1
|
Krištić J, Lauc G. The importance of IgG glycosylation-What did we learn after analyzing over 100,000 individuals. Immunol Rev 2024. [PMID: 39364834 DOI: 10.1111/imr.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
All four subclasses of immunoglobulin G (IgG) antibodies have glycan structures attached to the protein part of the IgG molecules. Glycans linked to the Fc portion of IgG are found in all IgG antibodies, while about one-fifth of IgG antibodies in plasma also have glycans attached to the Fab portion of IgG. The IgG3 subclass is characterized by more complex glycosylation compared to other IgG subclasses. In this review, we discuss the significant influence that glycans exert on the structural and functional properties of IgG. We provide a comprehensive overview of how the composition of these glycans can affect IgG's effector functions by modulating its interactions with Fcγ receptors and other molecules such as the C1q component of complement, which in turn influence various immune responses triggered by IgG, including antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). In addition, the importance of glycans for the efficacy of therapeutics like monoclonal antibodies and intravenous immunoglobulin (IVIg) therapy is discussed. Moreover, we offer insights into IgG glycosylation characteristics and roles derived from general population, disease-specific, and interventional studies. These studies indicate that IgG glycans are important biomarkers and functional effectors in health and disease.
Collapse
Affiliation(s)
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Beyze A, Larroque C, Le Quintrec M. The role of antibody glycosylation in autoimmune and alloimmune kidney diseases. Nat Rev Nephrol 2024; 20:672-689. [PMID: 38961307 DOI: 10.1038/s41581-024-00850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 07/05/2024]
Abstract
Immunoglobulin glycosylation is a pivotal mechanism that drives the diversification of antibody functions. The composition of the IgG glycome is influenced by environmental factors, genetic traits and inflammatory contexts. Differential IgG glycosylation has been shown to intricately modulate IgG effector functions and has a role in the initiation and progression of various diseases. Analysis of IgG glycosylation is therefore a promising tool for predicting disease severity. Several autoimmune and alloimmune disorders, including critical and potentially life-threatening conditions such as systemic lupus erythematosus, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis and antibody-mediated kidney graft rejection, are driven by immunoglobulin. In certain IgG-driven kidney diseases, including primary membranous nephropathy, IgA nephropathy and lupus nephritis, particular glycome characteristics can enhance in situ complement activation and the recruitment of innate immune cells, resulting in more severe kidney damage. Hypofucosylation, hypogalactosylation and hyposialylation are the most common IgG glycosylation traits identified in these diseases. Modulating IgG glycosylation could therefore be a promising therapeutic strategy for regulating the immune mechanisms that underlie IgG-driven kidney diseases and potentially reduce the burden of immunosuppressive drugs in affected patients.
Collapse
Affiliation(s)
- Anaïs Beyze
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France.
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France.
- University of Montpellier, Montpellier, France.
| | - Christian Larroque
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France
- University of Montpellier, Montpellier, France
| | - Moglie Le Quintrec
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France.
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France.
- University of Montpellier, Montpellier, France.
| |
Collapse
|
3
|
Yang L, Hu M, Shao J. Integration of Gut Mycobiota and Oxidative Stress to Decipher the Roles of C-Type Lectin Receptors in Inflammatory Bowel Diseases. Immunol Invest 2024:1-28. [PMID: 39115960 DOI: 10.1080/08820139.2024.2388164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) and Crohn's disease (CD) are two subtypes of inflammatory bowel disease (IBD) with rapidly increased incidence worldwide. Although multiple factors contribute to the occurrence and progression of IBD, the role of intestinal fungal species (gut mycobiota) in regulating the severity of these conditions has been increasingly recognized. C-type lectin receptors (CLRs) on hematopoietic cells, including Dectin-1, Dectin-2, Dectin-3, Mincle and DC-SIGN, are a group of pattern recognition receptors (PRRs) that primarily recognize fungi and mediate defense responses, such as oxidative stress. Recent studies have demonstrated the indispensable role of CLRs in protecting the colon from intestinal inflammation and mucosal damage. METHODS AND RESULTS This review provides a comprehensive overview of the role of CLRs in the pathogenesis of IBD. Given the significant impact of mycobiota and oxidative stress in IBD, this review also discusses recent advancements in understanding how these factors exacerbate or ameliorate IBD. Furthermore, the latest developments in CLR-guided IBD therapy are examined to highlight the modulation of CLRs in fungal recognition and oxidative burst during the IBD process. CONCLUSION This review emphasizes the importance of CLRs in IBD, offering new perspectives on the etiology and therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Liu Yang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui 230012, P. R. China
| | - Min Hu
- Department of pathology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui, P. R. China
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui 230012, P. R. China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, P. R. China
| |
Collapse
|
4
|
Sherman JD, Karmali V, Kumar B, Simon TW, Bechnak S, Panjwani A, Ciric CR, Wang D, Huerta C, Johnson B, Anderson EJ, Rouphael N, Collins MH, Rostad CA, Azadi P, Scherer EM. Altered spike IgG Fc N-linked glycans are associated with hyperinflammatory state in adult COVID and Multisystem Inflammatory Syndrome in Children. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.14.24310381. [PMID: 39040211 PMCID: PMC11261911 DOI: 10.1101/2024.07.14.24310381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Background Severe COVID and multisystem inflammatory syndrome (MIS-C) are characterized by excessive inflammatory cytokines/chemokines. In adults, disease severity is associated with SARS-CoV-2-specific IgG Fc afucosylation, which induces pro-inflammatory cytokine secretion from innate immune cells. This study aimed to define spike IgG Fc glycosylation following SARS-CoV-2 infection in adults and children and following SARS-CoV-2 vaccination in adults and the relationships between glycan modifications and cytokine/chemokine levels. Methods We analyzed longitudinal (n=146) and cross-sectional (n=49) serum/plasma samples from adult and pediatric COVID patients, MIS-C patients, adult vaccinees, and adult and pediatric healthy controls. We developed methods for characterizing bulk and spike IgG Fc glycosylation by capillary electrophoresis (CE) and measured levels of ten inflammatory cytokines/chemokines by multiplexed ELISA. Results Spike IgG were more afucosylated than bulk IgG during acute adult COVID and MIS-C. We observed an opposite trend following vaccination, but it was not significant. Spike IgG were more galactosylated and sialylated and less bisected than bulk IgG during adult COVID, with similar trends observed during pediatric COVID/MIS-C and following SARS-CoV-2 vaccination. Spike IgG glycosylation changed with time following adult COVID or vaccination. Afucosylated spike IgG exhibited inverse and positive correlations with inflammatory markers in MIS-C and following vaccination, respectively; galactosylated and sialylated spike IgG inversely correlated with pro-inflammatory cytokines in adult COVID and MIS-C; and bisected spike IgG positively correlated with inflammatory cytokines/chemokines in multiple groups. Conclusions We identified previously undescribed relationships between spike IgG glycan modifications and inflammatory cytokines/chemokines that expand our understanding of IgG glycosylation changes that may impact COVID and MIS-C immunopathology.
