1
|
Jokubaite M, Ramanauskiene K. Potential Unlocking of Biological Activity of Caffeic Acid by Incorporation into Hydrophilic Gels. Gels 2024; 10:794. [PMID: 39727552 DOI: 10.3390/gels10120794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Caffeic acid, a phenolic compound with antioxidant and antimicrobial properties, shows promise in the dermatological field. The research aimed to incorporate caffeic acid into hydrophilic gels based on poloxamer 407, carbomer 980, and their mixture in order to enhance its biological activity. Different gel formulations were prepared using different concentrations of these polymers to optimize caffeic acid release characteristics. The results showed that increasing the concentration of polymeric materials increased the viscosity and slowed down the release of caffeic acid. The antioxidant and antimicrobial activities of the gels were assessed. The results confirmed the potential of hydrophilic gels as delivery systems for caffeic acid, with formulations showing antimicrobial activity against Gram-positive Staphylococcus aureus bacteria and antifungal activity against Candida albicans fungus. This study provides a perception of the development of new semi-solid caffeic acid-based formulations for therapeutic and cosmetic applications.
Collapse
Affiliation(s)
- Monika Jokubaite
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Kristina Ramanauskiene
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| |
Collapse
|
2
|
Shafiuddin M, Prather GW, Huang WC, Anton JR, Martin AL, Sillart SB, Tang JZ, Vittori MR, Prinsen MJ, Ninneman JJ, Manithody C, Henderson JP, Aleem AW, Ilagan MXG, McCoy WH. Cutibacterium adaptation to life on humans provides a novel biomarker of C. acnes infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613542. [PMID: 39345635 PMCID: PMC11429735 DOI: 10.1101/2024.09.18.613542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The domestication of cattle provided Propionibacteriaceae the opportunity to adapt to human skin. These bacteria constitute a distinct genus ( Cutibacterium ), and a single species within that genus ( C. acnes ) dominates 25% of human skin. C. acnes protects humans from pathogen colonization, but it can also infect indwelling medical devices inserted through human skin. Proteins that help Cutibacteria live on our skin may also act as virulence factors during an opportunistic infection, like a shoulder periprosthetic joint infection (PJI). To better understand the evolution of this commensal and opportunistic pathogen, we sought to extensively characterize one of these proteins, RoxP. This secreted protein is only found in the Cutibacterium genus, helps C. acnes grow in oxic environments, and is required for C. acnes to colonize human skin. Structure-based sequence analysis of twenty-one RoxP orthologs (71-100% identity to C. acnes strain KPA171202 RoxP_1) revealed a high-degree of molecular surface conservation and helped identify a potential heme-binding interface. Biophysical evaluation of a subset of seven RoxP orthologs (71-100% identity) demonstrated that heme-binding is conserved. Computational modeling of these orthologs suggests that RoxP heme-binding is mediated by an invariant molecular surface composed of a surface-exposed tryptophan (W66), adjacent cationic pocket, and nearby potential heme axial ligands. Further, these orthologs were found to undergo heme-dependent oligomerization. To further probe the role of this protein in C. acnes biology, we developed four monoclonal anti-RoxP antibodies, assessed the binding of those antibodies to a subset of ten RoxP orthologs (71-100% identity), developed an anti-RoxP sandwich ELISA (sELISA) with sub-nanogram sensitivity, and adapted that sELISA to quantitate RoxP in human biofluids that can be infected by C. acnes (serum, synovial fluid, cerebrospinal fluid). This study expands our understanding of how an environmental bacterium evolved to live on humans, and the assays developed in this work can now be used to identify this organism when it gains access to sterile sites to cause opportunistic infections. Author Summary The longer humans live, the more they require internal "replacement parts," like prosthetic joints. Increased placement of these and other medical devices has increased their complications, which frequently are infections caused by microbes that live on humans. One of these microbes is Cutibacterium acnes , which dominates 25% of human skin. It appears that when humans domesticated cattle, a C. acnes ancestor adapted from living in cows to living on people. One of these adaptations was RoxP, a protein only found in Cutibacterium and carried by all C. acnes . Here, we describe our extensive characterization of RoxP. We found that distantly related RoxP conserve high stability at the low pH found on human skin. They also conserve the ability to bind heme, a source of iron used by microbes when they infect humans. As a part of this work, we developed tests that measure RoxP to identify C. acnes growth. In a clinic or hospital, these tests could allow a doctor to rapidly identify C. acnes infections, which would improve patient outcomes and lower healthcare costs. This work has helped us better understand how C. acnes adapted to live on humans and to identify C. acnes infections of medical devices.
Collapse
|
3
|
Cunha LB, Lepore ED, Medeiros CCB, Sorrechia R, Pietro RCLR, Corrêa MA. Can Gentisic Acid Serve as a High-Performance Antioxidant with Lower Toxicity for a Promising New Topical Application? Life (Basel) 2024; 14:1022. [PMID: 39202764 PMCID: PMC11355177 DOI: 10.3390/life14081022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Gentisic acid (2,5-dihydroxybenzoic acid) is primarily found naturally in plants and has demonstrated a significant range of biological activities; however, its efficacy and safety as a topical application ingredient are not yet well established. Thus, the compound's potential antioxidant and antimicrobial properties were evaluated for efficacy, while the cytotoxicity was evaluated for safety. The antioxidant activity, measured by the DPPH kinetic method, showed an Efficiency Concentration (EC50) of 0.09 with an antioxidant reducing power (ARP) of 11.1. The minimum inhibitory concentration (MIC) against Staphylococcus aureus was 4.15 mg/mL, Escherichia coli was 4.00 mg/mL, Candida albicans was 3.00 mg/mL, and Cutibacterium acnes was 3.60 mg/mL, and the MIC for C. acnes has remained unpublished until now. The substance showed low cytotoxicity by the neutral red uptake (NRU) methodology against HaCat, HDFa, and HepG2 cells at concentrations of up to 10.0, 7.3, and 4.0 mM, respectively, also representing unpublished data. This evidence demonstrates gentisic acid as a promising active substance for skin topical application in the cosmetic or pharmaceutical industry.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcos A. Corrêa
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (L.B.C.); (E.D.L.); (C.C.B.M.)
| |
Collapse
|
4
|
Woo YR, Kim HS. Interaction between the microbiota and the skin barrier in aging skin: a comprehensive review. Front Physiol 2024; 15:1322205. [PMID: 38312314 PMCID: PMC10834687 DOI: 10.3389/fphys.2024.1322205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
The interplay between the microbes and the skin barrier holds pivotal significance in skin health and aging. The skin and gut, both of which are critical immune and neuroendocrine system, harbor microbes that are kept in balance. Microbial shifts are seen with aging and may accelerate age-related skin changes. This comprehensive review investigates the intricate connection between microbe dynamics, skin barrier, and the aging process. The gut microbe plays essential roles in the human body, safeguarding the host, modulating metabolism, and shaping immunity. Aging can perturb the gut microbiome which in turn accentuates inflammaging by further promoting senescent cell accumulation and compromising the host's immune response. Skin microbiota diligently upholds the epidermal barrier, adeptly fending off pathogens. The aging skin encompasses alterations in the stratum corneum structure and lipid content, which negatively impact the skin's barrier function with decreased moisture retention and increased vulnerability to infection. Efficacious restoration of the skin barrier and dysbiosis with strategic integration of acidic cleansers, emollients with optimal lipid composition, antioxidants, and judicious photoprotection may be a proactive approach to aging. Furthermore, modulation of the gut-skin axis through probiotics, prebiotics, and postbiotics emerges as a promising avenue to enhance skin health as studies have substantiated their efficacy in enhancing hydration, reducing wrinkles, and fortifying barrier integrity. In summary, the intricate interplay between microbes and skin barrier function is intrinsically woven into the tapestry of aging. Sound understanding of these interactions, coupled with strategic interventions aimed at recalibrating the microbiota and barrier equilibrium, holds the potential to ameliorate skin aging. Further in-depth studies are necessary to better understand skin-aging and develop targeted strategies for successful aging.
Collapse
Affiliation(s)
- Yu Ri Woo
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hei Sung Kim
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
5
|
Chan AA, Tran PT, Lee DJ. Quantitative Aggregation of Microbiome Sequencing Data Provides Insights into the Associations between the Skin Microbiome and Psoriasis. JID INNOVATIONS 2024; 4:100249. [PMID: 38282647 PMCID: PMC10810833 DOI: 10.1016/j.xjidi.2023.100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/18/2023] [Accepted: 10/24/2023] [Indexed: 01/30/2024] Open
Abstract
Although prior studies have reported distinct skin microbiome profiles associated with psoriasis, differences in methods and analyses limit generalizable conclusions. Individual studies have actually reported conflicting findings; for example, Propionibacterium and Staphylococcus have been significantly associated with both psoriatic lesions and healthy skin. Qualitative reviews have attempted to summarize this body of work, but there is great variability across the studies' findings and methods. To better unify these data, we created a meta-analysis of all publicly available datasets by utilizing a uniform bioinformatics pipeline and reference database to investigate associations of the skin microbiome in psoriasis. A total of 977 skin swab samples (341 lesional, 295 nonlesional, and 341 healthy) from 6 studies were analyzed. The aggregated analysis revealed a higher relative abundance of microorganisms, including Staphylococcus aureus and Corynebacterium simulans, among others, from patients with psoriasis than those from healthy swab samples; in addition, Cutibacterium acnes, Lawsonella unclassified, and S warneri were significantly higher in healthy samples. Furthermore, comparison of functional pathways predicted from 16S gene markers showed that L-ornithine biosynthesis and L-histidine biosynthesis were lower in psoriatic lesions than in healthy controls. Taken together, this meta-analysis allows for a more generalizable association between the skin microbiome and psoriasis.
