1
|
Sarmadi S, Ghalyanchilangeroudi A, Najafi H. Vaccine approaches and treatment aspects against Crimean Congo hemorrhagic fever. Virusdisease 2024; 35:377-383. [PMID: 39071873 PMCID: PMC11269551 DOI: 10.1007/s13337-024-00868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/28/2024] [Indexed: 07/30/2024] Open
Abstract
Crimean-Congo hemorrhagic fever [CCHF] is a severe infectious viral disease caused by a tick borne virus which can lead to fatal hemorrhagic disease in humans. It has been reported from some continents including Africa, Asia and Europe. Virus is transmitted to human mainly through tick bite, whose acquire infection from reservoirs wild and domesticated mammalians and ostriches. Currently no approved vaccine or drug is available for CCHF and prevention is mainly based on biosecurity measures. Ribavirin is the only approved drug that has been used in some countries to treat human disease, however some new studies did not prove the Ribavirin efficacy. Different strategies to design effective vaccines, have been conducted through years, from inactivated virus to nucleotide-based ones including DNA and mRNA vaccines. In this study we review of pioneering vaccine candidate platforms.
Collapse
Affiliation(s)
- Soroush Sarmadi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Arash Ghalyanchilangeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hamideh Najafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Kaushal N, Baranwal M. Analysis of highly frequent point mutations in glycoprotein C, glycoprotein N, and nucleoprotein of CCHFV. Biotechnol Appl Biochem 2024; 71:280-294. [PMID: 38054375 DOI: 10.1002/bab.2540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/19/2023] [Indexed: 12/07/2023]
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is classified among top 10 priority pathogens by World Health Organization. CCHFV belongs to Bunyaviridae family and negative sense ssRNA genome composed of three RNA segments: L, M, and S. RNA viruses show higher mutation rate as compared to DNA viruses. To gain deeper understanding of impact of point mutations in CCHFV M and S segment, mutation profiling, homology modeling, and molecular dynamic (MD) simulation were performed. Structural glycoproteins (glycoprotein C [Gc] and glycoprotein N [Gn]) of CCHFV are important for host-virus interaction and genome packaging, whereas CCHFV nucleoprotein (NP) is crucial for viral replication. Hence, current study is focused on evaluation of eight mutations in structural glycoproteins (Gc: 7 and Gn: 1) of M segment and seven mutations in NP of S segment. All these mutations were highly frequent, with mutation frequency between 0.81 and 1.0 and found to be persistent in the recent strains of CCHFV. Solubility analysis predicted that selected point mutations reduce solubility of Gc protein and increase solubility of Gn and NP proteins. MD simulation study deciphered that A1046V and G1158E in Gc protein, I778T in Gn protein, and H195R in NP protein displayed large deviation and fluctuation, and affected intramolecular interactions. In conclusion, we observed that point mutations could impact structure, stability, and host-virus interaction of protein, and might lead to evolution of new strains for better survival and drug resistance.
Collapse
Affiliation(s)
- Neha Kaushal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| |
Collapse
|
3
|
Naseem S, Khan S, Hussain S, Mirza MU, Ashraf M, Shafiq Z, Trant JF. Synthesis, biological evaluation, and molecular docking study of xanthene-linked thiosemicarbazones as cholinesterase inhibitors. J Biomol Struct Dyn 2023; 42:13232-13246. [PMID: 37948312 DOI: 10.1080/07391102.2023.2274981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
This study delineates the design and synthesis of a series of xanthene-based thiosemicarbazones that show low μM inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), crucial enzymes associated with, among others, Alzheimer's Disease (AD) pathology. Despite FDA-approved AChE inhibitors being frontline treatments for AD, there remains a need for agents exhibiting improved efficacy and selectivity. Our synthesized series demonstrate meaningful inhibition against AChE (IC50 ranging from 4.2 to 62 μM). These compounds exhibit comparatively lower potency against BChE (IC50 values between 64 and 315 μM), showcasing a pronounced AChE selectivity compared to physostigmine. The selectivity index for the compounds between the two targets does vary between 0.02 and 0.75 highlighting that even minor structural differences can have drastic effects on protein interactions. Molecular docking insights further substantiated these observations, revealing the importance of the xanthene scaffold for AChE-binding and the aryl R2 moiety for BChE interactions. Notably, some compounds demonstrated dual enzyme targeting, emphasizing their interactions could be exploited for developing monotherapies against cholinesterase-associated neurodegenerative afflictions like AD. Collectively, these findings suggest that xanthene-based thiosemicarbazones are a promising and highly accessible scaffold that deserve further investigative exploration in the cholinesterase inhibitor therapeutic landscape.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saira Naseem
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Samra Khan
- Department of Chemistry and Biochemistry, University of Windsor, Canada
| | - Safdar Hussain
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Muhammad Ashraf
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
- Department of Pharmaceutical & Medicinal Chemistry, Universitat Bonn, Bonn, Germany
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, Canada
| |
Collapse
|
4
|
Molecular and Structural Analysis of Specific Mutations from Saudi Isolates of SARS-CoV-2 RNA-Dependent RNA Polymerase and their Implications on Protein Structure and Drug-Protein Binding. Molecules 2022; 27:molecules27196475. [PMID: 36235011 PMCID: PMC9573158 DOI: 10.3390/molecules27196475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/09/2022] Open
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has stressed the global health system to a significant level, which has not only resulted in high morbidity and mortality but also poses a threat for future pandemics. This situation warrants efforts to develop novel therapeutics to manage SARS-CoV-2 in specific and other emerging viruses in general. This study focuses on SARS-CoV2 RNA-dependent RNA polymerase (RdRp) mutations collected from Saudi Arabia and their impact on protein structure and function. The Saudi SARS-CoV-2 RdRp sequences were compared with the reference Wuhan, China RdRp using a variety of computational and biophysics-based approaches. The results revealed that three mutations-A97V, P323I and Y606C-may affect protein stability, and hence the relationship of protein structure to function. The apo wild RdRp is more dynamically stable with compact secondary structure elements compared to the mutants. Further, the wild type showed stable conformational dynamics and interaction network to remdesivir. The net binding energy of wild-type RdRp with remdesivir is -50.76 kcal/mol, which is more stable than the mutants. The findings of the current study might deliver useful information regarding therapeutic development against the mutant RdRp, which may further furnish our understanding of SARS-CoV-2 biology.