Collapse
Affiliation(s)
- Jacob D. Sherman
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Vinit Karmali
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Bhoj Kumar
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Trevor W. Simon
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Sarah Bechnak
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Anusha Panjwani
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Caroline R. Ciric
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Dongli Wang
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Chris Huerta
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Brandi Johnson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Evan J. Anderson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Nadine Rouphael
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Matthew H. Collins
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Christina A. Rostad
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Erin M. Scherer
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
5
|
Cyster JG, Wilson PC. Antibody modulation of B cell responses-Incorporating positive and negative feedback. Immunity 2024; 57:1466-1481. [PMID: 38986442 PMCID: PMC11257158 DOI: 10.1016/j.immuni.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
Antibodies are powerful modulators of ongoing and future B cell responses. While the concept of antibody feedback has been appreciated for over a century, the topic has seen a surge in interest due to the evidence that the broadening of antibody responses to SARS-CoV-2 after a third mRNA vaccination is a consequence of antibody feedback. Moreover, the discovery that slow antigen delivery can lead to more robust humoral immunity has put a spotlight on the capacity for early antibodies to augment B cell responses. Here, we review the mechanisms whereby antibody feedback shapes B cell responses, integrating findings in humans and in mouse models. We consider the major influence of epitope masking and the diverse actions of complement and Fc receptors and provide a framework for conceptualizing the ways antigen-specific antibodies may influence B cell responses to any form of antigen, in conditions as diverse as infectious disease, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
| | - Patrick C Wilson
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Damelang T, Brinkhaus M, van Osch TLJ, Schuurman J, Labrijn AF, Rispens T, Vidarsson G. Impact of structural modifications of IgG antibodies on effector functions. Front Immunol 2024; 14:1304365. [PMID: 38259472 PMCID: PMC10800522 DOI: 10.3389/fimmu.2023.1304365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Immunoglobulin G (IgG) antibodies are a critical component of the adaptive immune system, binding to and neutralizing pathogens and other foreign substances. Recent advances in molecular antibody biology and structural protein engineering enabled the modification of IgG antibodies to enhance their therapeutic potential. This review summarizes recent progress in both natural and engineered structural modifications of IgG antibodies, including allotypic variation, glycosylation, Fc engineering, and Fc gamma receptor binding optimization. We discuss the functional consequences of these modifications to highlight their potential for therapeutical applications.
Collapse
Affiliation(s)
- Timon Damelang
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Sanquin Research, Department of Immunopathology, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Department of Antibody Research & Technologies’, Genmab, Utrecht, Netherlands
| | - Maximilian Brinkhaus
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Thijs L. J. van Osch
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Janine Schuurman
- Department of Antibody Research & Technologies’, Genmab, Utrecht, Netherlands
| | - Aran F. Labrijn
- Department of Antibody Research & Technologies’, Genmab, Utrecht, Netherlands
| | - Theo Rispens
- Sanquin Research, Department of Immunopathology, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
7
|
Carpenter MC, Souter SC, Zipkin RJ, Ackerman ME. Current Insights Into K-associated Fetal Anemia and Potential Treatment Strategies for Sensitized Pregnancies. Transfus Med Rev 2024; 38:150779. [PMID: 37926651 PMCID: PMC10856777 DOI: 10.1016/j.tmrv.2023.150779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023]
Abstract
K-associated anemic disease of the fetus and newborn (K-ADFN) is a rare but life-threatening disease in which maternal alloantibodies cross the placenta and can mediate an immune attack on fetal red blood cells expressing the K antigen. A considerably more common disease, D-associated hemolytic disease of the fetus and newborn (D-HDFN), can be prophylactically treated using polyclonal α-D antibody preparations. Currently, no such prophylactic treatment exists for K-associated fetal anemia, and disease is usually treated with intrauterine blood transfusions. Here we review current understanding of the biology of K-associated fetal anemia, how the maternal immune system is sensitized to fetal red blood cells, and what is understood about potential mechanisms of prophylactic HDFN interventions. Given the apparent challenges associated with preventing alloimmunization, we highlight novel strategies for treating sensitized mothers to prevent fetal anemia that may hold promise not only for K-mediated disease, but also for other pathogenic alloantibody responses.
Collapse
Affiliation(s)
| | | | | | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA; Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
8
|
Bauer-Smith H, Sudol ASL, Beers SA, Crispin M. Serum immunoglobulin and the threshold of Fc receptor-mediated immune activation. Biochim Biophys Acta Gen Subj 2023; 1867:130448. [PMID: 37652365 PMCID: PMC11032748 DOI: 10.1016/j.bbagen.2023.130448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Antibodies can mediate immune recruitment or clearance of immune complexes through the interaction of their Fc domain with cellular Fc receptors. Clustering of antibodies is a key step in generating sufficient avidity for efficacious receptor recognition. However, Fc receptors may be saturated with prevailing, endogenous serum immunoglobulin and this raises the threshold by which cellular receptors can be productively engaged. Here, we review the factors controlling serum IgG levels in both healthy and disease states, and discuss how the presence of endogenous IgG is encoded into the functional activation thresholds for low- and high-affinity Fc receptors. We discuss the circumstances where antibody engineering can help overcome these physiological limitations of therapeutic antibodies. Finally, we discuss how the pharmacological control of Fc receptor saturation by endogenous IgG is emerging as a feasible mechanism for the enhancement of antibody therapeutics.
Collapse
Affiliation(s)
- Hannah Bauer-Smith
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Abigail S L Sudol
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Stephen A Beers
- Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
9
|
Szittner Z, Bentlage AEH, Temming AR, Schmidt DE, Visser R, Lissenberg-Thunnissen S, Mok JY, van Esch WJE, Sonneveld ME, de Graaf EL, Wuhrer M, Porcelijn L, de Haas M, van der Schoot CE, Vidarsson G. Cellular surface plasmon resonance-based detection of anti-HPA-1a antibody glycosylation in fetal and neonatal alloimmune thrombocytopenia. Front Immunol 2023; 14:1225603. [PMID: 37868955 PMCID: PMC10585714 DOI: 10.3389/fimmu.2023.1225603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/06/2023] [Indexed: 10/24/2023] Open
Abstract
Fetal and neonatal alloimmune thrombocytopenia (FNAIT) can occur due to maternal IgG antibodies targeting platelet antigens, causing life-threatening bleeding in the neonate. However, the disease manifests itself in only a fraction of pregnancies, most commonly with anti-HPA-1a antibodies. We found that in particular, the core fucosylation in the IgG-Fc tail is highly variable in anti-HPA-1a IgG, which strongly influences the binding to leukocyte IgG-Fc receptors IIIa/b (FcγRIIIa/b). Currently, gold-standard IgG-glycoanalytics rely on complicated methods (e.g., mass spectrometry (MS)) that are not suited for diagnostic purposes. Our aim was to provide a simplified method to quantify the biological activity of IgG antibodies targeting cells. We developed a cellular surface plasmon resonance imaging (cSPRi) technique based on FcγRIII-binding to IgG-opsonized cells and compared the results with MS. The strength of platelet binding to FcγR was monitored under flow using both WT FcγRIIIa (sensitive to Fc glycosylation status) and mutant FcγRIIIa-N162A (insensitive to Fc glycosylation status). The quality of the anti-HPA-1a glycosylation was monitored as the ratio of binding signals from the WT versus FcγRIIIa-N162A, using glycoengineered recombinant anti-platelet HPA-1a as a standard. The method was validated with 143 plasma samples with anti-HPA-1a antibodies analyzed by MS with known clinical outcomes and tested for validation of the method. The ratio of patient signal from the WT versus FcγRIIIa-N162A correlated with the fucosylation of the HPA-1a antibodies measured by MS (r=-0.52). Significantly, FNAIT disease severity based on Buchanan bleeding score was similarly discriminated against by MS and cSPRi. In conclusion, the use of IgG receptors, in this case, FcγRIIIa, on SPR chips can yield quantitative and qualitative information on platelet-bound anti-HPA-1a antibodies. Using opsonized cells in this manner circumvents the need for purification of specific antibodies and laborious MS analysis to obtain qualitative antibody traits such as IgG fucosylation, for which no clinical test is currently available.
