study examined the bodies of 40 cases within a postmortem interval of 3 days. The mean age of the 40 cases of sudden death during bathing was 68.6 ± 12.5 years. Results revealed cardiac hypertrophy in 12 cases (30%), lipofuscin deposition in 39 cases (97.5%), basophilic degeneration in 12 cases (30%), anisocytosis of the nucleus of myocardial cells in 18 cases (45%), perivascular fibrosis in 17 cases (42.5%), amyloid deposits in 1 case, and aortic valve calcification in 1 case. The hearts of control subjects who had lived to 20-99 years were also examined; the frequency of each change was higher in people older than 70 years. There was no statistically significant difference in age-related cardio-pathological changes between cases of sudden death during bathing in people in their 70s and controls in their 70s. It can be concluded that this age-related histopathological index is not related to sudden death during bathing. A large number of elderly people, including those without heart disease, have died during bathing. Preventive measures against sudden death during bathing are strongly recommended, e.g., elderly people should not be left totally unsupervised while they bathe.
Collapse
Affiliation(s)
- Fumiko Satoh
- Department of Legal Medicine, Kitasato University School of Medicine, Japan.
| | - Wataru Irie
- Department of Legal Medicine, Kitasato University School of Medicine, Japan
| | - Chizuko Sasaki
- Department of Legal Medicine, Kitasato University School of Medicine, Japan
| |
Collapse
|
35
|
Park H, Yamanaka T, Toyama Y, Fujita A, Doi H, Nirasawa T, Murayama S, Matsumoto N, Shimogori T, Ikegawa M, Haltia MJ, Nukina N. Hornerin deposits in neuronal intranuclear inclusion disease: direct identification of proteins with compositionally biased regions in inclusions. Acta Neuropathol Commun 2022; 10:28. [PMID: 35246273 PMCID: PMC8895595 DOI: 10.1186/s40478-022-01333-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/16/2022] [Indexed: 11/10/2022] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder, characterized by the presence of eosinophilic inclusions (NIIs) within nuclei of central and peripheral nervous system cells. This study aims to identify the components of NIIs, which have been difficult to analyze directly due to their insolubility. In order to establish a method to directly identify the components of NIIs, we first analyzed the huntingtin inclusion-rich fraction obtained from the brains of Huntington disease model mice. Although the sequence with expanded polyglutamine could not be identified by liquid-chromatography mass spectrometry, amino acid analysis revealed that glutamine of the huntingtin inclusion-rich fraction increased significantly. This is compatible with the calculated amino acid content of the transgene product. Therefore, we applied this method to analyze the NIIs of diseased human brains, which may have proteins with compositionally biased regions, and identified a serine-rich protein called hornerin. Since the analyzed NII-rich fraction was also serine-rich, we suggested hornerin as a major component of the NIIs. A specific distribution of hornerin in NIID was also investigated by Matrix-assisted laser desorption/ionization imaging mass spectrometry and immunofluorescence. Finally, we confirmed a variant of hornerin by whole-exome sequencing and DNA sequencing. This study suggests that hornerin may be related to the pathological process of this NIID, and the direct analysis of NIIs, especially by amino acid analysis using the NII-rich fractions, would contribute to a deeper understanding of the disease pathogenesis.
Collapse
Affiliation(s)
- Hongsun Park
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, 1-3 Miyakodanitatara, Kyotanabe-shi, Kyoto, 610-0394, Japan
| | - Tomoyuki Yamanaka
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, 1-3 Miyakodanitatara, Kyotanabe-shi, Kyoto, 610-0394, Japan
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yumiko Toyama
- Department of Life and Medical Systems, Doshisha University, Kyoto, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - Shigeo Murayama
- The Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomomi Shimogori
- Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan
| | - Masaya Ikegawa
- Department of Life and Medical Systems, Doshisha University, Kyoto, Japan
| | - Matti J Haltia
- Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nobuyuki Nukina
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, 1-3 Miyakodanitatara, Kyotanabe-shi, Kyoto, 610-0394, Japan.