Collapse
|
5
|
Alamri MA, Mirza MU, Adeel MM, Ashfaq UA, Tahir ul Qamar M, Shahid F, Ahmad S, Alatawi EA, Albalawi GM, Allemailem KS, Almatroudi A. Structural Elucidation of Rift Valley Fever Virus L Protein towards the Discovery of Its Potential Inhibitors. Pharmaceuticals (Basel) 2022; 15:659. [PMID: 35745579 PMCID: PMC9228520 DOI: 10.3390/ph15060659] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/17/2022] Open
Abstract
Rift valley fever virus (RVFV) is the causative agent of a viral zoonosis that causes a significant clinical burden in domestic and wild ruminants. Major outbreaks of the virus occur in livestock, and contaminated animal products or arthropod vectors can transmit the virus to humans. The viral RNA-dependent RNA polymerase (RdRp; L protein) of the RVFV is responsible for viral replication and is thus an appealing drug target because no effective and specific vaccine against this virus is available. The current study reported the structural elucidation of the RVFV-L protein by in-depth homology modeling since no crystal structure is available yet. The inhibitory binding modes of known potent L protein inhibitors were analyzed. Based on the results, further molecular docking-based virtual screening of Selleckchem Nucleoside Analogue Library (156 compounds) was performed to find potential new inhibitors against the RVFV L protein. ADME (Absorption, Distribution, Metabolism, and Excretion) and toxicity analysis of these compounds was also performed. Besides, the binding mechanism and stability of identified compounds were confirmed by a 50 ns molecular dynamic (MD) simulation followed by MM/PBSA binding free energy calculations. Homology modeling determined a stable multi-domain structure of L protein. An analysis of known L protein inhibitors, including Monensin, Mycophenolic acid, and Ribavirin, provide insights into the binding mechanism and reveals key residues of the L protein binding pocket. The screening results revealed that the top three compounds, A-317491, Khasianine, and VER155008, exhibited a high affinity at the L protein binding pocket. ADME analysis revealed good pharmacodynamics and pharmacokinetic profiles of these compounds. Furthermore, MD simulation and binding free energy analysis endorsed the binding stability of potential compounds with L protein. In a nutshell, the present study determined potential compounds that may aid in the rational design of novel inhibitors of the RVFV L protein as anti-RVFV drugs.
Collapse
Affiliation(s)
- Mubarak A. Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia;
| | - Muhammad Usman Mirza
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada;
| | - Muhammad Muzammal Adeel
- 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China;
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (U.A.A.); (F.S.)
| | - Muhammad Tahir ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (U.A.A.); (F.S.)
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (U.A.A.); (F.S.)
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan;
| | - Eid A. Alatawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Ghadah M. Albalawi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (G.M.A.); (A.A.)
- Department of Laboratory and Blood Bank, King Fahd Specialist Hospital, Tabuk 47717, Saudi Arabia
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (G.M.A.); (A.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (G.M.A.); (A.A.)
| |
Collapse
|
6
|
Mirza MU, Alanko I, Vanmeert M, Muzzarelli KM, Salo-Ahen OMH, Abdullah I, Kovari IA, Claes S, De Jonghe S, Schols D, Schinazi RF, Kovari LC, Trant JF, Ahmad S, Froeyen M. The discovery of Zika virus NS2B-NS3 inhibitors with antiviral activity via an integrated virtual screening approach. Eur J Pharm Sci 2022; 175:106220. [PMID: 35618201 DOI: 10.1016/j.ejps.2022.106220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 11/15/2022]
Abstract
With expanding recent outbreaks and a lack of treatment options, the Zika virus (ZIKV) poses a severe health concern. The availability of ZIKV NS2B-NS3 co-crystallized structures paved the way for rational drug discovery. A computer-aided structure-based approach was used to screen a diverse library of compounds against ZIKV NS2B-NS3 protease. The top hits were selected based on various binding free energy calculations followed by per-residue decomposition analysis. The selected hits were then evaluated for their biological potential with ZIKV protease inhibition assay and antiviral activity. Among 26 selected compounds, 8 compounds showed promising activity against ZIKV protease with a percentage inhibition of greater than 25 and 3 compounds displayed ∼50% at 10 µM, which indicates an enrichment rate of approximately 36% (threshold IC50 < 10 µM) in the ZIKV-NS2B-NS3 protease inhibition assay. Of these, only one compound (23) produced whole-cell anti-ZIKV activity, and the binding mode of 23 was extensively analyzed through long-run molecular dynamics simulations. The current study provides a promising starting point for the further development of novel compounds against ZIKV.
Collapse
Affiliation(s)
- Muhammad Usman Mirza
- KU Leuven, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, Medicinal Chemistry, Herestraat 49, box 1041, Leuven 3000, Belgium; Department of Chemistry and Biochemistry, University of Windsor, Windsor N9B 3P4, ON, Canada
| | - Ida Alanko
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, FI-20520 Turku, Finland; Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, FI-20520 Turku, Finland
| | - Michiel Vanmeert
- KU Leuven, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, Medicinal Chemistry, Herestraat 49, box 1041, Leuven 3000, Belgium
| | - Kendall M Muzzarelli
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - Outi M H Salo-Ahen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, FI-20520 Turku, Finland; Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, FI-20520 Turku, Finland
| | - Iskandar Abdullah
- Drug Design Development Research Group, Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Iulia A Kovari
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - Sandra Claes
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Herestraat 49, box 1043, Leuven, Belgium
| | - Steven De Jonghe
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Herestraat 49, box 1043, Leuven, Belgium
| | - Dominique Schols
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Herestraat 49, box 1043, Leuven, Belgium
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta 30322, GA, USA
| | - Ladislau C Kovari
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, Windsor N9B 3P4, ON, Canada
| | - Sarfraz Ahmad
- Drug Design Development Research Group, Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Matheus Froeyen
- KU Leuven, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, Medicinal Chemistry, Herestraat 49, box 1041, Leuven 3000, Belgium.