Collapse
Affiliation(s)
- Zoltán Szittner
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Arthur E. H. Bentlage
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - A. Robin Temming
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - David E. Schmidt
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Remco Visser
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Suzanne Lissenberg-Thunnissen
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | | | | | - Myrthe E. Sonneveld
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Erik L. de Graaf
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Leendert Porcelijn
- Department of Immunohematology Diagnostics, Sanquin, Amsterdam, Netherlands
| | - Masja de Haas
- Department of Immunohematology Diagnostics, Sanquin, Amsterdam, Netherlands
- Translational Immunohematology, Research, Amsterdam, Netherlands
- Department of Hematology, Leiden University Medical Centre, Leiden, Netherlands
| | - C. Ellen van der Schoot
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
10
|
Van Coillie J, Pongracz T, Šuštić T, Wang W, Nouta J, Le Gars M, Keijzer S, Linty F, Cristianawati O, Keijser JB, Visser R, van Vught LA, Slim MA, van Mourik N, Smit MJ, Sander A, Schmidt DE, Steenhuis M, Rispens T, Nielsen MA, Mordmüller BG, Vlaar AP, Ellen van der Schoot C, Roozendaal R, Wuhrer M, Vidarsson G. Comparative analysis of spike-specific IgG Fc glycoprofiles elicited by adenoviral, mRNA, and protein-based SARS-CoV-2 vaccines. iScience 2023; 26:107619. [PMID: 37670790 PMCID: PMC10475480 DOI: 10.1016/j.isci.2023.107619] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/06/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023] Open
Abstract
IgG antibodies are important mediators of vaccine-induced immunity through complement- and Fc receptor-dependent effector functions. Both are influenced by the composition of the conserved N-linked glycan located in the IgG Fc domain. Here, we compared the anti-Spike (S) IgG1 Fc glycosylation profiles in response to mRNA, adenoviral, and protein-based COVID-19 vaccines by mass spectrometry (MS). All vaccines induced a transient increase of antigen-specific IgG1 Fc galactosylation and sialylation. An initial, transient increase of afucosylated IgG was induced by membrane-encoding S protein formulations. A fucose-sensitive ELISA for antigen-specific IgG (FEASI) exploiting FcγRIIIa affinity for afucosylated IgG was used as an orthogonal method to confirm the LC-MS-based afucosylation readout. Our data suggest that vaccine-induced anti-S IgG glycosylation is dynamic, and although variation is seen between different vaccine platforms and individuals, the evolution of glycosylation patterns display marked overlaps.
Collapse
Affiliation(s)
- Julie Van Coillie
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Tamas Pongracz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Tonći Šuštić
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Wenjun Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan Nouta
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Sofie Keijzer
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Federica Linty
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Olvi Cristianawati
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Jim B.D. Keijser
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Remco Visser
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Lonneke A. van Vught
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
- Department of Intensive Care, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Marleen A. Slim
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
- Department of Intensive Care, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Niels van Mourik
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
- Department of Intensive Care, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Merel J. Smit
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Adam Sander
- Centre for Medical Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- AdaptVac Aps, Copenhagen, Denmark
| | - David E. Schmidt
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
| | - Maurice Steenhuis
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Morten A. Nielsen
- Centre for Medical Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin G. Mordmüller
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexander P.J. Vlaar
- Department of Intensive Care, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Laboratory of Experimental Intensive Care and Anaesthesiology, L.E.I.C.A., Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
11
|
Nimmerjahn F, Vidarsson G, Cragg MS. Effect of posttranslational modifications and subclass on IgG activity: from immunity to immunotherapy. Nat Immunol 2023; 24:1244-1255. [PMID: 37414906 DOI: 10.1038/s41590-023-01544-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/15/2023] [Indexed: 07/08/2023]
Abstract
Humoral immune responses are characterized by complex mixtures of polyclonal antibody species varying in their isotype, target epitope specificity and affinity. Posttranslational modifications occurring during antibody production in both the antibody variable and constant domain create further complexity and can modulate antigen specificity and antibody Fc-dependent effector functions, respectively. Finally, modifications of the antibody backbone after secretion may further impact antibody activity. An in-depth understanding of how these posttranslational modifications impact antibody function, especially in the context of individual antibody isotypes and subclasses, is only starting to emerge. Indeed, only a minute proportion of this natural variability in the humoral immune response is currently reflected in therapeutic antibody preparations. In this Review, we summarize recent insights into how IgG subclass and posttranslational modifications impact IgG activity and discuss how these insights may be used to optimize therapeutic antibody development.
Collapse
Affiliation(s)
- Falk Nimmerjahn
- Division of Genetics, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - Gestur Vidarsson
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
12
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Park JS, Choi HJ, Jung KM, Lee KY, Shim JH, Park KJ, Kim YM, Han JY. Production of recombinant human IgG1 Fc with beneficial N-glycosylation pattern for anti-inflammatory activity using genome-edited chickens. Commun Biol 2023; 6:589. [PMID: 37264071 DOI: 10.1038/s42003-023-04937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/12/2023] [Indexed: 06/03/2023] Open
Abstract
Intravenous immunoglobulin (IVIG) is a plasma-derived polyclonal IgG used for treatment of autoimmune diseases. Studies show that α-2,6 sialylation of the Fc improves anti-inflammatory activity. Also, afucosylation of the Fc efficiently blocks FcγRIIIA by increasing monovalent affinity to this receptor, which can be beneficial for treatment of refractory immune thrombocytopenia (ITP). Here, we generated genome-edited chickens that synthesize human IgG1 Fc in the liver and secrete α-2,6 sialylated and low-fucosylated human IgG1 Fc (rhIgG1 Fc) into serum and egg yolk. Also, rhIgG1 Fc has higher affinity for FcγRIIIA than commercial IVIG. Thus, rhIgG1 Fc efficiently inhibits immune complex-mediated FcγRIIIA crosslinking and subsequent ADCC response. Furthermore, rhIgG1 Fc exerts anti-inflammatory activity in a passive ITP model, demonstrating chicken liver derived rhIgG1 Fc successfully recapitulated efficacy of IVIG. These results show that genome-edited chickens can be used as a production platform for rhIgG1 Fc with beneficial N-glycosylation pattern for anti-inflammatory activities.