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan.
| |
Collapse
|
36
|
Kunio M, Gardecki JA, Watanabe K, Nishimiya K, Verma S, Jaffer FA, Tearney GJ. Histopathological correlation of near infrared autofluorescence in human cadaver coronary arteries. Atherosclerosis 2022; 344:31-39. [PMID: 35134654 PMCID: PMC9106423 DOI: 10.1016/j.atherosclerosis.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND AIMS Prior coronary optical coherence tomography (OCT)-near infrared auto-fluorescence (NIRAF) imaging data has shown a correlation between high-risk morphological features and NIRAF signal intensity. This study aims to understand the histopathological origins of NIRAF in human cadaver coronary arteries. METHODS Ex vivo intracoronary OCT-NIRAF imaging was performed on coronary arteries prosected from 23 fresh human cadaver hearts. Arteries with elevated NIRAF were formalin-fixed and paraffin-embedded. Microscopic images of immunostained Glycophorin A (indicating intraplaque hemorrhage) and Sudan Black (indicating ceroid after fixation) stained slides were compared with confocal NIRAF images (ex. 635 nm, em. 655-755 nm) from adjacent unstained slides in each section. Different images from the same section were registered via luminal morphology. Confocal NIRAF-positive 45° sectors were compared to immunohistochemistry and colocalization between NIRAF and intraplaque hemorrhage or ceroid was quantified by Manders' overlap and Dice similarity coefficients. RESULTS Thirty-one coronary arteries from 14 hearts demonstrated ≥1.5 times higher NIRAF signal than background, and 429 sections were created from them, including 54 sections (12.6%) with high-risk plaques. Within 112 confocal NIRAF-positive 45° sectors, 65 sectors (58.0%) showed both Glycophorin A-positive and Sudan Black-positive, while 7 sectors (6.3%) and 40 sectors (33.6%) only showed Glycophorin A-positive or Sudan black-positive, respectively. A two-tailed McNemar's test showed that Sudan Black more closely corresponded to confocal NIRAF than Glycophorin A (p < 1.0 × 10-6). NIRAF was also found to spatially associate with both Glycophorin A and Sudan Black, with stronger colocalization between Sudan Black and NIRAF (Manders: 0.19 ± 0.15 vs. 0.13 ± 0.14, p < 0.005; Dice: 0.072 ± 0.096 vs. 0.060 ± 0.090, p < 0.01). CONCLUSIONS As ceroid associates with oxidative stress and intraplaque hemorrhage is implicated in rapid lesion progression, these results suggest that NIRAF provides additional, complementary information to morphologic imaging that may aid in identifying high-risk coronary plaques via translatable intracoronary OCT-NIRAF imaging.
Collapse
Affiliation(s)
- Mie Kunio
- Canon U.S.A., Inc., Cambridge, MA, USA; Wellman Center of Photomedicine, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Joseph A. Gardecki
- Wellman Center of Photomedicine, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kohei Watanabe
- Canon U.S.A., Inc., Cambridge, MA, USA,Wellman Center of Photomedicine, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kensuke Nishimiya
- Wellman Center of Photomedicine, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Farouc A. Jaffer
- Wellman Center of Photomedicine, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Guillermo J. Tearney
- Wellman Center of Photomedicine, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Corresponding author. 55 Fruit Street, BHX 604A, Boston, MA, 02114, USA. (M. Kunio), (G.J. Tearney)
| |
Collapse
|
37
|
García-Mendívil L, Pérez-Zabalza M, Mountris K, Duwé S, Smisdom N, Pérez M, Luján L, Wolfs E, Driesen RB, Vallejo-Gil JM, Fresneda-Roldán PC, Fañanás-Mastral J, Vázquez-Sancho M, Matamala-Adell M, Sorribas-Berjón JF, Bellido-Morales JA, Mancebón-Sierra FJ, Vaca-Núñez AS, Ballester-Cuenca C, Oliván-Viguera A, Diez E, Ordovás L, Pueyo E. Analysis of age-related left ventricular collagen remodeling in living donors: Implications in arrhythmogenesis. iScience 2022; 25:103822. [PMID: 35198884 PMCID: PMC8850748 DOI: 10.1016/j.isci.2022.103822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 12/18/2022] Open
Abstract
Age-related fibrosis in the left ventricle (LV) has been mainly studied in animals by assessing collagen content. Using second-harmonic generation microscopy and image processing, we evaluated amount, aggregation and spatial distribution of LV collagen in young to old pigs, and middle-age and elder living donors. All collagen features increased when comparing adult and old pigs with young ones, but not when comparing adult with old pigs or middle-age with elder individuals. Remarkably, all collagen parameters strongly correlated with lipofuscin, a biological age marker, in humans. By building patient-specific models of human ventricular tissue electrophysiology, we confirmed that amount and organization of fibrosis modulated arrhythmia vulnerability, and that distribution should be accounted for arrhythmia risk assessment. In conclusion, we characterize the age-associated changes in LV collagen and its potential implications for ventricular arrhythmia development. Consistency between pig and human results substantiate the pig as a relevant model of age-related LV collagen dynamics. Collagen remodeling traits change from youth to adulthood, not from midlife onwards In humans, collagen remodeling traits relate with the biological age-pigment lipofuscin Beyond collagen amount, its distribution also influences ventricular arrhythmogenesis Consistent age-related remodeling was observed amid healthy farm pigs and living donors