Collapse
Affiliation(s)
| | - Patrick T. Tran
- Division of Dermatology, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Delphine J. Lee
- The Lundquist Institute, Torrance, California, USA
- Division of Dermatology, Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
6
|
Kim HJ, Lee MS, Jeong SK, Lee SJ. Transcriptomic analysis of the antimicrobial activity of prodigiosin against Cutibacterium acnes. Sci Rep 2023; 13:17412. [PMID: 37833344 PMCID: PMC10576067 DOI: 10.1038/s41598-023-44612-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023] Open
Abstract
Prodigiosin, a red pigment produced by Hahella chejuensis, a marine-derived microorganism, has several biological functions, including antimicrobial activity and inflammatory relief. In this study, the antibacterial activity of prodigiosin against skin microorganisms was explored. Paper disc assay on skin bacterial cells revealed that Cutibacterium acnes related to acne vulgaris highly susceptible to prodigiosin. MIC (Minimal Inhibitory Concentration) and MBC (Minimal Bactericidal Concentration) were determined on Cutibacterium species. The RNA-seq analysis of prodigiosin-treated C. acnes cells was performed to understand the antibacterial mechanism of prodigiosin. Among changes in the expression of hundreds of genes, the expression of a stress-responsive sigma factor encoded by sigB increased. Conversely, the gene expression of cell wall biosynthesis and energy metabolism was inhibited by prodigiosin. Specifically, the expression of genes related to the metabolism of porphyrin, a pro-inflammatory metabolite, was significantly reduced. Therefore, prodigiosin could be used to control C. acnes. Our study provided new insights into the antimicrobial mechanism of prodigiosin against C. acnes strains.
Collapse
Affiliation(s)
- Hyun Ju Kim
- Department of Systems Biotechnology, and Institute of Microbiomics, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Se Kyoo Jeong
- Research Division, Incospharm Corp., Daejeon, 34036, Republic of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology, and Institute of Microbiomics, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
7
|
Popa I, Touboul D, Andersson T, Fuentes-Lemus E, Santerre C, Davies MJ, Lood R. Oxygen Exposure and Tolerance Shapes the Cell Wall-Associated Lipids of the Skin Commensal Cutibacterium acnes. Microorganisms 2023; 11:2260. [PMID: 37764104 PMCID: PMC10534455 DOI: 10.3390/microorganisms11092260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Cutibacterium acnes is one of the most abundant bacteria on the skin. Being exposed to oxygen and oxic stress, the secretion of the bacterial antioxidant protein RoxP ensures an endogenous antioxidant system for the preservation of skin health. To investigate the impact of the antioxidant RoxP on oxidation of the bacteria, wildtype and an isogenic roxp mutant were cultured in anaerobic and oxic conditions. The carbonylated status of proteins were recorded, as were the most significant modifications in a relative intensity of free fatty acids (FFA) and lipids containing fatty acids (FA), such as di- (DG) and triglycerides (TG), di- (DGDG) and sulfoquinozyldiacylglycerol (SQDG) and ceramides. Concerning the fatty acid types, it was observed that the free fatty acids contained mainly C12:0-C26:0 in hydroxy and acylated forms, the DG contained mainly C29:0-C37:0, the TG contained mainly C19:0-C33:0, and the DGDG/SQDGs contained very long fatty acids (C29:0-C37:0) demonstrating the interdependence of de novo synthesis of lipids and RoxP. The area of DGDG peaks (924.52, 929.56 and 930.58) were affected by bacterial growth conditions, with the exception of m/z 910.61. Moreover, the FFA unsaturation is wider in the SQDG species (C30:0 to C36:6) than in DG, TG or free FFA species. It could be concluded that both environmental oxidative statuses, as well as the prevalence of bacterial antioxidant systems, significantly shape the lipidome of C. acnes.
Collapse
Affiliation(s)
- Iuliana Popa
- Analytic and Biological Lipid Systems (Lip(Sys)2), Pharmacy Department, University Paris-Saclay, Bâtiment Henri Moissan, 91400 Orsay, France
| | - David Touboul
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, University Paris-Saclay, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France;
- CNRS, Laboratoire de Chimie Moléculaire (LCM), Institut Polytechnique de Paris, University Paris-Saclay, Route de Saclay, 91120 Palaiseau, France
| | - Tilde Andersson
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, SE-221 00 Lund, Sweden;
| | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark; (E.F.-L.); (M.J.D.)
| | - Cyrille Santerre
- Institut Supérieur International de la Parfumerie, de la Cosmétique et de l’Arôme Alimentaire (ISIPCA), 34-36 rue du Parc de Clagny, 78000 Versailles, France;
| | - Michael J. Davies
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark; (E.F.-L.); (M.J.D.)
| | - Rolf Lood
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, SE-221 00 Lund, Sweden;
| |
Collapse
|
8
|
Nicholas-Haizelden K, Murphy B, Hoptroff M, Horsburgh MJ. Bioprospecting the Skin Microbiome: Advances in Therapeutics and Personal Care Products. Microorganisms 2023; 11:1899. [PMID: 37630459 PMCID: PMC10456854 DOI: 10.3390/microorganisms11081899] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Bioprospecting is the discovery and exploration of biological diversity found within organisms, genetic elements or produced compounds with prospective commercial or therapeutic applications. The human skin is an ecological niche which harbours a rich and compositional diversity microbiome stemming from the multifactorial interactions between the host and microbiota facilitated by exploitable effector compounds. Advances in the understanding of microbial colonisation mechanisms alongside species and strain interactions have revealed a novel chemical and biological understanding which displays applicative potential. Studies elucidating the organismal interfaces and concomitant understanding of the central processes of skin biology have begun to unravel a potential wealth of molecules which can exploited for their proposed functions. A variety of skin-microbiome-derived compounds display prospective therapeutic applications, ranging from antioncogenic agents relevant in skin cancer therapy to treatment strategies for antimicrobial-resistant bacterial and fungal infections. Considerable opportunities have emerged for the translation to personal care products, such as topical agents to mitigate various skin conditions such as acne and eczema. Adjacent compound developments have focused on cosmetic applications such as reducing skin ageing and its associated changes to skin properties and the microbiome. The skin microbiome contains a wealth of prospective compounds with therapeutic and commercial applications; however, considerable work is required for the translation of in vitro findings to relevant in vivo models to ensure translatability.
Collapse
Affiliation(s)
- Keir Nicholas-Haizelden
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK;
| | - Barry Murphy
- Unilever Research & Development, Port Sunlight, Wirral CH63 3JW, UK; (B.M.); (M.H.)
| | - Michael Hoptroff
- Unilever Research & Development, Port Sunlight, Wirral CH63 3JW, UK; (B.M.); (M.H.)
| | - Malcolm J. Horsburgh
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK;
| |
Collapse
|
9
|
Magnifico I, Perna A, Cutuli MA, Medoro A, Pietrangelo L, Guarnieri A, Foderà E, Passarella D, Venditti N, Vergalito F, Petronio Petronio G, Di Marco R. A Wall Fragment of Cutibacterium acnes Preserves Junctional Integrity Altered by Staphylococcus aureus in an Ex Vivo Porcine Skin Model. Pharmaceutics 2023; 15:pharmaceutics15041224. [PMID: 37111709 PMCID: PMC10145065 DOI: 10.3390/pharmaceutics15041224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
(1) Background alteration of the skin microbiota, dysbiosis, causes skin barrier impairment resulting in disease development. Staphylococcus aureus, the main pathogen associated with dysbiosis, secretes several virulence factors, including α-toxin that damages tight junctions and compromises the integrity of the skin barrier. The use of members of the resident microbiota to restore the skin barrier, bacteriotherapy, represents a safe treatment for skin conditions among innovative options. The aim of this study is the evaluation of a wall fragment derived from a patented strain of Cutibacterium acnes DSM28251 (c40) alone and conjugated to a mucopolysaccharide carrier (HAc40) in counteracting S. aureus pathogenic action on two tight junction proteins (Claudin-1 and ZO-1) in an ex vivo porcine skin infection model. Methods: skin biopsies were infected with live S. aureus strains ATCC29213 and DSM20491. Tissue was pre-incubated or co-incubated with c40 and HAc40. (3) Results: c40 and HAc40 prevent and counteract Claudin-1 and Zo-1 damage (4) Conclusions: c40 and the functional ingredient HAc40 represent a potential non-pharmacological treatment of skin diseases associated with cutaneous dysbiosis of S. aureus. These findings offer numerous avenues for new research.