Collapse
Affiliation(s)
- Jin Se Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Avinnogen Co., Ltd, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Hee Jung Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyung Min Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyung Youn Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji Hyeon Shim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyung Je Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Min Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Avinnogen Co., Ltd, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Bayry J, Ahmed EA, Toscano-Rivero D, Vonniessen N, Genest G, Cohen CG, Dembele M, Kaveri SV, Mazer BD. Intravenous Immunoglobulin: Mechanism of Action in Autoimmune and Inflammatory Conditions. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1688-1697. [PMID: 37062358 DOI: 10.1016/j.jaip.2023.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/18/2023]
Abstract
Intravenous immunoglobulin (IVIG) is the mainstay of therapy for humoral immune deficiencies and numerous inflammatory disorders. Although the use of IVIG may be supplanted by several targeted therapies to cytokines, the ability of polyclonal normal IgG to act as an effector molecule as well as a regulatory molecule is a clear example of the polyfunctionality of IVIG. This article will address the mechanism of action of IVIG in a number of important conditions that are otherwise resistant to treatment. In this commentary, we will highlight mechanistic studies that shed light on the action of IVIG. This will be approached by identifying effects that are both common and disease-specific, targeting actions that have been demonstrated on cells and processes that represent both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France; Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, India.
| | - Eisha A Ahmed
- Research Institute of McGill University Health Centre, Translational Program in Respiratory Diseases and Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Diana Toscano-Rivero
- Research Institute of McGill University Health Centre, Translational Program in Respiratory Diseases and Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Nicholas Vonniessen
- Research Institute of McGill University Health Centre, Translational Program in Respiratory Diseases and Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Genevieve Genest
- Research Institute of McGill University Health Centre, Translational Program in Respiratory Diseases and Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Casey G Cohen
- Research Institute of McGill University Health Centre, Translational Program in Respiratory Diseases and Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Marieme Dembele
- Research Institute of McGill University Health Centre, Translational Program in Respiratory Diseases and Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Srini V Kaveri
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Bruce D Mazer
- Research Institute of McGill University Health Centre, Translational Program in Respiratory Diseases and Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada.
| |
Collapse
|
15
|
Cottignies-Calamarte A, Tudor D, Bomsel M. Antibody Fc-chimerism and effector functions: When IgG takes advantage of IgA. Front Immunol 2023; 14:1037033. [PMID: 36817447 PMCID: PMC9933243 DOI: 10.3389/fimmu.2023.1037033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Recent advances in the development of therapeutic antibodies (Abs) have greatly improved the treatment of otherwise drug-resistant cancers and autoimmune diseases. Antibody activities are mediated by both their Fab and the Fc. However, therapeutic Abs base their protective mechanisms on Fc-mediated effector functions resulting in the activation of innate immune cells by FcRs. Therefore, Fc-bioengineering has been widely used to maximise the efficacy and convenience of therapeutic antibodies. Today, IgG remains the only commercially available therapeutic Abs, at the expense of other isotypes. Indeed, production, sampling, analysis and related in vivo studies are easier to perform with IgG than with IgA due to well-developed tools. However, interest in IgA is growing, despite a shorter serum half-life and a more difficult sampling and purification methods than IgG. Indeed, the paradigm that the effector functions of IgG surpass those of IgA has been experimentally challenged. Firstly, IgA has been shown to bind to its Fc receptor (FcR) on effector cells of innate immunity with greater efficiency than IgG, resulting in more robust IgA-mediated effector functions in vitro and better survival of treated animals. In addition, the two isotypes have been shown to act synergistically. From these results, new therapeutic formats of Abs are currently emerging, in particular chimeric Abs containing two tandemly expressed Fc, one from IgG (Fcγ) and one from IgA (Fcα). By binding both FcγR and FcαR on effector cells, these new chimeras showed improved effector functions in vitro that were translated in vivo. Furthermore, these chimeras retain an IgG-like half-life in the blood, which could improve Ab-based therapies, including in AIDS. This review provides the rationale, based on the biology of IgA and IgG, for the development of Fcγ and Fcα chimeras as therapeutic Abs, offering promising opportunities for HIV-1 infected patients. We will first describe the main features of the IgA- and IgG-specific Fc-mediated signalling pathways and their respective functional differences. We will then summarise the very promising results on Fcγ and Fcα containing chimeras in cancer treatment. Finally, we will discuss the impact of Fcα-Fcγ chimerism in prevention/treatment strategies against infectious diseases such as HIV-1.
Collapse
Affiliation(s)
- Andréa Cottignies-Calamarte
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France.,Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Daniela Tudor
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France.,Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France.,Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
16
|
Szittner Z, Péter B, Kurunczi S, Székács I, Horváth R. Functional blood cell analysis by label-free biosensors and single-cell technologies. Adv Colloid Interface Sci 2022; 308:102727. [DOI: 10.1016/j.cis.2022.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 11/01/2022]
|
17
|
Oswald DM, Lehoux SD, Zhou JY, Glendenning LM, Cummings RD, Cobb BA. ST6Gal1 in plasma is dispensable for IgG sialylation. Glycobiology 2022; 32:803-813. [PMID: 35746897 DOI: 10.1093/glycob/cwac039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The glycosylation of IgG has attracted increased attention due to the impact of N-glycan modifications at N297 on IgG function, acting primarily through modulation of Fc domain conformation and Fcγ receptor binding affinities and signaling. However, the mechanisms regulating IgG glycosylation and especially α2,6-sialylation of its N-glycan remain poorly understood. We observed previously that IgG is normally sialylated in mice with B cells lacking the sialyltransferase ST6Gal1. This supported the hypothesis that IgG may be sialylated outside of B cells, perhaps through the action of hepatocyte-released plasma ST6Gal1. Here we demonstrate that this model is incorrect. Animals lacking hepatocyte expressed ST6Gal1 retain normal IgG α2,6-sialylation, despite the lack of detectable ST6Gal1 in plasma. Moreover, we confirmed that B cells were not a redundant source of IgG sialylation. Thus, while α2,6-sialylation is lacking in IgG from mice with germline ablation of ST6Gal1, IgG α2,6-sialylation is normal in mice lacking ST6Gal1 in either hepatocytes or B cells. These results indicate that IgG α2,6-sialylation arises after release from a B cell, but is not dependent on plasma-localized ST6Gal1 activity.
Collapse
Affiliation(s)
- Douglas M Oswald
- Case Western Reserve University School of Medicine, Department of Pathology, Cleveland, OH, USA
| | - Sylvain D Lehoux
- Beth Israel Deaconess Medical Center, Harvard Medical School Center for Glycoscience, National Center for Functional Glycomics, Boston, MA, USA
| | - Julie Y Zhou
- Case Western Reserve University School of Medicine, Department of Pathology, Cleveland, OH, USA
| | - Leandre M Glendenning
- Case Western Reserve University School of Medicine, Department of Pathology, Cleveland, OH, USA
| | - Richard D Cummings
- Beth Israel Deaconess Medical Center, Harvard Medical School Center for Glycoscience, National Center for Functional Glycomics, Boston, MA, USA
| | - Brian A Cobb
- Case Western Reserve University School of Medicine, Department of Pathology, Cleveland, OH, USA
| |
Collapse
|
18
|
Vattepu R, Sneed SL, Anthony RM. Sialylation as an Important Regulator of Antibody Function. Front Immunol 2022; 13:818736. [PMID: 35464485 PMCID: PMC9021442 DOI: 10.3389/fimmu.2022.818736] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
Antibodies play a critical role in linking the adaptive immune response to the innate immune system. In humans, antibodies are categorized into five classes, IgG, IgM, IgA, IgE, and IgD, based on constant region sequence, structure, and tropism. In serum, IgG is the most abundant antibody, comprising 75% of antibodies in circulation, followed by IgA at 15%, IgM at 10%, and IgD and IgE are the least abundant. All human antibody classes are post-translationally modified by sugars. The resulting glycans take on many divergent structures and can be attached in an N-linked or O-linked manner, and are distinct by antibody class, and by position on each antibody. Many of these glycan structures on antibodies are capped by sialic acid. It is well established that the composition of the N-linked glycans on IgG exert a profound influence on its effector functions. However, recent studies have described the influence of glycans, particularly sialic acid for other antibody classes. Here, we discuss the role of glycosylation, with a focus on terminal sialylation, in the biology and function across all antibody classes. Sialylation has been shown to influence not only IgG, but IgE, IgM, and IgA biology, making it an important and unappreciated regulator of antibody function.