Collapse
Affiliation(s)
- Laura García-Mendívil
- Biomedical Signal Interpretation and Computational Simulation Group (BSICoS), Aragón Institute of Engineering Research, University of Zaragoza, Zaragoza 50018, Spain.,BSICoS, IIS Aragón, Zaragoza 50018, Spain
| | - María Pérez-Zabalza
- Biomedical Signal Interpretation and Computational Simulation Group (BSICoS), Aragón Institute of Engineering Research, University of Zaragoza, Zaragoza 50018, Spain.,BSICoS, IIS Aragón, Zaragoza 50018, Spain
| | - Konstantinos Mountris
- Biomedical Signal Interpretation and Computational Simulation Group (BSICoS), Aragón Institute of Engineering Research, University of Zaragoza, Zaragoza 50018, Spain.,BSICoS, IIS Aragón, Zaragoza 50018, Spain
| | - Sam Duwé
- Advanced Optical Microscopy Centre, Biomedical Research Institute, Hasselt University, Diepenbeek 3500, Belgium
| | - Nick Smisdom
- Biomedical Research Institute, Hasselt University, Diepenbeek 3500, Belgium
| | - Marta Pérez
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Zaragoza 50013, Spain.,Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), University of Zaragoza, Zaragoza 50013, Spain
| | - Lluís Luján
- Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), University of Zaragoza, Zaragoza 50013, Spain.,Department of Animal Pathology, University of Zaragoza, Zaragoza 50013, Spain
| | - Esther Wolfs
- Biomedical Research Institute, Hasselt University, Diepenbeek 3500, Belgium
| | - Ronald B Driesen
- Biomedical Research Institute, Hasselt University, Diepenbeek 3500, Belgium
| | - José María Vallejo-Gil
- Department of Cardiovascular Surgery, University Hospital Miguel Servet, Zaragoza 50009, Spain
| | | | - Javier Fañanás-Mastral
- Department of Cardiovascular Surgery, University Hospital Miguel Servet, Zaragoza 50009, Spain
| | - Manuel Vázquez-Sancho
- Department of Cardiovascular Surgery, University Hospital Miguel Servet, Zaragoza 50009, Spain
| | - Marta Matamala-Adell
- Department of Cardiovascular Surgery, University Hospital Miguel Servet, Zaragoza 50009, Spain
| | | | | | | | | | - Carlos Ballester-Cuenca
- Department of Cardiovascular Surgery, University Hospital Miguel Servet, Zaragoza 50009, Spain
| | - Aida Oliván-Viguera
- Biomedical Signal Interpretation and Computational Simulation Group (BSICoS), Aragón Institute of Engineering Research, University of Zaragoza, Zaragoza 50018, Spain.,BSICoS, IIS Aragón, Zaragoza 50018, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza 50018, Spain
| | - Emiliano Diez
- Institute of Experimental Medicine and Biology of Cuyo (IMBECU), CONICET, Mendoza 5500, Argentina
| | - Laura Ordovás
- Biomedical Signal Interpretation and Computational Simulation Group (BSICoS), Aragón Institute of Engineering Research, University of Zaragoza, Zaragoza 50018, Spain.,BSICoS, IIS Aragón, Zaragoza 50018, Spain.,ARAID Foundation, Zaragoza 50018, Spain
| | - Esther Pueyo
- Biomedical Signal Interpretation and Computational Simulation Group (BSICoS), Aragón Institute of Engineering Research, University of Zaragoza, Zaragoza 50018, Spain.,BSICoS, IIS Aragón, Zaragoza 50018, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza 50018, Spain
| |
Collapse
|
38
|
Yu Y, Chen F, Wu J, Tang W, Zhang K, Li K, Wang J. Sudden cardiac death due to long QT syndrome. JOURNAL OF FORENSIC SCIENCE AND MEDICINE 2022. [DOI: 10.4103/jfsm.jfsm_93_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
39
|
Eguchi A, Fukunaga S, Ogata K, Kushida M, Asano H, Cohen SM, Sukata T. Chimeric Mouse With Humanized Liver Is an Appropriate Animal Model to Investigate Mode of Action for Porphyria-Mediated Hepatocytotoxicity. Toxicol Pathol 2021; 49:1243-1254. [PMID: 34238059 PMCID: PMC8521358 DOI: 10.1177/01926233211027474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Porphyrinogenic compounds are known to induce porphyria-mediated hepatocellular injury and subsequent regenerative proliferation in rodents, ultimately leading to hepatocellular tumor induction. However, an appropriate in vivo experimental model to evaluate an effect of porphyrinogenic compounds on human liver has not been fully established. Recently, the chimeric mouse with humanized liver (PXB mice) became widely used as a humanized model in which human hepatocytes are transplanted. In the present study, we examined the utility of PXB mice as an in vivo experimental model to evaluate the key events of the porphyria-mediated cytotoxicity mode of action (MOA) in humans. The treatment of PXB mice with 5-aminolevulinic acid, a representative porphyrinogenic compound, for 28 days caused protoporphyrin IX accumulation, followed by hepatocyte necrosis, increased mitosis, and an increase in replicative DNA synthesis in human hepatocytes, indicative of cellular injury and regenerative proliferation, similar to findings in patients with porphyria or experimental porphyria models and corresponding to the key events of the MOA for porphyria-mediated hepatocellular carcinogenesis. We conclude that the PXB mouse is a useful model to evaluate the key events of the porphyria-mediated cytotoxicity MOA in humans and suggest the utility of PXB mice for clarifying the human relevancy of findings in mice.