Collapse
Affiliation(s)
- Irene Magnifico
- Department of Medicine and Health Science "V. Tiberio", Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Angelica Perna
- Department of Medicine and Health Science "V. Tiberio", Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Marco Alfio Cutuli
- Department of Medicine and Health Science "V. Tiberio", Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Alessando Medoro
- Department of Medicine and Health Science "V. Tiberio", Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Laura Pietrangelo
- Department of Medicine and Health Science "V. Tiberio", Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Antonio Guarnieri
- Department of Medicine and Health Science "V. Tiberio", Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Emanuele Foderà
- Department of Medicine and Health Science "V. Tiberio", Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Daniela Passarella
- Department of Medicine and Health Science "V. Tiberio", Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Noemi Venditti
- Department of Medicine and Health Science "V. Tiberio", Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Franca Vergalito
- Department of Agricultural, Environmental and Food Sciences (DiAAA), Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Giulio Petronio Petronio
- Department of Medicine and Health Science "V. Tiberio", Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Science "V. Tiberio", Università degli Studi del Molise, 8600 Campobasso, Italy
| |
Collapse
|
10
|
Microbiota, Oxidative Stress, and Skin Cancer: An Unexpected Triangle. Antioxidants (Basel) 2023; 12:antiox12030546. [PMID: 36978794 PMCID: PMC10045429 DOI: 10.3390/antiox12030546] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Mounting evidence indicates that the microbiota, the unique combination of micro-organisms residing in a specific environment, plays an essential role in the development of a wide range of human diseases, including skin cancer. Moreover, a persistent imbalance of microbial community, named dysbiosis, can also be associated with oxidative stress, a well-known emerging force involved in the pathogenesis of several human diseases, including cutaneous malignancies. Although their interplay has been somewhat suggested, the connection between microbiota, oxidative stress, and skin cancer is a largely unexplored field. In the present review, we discuss the current knowledge on these topics, suggesting potential therapeutic strategies.
Collapse
|
11
|
Smythe P, Wilkinson HN. The Skin Microbiome: Current Landscape and Future Opportunities. Int J Mol Sci 2023; 24:3950. [PMID: 36835363 PMCID: PMC9963692 DOI: 10.3390/ijms24043950] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Our skin is the largest organ of the body, serving as an important barrier against the harsh extrinsic environment. Alongside preventing desiccation, chemical damage and hypothermia, this barrier protects the body from invading pathogens through a sophisticated innate immune response and co-adapted consortium of commensal microorganisms, collectively termed the microbiota. These microorganisms inhabit distinct biogeographical regions dictated by skin physiology. Thus, it follows that perturbations to normal skin homeostasis, as occurs with ageing, diabetes and skin disease, can cause microbial dysbiosis and increase infection risk. In this review, we discuss emerging concepts in skin microbiome research, highlighting pertinent links between skin ageing, the microbiome and cutaneous repair. Moreover, we address gaps in current knowledge and highlight key areas requiring further exploration. Future advances in this field could revolutionise the way we treat microbial dysbiosis associated with skin ageing and other pathologies.
Collapse
Affiliation(s)
- Paisleigh Smythe
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, UK
| | - Holly N. Wilkinson
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, UK
| |
Collapse
|
12
|
Bromfield JI, Hugenholtz P, Frazer IH, Khosrotehrani K, Chandra J. Targeting Staphylococcus aureus dominated skin dysbiosis in actinic keratosis to prevent the onset of cutaneous squamous cell carcinoma: Outlook for future therapies? Front Oncol 2023; 13:1091379. [PMID: 36816953 PMCID: PMC9933124 DOI: 10.3389/fonc.2023.1091379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) and its premalignant precursor, actinic keratosis (AK), present a global health burden that is continuously increasing despite extensive efforts to promote sun safety. Chronic UV exposure is a recognized risk factor for the development of AK and cSCC. However, increasing evidence suggests that AK and cSCC is also associated with skin microbiome dysbiosis and, in particular, an overabundance of the bacterium Staphylococcus aureus (S. aureus). Studies have shown that S. aureus-derived toxins can contribute to DNA damage and lead to chronic upregulation of proinflammatory cytokines that may affect carcinogenesis. Eradication of S. aureus from AK lesions and restoration of a healthy microbiome may therefore represent a therapeutic opportunity to alter disease progression. Whilst antibiotics can reduce the S. aureus load, antibiotic resistant S. aureus pose an increasing global public health threat. The use of specific topically delivered probiotics has been used experimentally in other skin conditions to restore eubiosis, and could therefore also present a non-invasive treatment approach to decrease S. aureus colonization and restore a healthy skin microbiome on AK lesions. This article reviews mechanisms by which S. aureus may contribute to cutaneous carcinogenesis, and discusses hypotheses and theories that explore the therapeutic potential of specific bacterial species which compete with S. aureus in an attempt to restore microbial eubiosis in skin.
Collapse
Affiliation(s)
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, The University of Queensland, St. Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Ian Hector Frazer
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Kiarash Khosrotehrani
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
- Department of Dermatology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Janin Chandra
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
13
|
Pedraza Barrera CA, Fuentes JL. Photoprotective and antigenotoxic properties of Cutibacterium acnes ecotypes native to terrestrial subsurface habitats. FEMS Microbiol Lett 2023; 370:fnad108. [PMID: 37822017 DOI: 10.1093/femsle/fnad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023] Open
Abstract
Actinobacteria are known to produce a variety of secondary metabolites with skin-protective properties. This study aimed to investigate the photoprotective and antigenotoxic properties against UVB of extracts obtained from Cutibacterium acnes strains. Bacterial growth was measured spectrophotometrically and the constant maximum growth rate (μ) value to each strain, were calculated. In vitro photoprotection efficacy was evaluated using in vitro indices such as sun protection factor (SPFespectrophotometric) and critical wavelength (λc). UVB-antigenotoxicity was also evaluated using the SOS Chromotest. Correlation analysis was used to examine the relationship between SPFespectrophotometric and extract concentration and the %GI estimates. Among the studied strains, one showed low (6.0 ≤ SPFespectrophotometric ≤ 14.9) and eight showed media (15.0 ≤ SPFespectrophotometric ≤ 29.9) UVB photoprotection efficacy. All of them resulted in broad-spectrum (UVA-UVB) photoprotection (λc > 370 nm). In total, two C. acnes ecotypes with different growth rates were evidenced, but the protective metabolites in the extracts were produced without the influence of growth rate. Photoprotective efficacy depended on the extract concentration and was correlated with antigenotoxicity. We demonstrated that C. acnes extracts can be used as sunscreen ingredients that reduce UVB-induced genotoxicity.
Collapse
Affiliation(s)
- Carlos Adolfo Pedraza Barrera
- Laboratorio de Microbiología y Mutagénesis Ambiental (LMMA), Grupo de Investigación en Microbiología y Genética (COL0083849), Escuela de Biología, Facultad de Ciencias, Universidad Industrial de Santander (UIS) Calle 9na y carrera 27, Bucaramanga Santander, Colombia
| | - Jorge Luis Fuentes
- Laboratorio de Microbiología y Mutagénesis Ambiental (LMMA), Grupo de Investigación en Microbiología y Genética (COL0083849), Escuela de Biología, Facultad de Ciencias, Universidad Industrial de Santander (UIS) Calle 9na y carrera 27, Bucaramanga Santander, Colombia
| |
Collapse
|
14
|
Skin dysbiosis and Cutibacterium acnes biofilm in inflammatory acne lesions of adolescents. Sci Rep 2022; 12:21104. [PMID: 36473894 PMCID: PMC9727105 DOI: 10.1038/s41598-022-25436-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Acne vulgaris is a common inflammatory disorder affecting more than 80% of young adolescents. Cutibacterium acnes plays a role in the pathogenesis of acne lesions, although the mechanisms are poorly understood. The study aimed to explore the microbiome at different skin sites in adolescent acne and the role of biofilm production in promoting the growth and persistence of C. acnes isolates. Microbiota analysis showed a significantly lower alpha diversity in inflammatory lesions (LA) than in non-inflammatory (NI) lesions of acne patients and healthy subjects (HS). Differences at the species level were driven by the overabundance of C. acnes on LA than NI and HS. The phylotype IA1 was more represented in the skin of acne patients than in HS. Genes involved in lipids transport and metabolism, as well as potential virulence factors associated with host-tissue colonization, were detected in all IA1 strains independently from the site of isolation. Additionally, the IA1 isolates were more efficient in early adhesion and biomass production than other phylotypes showing a significant increase in antibiotic tolerance. Overall, our data indicate that the site-specific dysbiosis in LA and colonization by virulent and highly tolerant C. acnes phylotypes may contribute to acne development in a part of the population, despite the universal carriage of the microorganism. Moreover, new antimicrobial agents, specifically targeting biofilm-forming C. acnes, may represent potential treatments to modulate the skin microbiota in acne.
Collapse
|
15
|
Abstract
The skin microbiome is a key player in human health, with diverse functions ranging from defense against pathogens to education of the immune system. While recent studies have begun to shed light on the valuable role that skin microorganisms have in maintaining the skin barrier, a detailed understanding of the complex interactions that shape healthy skin microbial communities is limited. Cobamides, the vitamin B12 class of cofactor, are essential for organisms across the tree of life. Because this vitamin is only produced by a limited fraction of prokaryotes, cobamide sharing is predicted to mediate community dynamics within microbial communities. Here, we provide the first large-scale metagenomic assessment of cobamide biosynthesis and utilization in the skin microbiome. We show that while numerous and diverse taxa across the major bacterial phyla on the skin encode cobamide-dependent enzymes, relatively few species encode de novo cobamide biosynthesis. We show that cobamide producers and users are integrated into the network structure of microbial communities across the different microenvironments of the skin and that changes in microbiome community structure and diversity are associated with the abundance of cobamide producers in the Corynebacterium genus, for both healthy and diseased skin states. Finally, we find that de novo cobamide biosynthesis is enriched only in Corynebacterium species associated with hosts, including those prevalent on human skin. We confirm that the cofactor is produced in excess through quantification of cobamide production by human skin-associated species isolated in the laboratory. Taken together, our results reveal the potential for cobamide sharing within skin microbial communities, which we hypothesize mediates microbiome community dynamics and host interactions. IMPORTANCE The skin microbiome is essential for maintaining skin health and function. However, the microbial interactions that dictate microbiome structure, stability, and function are not well understood. Here, we investigate the biosynthesis and use of cobamides, a cofactor needed by many organisms but only produced by select prokaryotes, within the human skin microbiome. We found that while a large proportion of skin taxa encode cobamide-dependent enzymes, only a select few encode de novo cobamide biosynthesis. Further, the abundance of cobamide-producing Corynebacterium species is associated with skin microbiome diversity and structure, and within this genus, de novo biosynthesis is enriched in host-associated species compared to environment-associated species. These findings identify cobamides as a potential mediator of skin microbiome dynamics and skin health.