| |
Collapse
|
7
|
García-Ariza LL, Rocha-Roa C, Padilla-Sanabria L, Castaño-Osorio JC. Virtual Screening of Drug-Like Compounds as Potential Inhibitors of the Dengue Virus NS5 Protein. Front Chem 2022; 10:637266. [PMID: 35223766 PMCID: PMC8867075 DOI: 10.3389/fchem.2022.637266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Dengue virus (DENV) is the causative agent of dengue fever. Annually, there are about 400 million new cases of dengue worldwide, and so far there is no specific treatment against this disease. The NS5 protein is the largest and most conserved viral protein among flaviviruses and is considered a therapeutic target of great interest. This study aims to search drug-like compounds for possible inhibitors of the NS5 protein in the four serotypes of DENV. Using a virtual screening from a ∼642,759-compound database, we suggest 18 compounds with NS5 binding and highlight the best compound per region, in the methyltransferase and RNA-dependent RNA polymerase domains. These compounds interact mainly with the amino acids of the catalytic sites and/or are involved in processes of protein activity. The identified compounds presented physicochemical and pharmacological properties of interest for their use as possible drugs; furthermore, we found that some of these compounds do not affect cell viability in Huh-7; therefore, we suggest evaluating these compounds in vitro as candidates in future research.
Collapse
Affiliation(s)
- Leidy L. García-Ariza
- Grupo de Inmunología Molecular, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
- *Correspondence: Leidy L. García-Ariza,
| | - Cristian Rocha-Roa
- Grupo de Parasitología Molecular, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
- Biophysics of Tropical Diseases, Max Planck Tandem Group, Universidad de Antioquia, Medellín, Colombia
| | - Leonardo Padilla-Sanabria
- Grupo de Inmunología Molecular, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
| | - Jhon C. Castaño-Osorio
- Grupo de Inmunología Molecular, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
| |
Collapse
|
8
|
Matsuno K, Saijo M. [Crimean-Congo hemorrhagic fever]. Uirusu 2022; 72:19-30. [PMID: 37899226 DOI: 10.2222/jsv.72.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is an acute febrile illness with a high case fatality rate caused by the infection with Crimean-Congo hemorrhagic fever virus (CCHFV). The disease is endemic to a wide regions from the African continent to Asia through Europe. CCHFV is maintained in nature between Hyalomma species ticks and some species of animals. Humans are infected with CCHFV from CCHFV-positive tick bite or through a close contact with viremic animals in clucling hum am patients with CCHF. The CCHF-endemic regions depend on the distribution of the species of ticks such as Hyalomma species ticks, main vectors for CCHFV. There have been no confirmed cases of CCHF patients in Japan so far. CCHF is one of the zoonotic virus infections. Main clinical signs of the disease in humans are fever with nonspecific symptoms, and hemorrhage and deterioration in consciousness appear in severe cases. CCHF is classified in the disease category of viral hemorrhagic fevers, which include ebolavirus disease. Viral tick-borne diseases including tick-borne encephalitis, severe fever with thrombocytopenia syndrome, and Yezo virus infection, which has recently been discovered as a novel bunyavirus infection in Hokkaido, Japan, are becoming major concerns for public health in Japan. Trends of CCHF in terms of epidemiology should closely be monitored.
Collapse
Affiliation(s)
- Keita Matsuno
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University
- One Health Research Center, Hokkaido University
| | - Masayuki Saijo
- Sapporo City Public Health Office
- National Institute of Infectious Diseases
| |
Collapse
|
9
|
Dai S, Deng F, Wang H, Ning Y. Crimean-Congo Hemorrhagic Fever Virus: Current Advances and Future Prospects of Antiviral Strategies. Viruses 2021; 13:v13071195. [PMID: 34206476 PMCID: PMC8310003 DOI: 10.3390/v13071195] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 02/03/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a widespread, tick-borne pathogen that causes Crimean-Congo hemorrhagic fever (CCHF) with high morbidity and mortality. CCHFV is transmitted to humans through tick bites or direct contact with patients or infected animals with viremia. Currently, climate change and globalization have increased the transmission risk of this biosafety level (BSL)-4 virus. The treatment options of CCHFV infection remain limited and there is no FDA-approved vaccine or specific antivirals, which urges the identification of potential therapeutic targets and the design of CCHF therapies with greater effort. In this article, we discuss the current progress and some future directions in the development of antiviral strategies against CCHFV.
Collapse
Affiliation(s)
- Shiyu Dai
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
| | - Fei Deng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Correspondence: (F.D.); (H.W.); (Y.N.); Tel./Fax: +86-27-8719-8465 (F.D.); +86-27-8719-9353 (H.W.); +86-27-8719-7200 (Y.N.)
| | - Hualin Wang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Correspondence: (F.D.); (H.W.); (Y.N.); Tel./Fax: +86-27-8719-8465 (F.D.); +86-27-8719-9353 (H.W.); +86-27-8719-7200 (Y.N.)
| | - Yunjia Ning
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Correspondence: (F.D.); (H.W.); (Y.N.); Tel./Fax: +86-27-8719-8465 (F.D.); +86-27-8719-9353 (H.W.); +86-27-8719-7200 (Y.N.)