Collapse
Affiliation(s)
- Ayumi Eguchi
- Environmental Health Science Laboratory, Sumitomo Chemical Co, Ltd, Osaka, Japan
| | - Satoki Fukunaga
- Environmental Health Science Laboratory, Sumitomo Chemical Co, Ltd, Osaka, Japan
| | - Keiko Ogata
- Environmental Health Science Laboratory, Sumitomo Chemical Co, Ltd, Osaka, Japan
| | - Masahiko Kushida
- Environmental Health Science Laboratory, Sumitomo Chemical Co, Ltd, Osaka, Japan
| | - Hiroyuki Asano
- Environmental Health Science Laboratory, Sumitomo Chemical Co, Ltd, Osaka, Japan
| | - Samuel M Cohen
- Department of Pathology and Microbiology, Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tokuo Sukata
- Environmental Health Science Laboratory, Sumitomo Chemical Co, Ltd, Osaka, Japan
| |
Collapse
|
40
|
Li WW, Wang HJ, Tan YZ, Wang YL, Yu SN, Li ZH. Reducing lipofuscin accumulation and cardiomyocytic senescence of aging heart by enhancing autophagy. Exp Cell Res 2021; 403:112585. [PMID: 33811905 DOI: 10.1016/j.yexcr.2021.112585] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/30/2022]
Abstract
Cardiomyocytes are particularly prone to lipofuscin accumulation. In the aging heart, lipofuscin accumulation is augmented. This study examined distribution of lipofuscin and senescent cardiomyocytes and evaluated improvement of lipofuscin accumulation and cardiomyocytic senescence of the aging heart after treatment with rapamycin. The results of Schmorl staining, Sudan black staining and autofluorescence detection showed that there was more lipofuscin in the myocardium of the ventricles especially in the left ventricle. The conductive tissue contained less lipofuscin than the myocardium. In the aged hearts, lipofuscin accumulation and senescent cardiomyocytes were increased, and the level of autophagy was reduced. In double staining of Sudan black B and senescence-associated β-galactosidase, 10%-20% lipofuscin-loaded cardiomyocytes became senescent. All senescent cardiomyocytes contained lipofuscin deposits. After enhancing autophagy with feed of rapamycin for six months, lipofuscin accumulation and senescence of cardiomyocytes were improved in old rats. Colocalization of autophagic structure and lipofuscin as well as electron micrographs showed that some lipofuscin-loaded lysosomes were sequestrated by autophagic structures. This study suggests that rapamycin-enhanced autopahgy is effective for reducing lipofuscinogenesis and promoting degradation of lipofuscin. Therefore, enhancing autophagy is a novel therapy for alleviating lipofuscin accumulation and myocardial senescence.
Collapse
Affiliation(s)
- Wen-Wen Li
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China
| | - Hai-Jie Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China.
| | - Yu-Zhen Tan
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China.
| | - Yong-Li Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China
| | - Shu-Na Yu
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China
| | - Zhi-Hua Li
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China
| |
Collapse
|
41
|
Remodeling of t-system and proteins underlying excitation-contraction coupling in aging versus failing human heart. NPJ Aging Mech Dis 2021; 7:16. [PMID: 34050186 PMCID: PMC8163749 DOI: 10.1038/s41514-021-00066-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/26/2021] [Indexed: 11/14/2022] Open
Abstract
It is well established that the aging heart progressively remodels towards a senescent phenotype, but alterations of cellular microstructure and their differences to chronic heart failure (HF) associated remodeling remain ill-defined. Here, we show that the transverse tubular system (t-system) and proteins underlying excitation-contraction coupling in cardiomyocytes are characteristically remodeled with age. We shed light on mechanisms of this remodeling and identified similarities and differences to chronic HF. Using left ventricular myocardium from donors and HF patients with ages between 19 and 75 years, we established a library of 3D reconstructions of the t-system as well as ryanodine receptor (RyR) and junctophilin 2 (JPH2) clusters. Aging was characterized by t-system alterations and sarcolemmal dissociation of RyR clusters. This remodeling was less pronounced than in HF and accompanied by major alterations of JPH2 arrangement. Our study indicates that targeting sarcolemmal association of JPH2 might ameliorate age-associated deficiencies of heart function.