Collapse
|
16
|
Anik MI, Mahmud N, Masud AA, Khan MI, Islam MN, Uddin S, Hossain MK. Role of Reactive Oxygen Species in Aging and Age-Related Diseases: A Review. ACS APPLIED BIO MATERIALS 2022; 5:4028-4054. [PMID: 36043942 DOI: 10.1021/acsabm.2c00411] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Research on the role of reactive oxygen species (ROS) in the aging process has advanced significantly over the last two decades. In light of recent findings, ROS takes part in the aging process of cells along with contributing to various physiological signaling pathways. Antioxidants being cells' natural defense mechanism against ROS-mediated alteration, play an imperative role to maintain intracellular ROS homeostasis. Although the complete understanding of the ROS regulated aging process is yet to be fully comprehended, current insights into various sources of cellular ROS and their correlation with the aging process and age-related diseases are portrayed in this review. In addition, results on the effect of antioxidants on ROS homeostasis and the aging process as well as their advances in clinical trials are also discussed in detail. The future perspective in ROS-antioxidant dynamics on antiaging research is also marshaled to provide future directions for ROS-mediated antiaging research fields.
Collapse
Affiliation(s)
- Muzahidul I Anik
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Niaz Mahmud
- Department of Biomedical Engineering, Military Institute of Science and Technology, Dhaka 1216, Bangladesh
| | - Abdullah Al Masud
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md Ishak Khan
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Md Nurul Islam
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Shihab Uddin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - M Khalid Hossain
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
- Interdisciplinary Graduate School of Engineering Science, Kyushu University, Fukuoka 816-8580, Japan
| |
Collapse
|
17
|
Dzuvor CKO, Tettey EL, Danquah MK. Aptamers as promising nanotheranostic tools in the COVID-19 pandemic era. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1785. [PMID: 35238490 PMCID: PMC9111085 DOI: 10.1002/wnan.1785] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022]
Abstract
The emergence of SARS-COV-2, the causative agent of new coronavirus disease (COVID-19) has become a pandemic threat. Early and precise detection of the virus is vital for effective diagnosis and treatment. Various testing kits and assays, including nucleic acid detection methods, antigen tests, serological tests, and enzyme-linked immunosorbent assay (ELISA), have been implemented or are being explored to detect the virus and/or characterize cellular and antibody responses to the infection. However, these approaches have inherent drawbacks such as nonspecificity, high cost, are characterized by long turnaround times for test results, and can be labor-intensive. Also, the circulating SARS-COV-2 variant of concerns, reduced antibody sensitivity and/or neutralization, and possible antibody-dependent enhancement (ADE) have warranted the search for alternative potent therapeutics. Aptamers, which are single-stranded oligonucleotides, generated artificially by SELEX (Evolution of Ligands by Exponential Enrichment) may offer the capacity to generate high-affinity neutralizers and/or bioprobes for monitoring relevant SARS-COV-2 and COVID-19 biomarkers. This article reviews and discusses the prospects of implementing aptamers for rapid point-of-care detection and treatment of SARS-COV-2. We highlight other SARS-COV-2 targets (N protein, spike protein stem-helix), SELEX augmented with competition assays and in silico technologies for rapid discovery and isolation of theranostic aptamers against COVID-19 and future pandemics. It further provides an overview on site-specific bioconjugation approaches, customizable molecular scaffolding strategies, and nanotechnology platforms to engineer these aptamers into ultrapotent blockers, multivalent therapeutics, and vaccines to boost both humoral and cellular immunity against the virus. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease.
Collapse
Affiliation(s)
- Christian K. O. Dzuvor
- Bioengineering Laboratory, Department of Chemical and Biological EngineeringMonash UniversityClaytonVictoriaAustralia
| | | | - Michael K. Danquah
- Department of Chemical EngineeringUniversity of TennesseeChattanoogaTennesseeUSA
| |
Collapse
|
18
|
Liu Y, Jeraldo P, Herbert W, McDonough S, Eckloff B, Schulze-Makuch D, de Vera JP, Cockell C, Leya T, Baqué M, Jen J, Walther-Antonio M. Whole genome sequencing of cyanobacterium Nostoc sp. CCCryo 231-06 using microfluidic single cell technology. iScience 2022; 25:104291. [PMID: 35573199 PMCID: PMC9095746 DOI: 10.1016/j.isci.2022.104291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/16/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022] Open
Abstract
The Nostoc sp. strain CCCryo 231-06 is a cyanobacterial strain capable of surviving under extreme conditions and thus is of great interest for the astrobiology community. The knowledge of its complete genome sequence would serve as a guide for further studies. However, a major concern has been placed on the effects of contamination on the quality of sequencing data without a reference genome. Here, we report the use of microfluidic technology combined with single cell sequencing and de novo assembly to minimize the contamination and recover the complete genome of the Nostoc strain CCCryo 231-06 with high quality. 100% of the whole genome was recovered with all contaminants removed and a strongly supported phylogenetic tree. The data reported can be useful for comparative genomics for phylogenetic and taxonomic studies. The method used in this work can be applied to studies that require high-quality assemblies of genomes of unknown microorganisms. This work uses a microfluidic platform for Nostoc single cell sequencing This technology provides minimal contamination in single cell sequencing Complete genome of the Nostoc strain CCCryo 231-06 was recovered with high quality
Collapse
|
19
|
Krueger A, Mohamed A, Kolka CM, Stoll T, Zaugg J, Linedale R, Morrison M, Soyer HP, Hugenholtz P, Frazer IH, Hill MM. Skin Cancer-Associated S. aureus Strains Can Induce DNA Damage in Human Keratinocytes by Downregulating DNA Repair and Promoting Oxidative Stress. Cancers (Basel) 2022; 14:2143. [PMID: 35565272 PMCID: PMC9106025 DOI: 10.3390/cancers14092143] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/19/2022] Open
Abstract
Actinic keratosis (AK) is a premalignant lesion, common on severely photodamaged skin, that can progress over time to cutaneous squamous cell carcinoma (SCC). A high bacterial load of Staphylococcus aureus is associated with AK and SCC, but it is unknown whether this has a direct impact on skin cancer development. To determine whether S. aureus can have cancer-promoting effects on skin cells, we performed RNA sequencing and shotgun proteomics on primary human keratinocytes after challenge with sterile culture supernatant ('secretome') from four S. aureus clinical strains isolated from AK and SCC. Secretomes of two of the S. aureus strains induced keratinocytes to overexpress biomarkers associated with skin carcinogenesis and upregulated the expression of enzymes linked to reduced skin barrier function. Further, these strains induced oxidative stress markers and all secretomes downregulated DNA repair mechanisms. Subsequent experiments on an expanded set of lesion-associated S. aureus strains confirmed that exposure to their secretomes led to increased oxidative stress and DNA damage in primary human keratinocytes. A significant correlation between the concentration of S. aureus phenol soluble modulin toxins in secretome and the secretome-induced level of oxidative stress and genotoxicity in keratinocytes was observed. Taken together, these data demonstrate that secreted compounds from lesion-associated clinical isolates of S. aureus can have cancer-promoting effects in keratinocytes that may be relevant to skin oncogenesis.
Collapse
Affiliation(s)
- Annika Krueger
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; (A.K.); (R.L.); (M.M.); (I.H.F.)
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; (A.M.); (C.M.K.); (T.S.)
| | - Ahmed Mohamed
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; (A.M.); (C.M.K.); (T.S.)
| | - Cathryn M. Kolka
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; (A.M.); (C.M.K.); (T.S.)
| | - Thomas Stoll
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; (A.M.); (C.M.K.); (T.S.)
| | - Julian Zaugg
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (J.Z.); (P.H.)
| | - Richard Linedale
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; (A.K.); (R.L.); (M.M.); (I.H.F.)
| | - Mark Morrison
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; (A.K.); (R.L.); (M.M.); (I.H.F.)
| | - H. Peter Soyer
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD 4102, Australia;
- Dermatology Department, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (J.Z.); (P.H.)
| | - Ian H. Frazer
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; (A.K.); (R.L.); (M.M.); (I.H.F.)
| | - Michelle M. Hill
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; (A.K.); (R.L.); (M.M.); (I.H.F.)
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; (A.M.); (C.M.K.); (T.S.)