| |
Collapse
|
10
|
Tahir Ul Qamar M, Ismail S, Ahmad S, Mirza MU, Abbasi SW, Ashfaq UA, Chen LL. Development of a Novel Multi-Epitope Vaccine Against Crimean-Congo Hemorrhagic Fever Virus: An Integrated Reverse Vaccinology, Vaccine Informatics and Biophysics Approach. Front Immunol 2021; 12:669812. [PMID: 34220816 PMCID: PMC8242340 DOI: 10.3389/fimmu.2021.669812] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a highly severe and virulent viral disease of zoonotic origin, caused by a tick-born CCHF virus (CCHFV). The virus is endemic in many countries and has a mortality rate between 10% and 40%. As there is no licensed vaccine or therapeutic options available to treat CCHF, the present study was designed to focus on application of modern computational approaches to propose a multi-epitope vaccine (MEV) expressing antigenic determinants prioritized from the CCHFV genome. Integrated computational analyses revealed the presence of 9 immunodominant epitopes from Nucleoprotein (N), RNA dependent RNA polymerase (RdRp), Glycoprotein N (Gn/G2), and Glycoprotein C (Gc/G1). Together these epitopes were observed to cover 99.74% of the world populations. The epitopes demonstrated excellent binding affinity for the B- and T-cell reference set of alleles, the high antigenic potential, non-allergenic nature, excellent solubility, zero percent toxicity and interferon-gamma induction potential. The epitopes were engineered into an MEV through suitable linkers and adjuvating with an appropriate adjuvant molecule. The recombinant vaccine sequence revealed all favorable physicochemical properties allowing the ease of experimental analysis in vivo and in vitro. The vaccine 3D structure was established ab initio. Furthermore, the vaccine displayed excellent binding affinity for critical innate immune receptors: TLR2 (-14.33 kcal/mol) and TLR3 (-6.95 kcal/mol). Vaccine binding with these receptors was dynamically analyzed in terms of complex stability and interaction energetics. Finally, we speculate the vaccine sequence reported here has excellent potential to evoke protective and specific immune responses subject to evaluation of downstream experimental analysis.
Collapse
MESH Headings
- Animals
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Antigens, Viral/pharmacology
- Computational Biology
- Computer-Aided Design
- Drug Development
- Hemorrhagic Fever Virus, Crimean-Congo/genetics
- Hemorrhagic Fever Virus, Crimean-Congo/immunology
- Hemorrhagic Fever, Crimean/immunology
- Hemorrhagic Fever, Crimean/prevention & control
- Hemorrhagic Fever, Crimean/virology
- Immunodominant Epitopes
- Immunogenicity, Vaccine
- Molecular Docking Simulation
- Molecular Dynamics Simulation
- Ticks/virology
- Toll-Like Receptor 2/metabolism
- Toll-Like Receptor 3/metabolism
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/metabolism
- Vaccines, DNA/pharmacology
- Vaccinology
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Viral Vaccines/metabolism
- Viral Vaccines/pharmacology
Collapse
Affiliation(s)
| | - Saba Ismail
- NUMS Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Sajjad Ahmad
- Department of Microbiology and Pharmacy, Abasyn University, Peshawar, Pakistan
| | - Muhammad Usman Mirza
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Sumra Wajid Abbasi
- NUMS Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ling-Ling Chen
- College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
11
|
Naheed N, Maher S, Saleem F, Khan A, Wadood A, Rasheed S, Choudhary MI, Froeyen M, Abdullah I, Mirza MU, Trant JF, Ahmad S. New isolate from Salvinia molesta with antioxidant and urease inhibitory activity. Drug Dev Res 2021; 82:1169-1181. [PMID: 33983647 DOI: 10.1002/ddr.21831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 11/10/2022]
Abstract
Urease plays a significant role in the pathogenesis of urolithiasis pyelonephritis, urinary catheter encrustation, hepatic coma, hepatic encephalopathy, and peptic acid duodenal ulcers. Salvinia molesta was explored to identify new bioactive compounds with particular emphasis on urease inhibitors. The aqueous methanol extract was fractionated using solvents of increasing polarity. A series of column chromatography and later HPLC were performed on butanol extract. The structures of the resulting pure compounds were resolved using NMR (1D and 2D), infrared, and mass spectroscopy. The novel isolate was evaluated for antioxidant activity (using DPPH, superoxide anion radical scavenging, oxidative burst, and Fe+2 chelation assays), anti-glycation behavior, anticancer activity, carbonic anhydrase inhibition, phosphodiesterase inhibition, and urease inhibition. One new glucopyranose derivative 6'-O-(3,4-dihydroxybenzoyl)-4'-O-(4-hydroxybenzoyl)-α/β-D-glucopyranoside (1) and four known glycosides were identified. Glycoside 1 demonstrated promising antioxidant potential with IC50 values of 48.2 ± 0.3, 60.3 ± 0.6, and 42.1 ± 1.8 μM against DPPH, superoxide radical, and oxidative burst, respectively. Its IC50 in the Jack bean urease inhibition assay was 99.1 ± 0.8 μM. The mechanism-based kinetic studies presented that compound 1 is a mixed-type inhibitor of urease with a Ki value of 91.8 ± 0.1 μM. Finally, molecular dynamic simulations exploring the binding mode of compound 1 with urease provided quantitative agreement between estimated binding free energies and the experimental results. The studies corroborate the use of compound 1 as a lead for QSAR studies as an antioxidant and urease inhibitor. Moreover, it needs to be further evaluated through the animal model, that is, in vivo or tissue culture-based ex-vivo studies, to establish their therapeutic potential against oxidative stress phosphodiesterase-II and urease-induced pathologies.