Collapse
|
42
|
Kalugina KK, Sukhareva KS, Churkinа AI, Kostareva AA. Autophagy as a Pathogenetic Link and
a Target for Therapy of Musculoskeletal System Diseases. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021030145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Farhan M, Wajid A, Hussain T, Jabeen F, Ishaque U, Iftikhar M, Daim MA, Noureen A. Investigation of oxidative stress enzymes and histological alterations in tilapia exposed to chlorpyrifos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13105-13111. [PMID: 33174171 DOI: 10.1007/s11356-020-11528-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Chlorpyrifos (ChF) is an organophosphate pesticide that is widely used in agricultural fields and indoor for controlling pests. Aquatic ecosystems are the recipients of various pesticide residues due to leaching spray drift and agricultural runoff and pose toxicity for aquatic organisms. Therefore, the current study was designed to investigate the oxidative stress enzymes and histological alterations in the vital organs of tilapia due to ChF exposure. LC50 (24 h) was calculated as 52.78 μg/l by exposing tilapia with different acute concentrations of ChF. For assessment of sub-lethal toxicity of ChF, the fish were divided into four groups (ChF1, ChF2, ChF3, and control group). ChF1 group was treated with 1/15th of LC50, whereas ChF2 and ChF3 groups were treated with 1/10th and 1/5th of LC50, respectively for 14 days. After that, ChF induced changes in oxidative stress enzymes and histological alterations were evaluated. It was found that the level of glutathione S-transferase (GST), catalase (CAT), and superoxide dismutase (SOD) increased significantly in the liver of ChF-treated tilapia. Histological study of liver tissues showed an increased number of Kupffer cells, hydropic degeneration, necrosis, and hemorrhage. In the spleen of treated fish, increased melanomacrophage centers, necrosis, and congestion were detected. Disorganized muscle fibers, cardiac muscle fiber degeneration, and coagulative necrosis were observed in the heart of ChF-treated fish. It is concluded that sub-lethal concentrations of ChF can induce oxidative stress and histological alterations in the tissues of tilapia.
Collapse
Affiliation(s)
- Muqadas Farhan
- Department of Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Abdul Wajid
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
| | - Tanveer Hussain
- Department of Molecular Biology, Virtual University Pakistan, Lahore, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Uzma Ishaque
- Department of Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Mehwish Iftikhar
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mohamed Abdel Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Aasma Noureen
- Department of Biology, Virtual University of Pakistan, Lahore, Pakistan.
| |
Collapse
|
44
|
Delgobo M, Heinrichs M, Hapke N, Ashour D, Appel M, Srivastava M, Heckel T, Spyridopoulos I, Hofmann U, Frantz S, Ramos GC. Terminally Differentiated CD4 + T Cells Promote Myocardial Inflammaging. Front Immunol 2021; 12:584538. [PMID: 33679735 PMCID: PMC7935504 DOI: 10.3389/fimmu.2021.584538] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/04/2021] [Indexed: 12/03/2022] Open
Abstract
The cardiovascular and immune systems undergo profound and intertwined alterations with aging. Recent studies have reported that an accumulation of memory and terminally differentiated T cells in elderly subjects can fuel myocardial aging and boost the progression of heart diseases. Nevertheless, it remains unclear whether the immunological senescence profile is sufficient to cause age-related cardiac deterioration or merely acts as an amplifier of previous tissue-intrinsic damage. Herein, we sought to decompose the causality in this cardio-immune crosstalk by studying young mice harboring a senescent-like expanded CD4+ T cell compartment. Thus, immunodeficient NSG-DR1 mice expressing HLA-DRB1*01:01 were transplanted with human CD4+ T cells purified from matching donors that rapidly engrafted and expanded in the recipients without causing xenograft reactions. In the donor subjects, the CD4+ T cell compartment was primarily composed of naïve cells defined as CCR7+CD45RO-. However, when transplanted into young lymphocyte-deficient mice, CD4+ T cells underwent homeostatic expansion, upregulated expression of PD-1 receptor and strongly shifted towards effector/memory (CCR7- CD45RO+) and terminally-differentiated phenotypes (CCR7-CD45RO-), as typically seen in elderly. Differentiated CD4+ T cells also infiltrated the myocardium of recipient mice at comparable levels to what is observed during physiological aging. In addition, young mice harboring an expanded CD4+ T cell compartment showed increased numbers of infiltrating monocytes, macrophages and dendritic cells in the heart. Bulk mRNA sequencing analyses further confirmed that expanding T-cells promote myocardial inflammaging, marked by a distinct age-related transcriptomic signature. Altogether, these data indicate that exaggerated CD4+ T-cell expansion and differentiation, a hallmark of the aging immune system, is sufficient to promote myocardial alterations compatible with inflammaging in juvenile healthy mice.