- The University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| |
Collapse
|
20
|
Alnemari RM, Brüßler J, Keck CM. Assessing the Oxidative State of the Skin by Combining Classical Tape Stripping with ORAC Assay. Pharmaceuticals (Basel) 2022; 15:ph15050520. [PMID: 35631347 PMCID: PMC9146784 DOI: 10.3390/ph15050520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/31/2022] Open
Abstract
The antioxidant barrier system of the skin acts as the main defence against environmental pro-oxidants. Impaired skin oxidative state is linked to unhealthy conditions such as skin autoimmune diseases and cancer. Thus, the evaluation of the overall oxidative state of the skin plays a key role in further understanding and prevention of these disorders. This study aims to present a novel ex vivo model to evaluate the skin oxidative state by the measurement of its antioxidant capacity (AOC). For this the ORAC assay was combined with classical tape stripping and infrared densitometry to evaluate the oxidative state of the stratum corneum (SC). Outcomes implied the suitability of the used model to determine the intrinsic antioxidant capacity (iAOC) of the skin. The average iAOC of untreated skin was determined as 140 ± 7.4 µM TE. Skin exposure to UV light for 1 h reduced the iAOC by about 17%, and exposure for 2 h decreased the iAOC by about 30%. Treatment with ascorbic acid (AA) increased the iAOC in a dose-dependent manner and reached an almost two-fold iAOC when 20% AA solution was applied on the skin. The application of coenzyme Q10 resulted in an increase in the iAOC at low doses but decreased the iAOC when doses > 1% were applied on the skin. The results show that the combination of classical tape stripping and ORAC assay is a cost-effective and versatile method to evaluate the skin oxidative state and the pro-oxidate and antioxidative effects of topical skin treatments on the iAOC of the skin. Therefore, the model can be considered to be a valuable tool in skin research.
Collapse
|
21
|
Stødkilde K, Nielsen JT, Petersen SV, Paetzold B, Brüggemann H, Mulder FAA, Andersen CBF. Solution Structure of the Cutibacterium acnes-Specific Protein RoxP and Insights Into Its Antioxidant Activity. Front Cell Infect Microbiol 2022; 12:803004. [PMID: 35223541 PMCID: PMC8873378 DOI: 10.3389/fcimb.2022.803004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Cutibacterium acnes is a predominant bacterium on human skin and is generally regarded as commensal. Recently, the abundantly secreted protein produced by C. acnes, RoxP, was shown to alleviate radical-induced cell damage, presumably via antioxidant activity, which could potentially be harnessed to fortify skin barrier function. The aim of this study was to determine the structure of RoxP and elucidate the mechanisms behind its antioxidative effect. Here, we present the solution structure of RoxP revealing a compact immunoglobulin-like domain containing a long flexible loop which, in concert with the core domain, forms a positively charged groove that could function as a binding site for cofactors or substrates. Although RoxP shares structural features with cell-adhesion proteins, we show that it does not appear to be responsible for adhesion of C. acnes bacteria to human keratinocytes. We identify two tyrosine-containing stretches located in the flexible loop of RoxP, which appear to be responsible for the antioxidant activity of RoxP.
Collapse
Affiliation(s)
| | | | | | | | | | - Frans A A Mulder
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
22
|
Molina-García M, Malvehy J, Granger C, Garre A, Trullàs C, Puig S. Exposome and Skin. Part 2. The Influential Role of the Exposome, Beyond UVR, in Actinic Keratosis, Bowen's Disease and Squamous Cell Carcinoma: A Proposal. Dermatol Ther (Heidelb) 2022; 12:361-380. [PMID: 35112326 PMCID: PMC8850498 DOI: 10.1007/s13555-021-00644-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Indexed: 02/07/2023] Open
Abstract
Actinic keratosis (AK) is the main risk factor for the development of cutaneous invasive squamous cell carcinoma (SCC). It represents the first sign of severe chronic ultraviolet radiation exposure, which has a clear significant effect. Nevertheless, the skin is exposed to many other exposome factors which should be thoroughly considered. Our aim was to assess the impact of exposome factors other than ultraviolet radiation (UVR) on the etiopathology of AK and Bowen's disease (BD) and progression of AK to SCC and to design tailored prevention strategies. We performed an exhaustive literature search in September 2021 through PubMed on the impact of exposome factors other than UVR on AK, BD and SCC. We conducted several parallel searches combining terms of the following topics: AK, BD, SCC and microbiome, hormones, nutrition, alcohol, tobacco, viral infections, chemical contaminants and air pollution. Notably, skin microbiome studies have shown how Staphylococcus aureus infections are associated with AK and AK-to-SCC progression by the production of chronic inflammation. Nutritional studies have demonstrated how a caloric restriction in fat intake, oral nicotinamide and moderate consumption of wine significantly reduce the number of premalignant keratoses and SCC. Regarding lifestyle factors, both alcohol and smoking are associated with the development of SCC in a dose-dependent manner. Relevant environmental factors are viral infections and chemical contaminants. Human papillomavirus infections induce deregulation of cellular proliferation and are associated with AK, BD and SCC. In addition to outdoor jobs, occupations such as industrial processing and farming also increase the risk of developing keratoses and SCC. The exposome of AK will undoubtedly help the understanding of its etiopathology and possible progression to SCC and will serve as a basis to design tailored prevention strategies.
Collapse
Affiliation(s)
- Manuel Molina-García
- School of Medicine and Health Science, University of Barcelona (UB), 143 Casanova, 08036 Barcelona, Spain
- Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Dermatology Department, Melanoma Unit, Hospital Clinic, Universitat de Barcelona, 170 Villarroel, 08036 Barcelona, Spain
| | - Josep Malvehy
- School of Medicine and Health Science, University of Barcelona (UB), 143 Casanova, 08036 Barcelona, Spain
- Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Dermatology Department, Melanoma Unit, Hospital Clinic, Universitat de Barcelona, 170 Villarroel, 08036 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Corinne Granger
- Innovation and Development, ISDIN, 33 Provençals, 08019 Barcelona, Spain
| | - Aurora Garre
- Innovation and Development, ISDIN, 33 Provençals, 08019 Barcelona, Spain
| | - Carles Trullàs
- Innovation and Development, ISDIN, 33 Provençals, 08019 Barcelona, Spain
| | - Susana Puig
- School of Medicine and Health Science, University of Barcelona (UB), 143 Casanova, 08036 Barcelona, Spain
- Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Dermatology Department, Melanoma Unit, Hospital Clinic, Universitat de Barcelona, 170 Villarroel, 08036 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
23
|
Krueger A, Zaugg J, Lachner N, Bialasiewicz S, Lin LL, Gabizon S, Sobarun P, Morrison M, Soyer HP, Hugenholtz P, Frazer IH. Changes in the skin microbiome associated with squamous cell carcinoma in transplant recipients. ISME COMMUNICATIONS 2022; 2:13. [PMID: 37938715 PMCID: PMC9723734 DOI: 10.1038/s43705-022-00095-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 05/10/2023]
Abstract
Actinic keratoses (AK) arise in severely photo-damaged skin and can progress to squamous cell carcinomas (SCC). AK and SCC are common in Caucasian populations, and immunosuppressed individuals have a markedly higher risk of developing SCC. An overabundance of Staphylococcus aureus has been reported in AK and SCC lesions of immunocompetent individuals, however, the AK/SCC microbiome in immunosuppressed cohorts has not been investigated. Here, the microbial profile and bacterial load of AK, SCC and control skin swabs from 32 immunosuppressed organ transplant recipients were characterised via SSU rRNA gene sequencing and qPCR, and compared to a previously described immunocompetent cohort. Although the taxonomic composition of skin swab samples was mostly subject-specific, significant differences were observed between control skin, AK, and SCC in both cohorts. Surface bacterial load was increased and alpha diversity decreased in AK and SCC compared to control skin due to an increased abundance of Staphylococcus species and relative decrease of skin commensals. Staphylococcus epidermidis predominated on SCC from transplant recipients in contrast to SCC of immunocompetent subjects dominated by S. aureus. In conclusion, AK and SCC of immunosuppressed and immunocompetent subjects present with distinctive microbial dysbioses, which may be relevant to SCC pathogenesis and progression.
Collapse
Affiliation(s)
- Annika Krueger
- The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Julian Zaugg
- Australian Centre for Ecogenomics, University of Queensland, St Lucia, QLD, Australia
| | - Nancy Lachner
- Australian Centre for Ecogenomics, University of Queensland, St Lucia, QLD, Australia
| | - Seweryn Bialasiewicz
- Australian Centre for Ecogenomics, University of Queensland, St Lucia, QLD, Australia
- Queensland Paediatric Infectious Diseases Laboratory, Children's Health Queensland, South Brisbane, QLD, Australia
| | - Lynlee L Lin
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
| | - Sharon Gabizon
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
- Dermatology Department, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Priyamvada Sobarun
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
- Dermatology Department, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Mark Morrison
- The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - H Peter Soyer
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
- Dermatology Department, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, University of Queensland, St Lucia, QLD, Australia
| | - Ian H Frazer
- The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia.
| |
Collapse
|
24
|
Krueger A, Zaugg J, Chisholm S, Linedale R, Lachner N, Teoh SM, Tuong ZK, Lukowski SW, Morrison M, Soyer HP, Hugenholtz P, Hill MM, Frazer IH. Secreted Toxins From Staphylococcus aureus Strains Isolated From Keratinocyte Skin Cancers Mediate Pro-tumorigenic Inflammatory Responses in the Skin. Front Microbiol 2022; 12:789042. [PMID: 35145494 PMCID: PMC8822148 DOI: 10.3389/fmicb.2021.789042] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/08/2021] [Indexed: 12/27/2022] Open
Abstract
Squamous cell carcinoma (SCC) is a common type of skin cancer that typically arises from premalignant precursor lesions named actinic keratoses (AK). Chronic inflammation is a well-known promoter of skin cancer progression. AK and SCC have been associated with an overabundance of the bacterium Staphylococcus aureus (S. aureus). Certain secreted products from S. aureus are known to promote cutaneous pro-inflammatory responses; however, not all S. aureus strains produce these. As inflammation plays a key role in SCC development, we investigated the pro-inflammatory potential and toxin secretion profiles of skin-cancer associated S. aureus. Sterile culture supernatants (“secretomes”) of S. aureus clinical strains isolated from AK and SCC were applied to human keratinocytes in vitro. Some S. aureus secretomes induced keratinocytes to overexpress inflammatory mediators that have been linked to skin carcinogenesis, including IL-6, IL-8, and TNFα. A large phenotypic variation between the tested clinical strains was observed. Strains that are highly pro-inflammatory in vitro also caused more pronounced skin inflammation in mice. Proteomic characterization of S. aureus secretomes using mass spectrometry established that specific S. aureus enzymes and cytolytic toxins, including hemolysins, phenol-soluble modulins, and serine proteases, as well as currently uncharacterized proteins, correlate with the pro-inflammatory S. aureus phenotype. This study is the first to describe the toxin secretion profiles of AK and SCC-associated S. aureus, and their potential to induce a pro-inflammatory environment in the skin. Further studies are needed to establish whether these S. aureus products promote SCC development by mediating chronic inflammation.