Collapse
Affiliation(s)
- Nadra Naheed
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Saima Maher
- Department of Chemistry, Sardar Bahadur Khan Women University, Quetta, Pakistan
| | - Farooq Saleem
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Ajmal Khan
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.,Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Shankar Campus, Abdul Wali Khan University, Mardan, Pakistan
| | - Saima Rasheed
- Department of Chemistry, Sardar Bahadur Khan Women University, Quetta, Pakistan
| | - M Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Matheus Froeyen
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, Leuven, Belgium
| | - Iskandar Abdullah
- Drug Design Development Research Group, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Muhammad Usman Mirza
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Sarfraz Ahmad
- Drug Design Development Research Group, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Muhseen ZT, Ahmad S, Li G. Structural basis of UDP-N-acetylglucosamine pyrophosphorylase and identification of promising terpenes to control Aedes aegypti. Colloids Surf B Biointerfaces 2021; 204:111820. [PMID: 33964525 DOI: 10.1016/j.colsurfb.2021.111820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
According to the world health organization (WHO) 2020 report, vector borne diseases account for 17 % of all infections with reported 700 thousand death each year. They are of considerable importance to health professionals as they are posing a serious health threat and include dengue fever, Zika fever, chikungunya, yellow fever, and other disease agents. Aedes aegypti serve as a vector for transmitting several of these tropical fevers. In the present study, UDP-N-acetylglucosamine pyrophosphorylase enzyme (Aa-UAP) of A. aegypti which plays a significant contribution in chitin metabolism is targeted with natural terpenes to propose an eco-friendly and novel candidates for the development of new insecticides. The three dimensional Aa-UAP structure was constructed via a comparative homology approach and validated, followed by structure-based virtual screening against 1000 terpenes collected from natural MDP3 and NPACT databases. Top hits were subjected to molecular dynamics (MD) simulations and binding free energies analysis to elucidate complex intermolecular stability and affinity over simulated time. The results demonstrated that Aa-UAP possesses a homodimer state and its active site residues are well conserved. Three compounds (NPACT00138, NPACT00452, and NPACT00839) were prioritized as they are establishing conserved and stable interactions with the active binding-site residues of Aa-UAP. Conclusively, the reported Aa-UAP specific terpenes could serve as promising leads in order to develop potential insecticides. Importantly, the FDA approved drug NPACT00839 (Paclitaxel) could be used further in the fast-track experimental testing pipeline for biological optimization.
Collapse
Affiliation(s)
- Ziyad Tariq Muhseen
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an, China; School of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Guanglin Li
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an, China; School of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
13
|
Muhseen ZT, Hameed AR, Al-Hasani HMH, Tahir Ul Qamar M, Li G. Promising terpenes as SARS-CoV-2 spike receptor-binding domain (RBD) attachment inhibitors to the human ACE2 receptor: Integrated computational approach. J Mol Liq 2020; 320:114493. [PMID: 33041407 PMCID: PMC7538380 DOI: 10.1016/j.molliq.2020.114493] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 01/01/2023]
Abstract
The spike protein receptor binding domain (S-RBD) is a necessary corona-viral protein for binding and entry of coronaviruses (COVs) into the host cells. Hence, it has emerged as an attractive antiviral drug target. Therefore, present study was aimed to target severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S-RBD with novel bioactive compounds to retrieve potential candidates that could serve as anti-coronavirus disease 2019 (COVID-19) drugs. In this paper, computational approaches were employed, especially the structure-based virtual screening followed by molecular dynamics (MD) simulation as well as binding energy analysis for the computational identification of specific terpenes from the medicinal plants, which can block SARS-CoV-2 S-RBD binding to Human angiotensin-converting enzyme 2 (H-ACE2) and can act as potent anti-COVID-19 drugs after further advancements. The screening of focused terpenes inhibitors database composed of ~1000 compounds with reported therapeutic potential resulted in the identification of three candidate compounds, NPACT01552, NPACT01557 and NPACT00631. These three compounds established conserved interactions, which were further explored through all-atom MD simulations, free energy calculations, and a residual energy contribution estimated by MM-PB(GB)SA method. All these compounds showed stable conformation and interacted well with the hot-spot residues of SARS-CoV-2 S-RBD. Conclusively, the reported SARS-CoV-2 S-RBD specific terpenes could serve as seeds for developing potent anti-COVID-19 drugs. Importantly, the experimentally tested glycyrrhizin (NPACT00631) against SARS-CoV could be used further in the fast-track drug development process to help curb COVID-19.
Collapse
Affiliation(s)
- Ziyad Tariq Muhseen
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an, China
- School of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Alaa R Hameed
- Department of Medical Laboratory Techniques, School of Life Sciences, Dijlah University College, Baghdad, Iraq
| | - Halah M H Al-Hasani
- Department of Biotechnology, College of Science, University of Diyala, Baqubah, Iraq
| | | | - Guanglin Li
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an, China
- School of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
14
|
Alamri MA, Tahir ul Qamar M, Mirza MU, Alqahtani SM, Froeyen M, Chen LL. Discovery of human coronaviruses pan-papain-like protease inhibitors using computational approaches. J Pharm Anal 2020; 10:546-559. [PMID: 32874702 PMCID: PMC7453225 DOI: 10.1016/j.jpha.2020.08.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022] Open
Abstract
The papain-like protease (PLpro) is vital for the replication of coronaviruses (CoVs), as well as for escaping innate-immune responses of the host. Hence, it has emerged as an attractive antiviral drug-target. In this study, computational approaches were employed, mainly the structure-based virtual screening coupled with all-atom molecular dynamics (MD) simulations to computationally identify specific inhibitors of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PLpro, which can be further developed as potential pan-PLpro based broad-spectrum antiviral drugs. The sequence, structure, and functional conserveness of most deadly human CoVs PLpro were explored, and it was revealed that functionally important catalytic triad residues are well conserved among SARS-CoV, SARS-CoV-2, and middle east respiratory syndrome coronavirus (MERS-CoV). The subsequent screening of a focused protease inhibitors database composed of ∼7,000 compounds resulted in the identification of three candidate compounds, ADM_13083841, LMG_15521745, and SYN_15517940. These three compounds established conserved interactions which were further explored through MD simulations, free energy calculations, and residual energy contribution estimated by MM-PB(GB)SA method. All these compounds showed stable conformation and interacted well with the active residues of SARS-CoV-2 PLpro, and showed consistent interaction profile with SARS-CoV PLpro and MERS-CoV PLpro as well. Conclusively, the reported SARS-CoV-2 PLpro specific compounds could serve as seeds for developing potent pan-PLpro based broad-spectrum antiviral drugs against deadly human coronaviruses. Moreover, the presented information related to binding site residual energy contribution could lead to further optimization of these compounds.