Collapse
Affiliation(s)
- Murilo Delgobo
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Margarete Heinrichs
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Nils Hapke
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - DiyaaElDin Ashour
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Marc Appel
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Mugdha Srivastava
- Core Unit Systems Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Tobias Heckel
- Core Unit Systems Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Ioakim Spyridopoulos
- Freeman Hospital, Department of Cardiology, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Cardiovascular Biology and Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ulrich Hofmann
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Stefan Frantz
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Gustavo Campos Ramos
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
45
|
Yu J, Cai P, Chen X. Structural Regulation of Myocytes in Engineered Healthy and Diseased Cardiac Models. ACS APPLIED BIO MATERIALS 2021; 4:267-276. [DOI: 10.1021/acsabm.0c01270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jing Yu
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Pingqiang Cai
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| |
Collapse
|
46
|
Yeh CH, Chou YJ, Kao CH, Tsai TF. Mitochondria and Calcium Homeostasis: Cisd2 as a Big Player in Cardiac Ageing. Int J Mol Sci 2020; 21:ijms21239238. [PMID: 33287440 PMCID: PMC7731030 DOI: 10.3390/ijms21239238] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022] Open
Abstract
The ageing of human populations has become a problem throughout the world. In this context, increasing the healthy lifespan of individuals has become an important target for medical research and governments. Cardiac disease remains the leading cause of morbidity and mortality in ageing populations and results in significant increases in healthcare costs. Although clinical and basic research have revealed many novel insights into the pathways that drive heart failure, the molecular mechanisms underlying cardiac ageing and age-related cardiac dysfunction are still not fully understood. In this review we summarize the most updated publications and discuss the central components that drive cardiac ageing. The following characters of mitochondria-related dysfunction have been identified during cardiac ageing: (a) disruption of the integrity of mitochondria-associated membrane (MAM) contact sites; (b) dysregulation of energy metabolism and dynamic flexibility; (c) dyshomeostasis of Ca2+ control; (d) disturbance to mitochondria–lysosomal crosstalk. Furthermore, Cisd2, a pro-longevity gene, is known to be mainly located in the endoplasmic reticulum (ER), mitochondria, and MAM. The expression level of Cisd2 decreases during cardiac ageing. Remarkably, a high level of Cisd2 delays cardiac ageing and ameliorates age-related cardiac dysfunction; this occurs by maintaining correct regulation of energy metabolism and allowing dynamic control of metabolic flexibility. Together, our previous studies and new evidence provided here highlight Cisd2 as a novel target for developing therapies to promote healthy ageing
Collapse
Affiliation(s)
- Chi-Hsiao Yeh
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Linko 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan
| | - Yi-Ju Chou
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 350, Taiwan;
| | - Cheng-Heng Kao
- Center of General Education, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (C.-H.K.); (T.-F.T.); Tel.: +886-3-211-8800 (ext. 5149) (C.-H.K.); +886-2-2826-7293 (T.-F.T.); Fax: +886-3-211-8700 (C.-H.K.); +886-2-2828-0872 (T.-F.T.)
| | - Ting-Fen Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 350, Taiwan;
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 350, Taiwan
- Aging and Health Research Center, National Yang-Ming University, Taipei 112, Taiwan
- Correspondence: (C.-H.K.); (T.-F.T.); Tel.: +886-3-211-8800 (ext. 5149) (C.-H.K.); +886-2-2826-7293 (T.-F.T.); Fax: +886-3-211-8700 (C.-H.K.); +886-2-2828-0872 (T.-F.T.)