Collapse
Affiliation(s)
- Annika Krueger
- Faculty of Medicine, The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Julian Zaugg
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Sarah Chisholm
- Faculty of Medicine, The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Richard Linedale
- Faculty of Medicine, The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Nancy Lachner
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Siok Min Teoh
- Faculty of Medicine, The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Zewen K. Tuong
- Faculty of Medicine, The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Samuel W. Lukowski
- The Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Mark Morrison
- Faculty of Medicine, The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - H. Peter Soyer
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
- Dermatology Department, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Michelle M. Hill
- Faculty of Medicine, The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- The University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Ian H. Frazer
- Faculty of Medicine, The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
- *Correspondence: Ian H. Frazer,
| |
Collapse
|
25
|
Sharma G, Khanna G, Sharma P, Deol PK, Kaur IP. Mechanistic Role of Probiotics in Improving Skin Health. PROBIOTIC RESEARCH IN THERAPEUTICS 2022:27-47. [DOI: 10.1007/978-981-16-5628-6_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
26
|
Schalka S, Silva MS, Lopes LF, de Freitas LM, Baptista MS. The skin redoxome. J Eur Acad Dermatol Venereol 2021; 36:181-195. [PMID: 34719068 DOI: 10.1111/jdv.17780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022]
Abstract
Redoxome is the network of redox reactions and redox active species (ReAS) that affect the homeostasis of cells and tissues. Due to the intense and constant interaction with external agents, the human skin has a robust redox signalling framework with specific pathways and magnitudes. The establishment of the skin redoxome concept is key to expanding knowledge of skin disorders and establishing better strategies for their prevention and treatment. This review starts with its definition and progress to propose how the master redox regulators are maintained and activated in the different conditions experienced by the skin and how the lack of redox regulation is involved in the accumulation of several oxidation end products that are correlated with various skin disorders.
Collapse
Affiliation(s)
- S Schalka
- Medcin Skin Research Center, Osasco, Brazil
| | - M S Silva
- Medcin Skin Research Center, Osasco, Brazil
| | - L F Lopes
- Institute of Chemistry, Department of Biochemistry, Universidade de São Paulo, São Paulo, Brazil
| | - L M de Freitas
- Institute of Chemistry, Department of Biochemistry, Universidade de São Paulo, São Paulo, Brazil
| | - M S Baptista
- Institute of Chemistry, Department of Biochemistry, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Facial Skin Microbiota-Mediated Host Response to Pollution Stress Revealed by Microbiome Networks of Individual. mSystems 2021; 6:e0031921. [PMID: 34313461 PMCID: PMC8407115 DOI: 10.1128/msystems.00319-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Urban living has been reported to cause various skin disorders. As an integral part of the skin barrier, the skin microbiome is among the key factors associated with urbanization-related skin alterations. The role of skin microbiome in mediating the effect of urban stressors (e.g., air pollutants) on skin physiology is not well understood. We generated 16S sequencing data and constructed a microbiome network of individual (MNI) to analyze the effect of pollution stressors on the microbiome network and its downstream mediation effect on skin physiology in a personalized manner. In particular, we found that the connectivity and fragility of MNIs significantly mediated the adverse effects of air pollution on skin health, and a smoking lifestyle deepened the negative effects of pollution stress on facial skin microbiota. This is the first study that describes the mediation effect of the microbiome network on the skin’s physiological response toward environmental factors as revealed by our newly developed MNI approach and conditional process analysis. IMPORTANCE The association between the skin microbiome and skin health has been widely reported. However, the role of the skin microbiome in mediating skin physiology remains a challenging and yet priority subject in the field. Through developing a novel MNI method followed by mediation analysis, we characterized the network signature of the skin microbiome at an individual level and revealed the role of the skin microbiome in mediating the skin’s responses toward environmental stressors. Our findings may shed new light on microbiome functions in skin health and lay the foundation for the design of a microbiome-based intervention strategy in the future.
Collapse
|
28
|
Brüggemann H, Salar-Vidal L, Gollnick HPM, Lood R. A Janus-Faced Bacterium: Host-Beneficial and -Detrimental Roles of Cutibacterium acnes. Front Microbiol 2021; 12:673845. [PMID: 34135880 PMCID: PMC8200545 DOI: 10.3389/fmicb.2021.673845] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
The bacterial species Cutibacterium acnes (formerly known as Propionibacterium acnes) is tightly associated with humans. It is the dominant bacterium in sebaceous regions of the human skin, where it preferentially colonizes the pilosebaceous unit. Multiple strains of C. acnes that belong to phylogenetically distinct types can co-exist. In this review we summarize and discuss the current knowledge of C. acnes regarding bacterial properties and traits that allow host colonization and play major roles in host-bacterium interactions and also regarding the host responses that C. acnes can trigger. These responses can have beneficial or detrimental consequences for the host. In the first part of the review, we highlight and critically review disease associations of C. acnes, in particular acne vulgaris, implant-associated infections and native infections. Here, we also analyse the current evidence for a direct or indirect role of a C. acnes-related dysbiosis in disease development or progression, i.e., reduced C. acnes strain diversity and/or the predominance of a certain phylotype. In the second part of the review, we highlight historical and recent findings demonstrating beneficial aspects of colonization by C. acnes such as colonization resistance, immune system interactions, and oxidant protection, and discuss the molecular mechanisms behind these effects. This new insight led to efforts in skin microbiota manipulation, such as the use of C. acnes strains as probiotic options to treat skin disorders.
Collapse
Affiliation(s)
| | - Llanos Salar-Vidal
- Department of Clinical Microbiology, Fundacion Jimenez Diaz University Hospital, Madrid, Spain
| | - Harald P. M. Gollnick
- Department of Dermatology and Venerology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Rolf Lood
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
29
|
Souak D, Barreau M, Courtois A, André V, Duclairoir Poc C, Feuilloley MGJ, Gault M. Challenging Cosmetic Innovation: The Skin Microbiota and Probiotics Protect the Skin from UV-Induced Damage. Microorganisms 2021; 9:microorganisms9050936. [PMID: 33925587 PMCID: PMC8145394 DOI: 10.3390/microorganisms9050936] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022] Open
Abstract
Many studies performed in the last decade have focused on the cutaneous microbiota. It has been shown that this microbiota plays a key role in skin homeostasis. Considered as “a second barrier” to the environment, it is very important to know how it reacts to exogenous aggressions. The cosmetics industry has a started to use this microbiota as a source of natural ingredients, particularly ones that confer photoprotection against ultraviolet (UV) rays. Interestingly, it has been demonstrated that bacterial molecules can block UV rays or reverse their harmful effects. Oral probiotics containing living microorganisms have also shown promising results in restoring skin homeostasis and reversing the negative effects of UV rays. Microbial-based active sunscreen compounds have huge potential for use as next-generation photoprotection products.
Collapse
Affiliation(s)
- Djouhar Souak
- BASF Beauty Care Solutions France SAS, 69007 Lyon, France; (D.S.); (A.C.); (V.A.)
- LMSM EA4312, Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen Normandie, 27000 Evreux, France;
| | - Magalie Barreau
- LMSM EA4312, Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen Normandie, 27000 Evreux, France;
| | - Aurélie Courtois
- BASF Beauty Care Solutions France SAS, 69007 Lyon, France; (D.S.); (A.C.); (V.A.)
| | - Valérie André
- BASF Beauty Care Solutions France SAS, 69007 Lyon, France; (D.S.); (A.C.); (V.A.)
| | - Cécile Duclairoir Poc
- LMSM EA4312, Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen Normandie, 27000 Evreux, France;
- Correspondence: (C.D.P.); (M.G.J.F.); (M.G.)
| | - Marc G. J. Feuilloley
- LMSM EA4312, Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen Normandie, 27000 Evreux, France;
- Correspondence: (C.D.P.); (M.G.J.F.); (M.G.)
| | - Manon Gault
- BASF Beauty Care Solutions France SAS, 69007 Lyon, France; (D.S.); (A.C.); (V.A.)