Collapse
Affiliation(s)
- Mubarak A. Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkarj, Saudi Arabia
| | | | - Muhammad Usman Mirza
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000, Leuven, Belgium
| | - Safar M. Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkarj, Saudi Arabia
| | - Matheus Froeyen
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000, Leuven, Belgium
| | - Ling-Ling Chen
- College of Life Science and Technology, Guangxi University, Nanning, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
15
|
Mirza MU, Ahmad S, Abdullah I, Froeyen M. Identification of novel human USP2 inhibitor and its putative role in treatment of COVID-19 by inhibiting SARS-CoV-2 papain-like (PLpro) protease. Comput Biol Chem 2020; 89:107376. [PMID: 32979815 PMCID: PMC7487165 DOI: 10.1016/j.compbiolchem.2020.107376] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Human ubiquitin carboxyl-terminal hydrolase-2 (USP2) inhibitors, such as thiopurine analogs, have been reported to inhibit SARS-CoV papain-like proteases (PLpro). The PLpro have significant functional implications in the innate immune response during SARS-CoV-2 infection and considered an important antiviral target. Both proteases share strikingly similar USP fold with right-handed thumb-palm-fingers structural scaffold and conserved catalytic triad Cys-His-Asp/Asn. In this urgency situation of COVID-19 outbreak, there is a lack of in-vitro facilities readily available to test SARS-CoV-2 inhibitors in whole-cell assays. Therefore, we adopted an alternate route to identify potential USP2 inhibitor through integrated in-silico efforts. After an extensive virtual screening protocol, the best compounds were selected and tested. The compound Z93 showed significant IC50 value against Jurkat (9.67 μM) and MOTL-4 cells (11.8 μM). The binding mode of Z93 was extensively analyzed through molecular docking, followed by MD simulations, and molecular interactions were compared with SARS-CoV-2. The relative binding poses of Z93 fitted well in the binding site of both proteases and showed consensus π-π stacking and H-bond interactions with histidine and aspartate/asparagine residues of the catalytic triad. These results led us to speculate that compound Z93 might be the first potential chemical lead against SARS-CoV-2 PLpro, which warrants in-vitro evaluations.
Collapse
Affiliation(s)
- Muhammad Usman Mirza
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000, Leuven, Belgium
| | - Sarfraz Ahmad
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Iskandar Abdullah
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Matheus Froeyen
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
16
|
Anwar F, Saleem U, Ahmad B, Ashraf M, Rehman AU, Froeyen M, Kee LY, Abdullah I, Mirza MU, Ahmad S. New naphthalene derivative for cost-effective AChE inhibitors for Alzheimer’s treatment: In silico identification, in vitro and in vivo validation. Comput Biol Chem 2020; 89:107378. [DOI: 10.1016/j.compbiolchem.2020.107378] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/16/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
|
17
|
Singh RK, Yadav BS, Mohapatra TM. Molecular targets and system biology approaches for drug repurposing against SARS-CoV-2. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2020; 44:193. [PMID: 33230386 PMCID: PMC7675379 DOI: 10.1186/s42269-020-00444-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND COVID-19, a pandemic declared by WHO, has infected about 39.5 million and killed about 1.1 million people throughout the world. There is the urgent need of more studies to identify the novel drug targets and the drug candidates against it to handle the situation. MAIN BODY To virtually screen various drugs against SARS-CoV-2, the scientists need the detail information about the various drug targets identified till date. The present review provides the information about almost all the drug targets, including structural and non-structural proteins of virus as well as host cell surface receptors, that can be used for virtual screening of drugs. Moreover, this review also focuses on the different network analysis tools that have been used for the identification of new drug targets and candidate repurposable drugs against SARS-CoV-2. CONCLUSION This review provides important insights of various drug targets and the network analysis tools to young bioinformaticians and will help in creating pace to the drug repurposing strategy for COVID-19 disease.
Collapse
Affiliation(s)
- Rahul Kunwar Singh
- Department of Microbiology School of Life Sciences, H.N.B. Garhwal University, Srinagar (Garhwal), Uttarakhand 246174 India
| | | | - Tribhuvan Mohan Mohapatra
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
18
|
Rehman HM, Mirza MU, Ahmad MA, Saleem M, Froeyen M, Ahmad S, Gul R, Alghamdi HA, Aslam MS, Sajjad M, Bhinder MA. A Putative Prophylactic Solution for COVID-19: Development of Novel Multiepitope Vaccine Candidate against SARS-COV-2 by Comprehensive Immunoinformatic and Molecular Modelling Approach. BIOLOGY 2020; 9:E296. [PMID: 32962156 PMCID: PMC7563440 DOI: 10.3390/biology9090296] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022]
Abstract
The outbreak of 2019-novel coronavirus (SARS-CoV-2) that causes severe respiratory infection (COVID-19) has spread in China, and the World Health Organization has declared it a pandemic. However, no approved drug or vaccines are available, and treatment is mainly supportive and through a few repurposed drugs. The urgency of the situation requires the development of SARS-CoV-2-based vaccines. Immunoinformatic and molecular modelling are time-efficient methods that are generally used to accelerate the discovery and design of the candidate peptides for vaccine development. In recent years, the use of multiepitope vaccines has proved to be a promising immunization strategy against viruses and pathogens, thus inducing more comprehensive protective immunity. The current study demonstrated a comprehensive in silico strategy to design stable multiepitope vaccine construct (MVC) from B-cell and T-cell epitopes of essential SARS-CoV-2 proteins with the help of adjuvants and linkers. The integrated molecular dynamics simulations analysis revealed the stability of MVC and its interaction with human Toll-like receptors (TLRs), which trigger an innate and adaptive immune response. Later, the in silico cloning in a known pET28a vector system also estimated the possibility of MVC expression in Escherichia coli. Despite that this study lacks validation of this vaccine construct in terms of its efficacy, the current integrated strategy encompasses the initial multiple epitope vaccine design concepts. After validation, this MVC can be present as a better prophylactic solution against COVID-19.
Collapse
Affiliation(s)
- Hafiz Muzzammel Rehman
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Punjab, Pakistan; (H.M.R.); (M.S.A.)
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore 54590, Punjab, Pakistan; (M.A.A.); (M.A.B.)
| | - Muhammad Usman Mirza
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000 Leuven, Belgium; (M.U.M.); (M.F.)
| | - Mian Azhar Ahmad
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore 54590, Punjab, Pakistan; (M.A.A.); (M.A.B.)