| |
Collapse
|
47
|
Tonolli PN, Martins WK, Junqueira HC, Silva MN, Severino D, Santacruz-Perez C, Watanabe I, Baptista MS. Lipofuscin in keratinocytes: Production, properties, and consequences of the photosensitization with visible light. Free Radic Biol Med 2020; 160:277-292. [PMID: 32810634 DOI: 10.1016/j.freeradbiomed.2020.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/03/2020] [Accepted: 08/01/2020] [Indexed: 12/15/2022]
Abstract
A dysfunction in the mitochondrial-lysosomal axis of cellular homeostasis is proposed to cause cells to age quicker and to accumulate lipofuscin. Typical protocols to mediate lipofuscinogenesis are based on the induction of the senescent phenotype either by allowing many consecutive cycles of cell division or by treating cells with physical/chemical agents such as ultraviolet (UV) light or hydrogen peroxide. Due to a direct connection with the physiopathology of age-related macular degeneration, lipofuscin that accumulates in retinal pigment epithelium (RPE) cells have been extensively studied, and the photochemical properties of RPE lipofuscin are considered as standard for this pigment. Yet, many other tissues such as the brain and the skin may prompt lipofuscinogenesis, and the properties of lipofuscin granules accumulated in these tissues are not necessarily the same as those of RPE lipofuscin. Here, we present a light-induced protocol that accelerates cell aging as judged by the maximization of lipofuscinogenesis. Photosensitization of cells previously incubated with nanomolar concentrations of 1,9-dimethyl methylene blue (DMMB), severely and specifically damages mitochondria and lysosomes, leading to a lipofuscin-related senescent phenotype. By applying this protocol in human immortalized non-malignant keratinocytes (HaCaT) cells, we observed a 2.5-fold higher level of lipofuscin accumulation compared to the level of lipofuscin accumulation in cells treated with a typical UV protocol. Lipofuscin accumulated in keratinocytes exhibited the typical red light emission, with excitation maximum in the blue wavelength region (~450 nm). Fluorescence lifetime image microscopy data showed that the keratinocyte lipofuscin has an emission lifetime of ~1.7 ns. Lipofuscin-loaded cells (but not control cells) generated a substantial amount of singlet oxygen (1O2) when irradiated with blue light (420 nm), but there was no 1O2 generation when excitation was performed with a green light (532 nm). These characteristics were compared with those of RPE cells, considering that keratinocyte lipofuscin lacks the bisretinoids derivatives present in RPE lipofuscin. Additionally, we showed that lipofuscin-loaded keratinocytes irradiated with visible light presented critical DNA damages, such as double-strand breaks and Fpg-sensitive sites. We propose that the DMMB protocol is an efficient way to disturb the mitochondrial-lysosomal axis of cellular homeostasis, and consequently, it can be used to accelerate aging and to induce lipofuscinogenesis. We also discuss the consequences of the lipofuscin-induced genotoxicity of visible light in keratinocytes.
Collapse
Affiliation(s)
- Paulo N Tonolli
- Universidade de São Paulo, Instituto de Quimica, Departamento de Bioquímica, São Paulo, SP, Brazil
| | - Waleska K Martins
- Universidade de São Paulo, Instituto de Quimica, Departamento de Bioquímica, São Paulo, SP, Brazil; Universidade Anhanguera de São Paulo (UNIAN-SP), São Paulo, SP, Brazil
| | - Helena C Junqueira
- Universidade de São Paulo, Instituto de Quimica, Departamento de Bioquímica, São Paulo, SP, Brazil
| | - Maryana N Silva
- Universidade Anhanguera de São Paulo (UNIAN-SP), São Paulo, SP, Brazil
| | - Divinomar Severino
- Universidade de São Paulo, Instituto de Quimica, Departamento de Bioquímica, São Paulo, SP, Brazil
| | - Carolina Santacruz-Perez
- Universidade de São Paulo, Instituto de Quimica, Departamento de Bioquímica, São Paulo, SP, Brazil
| | - I Watanabe
- Universidade de São Paulo, Instituto de Ciências Biométicas, São Paulo, SP, Brazil
| | - Mauricio S Baptista
- Universidade de São Paulo, Instituto de Quimica, Departamento de Bioquímica, São Paulo, SP, Brazil.
| |
Collapse
|
48
|
Ilie OD, Ciobica A, Riga S, Dhunna N, McKenna J, Mavroudis I, Doroftei B, Ciobanu AM, Riga D. Mini-Review on Lipofuscin and Aging: Focusing on The Molecular Interface, The Biological Recycling Mechanism, Oxidative Stress, and The Gut-Brain Axis Functionality. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E626. [PMID: 33228124 PMCID: PMC7699382 DOI: 10.3390/medicina56110626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022]
Abstract
Intra-lysosomal accumulation of the autofluorescent "residue" known as lipofuscin, which is found within postmitotic cells, remains controversial. Although it was considered a harmless hallmark of aging, its presence is detrimental as it continually accumulates. The latest evidence highlighted that lipofuscin strongly correlates with the excessive production of reactive oxygen species; however, despite this, lipofuscin cannot be removed by the biological recycling mechanisms. The antagonistic effects exerted at the DNA level culminate in a dysregulation of the cell cycle, by inducing a loss of the entire internal environment and abnormal gene(s) expression. Additionally, it appears that a crucial role in the production of reactive oxygen species can be attributed to gut microbiota, due to their ability to shape our behavior and neurodevelopment through their maintenance of the central nervous system.