Collapse
Affiliation(s)
- Ravi Vattepu
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sunny Lyn Sneed
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Robert M Anthony
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Kase Y, Takahashi H, Ito H, Kamata A, Amagai M, Yamagami J. Intravenous Ig Regulates Anti-Desmoglein 3 IgG Production in B220 - Antibody-Producing Cells in Mice with Pemphigus Vulgaris. J Invest Dermatol 2021; 142:1786-1792.e3. [PMID: 34848195 DOI: 10.1016/j.jid.2021.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/21/2021] [Accepted: 11/10/2021] [Indexed: 01/11/2023]
Abstract
Intravenous Ig (IVIG) is a treatment option for intractable cases of pemphigus vulgaris (PV), an autoimmune blistering disease caused by autoantibodies against desmoglein 3 (DSG3). To investigate the efficacy of IVIG on autoantibody secretion, we produced PV model mice by adoptive transfer of immunized Dsg3-/- splenocytes to Rag2-/- mice. We found that circulating anti-DSG3 IgG ELISA titer decreased in PV model mice after 5 days of treatment with IVIG compared with PBS-treated mice, whereas the F(ab')2 fragment did not suppress the anti-DSG3 IgG titer. enzyme-linked immunospot assay revealed that IVIG treatment reduced the frequency of anti-DSG3 antibody-secreting cells in the spleen but not in lymph nodes and bone marrow. Moreover, this reduction was observed only in the splenic B220- fraction but not in the B220+ fraction. Furthermore, IVIG decreased the serum levels of anti-DSG3 IgG, even after a significant reduction of its titer, owing to antibody-mediated CD20+ B cell depletion. In addition, IVIG suppressed anti-DSG3 IgG production in B220-CD138+ plasma cells derived from PV model mice ex vivo. These results indicate that IVIG reduced autoantibody production in B220- cells containing plasma cells in PV model mice, and this function may indicate one of the mechanisms of action of IVIG on PV.
Collapse
Affiliation(s)
- Yuko Kase
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan; Research and Development Division, Japan Blood Products Organization, Tokyo, Japan
| | - Hayato Takahashi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Hiromi Ito
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Aki Kamata
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Jun Yamagami
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
20
|
Zlatina K, Galuska SP. Immunoglobulin Glycosylation - An Unexploited Potential for Immunomodulatory Strategies in Farm Animals. Front Immunol 2021; 12:753294. [PMID: 34733284 PMCID: PMC8558360 DOI: 10.3389/fimmu.2021.753294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/23/2021] [Indexed: 01/01/2023] Open
Abstract
The function of antibodies, namely the identification and neutralization of pathogens, is mediated by their antigen binding site (Fab). In contrast, the subsequent signal transduction for activation of the immune system is mediated by the fragment crystallizable (Fc) region, which interacts with receptors or other components of the immune system, such as the complement system. This aspect of binding and interaction is more precise, readjusted by covalently attached glycan structures close to the hinge region of immunoglobulins (Ig). This fine-tuning of Ig and its actual state of knowledge is the topic of this review. It describes the function of glycosylation at Ig in general and the associated changes due to corresponding glycan structures. We discuss the functionality of IgG glycosylation during different physiological statuses, like aging, lactation and pathophysiological processes. Further, we point out what is known to date about Ig glycosylation in farm animals and how new achievements in vaccination may contribute to improved animal welfare.
Collapse
Affiliation(s)
- Kristina Zlatina
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Sebastian P Galuska
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
21
|
Glycoengineering of Therapeutic Antibodies with Small Molecule Inhibitors. Antibodies (Basel) 2021; 10:antib10040044. [PMID: 34842612 PMCID: PMC8628514 DOI: 10.3390/antib10040044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023] Open
Abstract
Monoclonal antibodies (mAbs) are one of the cornerstones of modern medicine, across an increasing range of therapeutic areas. All therapeutic mAbs are glycoproteins, i.e., their polypeptide chain is decorated with glycans, oligosaccharides of extraordinary structural diversity. The presence, absence, and composition of these glycans can have a profound effect on the pharmacodynamic and pharmacokinetic profile of individual mAbs. Approaches for the glycoengineering of therapeutic mAbs—the manipulation and optimisation of mAb glycan structures—are therefore of great interest from a technological, therapeutic, and regulatory perspective. In this review, we provide a brief introduction to the effects of glycosylation on the biological and pharmacological functions of the five classes of immunoglobulins (IgG, IgE, IgA, IgM and IgD) that form the backbone of all current clinical and experimental mAbs, including an overview of common mAb expression systems. We review selected examples for the use of small molecule inhibitors of glycan biosynthesis for mAb glycoengineering, we discuss the potential advantages and challenges of this approach, and we outline potential future applications. The main aim of the review is to showcase the expanding chemical toolbox that is becoming available for mAb glycoengineering to the biology and biotechnology community.
Collapse
|
22
|
Willment JA. Fc-conjugated C-type lectin receptors: Tools for understanding host-pathogen interactions. Mol Microbiol 2021; 117:632-660. [PMID: 34709692 DOI: 10.1111/mmi.14837] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022]
Abstract
The use of soluble fusion proteins of pattern recognition receptors (PRRs) used in the detection of exogenous and endogenous ligands has helped resolve the roles of PRRs in the innate immune response to pathogens, how they shape the adaptive immune response, and function in maintaining homeostasis. Using the immunoglobulin (Ig) crystallizable fragment (Fc) domain as a fusion partner, the PRR fusion proteins are soluble, stable, easily purified, have increased affinity due to the Fc homodimerization properties, and consequently have been used in a wide range of applications such as flow cytometry, screening of protein and glycan arrays, and immunofluorescent microscopy. This review will predominantly focus on the recognition of pathogens by the cell membrane-expressed glycan-binding proteins of the C-type lectin receptor (CLR) subgroup of PRRs. PRRs bind to conserved pathogen-associated molecular patterns (PAMPs), such as glycans, usually located within or on the outer surface of the pathogen. Significantly, many glycans structures are identical on both host and pathogen (e.g. the Lewis (Le) X glycan), allowing the use of Fc CLR fusion proteins with known endogenous and/or exogenous ligands as tools to identify pathogen structures that are able to interact with the immune system. Screens of highly purified pathogen-derived cell wall components have enabled identification of many unique PAMP structures recognized by CLRs. This review highlights studies using Fc CLR fusion proteins, with emphasis on the PAMPs found in fungi, bacteria, viruses, and parasites. The structure and unique features of the different CLR families is presented using examples from a broad range of microbes whenever possible.