- Department of Health, Government of the Punjab, Lahore 54590, Punjab, Pakistan
| | - Mahjabeen Saleem
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Punjab, Pakistan; (H.M.R.); (M.S.A.)
| | - Matheus Froeyen
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000 Leuven, Belgium; (M.U.M.); (M.F.)
| | - Sarfraz Ahmad
- Drug Design and Development Research Group (DDDRG), Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Roquyya Gul
- Faculty of Life Sciences, Gulab Devi Educational Complex, Lahore 54590, Punjab, Pakistan;
| | - Huda Ahmed Alghamdi
- Department of Biology, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia;
| | - Muhammad Shahbaz Aslam
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Punjab, Pakistan; (H.M.R.); (M.S.A.)
| | - Muhammad Sajjad
- School of Biological Sciences, University of the Punjab, Quaid e Azam Campus, Lahore 54590, Punjab, Pakistan;
| | - Munir Ahmad Bhinder
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore 54590, Punjab, Pakistan; (M.A.A.); (M.A.B.)
| |
Collapse
|
19
|
Mirza MU, Saadabadi A, Vanmeert M, Salo-Ahen OMH, Abdullah I, Claes S, De Jonghe S, Schols D, Ahmad S, Froeyen M. Discovery of HIV entry inhibitors via a hybrid CXCR4 and CCR5 receptor pharmacophore-based virtual screening approach. Eur J Pharm Sci 2020; 155:105537. [PMID: 32890663 PMCID: PMC7467125 DOI: 10.1016/j.ejps.2020.105537] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/10/2020] [Accepted: 08/30/2020] [Indexed: 12/30/2022]
Abstract
Chemokine receptors are key regulators of cell migration in terms of immunity and inflammation. Among these, CCR5 and CXCR4 play pivotal roles in cancer metastasis and HIV-1 transmission and infection. They act as essential co-receptors for HIV and furnish a route to the cell entry. In particular, inhibition of either CCR5 or CXCR4 leads very often the virus to shift to a more virulent dual-tropic strain. Therefore, dual receptor inhibition might improve the therapeutic strategies against HIV. In this study, we aimed to discover selective CCR5, CXCR4, and dual CCR5/CXCR4 antagonists using both receptor- and ligand-based computational methods. We employed this approach to fully incorporate the interaction attributes of the binding pocket together with molecular dynamics (MD) simulations and binding free energy calculations. The best hits were evaluated for their anti-HIV-1 activity against CXCR4- and CCR5-specific NL4.3 and BaL strains. Moreover, the Ca2+ mobilization assay was used to evaluate their antagonistic activity. From the 27 tested compounds, three were identified as inhibitors: compounds 27 (CCR5), 6 (CXCR4) and 3 (dual) with IC50 values ranging from 10.64 to 64.56 μM. The binding mode analysis suggests that the active compounds form a salt bridge with the glutamates and π-stacking interactions with the aromatic side chains binding site residues of the respective co-receptor. The presented hierarchical virtual screening approach provides essential aspects in identifying potential antagonists in terms of selectivity against a specific co-receptor. The compounds having multiple heterocyclic nitrogen atoms proved to be relatively more specific towards CXCR4 inhibition as compared to CCR5. The identified compounds serve as a starting point for further development of HIV entry inhibitors through synthesis and quantitative structure-activity relationship studies.
Collapse
Affiliation(s)
- Muhammad Usman Mirza
- Medicinal Chemistry, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| | - Atefeh Saadabadi
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, FI-20520 Turku, Finland; Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, FI-20520 Turku, Finland
| | - Michiel Vanmeert
- Medicinal Chemistry, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| | - Outi M H Salo-Ahen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, FI-20520 Turku, Finland; Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, FI-20520 Turku, Finland
| | - Iskandar Abdullah
- Department of Chemistry, Faculty of Sciences, University Malaya, Kuala Lumpur 59100, Malaysia
| | - Sandra Claes
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| | - Sarfraz Ahmad
- Department of Chemistry, Faculty of Sciences, University Malaya, Kuala Lumpur 59100, Malaysia
| | - Matheus Froeyen
- Medicinal Chemistry, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
20
|
Enhanced Thermostability and Enzymatic Activity of Cel6A Variants from Thermobifida fusca by Empirical Domain Engineering (Short Title: Domain Engineering of Cel6A). BIOLOGY 2020; 9:biology9080214. [PMID: 32784797 PMCID: PMC7464639 DOI: 10.3390/biology9080214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023]
Abstract
Cellulases are a set of lignocellulolytic enzymes, capable of producing eco-friendly low-cost renewable bioethanol. However, low stability and hydrolytic activity limit their wide-scale applicability at the industrial scale. In this work, we report the domain engineering of endoglucanase (Cel6A) of Thermobifida fusca to improve their catalytic activity and thermal stability. Later, enzymatic activity and thermostability of the most efficient variant named as Cel6A.CBC was analyzed by molecular dynamics simulations. This variant demonstrated profound activity against soluble and insoluble cellulosic substrates like filter paper, alkali-treated bagasse, regenerated amorphous cellulose (RAC), and bacterial microcrystalline cellulose. The variant Cel6A.CBC showed the highest catalysis of carboxymethyl cellulose (CMC) and other related insoluble substrates at a pH of 6.0 and a temperature of 60 °C. Furthermore, a sound rationale was observed between experimental findings and molecular modeling of Cel6A.CBC which revealed thermostability of Cel6A.CBC at 26.85, 60.85, and 74.85 °C as well as structural flexibility at 126.85 °C. Therefore, a thermostable derivative of Cel6A engineered in the present work has enhanced biological performance and can be a useful construct for the mass production of bioethanol from plant biomass.