Collapse
Affiliation(s)
- Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| | - Sorin Riga
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| | - Nitasha Dhunna
- Mid Yorkshire Hospitals NHS Trust, Pinderfields Hospital, Wakefield WF1 4DG, UK;
| | - Jack McKenna
- York Hospital, Wigginton road Clifton, York YO31 8HE, UK;
| | - Ioannis Mavroudis
- Leeds Teaching Hospitals NHS Trust, Great George St, Leeds LS1 3EX, UK;
- Laboratory of Neuropathology and Electron Microscopy, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania;
| | - Adela-Magdalena Ciobanu
- Discipline of Psychiatry, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Dionisie Lupu Street, no 37, 020021 Bucharest, Romania;
| | - Dan Riga
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| |
Collapse
|
49
|
General, 21-Day Postoperative Rehabilitation Program Has Beneficial Effect on Oxidative Stress Markers in Patients after Total Hip or Knee Replacement. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4598437. [PMID: 33062140 PMCID: PMC7532996 DOI: 10.1155/2020/4598437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/06/2020] [Accepted: 09/11/2020] [Indexed: 12/04/2022]
Abstract
Imbalance in prooxidant-antioxidant equilibrium plays an important role in the progression of osteoarthritis (OA). Postoperative rehabilitation significantly improves the functional activity of patients with OA. We aimed to assess the effect of the general 21-day postoperative rehabilitation on the oxidative stress markers in patients after total hip arthroplasty or knee replacement. Patients (n =41) started individually designed postoperative rehabilitation ca. 90 days after endoprosthesis implantation. We used the six-minute walk test (6MWT) to quantify the changes in their exercise capacity. We analyzed the oxidative stress markers: total antioxidant capacity (TAC), total superoxide dismutase (SOD), Cu-Zn-superoxide dismutase (CuZnSOD) and ceruloplasmin (Cp) activity, malondialdehyde (MDA) and lipofuscin (LPS) concentration in patients serum to asses changes in the oxidative stress intensity. We found that after 21-days postoperative rehabilitation program: the average distance walked by patients increased by 69 m; TAC increased by 0.20 ± 0.14 mmol/l; both SOD isoforms activities increased by 1.6 (±1.7) and 1.72 (±1.5) NU/ml, respectively; but Cp activity decreased by 1.8 (0.7-3.7) mg/dl. Also, we observed lower concentrations of lipid peroxidation markers: by 19.6 ± 24.4 μmol/l for MDA and by 0.4 ± 0.5 RF for LPS. A 21-day postoperative rehabilitation program effectively reduces oxidative processes, which helps the patients after total hip or knee replacement in a successful recovery.
Collapse
|
50
|
Alam S, Abdullah CS, Aishwarya R, Morshed M, Bhuiyan MS. Molecular Perspectives of Mitochondrial Adaptations and Their Role in Cardiac Proteostasis. Front Physiol 2020; 11:1054. [PMID: 32982788 PMCID: PMC7481364 DOI: 10.3389/fphys.2020.01054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are the key to properly functioning energy generation in the metabolically demanding cardiomyocytes and thus essential to healthy heart contractility on a beat-to-beat basis. Mitochondria being the central organelle for cellular metabolism and signaling in the heart, its dysfunction leads to cardiovascular disease. The healthy mitochondrial functioning critical to maintaining cardiomyocyte viability and contractility is accomplished by adaptive changes in the dynamics, biogenesis, and degradation of the mitochondria to ensure cellular proteostasis. Recent compelling evidence suggests that the classical protein quality control system in cardiomyocytes is also under constant mitochondrial control, either directly or indirectly. Impairment of cytosolic protein quality control may affect the position of the mitochondria in relation to other organelles, as well as mitochondrial morphology and function, and could also activate mitochondrial proteostasis. Despite a growing interest in the mitochondrial quality control system, very little information is available about the molecular function of mitochondria in cardiac proteostasis. In this review, we bring together current understanding of the adaptations and role of the mitochondria in cardiac proteostasis and describe the adaptive/maladaptive changes observed in the mitochondrial network required to maintain proteomic integrity. We also highlight the key mitochondrial signaling pathways activated in response to proteotoxic stress as a cellular mechanism to protect the heart from proteotoxicity. A deeper understanding of the molecular mechanisms of mitochondrial adaptations and their role in cardiac proteostasis will help to develop future therapeutics to protect the heart from cardiovascular diseases.
Collapse
Affiliation(s)
- Shafiul Alam
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Richa Aishwarya
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Mahboob Morshed
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States.,Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|