- Correspondence: (C.D.P.); (M.G.J.F.); (M.G.)
| |
Collapse
|
30
|
Rozas M, Hart de Ruijter A, Fabrega MJ, Zorgani A, Guell M, Paetzold B, Brillet F. From Dysbiosis to Healthy Skin: Major Contributions of Cutibacterium acnes to Skin Homeostasis. Microorganisms 2021; 9:628. [PMID: 33803499 PMCID: PMC8003110 DOI: 10.3390/microorganisms9030628] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Cutibacterium acnes is the most abundant bacterium living in human, healthy and sebum-rich skin sites, such as the face and the back. This bacterium is adapted to this specific environment and therefore could have a major role in local skin homeostasis. To assess the role of this bacterium in healthy skin, this review focused on (i) the abundance of C. acnes in the skin microbiome of healthy skin and skin disorders, (ii) its major contributions to human skin health, and (iii) skin commensals used as probiotics to alleviate skin disorders. The loss of C. acnes relative abundance and/or clonal diversity is frequently associated with skin disorders such as acne, atopic dermatitis, rosacea, and psoriasis. C. acnes, and the diversity of its clonal population, contributes actively to the normal biophysiological skin functions through, for example, lipid modulation, niche competition and oxidative stress mitigation. Compared to gut probiotics, limited dermatological studies have investigated skin probiotics with skin commensal strains, highlighting their unexplored potential.
Collapse
Affiliation(s)
- Miquel Rozas
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain;
| | - Astrid Hart de Ruijter
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
| | - Maria Jose Fabrega
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain;
| | - Amine Zorgani
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
| | - Marc Guell
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain;
| | - Bernhard Paetzold
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
| | - Francois Brillet
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
| |
Collapse
|
31
|
De Pessemier B, Grine L, Debaere M, Maes A, Paetzold B, Callewaert C. Gut-Skin Axis: Current Knowledge of the Interrelationship between Microbial Dysbiosis and Skin Conditions. Microorganisms 2021; 9:353. [PMID: 33670115 PMCID: PMC7916842 DOI: 10.3390/microorganisms9020353] [Citation(s) in RCA: 252] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023] Open
Abstract
The microbiome plays an important role in a wide variety of skin disorders. Not only is the skin microbiome altered, but also surprisingly many skin diseases are accompanied by an altered gut microbiome. The microbiome is a key regulator for the immune system, as it aims to maintain homeostasis by communicating with tissues and organs in a bidirectional manner. Hence, dysbiosis in the skin and/or gut microbiome is associated with an altered immune response, promoting the development of skin diseases, such as atopic dermatitis, psoriasis, acne vulgaris, dandruff, and even skin cancer. Here, we focus on the associations between the microbiome, diet, metabolites, and immune responses in skin pathologies. This review describes an exhaustive list of common skin conditions with associated dysbiosis in the skin microbiome as well as the current body of evidence on gut microbiome dysbiosis, dietary links, and their interplay with skin conditions. An enhanced understanding of the local skin and gut microbiome including the underlying mechanisms is necessary to shed light on the microbial involvement in human skin diseases and to develop new therapeutic approaches.
Collapse
Affiliation(s)
- Britta De Pessemier
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (B.D.P.); (M.D.); (A.M.)
| | - Lynda Grine
- Department of Head & Skin, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium;
| | - Melanie Debaere
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (B.D.P.); (M.D.); (A.M.)
| | - Aglaya Maes
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (B.D.P.); (M.D.); (A.M.)
| | | | - Chris Callewaert
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (B.D.P.); (M.D.); (A.M.)
| |
Collapse
|
32
|
Mayslich C, Grange PA, Dupin N. Cutibacterium acnes as an Opportunistic Pathogen: An Update of Its Virulence-Associated Factors. Microorganisms 2021; 9:303. [PMID: 33540667 PMCID: PMC7913060 DOI: 10.3390/microorganisms9020303] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cutibacterium acnes is a member of the skin microbiota found predominantly in regions rich in sebaceous glands. It is involved in maintaining healthy skin and has long been considered a commensal bacterium. Its involvement in various infections has led to its emergence as an opportunist pathogen. Interactions between C. acnes and the human host, including the human skin microbiota, promote the selection of C. acnes strains capable of producing several virulence factors that increase inflammatory capability. This pathogenic property may be related to many infectious mechanisms, such as an ability to form biofilms and the expression of putative virulence factors capable of triggering host immune responses or enabling C. acnes to adapt to its environment. During the past decade, many studies have identified and characterized several putative virulence factors potentially involved in the pathogenicity of this bacterium. These virulence factors are involved in bacterial attachment to target cells, polysaccharide-based biofilm synthesis, molecular structures mediating inflammation, and the enzymatic degradation of host tissues. C. acnes, like other skin-associated bacteria, can colonize various ecological niches other than skin. It produces several proteins or glycoproteins that could be considered to be active virulence factors, enabling the bacterium to adapt to the lipophilic environment of the pilosebaceous unit of the skin, but also to the various organs it colonizes. In this review, we summarize current knowledge concerning characterized C. acnes virulence factors and their possible implication in the pathogenicity of C. acnes.
Collapse
Affiliation(s)
- Constance Mayslich
- NSERM Institut Cochin, INSERM U1016-CNRS UMR8104, Equipe de Biologie Cutanée, Université de Paris, 75014 Paris, France; (C.M.); (P.A.G.)
| | - Philippe Alain Grange
- NSERM Institut Cochin, INSERM U1016-CNRS UMR8104, Equipe de Biologie Cutanée, Université de Paris, 75014 Paris, France; (C.M.); (P.A.G.)
- Service de Dermatologie-Vénéréologie, Groupe Hospitalier APHP.5, CNR IST Bactériennes—Laboratoire Associé Syphilis, 75014 Paris, France
| | - Nicolas Dupin
- NSERM Institut Cochin, INSERM U1016-CNRS UMR8104, Equipe de Biologie Cutanée, Université de Paris, 75014 Paris, France; (C.M.); (P.A.G.)
- Service de Dermatologie-Vénéréologie, Groupe Hospitalier APHP.5, CNR IST Bactériennes—Laboratoire Associé Syphilis, 75014 Paris, France
| |
Collapse
|
33
|
Bernales Salinas A. Acne vulgaris: role of the immune system. Int J Dermatol 2021; 60:1076-1081. [PMID: 33426647 DOI: 10.1111/ijd.15415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022]
Abstract
Acne vulgaris is a worldwide condition that has a complex pathophysiology. The knowledge of this pathology is clear in its four classic principles based on the pilosebaceous unit; there exists hyperkeratinization of its duct, increase of sebum production, anaerobic bacterias, and inflammatory response. However, new findings have explained the relationship that occurs inside the acne lesion. The immune system has a key role since it is stimulated by the other participants involved, such as phylotypes of Propionibacterium acnes (P. acnes), antimicrobial peptides (AMPs), sebaceous glands (SGs), matrix metalloproteinases (MMPs), and other immune system pathways.
Collapse
|
34
|
Callewaert C, Knödlseder N, Karoglan A, Güell M, Paetzold B. Skin microbiome transplantation and manipulation: Current state of the art. Comput Struct Biotechnol J 2021; 19:624-631. [PMID: 33510866 PMCID: PMC7806958 DOI: 10.1016/j.csbj.2021.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/02/2021] [Accepted: 01/02/2021] [Indexed: 12/13/2022] Open
Abstract
Many skin conditions are associated with an imbalance in the skin microbiome. In recent years, the skin microbiome has become a hot topic, for both therapeutic and cosmetic purposes. The possibility of manipulating the human skin microbiome to address skin conditions has opened exciting new paths for therapy. Here we review the skin microbiome manipulation strategies, ranging from skin microbiome transplantation, over skin bacteriotherapy to the use of prebiotics, probiotics and postbiotics. We summarize all efforts undertaken to exchange, manipulate, transplant or selectively apply the skin microbiome to date. Multiple microbial groups have been targeted, since they have been proven to be beneficial for skin health. We focus on the most common skin disorders and their associated skin microbiome dysbiosis and we review the existing scientific data and clinical trials undertaken to combat these skin conditions. The skin microbiome represents a novel platform for therapy. Transplantation of a complete microbiome or application of single strains has demonstrated beneficial therapeutic application.
Collapse
Affiliation(s)
- Chris Callewaert
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, Ghent, Belgium
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Nastassia Knödlseder
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Ante Karoglan
- Department of Dermatology, University Hospital Magdeburg, University of Magdeburg, Magdeburg, Germany
| | - Marc Güell
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain
| | | |
Collapse
|
35
|
Khmaladze I, Leonardi M, Fabre S, Messaraa C, Mavon A. The Skin Interactome: A Holistic "Genome-Microbiome-Exposome" Approach to Understand and Modulate Skin Health and Aging. Clin Cosmet Investig Dermatol 2021; 13:1021-1040. [PMID: 33380819 PMCID: PMC7769076 DOI: 10.2147/ccid.s239367] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022]
Abstract
Higher demands on skin care cosmetic products for strong performance drive intense research to understand the mechanisms of skin aging and design strategies to improve overall skin health. Today we know that our needs and influencers of skin health and skin aging change throughout our life journey due to both extrinsic factors, such as environmental factors and lifestyle factors, as well as our intrinsic factors. Furthermore, we need to consider our microflora, a collection of micro-organisms such as bacteria, viruses, and fungi, which is a living ecosystem in our gut and on our skin, that can have a major impact on our health. Here, we are viewing a holistic approach to understand the collective effect of the key influencers of skin health and skin aging both reviewing how each of them impact the skin, but more importantly to identify molecular conjunction pathways of these different factors in order to get a better understanding of the integrated “genome-microbiome-exposome” effect. For this purpose and in order to translate molecularly the impact of the key influencers of skin health and skin aging, we built a digital model based on system biology using different bioinformatics tools. This model is considering both the positive and negative impact of our genome (genes, age/gender), exposome: external (sun, pollution, climate) and lifestyle factors (sleep, stress, exercise, nutrition, skin care routine), as well as the role of our skin microbiome, and allowed us in a first application to evaluate the effect of the genome in the synthesis of collagen in the skin and the determination of a suitable target for boosting pro-collagen synthesis. In conclusion, we have, through our digital holistic approach, defined the skin interactome concept, as an advanced tool to better understand the molecular genesis of skin aging and further develop a strategy to balance the influence of the exposome and microbiome to protect, prevent, and delay the appearance of skin aging signs and preserve good skin health condition. In addition, this model will aid in identifying and optimizing skin treatment options based on external triggers, as well as helping to design optimal treatments modulating the intrinsic pathways.