Collapse
|
21
|
Mirza MU, Froeyen M. Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase. J Pharm Anal 2020; 10:320-328. [PMID: 32346490 PMCID: PMC7187848 DOI: 10.1016/j.jpha.2020.04.008] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 01/07/2023] Open
Abstract
Recently emerged SARS-CoV-2 caused a major outbreak of coronavirus disease 2019 (COVID-19) and instigated a widespread fear, threatening global health safety. To date, no licensed antiviral drugs or vaccines are available against COVID-19 although several clinical trials are under way to test possible therapies. During this urgent situation, computational drug discovery methods provide an alternative to tiresome high-throughput screening, particularly in the hit-to-lead-optimization stage. Identification of small molecules that specifically target viral replication apparatus has indicated the highest potential towards antiviral drug discovery. In this work, we present potential compounds that specifically target SARS-CoV-2 vital proteins, including the main protease, Nsp12 RNA polymerase and Nsp13 helicase. An integrative virtual screening and molecular dynamics simulations approach has facilitated the identification of potential binding modes and favourable molecular interaction profile of corresponding compounds. Moreover, the identification of structurally important binding site residues in conserved motifs located inside the active site highlights relative importance of ligand binding based on residual energy decomposition analysis. Although the current study lacks experimental validation, the structural information obtained from this computational study has paved way for the design of targeted inhibitors to combat COVID-19 outbreak.
Collapse
Affiliation(s)
- Muhammad Usman Mirza
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000, Leuven, Belgium
| | - Matheus Froeyen
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000, Leuven, Belgium
| |
Collapse
|
22
|
Khalid H, Landry KB, Ijaz B, Ashfaq UA, Ahmed M, Kanwal A, Froeyen M, Mirza MU. Discovery of novel Hepatitis C virus inhibitor targeting multiple allosteric sites of NS5B polymerase. INFECTION GENETICS AND EVOLUTION 2020; 84:104371. [PMID: 32485331 DOI: 10.1016/j.meegid.2020.104371] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
HCV is a viral infection posing a severe global threat when left untreated progress to end-stage liver disease, including cirrhosis and HCC. The NS5B polymerase of HCV is the most potent target that harbors four allosteric binding sites that could interfere with the HCV infection. We present the discovery of a novel synthetic compound that harbors the potential of NS5B polymerase inhibition. All eight compounds belonging to the benzothiazine family of heterocycles displayed no cellular cytotoxicity in HepG2 cells at nontoxic dose concentration (200 μM). Subsequently, among eight compounds of the series, merely compound 5b exhibited significant inhibition of the expression of the HCV NS5B gene as compared to DMSO control in semi-quantitative PCR. Based on our western blot result, 5b at the range of 50, 100 and 200 μM induced 20, 40, and 70% inhibition of NS5B protein respectively. To estimate the binding potential, 5b was docked at respective allosteric sites followed by molecular dynamics (MD) simulations for a period of 20 ns. In addition, binding free energy calculation by MM-GB/PBSA method revealed a conserved interaction profile of residues lining the allosteric sites in agreement with the reported NS5B co-crystallized inhibitors. The presented results provide important information about a novel compound 5b which may facilitate the the discovery of novel inhibitors that tends to target multiple sites on NS5B polymerase.
Collapse
Affiliation(s)
- Hina Khalid
- Department of Bioinformatics and Biotechnology, Government College University, 38000 Faisalabad, Pakistan
| | - Koloko Brice Landry
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Bushra Ijaz
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, 38000 Faisalabad, Pakistan.
| | - Matloob Ahmed
- Department of Chemistry, Government College University, 38000 Faisalabad, Pakistan
| | - Afshan Kanwal
- Department of Chemistry, Government College University, 38000 Faisalabad, Pakistan
| | - Matheus Froeyen
- Department of Pharmaceutical Sciences, REGA Institute for Medical Research, Medicinal Chemistry, University of Leuven, 3000 Leuven, Belgium
| | - Muhammad Usman Mirza
- Department of Pharmaceutical Sciences, REGA Institute for Medical Research, Medicinal Chemistry, University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
23
|
Introducing of an integrated artificial neural network and Chou's pseudo amino acid composition approach for computational epitope-mapping of Crimean-Congo haemorrhagic fever virus antigens. Int Immunopharmacol 2020; 78:106020. [DOI: 10.1016/j.intimp.2019.106020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/09/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022]
|
24
|
In Vitro Antidiabetic, Anti-Obesity and Antioxidant Analysis of Ocimum basilicum Aerial Biomass and in Silico Molecular Docking Simulations with Alpha-Amylase and Lipase Enzymes. BIOLOGY 2019; 8:biology8040092. [PMID: 31817095 PMCID: PMC6955989 DOI: 10.3390/biology8040092] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/13/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022]
Abstract
The present study explored phytochemicals, porcine pancreatic α-amylase (PPA) and lipase (PPL) inhibitory activities and antioxidant potential of polar and nonpolar extracts of the leaves and flowers of Ocimum basilicum and the in-silico mode of interaction between these enzymes and the major chemical constituents of the herb. The hexane extract (HE) and hydro-ethanolic extract (EE) obtained sequentially were used to estimate PPA and PPL inhibitory and antioxidant activities, total phenolic content (TPC) and total flavonoid content (TFC). Chemical constituents of the essential oils and HE were determined by GC-MS (Gas Chromatography-Mass Spectrometry). For PPA inhibition, IC50 (µg/mL) of the extracts were 0.27-0.37, which were close to 0.24 of acarbose, while for PPL inhibition, IC50 (µg/mL) of the extracts were 278.40-399.65, and that of Orlistat 145.72. The flowers EE was most potent antioxidant followed by leaves EE. The leaves EE had highest TPC and TFC followed of flowers EE. The essential oil of flowers had higher estragole (55%) than linalool (37%), while the essential oil of the leaves had higher linalool (42%) than estragole (38%). The HE of the flowers contained higher estragole (42%) than linalool (23%), while of the HE of the leaves too had higher estragole (65%) than linalool (18%). The in-silico molecular docking study showed linalool and estragole to have considerable PPA and PPL binding potential, which were further investigated through molecular dynamics simulations and binding free energy calculations. The PPA and PPL inhibitory activities of O. basilicum extracts and their notable antioxidant potential propose the herb as a multi-target complimentary medicine for diabetes, obesity and oxidative stress.
Collapse
|