Collapse
Affiliation(s)
- Janet A Willment
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| |
Collapse
|
23
|
Macri C, Morgan H, Villadangos JA, Mintern JD. Regulation of dendritic cell function by Fc-γ-receptors and the neonatal Fc receptor. Mol Immunol 2021; 139:193-201. [PMID: 34560415 DOI: 10.1016/j.molimm.2021.07.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023]
Abstract
Dendritic cells (DCs) express receptors to sense pathogens and/or tissue damage and to communicate with other immune cells. Among those receptors, Fc receptors (FcRs) are triggered by the Fc region of antibodies produced during adaptive immunity. In this review, the role of FcγR and neonatal Fc receptor (FcRn) in DC immunity will be discussed. Their expression in DC subsets and impact on antigen uptake and presentation, DC maturation and polarisation of T cell responses will be described. Lastly, we will discuss the importance of FcR-mediated DC function in the context of immunity during viral infection, inflammatory disease, cancer and immunotherapy.
Collapse
Affiliation(s)
- Christophe Macri
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria, 3010, Australia
| | - Huw Morgan
- ACRF Translational Research Laboratory, The Royal Melbourne Hospital, Parkville, Melbourne, Victoria, 3050, Australia; Department of Medicine, University of Melbourne, Parkville, Melbourne, Victoria, 3010, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria, 3010, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
24
|
New insights into IVIg mechanisms and alternatives in autoimmune and inflammatory diseases. Curr Opin Hematol 2021; 27:392-398. [PMID: 32868670 DOI: 10.1097/moh.0000000000000609] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Intravenous immunoglobulin (IVIg) is an effective treatment for an increasing number of autoimmune and inflammatory conditions. However, IVIg continues to be limited by problems of potential shortages and cost. A number of mechanisms have been described for IVIg, which have been captured in newly emergent IVIg mimetic and IVIg alternative therapies. This review discusses the recent developments in IVIg mimetics and alternatives. RECENT FINDINGS Newly emergent IVIg mimetics and alternatives capture major proposed mechanisms of IVIg, including FcγR blockade, FcRn inhibition, complement inhibition, immune complex mimetics and sialylated IgG. Many of these emergent therapies have promising preclinical and clinical trial results. SUMMARY Significant research has been undertaken into the mechanism of IVIg in the treatment of autoimmune and inflammatory disease. Understanding the major IVIg mechanisms has allowed for rational development of IVIg mimetics and alternatives for several IVIg-treatable diseases.
Collapse
|
25
|
Abstract
Changes in immunoglobulin G (IgG) glycosylation pattern have been observed in a vast array of auto- and alloimmune, infectious, cardiometabolic, malignant, and other diseases. This chapter contains an updated catalog of over 140 studies within which IgG glycosylation analysis was performed in a disease setting. Since the composition of IgG glycans is known to modulate its effector functions, it is suggested that a changed IgG glycosylation pattern in patients might be involved in disease development and progression, representing a predisposition and/or a functional effector in disease pathology. In contrast to the glycopattern of bulk serum IgG, which likely relates to the systemic inflammatory background, the glycosylation profile of antigen-specific IgG probably plays a direct role in disease pathology in several infectious and allo- and autoimmune antibody-dependent diseases. Depending on the specifics of any given disease, IgG glycosylation read-out might therefore in the future be developed into a useful clinical biomarker or a supplementary to currently used biomarkers.
Collapse
Affiliation(s)
- Marija Pezer
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia.
| |
Collapse
|
26
|
Nimmerjahn F, Werner A. Sweet Rules: Linking Glycosylation to Antibody Function. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:365-393. [PMID: 34687017 DOI: 10.1007/978-3-030-76912-3_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antibodies produced upon infections with pathogenic microorganisms are essential for clearing primary infections and for providing the host with long-lasting immunity. Moreover, antibodies have become the most widely used platform for developing novel therapies against cancer and autoimmunity, requiring an in-depth understanding of how antibodies mediate their activity in vivo and which factors modulate pro- or anti-inflammatory antibody activities. Since the discovery that select residues present in the sugar domain attached to the immunoglobulin G (IgG) fragment crystallizable (Fc) region can modulate both, pro- and anti-inflammatory effector functions, a wealth of studies has focused on understanding how IgG glycosylation is regulated and how this knowledge can be used to optimize therapeutic antibody activity. With the introduction of glycoengineered afucosylated antibodies in cancer therapy and the initiation of clinical testing of highly sialylated anti-inflammatory antibodies the proof-of-concept that understanding antibody glycosylation can lead to clinical innovation has been provided. The focus of this review is to summarize recent insights into how antibody glycosylation is regulated in vivo and how select sugar residues impact IgG function.
Collapse
Affiliation(s)
- Falk Nimmerjahn
- Chair of Genetics, Department of Biology, Institute of Genetics, University of Erlangen-Nürnberg, Erlangen, Germany.
- Medical Immunology Campus Erlangen, Erlangen, Germany.
| | - Anja Werner
- Chair of Genetics, Department of Biology, Institute of Genetics, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
27
|
Mimura Y, Saldova R, Mimura-Kimura Y, Rudd PM, Jefferis R. Importance and Monitoring of Therapeutic Immunoglobulin G Glycosylation. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:481-517. [PMID: 34687020 DOI: 10.1007/978-3-030-76912-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The complex diantennary-type oligosaccharides at Asn297 residues of the IgG heavy chains have a profound impact on the safety and efficacy of therapeutic IgG monoclonal antibodies (mAbs). Fc glycosylation of a mAb is an established critical quality attribute (CQA), and its oligosaccharide profile is required to be thoroughly characterized by state-of-the-art analytical methods. The Fc oligosaccharides are highly heterogeneous, and the differentially glycosylated species (glycoforms) of IgG express unique biological activities. Glycoengineering is a promising approach for the production of selected mAb glycoforms with improved effector functions, and non- and low-fucosylated mAbs exhibiting enhanced antibody-dependent cellular cytotoxicity activity have been approved or are under clinical evaluation for treatment of cancers, autoimmune/chronic inflammatory diseases, and infection. Recently, the chemoenzymatic glycoengineering method that allows for the transfer of structurally defined oligosaccharides to Asn-linked GlcNAc residues with glycosynthase has been developed for remodeling of IgG-Fc oligosaccharides with high efficiency and flexibility. Additionally, various glycoengineering methods have been developed that utilize the Fc oligosaccharides of IgG as reaction handles to conjugate cytotoxic agents by "click chemistry", providing new routes to the design of antibody-drug conjugates (ADCs) with tightly controlled drug-antibody ratios (DARs) and homogeneity. This review focuses on current understanding of the biological relevance of individual IgG glycoforms and advances in the development of next-generation antibody therapeutics with improved efficacy and safety through glycoengineering.
Collapse
Affiliation(s)
- Yusuke Mimura
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan.