Collapse
Affiliation(s)
- Ia Khmaladze
- Skin Research Institute, Oriflame Cosmetics AB, Stockholm, Sweden
| | - Michele Leonardi
- Skin Research Institute, Oriflame Cosmetics AB, Stockholm, Sweden
| | - Susanne Fabre
- Skin Research Institute, Oriflame Cosmetics AB, Stockholm, Sweden
| | - Cyril Messaraa
- Research and Development, Oriflame Cosmetics Ltd, Bray, Ireland
| | - Alain Mavon
- Skin Research Institute, Oriflame Cosmetics AB, Stockholm, Sweden
| |
Collapse
|
36
|
Dijkhoff IM, Drasler B, Karakocak BB, Petri-Fink A, Valacchi G, Eeman M, Rothen-Rutishauser B. Impact of airborne particulate matter on skin: a systematic review from epidemiology to in vitro studies. Part Fibre Toxicol 2020; 17:35. [PMID: 32711561 PMCID: PMC7382801 DOI: 10.1186/s12989-020-00366-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/14/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Air pollution is killing close to 5 million people a year, and harming billions more. Air pollution levels remain extremely high in many parts of the world, and air pollution-associated premature deaths have been reported for urbanized areas, particularly linked to the presence of airborne nano-sized and ultrafine particles. MAIN TEXT To date, most of the research studies did focus on the adverse effects of air pollution on the human cardiovascular and respiratory systems. Although the skin is in direct contact with air pollutants, their damaging effects on the skin are still under investigation. Epidemiological data suggested a correlation between exposure to air pollutants and aggravation of symptoms of chronic immunological skin diseases. In this study, a systematic literature review was conducted to understand the current knowledge on the effects of airborne particulate matter on human skin. It aims at providing a deeper understanding of the interactions between air pollutants and skin to further assess their potential risks for human health. CONCLUSION Particulate matter was shown to induce a skin barrier dysfunction and provoke the formation of reactive oxygen species through direct and indirect mechanisms, leading to oxidative stress and induced activation of the inflammatory cascade in human skin. Moreover, a positive correlation was reported between extrinsic aging and atopic eczema relative risk with increasing particulate matter exposure.
Collapse
Affiliation(s)
- Irini M Dijkhoff
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Barbara Drasler
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Bedia Begum Karakocak
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
- Department of Animal Sciences, PHHI NCRC, North Carolina State University, Kannapolis, NC, USA
| | | | - Barbara Rothen-Rutishauser
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland.
| |
Collapse
|
37
|
Vogel CFA, Van Winkle LS, Esser C, Haarmann-Stemmann T. The aryl hydrocarbon receptor as a target of environmental stressors - Implications for pollution mediated stress and inflammatory responses. Redox Biol 2020; 34:101530. [PMID: 32354640 PMCID: PMC7327980 DOI: 10.1016/j.redox.2020.101530] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 02/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor regulating the expression of genes, for instance encoding the monooxygenases cytochrome P450 (CYP) 1A1 and CYP1A2, which are important enzymes in metabolism of xenobiotics. The AHR is activated upon binding of polycyclic aromatic hydrocarbons (PAHs), persistent organic pollutants (POPs), and related ubiquitous environmental chemicals, to mediate their biological and toxic effects. In addition, several endogenous and natural compounds can bind to AHR, thereby modulating a variety of physiological processes. In recent years, ambient particulate matter (PM) associated with traffic related air pollution (TRAP) has been found to contain significant amounts of PAHs. PM containing PAHs are of increasing concern as a class of agonists, which can activate the AHR. Several reports show that PM and AHR-mediated induction of CYP1A1 results in excessive generation of reactive oxygen species (ROS), causing oxidative stress. Furthermore, exposure to PM and PAHs induce inflammatory responses and may lead to chronic inflammatory diseases, including asthma, cardiovascular diseases, and increased cancer risk. In this review, we summarize findings showing the critical role that the AHR plays in mediating effects of environmental pollutants and stressors, which pose a risk of impacting the environment and human health. PAHs present on ambient air pollution particles are ligands of the cellular AHR. AHR-dependent induction of CYP1, AKR, NOX and COX-2 genes can be a source of ROS generation. AHR signaling and NRF2 signaling interact to regulate the expression of antioxidant genes. Air pollution and ROS can affect inflammation, which is partially triggered by AHR and associated immune responses. Skin, lung, and the cardiovascular system are major target sites for air pollution-induced inflammation.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Laura S Van Winkle
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; School of Veterinary Medicine Department of Anatomy, University of California, One Shields Avenue, Davis, CA, 5616, USA
| | - Charlotte Esser
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | | |
Collapse
|
38
|
Gannesen AV, Zdorovenko EL, Botchkova EA, Hardouin J, Massier S, Kopitsyn DS, Gorbachevskii MV, Kadykova AA, Shashkov AS, Zhurina MV, Netrusov AI, Knirel YA, Plakunov VK, Feuilloley MGJ. Composition of the Biofilm Matrix of Cutibacterium acnes Acneic Strain RT5. Front Microbiol 2019; 10:1284. [PMID: 31293526 PMCID: PMC6598116 DOI: 10.3389/fmicb.2019.01284] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/23/2019] [Indexed: 12/11/2022] Open
Abstract
In skin, Cutibacterium acnes (former Propionibacterium acnes) can behave as an opportunistic pathogen, depending on the strain and environmental conditions. Acneic strains of C. acnes form biofilms inside skin-gland hollows, inducing inflammation and skin disorders. The essential exogenous products of C. acnes accumulate in the extracellular matrix of the biofilm, conferring essential bacterial functions to this structure. However, little is known about the actual composition of the biofilm matrix of C. acnes. Here, we developed a new technique for the extraction of the biofilm matrix of Gram-positive bacteria without the use of chemical or enzymatic digestion, known to be a source of artifacts. Our method is based on the physical separation of the cells and matrix of sonicated biofilms by ultracentrifugation through a CsCl gradient. Biofilms were grown on the surface of cellulose acetate filters, and the biomass was collected without contamination by the growth medium. The biofilm matrix of the acneic C. acnes RT5 strain appears to consist mainly of polysaccharides. The following is the ratio of the main matrix components: 62.6% polysaccharides, 9.6% proteins, 4.0% DNA, and 23.8% other compounds (porphyrins precursors and other). The chemical structure of the major polysaccharide was determined using a nuclear magnetic resonance technique, the formula being →6)-α-D-Galp-(1→4)-β-D-ManpNAc3NAcA-(1→6)-α-D-Glcp-(1→4)-β-D-ManpNAc3NAcA-(1→3)-β-GalpNAc-(1→. We detected 447 proteins in the matrix, of which the most abundant were the chaperonin GroL, the elongation factors EF-Tu and EF-G, several enzymes of glycolysis, and proteins of unknown function. The matrix also contained more than 20 hydrolases of various substrata, pathogenicity factors, and many intracellular proteins and enzymes. We also performed surface-enhanced Raman spectroscopy analysis of the C. acnes RT5 matrix for the first time, providing the surface-enhanced Raman scattering (SERS) profiles of the C. acnes RT5 biofilm matrix and biofilm biomass. The difference between the matrix and biofilm biomass spectra showed successful matrix extraction rather than simply the presence of cell debris after sonication. These data show the complexity of the biofilm matrix composition and should be essential for the development of new anti-C. acnes biofilms and potential antibiofilm drugs.
Collapse
Affiliation(s)
- Andrei V. Gannesen
- Winogradsky Institute of Microbiology, Federal Research Centre «Fundamentals of Biotechnology», Russian Academy of Sciences, Moscow, Russia
| | - Evelina L. Zdorovenko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A. Botchkova
- Winogradsky Institute of Microbiology, Federal Research Centre «Fundamentals of Biotechnology», Russian Academy of Sciences, Moscow, Russia
- Department of Physical and Colloid Chemistry, Gubkin University, Moscow, Russia
| | - Julie Hardouin
- Laboratory of Polymers, Biopolymers, Surfaces UMR 6270 PBS, Rouen University, Rouen, France
| | - Sebastien Massier
- Laboratory of Polymers, Biopolymers, Surfaces UMR 6270 PBS, Rouen University, Rouen, France
| | - Dmitry S. Kopitsyn
- Department of Physical and Colloid Chemistry, Gubkin University, Moscow, Russia
| | | | - Alexandra A. Kadykova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Higher Chemical College of the Russian Academy of Sciences, Mendeleyev University of Chemical Technology of Russia, Moscow, Russia
| | - Alexander S. Shashkov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Marina V. Zhurina
- Winogradsky Institute of Microbiology, Federal Research Centre «Fundamentals of Biotechnology», Russian Academy of Sciences, Moscow, Russia
| | | | - Yuriy A. Knirel
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir K. Plakunov
- Winogradsky Institute of Microbiology, Federal Research Centre «Fundamentals of Biotechnology», Russian Academy of Sciences, Moscow, Russia
| | - Marc G. J. Feuilloley
- EA4312 Laboratory of Microbiology Signals and Microenvironment, Rouen University, Evreux, France
| |
Collapse
|