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Mount Merrion, Blackrock, Dublin, Ireland
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, Belfield, Dublin, Ireland
| | - Yuka Mimura-Kimura
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan
| | - Pauline M Rudd
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Mount Merrion, Blackrock, Dublin, Ireland
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Centros, Singapore
| | - Roy Jefferis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
28
|
Dall'Olio F, Malagolini N. Immunoglobulin G Glycosylation Changes in Aging and Other Inflammatory Conditions. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:303-340. [PMID: 34687015 DOI: 10.1007/978-3-030-76912-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Among the multiple roles played by protein glycosylation, the fine regulation of biological interactions is one of the most important. The asparagine 297 (Asn297) of IgG heavy chains is decorated by a diantennary glycan bearing a number of galactose and sialic acid residues on the branches ranging from 0 to 2. In addition, the structure can present core-linked fucose and/or a bisecting GlcNAc. In many inflammatory and autoimmune conditions, as well as in metabolic, cardiovascular, infectious, and neoplastic diseases, the IgG Asn297-linked glycan becomes less sialylated and less galactosylated, leading to increased expression of glycans terminating with GlcNAc. These conditions alter also the presence of core-fucose and bisecting GlcNAc. Importantly, similar glycomic alterations are observed in aging. The common condition, shared by the above-mentioned pathological conditions and aging, is a low-grade, chronic, asymptomatic inflammatory state which, in the case of aging, is known as inflammaging. Glycomic alterations associated with inflammatory diseases often precede disease onset and follow remission. The aberrantly glycosylated IgG glycans associated with inflammation and aging can sustain inflammation through different mechanisms, fueling a vicious loop. These include complement activation, Fcγ receptor binding, binding to lectin receptors on antigen-presenting cells, and autoantibody reactivity. The complex molecular bases of the glycomic changes associated with inflammation and aging are still poorly understood.
Collapse
Affiliation(s)
- Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
29
|
Sicard T, Kassardjian A, Julien JP. B cell targeting by molecular adjuvants for enhanced immunogenicity. Expert Rev Vaccines 2020; 19:1023-1039. [PMID: 33252273 DOI: 10.1080/14760584.2020.1857736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Adjuvants are critical components of vaccines to improve the quality and durability of immune responses. Molecular adjuvants are a specific subclass of adjuvants where ligands of known immune-modulatory receptors are directly fused to an antigen. Co-stimulation of the B cell receptor (BCR) and immune-modulatory receptors through this strategy can augment downstream signaling to improve antibody titers and/or potency, and survival in challenge models. AREAS COVERED C3d has been the most extensively studied molecular adjuvant and shown to improve immune responses to a number of antigens. Similarly, tumor necrosis superfamily ligands, such as BAFF and APRIL, as well as CD40, CD180, and immune complex ligands can also improve humoral immunity as molecular adjuvants. EXPERT OPINION However, no single strategy has emerged that improves immune outcomes in all contexts. Thus, systematic exploration of molecular adjuvants that target B cell receptors will be required to realize their full potential as next-generation vaccine technologies.
Collapse
Affiliation(s)
- Taylor Sicard
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute , Toronto, ON, Canada.,Department of Biochemistry, University of Toronto , ON, Canada
| | - Audrey Kassardjian
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute , Toronto, ON, Canada.,Department of Immunology, University of Toronto , ON, Canada
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute , Toronto, ON, Canada.,Department of Biochemistry, University of Toronto , ON, Canada.,Department of Immunology, University of Toronto , ON, Canada
| |
Collapse
|
30
|
Yamaguchi Y, Barb AW. A synopsis of recent developments defining how N-glycosylation impacts immunoglobulin G structure and function. Glycobiology 2020; 30:214-225. [PMID: 31822882 DOI: 10.1093/glycob/cwz068] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/26/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are the fastest growing group of drugs with 11 new antibodies or antibody-drug conjugates approved by the Food and Drug Administration in 2018. Many mAbs require effector function for efficacy, including antibody-dependent cell-mediated cytotoxicity triggered following contact of an immunoglobulin G (IgG)-coated particle with activating crystallizable fragment (Fc) γ receptors (FcγRs) expressed by leukocytes. Interactions between IgG1 and the FcγRs require post-translational modification of the Fc with an asparagine-linked carbohydrate (N-glycan). Though the structure of IgG1 Fc and the role of Fc N-glycan composition on disease were known for decades, the underlying mechanism of how the N-glycan affected FcγR binding was not defined until recently. This review will describe the current understanding of how N-glycosylation impacts the structure and function of the IgG1 Fc and describe new techniques that are poised to provide the next critical breakthroughs.
Collapse
Affiliation(s)
| | - Adam W Barb
- Department of Biochemistry and Molecular Biology and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, 30602
| |
Collapse
|
31
|
Cobb BA. The history of IgG glycosylation and where we are now. Glycobiology 2020; 30:202-213. [PMID: 31504525 DOI: 10.1093/glycob/cwz065] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
IgG glycosylation is currently at the forefront of both immunology and glycobiology, likely due in part to the widespread and growing use of antibodies as drugs. For over four decades, it has been recognized that the conserved N-linked glycan on asparagine 297 found within the second Ig domain of the heavy chain (CH2) that helps to comprise Fc region of IgG plays a special role in IgG structure and function. Changes in galactosylation, fucosylation and sialylation are now well-established factors, which drive differential IgG function, ranging from inhibitory/anti-inflammatory to activating complement and promoting antibody-dependent cellular cytotoxicity. Thus, if we are to truly understand how to design and deploy antibody-based drugs with maximal efficacy and evaluate proper vaccine responses from a protective and functional perspective, a deep understanding of IgG glycosylation is essential. This article is intended to provide a comprehensive review of the IgG glycosylation field and the impact glycans have on IgG function, beginning with the earliest findings over 40 years ago, in order to provide a robust foundation for moving forward.
Collapse
Affiliation(s)
- Brian A Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
32
|
Valverde P, Martínez JD, Cañada FJ, Ardá A, Jiménez-Barbero J. Molecular Recognition in C-Type Lectins: The Cases of DC-SIGN, Langerin, MGL, and L-Sectin. Chembiochem 2020; 21:2999-3025. [PMID: 32426893 PMCID: PMC7276794 DOI: 10.1002/cbic.202000238] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Carbohydrates play a pivotal role in intercellular communication processes. In particular, glycan antigens are key for sustaining homeostasis, helping leukocytes to distinguish damaged tissues and invading pathogens from healthy tissues. From a structural perspective, this cross-talk is fairly complex, and multiple membrane proteins guide these recognition processes, including lectins and Toll-like receptors. Since the beginning of this century, lectins have become potential targets for therapeutics for controlling and/or avoiding the progression of pathologies derived from an incorrect immune outcome, including infectious processes, cancer, or autoimmune diseases. Therefore, a detailed knowledge of these receptors is mandatory for the development of specific treatments. In this review, we summarize the current knowledge about four key C-type lectins whose importance has been steadily growing in recent years, focusing in particular on how glycan recognition takes place at the molecular level, but also looking at recent progresses in the quest for therapeutics.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - J Daniel Martínez
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - F Javier Cañada
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Avda Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Ana Ardá
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
- Department of Organic Chemistry II, Faculty of Science and Technology, UPV-EHU, 48940, Leioa, Spain
| |
Collapse
|
33
|
Liu X, Cao W, Li T. High-Dose Intravenous Immunoglobulins in the Treatment of Severe Acute Viral Pneumonia: The Known Mechanisms and Clinical Effects. Front Immunol 2020; 11:1660. [PMID: 32760407 PMCID: PMC7372093 DOI: 10.3389/fimmu.2020.01660] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/22/2020] [Indexed: 12/30/2022] Open
Abstract
The current outbreak of viral pneumonia, caused by novel coronavirus SARS-CoV-2, is the focus of worldwide attention. The WHO declared the COVID-19 outbreak a pandemic event on Mar 12, 2020, and the number of confirmed cases is still on the rise worldwide. While most infected individuals only experience mild symptoms or may even be asymptomatic, some patients rapidly progress to severe acute respiratory failure with substantial mortality, making it imperative to develop an efficient treatment for severe SARS-CoV-2 pneumonia alongside supportive care. So far, the optimal treatment strategy for severe COVID-19 remains unknown. Intravenous immunoglobulin (IVIg) is a blood product pooled from healthy donors with high concentrations of immunoglobulin G (IgG) and has been used in patients with autoimmune and inflammatory diseases for more than 30 years. In this review, we aim to highlight the known mechanisms of immunomodulatory effects of high-dose IVIg therapy, the immunopathological hypothesis of viral pneumonia, and the clinical evidence of IVIg therapy in viral pneumonia. We then make cautious therapeutic inferences about high-dose IVIg therapy in treating severe COVID-19. These inferences may provide relevant and useful insights in order to aid treatment for COVID-19.
Collapse
Affiliation(s)
- Xiaosheng Liu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Taisheng Li
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
34
|
Kara S, Amon L, Lühr JJ, Nimmerjahn F, Dudziak D, Lux A. Impact of Plasma Membrane Domains on IgG Fc Receptor Function. Front Immunol 2020; 11:1320. [PMID: 32714325 PMCID: PMC7344230 DOI: 10.3389/fimmu.2020.01320] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Lipid cell membranes not only represent the physical boundaries of cells. They also actively participate in many cellular processes. This contribution is facilitated by highly complex mixtures of different lipids and incorporation of various membrane proteins. One group of membrane-associated receptors are Fc receptors (FcRs). These cell-surface receptors are crucial for the activity of most immune cells as they bind immunoglobulins such as immunoglobulin G (IgG). Based on distinct mechanisms of IgG binding, two classes of Fc receptors are now recognized: the canonical type I FcγRs and select C-type lectin receptors newly referred to as type II FcRs. Upon IgG immune complex induced cross-linking, these receptors are known to induce a multitude of cellular effector responses in a cell-type dependent manner, including internalization, antigen processing, and presentation as well as production of cytokines. The response is also determined by specific intracellular signaling domains, allowing FcRs to either positively or negatively modulate immune cell activity. Expression of cell-type specific combinations and numbers of receptors therefore ultimately sets a threshold for induction of effector responses. Mechanistically, receptor cross-linking and localization to lipid rafts, i.e., organized membrane microdomains enriched in intracellular signaling proteins, were proposed as major determinants of initial FcR activation. Given that immune cell membranes might also vary in their lipid compositions, it is reasonable to speculate, that the cell membrane and especially lipid rafts serve as an additional regulator of FcR activity. In this article, we aim to summarize the current knowledge on the interplay of lipid rafts and IgG binding FcRs with a focus on the plasma membrane composition and receptor localization in immune cells, the proposed mechanisms underlying this localization and consequences for FcR function with respect to their immunoregulatory capacity.
Collapse
Affiliation(s)
- Sibel Kara
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jennifer J Lühr
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Division of Nano-Optics, Max-Planck Institute for the Science of Light, Erlangen, Germany
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany.,Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
| | - Anja Lux
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
35
|
Lewis BJ, Branch DR. Mouse Models of Rheumatoid Arthritis for Studies on Immunopathogenesis and Preclinical Testing of Fc Receptor-Targeting Biologics. Pharmacology 2020; 105:618-629. [DOI: 10.1159/000508239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/27/2020] [Indexed: 11/19/2022]
Abstract
<b><i>Background:</i></b> Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes inflammation, swelling, and pain in the joints and involves systemic complications. Mouse models of RA have been extensively used to model the pathogenesis of RA and to develop effective therapies. Although many components of the immune system have been studied in these models, the role of crystallizable fragment (Fc) gamma receptors (FcγRs) in RA has been sorely neglected. The aim of this review was to introduce the different mouse models of RA and to describe the different drug development strategies that have been tested in these models to target FcγR function, with the focus being on drugs that have been made from the Fc of immunoglobulin G (IgG). <b><i>Summary:</i></b> Evidence suggests that FcγRs play a major role in immune complex-induced inflammation in autoimmune diseases, such as RA. However, there is limited knowledge on the importance of FcγRs in the human disease even though there has been extensive work in mouse models of RA. Numerous mouse models of RA are available, with each model depicting certain aspects of the disease. Induced models of RA have nonspecific immune activation with cartilage-directed autoimmunity, whereas spontaneous models of RA develop without immunization, which results in a more chronic form of arthritis. These models have been used to test FcγR-targeting monoclonal antibodies, intravenous immunoglobulin (IVIg), subcutaneously administered IVIg, and recombinant Fcs for their ability to interact with and modify FcγR function. Recombinant Fcs avidly bind FcγRs and exhibit enhanced therapeutic efficacy in mouse models of RA. <b><i>Key Message:</i></b> The therapeutic utility of targeting FcγRs with recombinant Fcs is great and should be explored in human clinical trials for autoimmune diseases, such as RA.
Collapse
|
36
|
de Taeye SW, Bentlage AEH, Mebius MM, Meesters JI, Lissenberg-Thunnissen S, Falck D, Sénard T, Salehi N, Wuhrer M, Schuurman J, Labrijn AF, Rispens T, Vidarsson G. FcγR Binding and ADCC Activity of Human IgG Allotypes. Front Immunol 2020; 11:740. [PMID: 32435243 PMCID: PMC7218058 DOI: 10.3389/fimmu.2020.00740] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/01/2020] [Indexed: 01/14/2023] Open
Abstract
Antibody dependent cellular cytotoxicity (ADCC) is an Fc-dependent effector function of IgG important for anti-viral immunity and anti-tumor therapies. NK-cell mediated ADCC is mainly triggered by IgG-subclasses IgG1 and IgG3 through the IgG-Fc-receptor (FcγR) IIIa. Polymorphisms in the immunoglobulin gamma heavy chain gene likely form a layer of variation in the strength of the ADCC-response, but this has never been studied in detail. We produced all 27 known IgG allotypes and assessed FcγRIIIa binding and ADCC activity. While all IgG1, IgG2, and IgG4 allotypes behaved similarly within subclass, large allotype-specific variation was found for IgG3. ADCC capacity was affected by residues 291, 292, and 296 in the CH2 domain through altered affinity or avidity for FcγRIIIa. Furthermore, allotypic variation in hinge length affected ADCC, likely through altered proximity at the immunological synapse. Thus, these functional differences between IgG allotypes have important implications for therapeutic applications and susceptibility to infectious-, allo- or auto-immune diseases.
Collapse
Affiliation(s)
- Steven W de Taeye
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Arthur E H Bentlage
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | | | - Suzanne Lissenberg-Thunnissen
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Thomas Sénard
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Nima Salehi
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Theo Rispens
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|