1
|
Gevezova M, Ivanov Z, Pacheva I, Timova E, Kazakova M, Kovacheva E, Ivanov I, Sarafian V. Bioenergetic and Inflammatory Alterations in Regressed and Non-Regressed Patients with Autism Spectrum Disorder. Int J Mol Sci 2024; 25:8211. [PMID: 39125780 PMCID: PMC11311370 DOI: 10.3390/ijms25158211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Autism spectrum disorder (ASD) is associated with multiple physiological abnormalities. Current laboratory and clinical evidence most commonly report mitochondrial dysfunction, oxidative stress, and immunological imbalance in almost every cell type of the body. The present work aims to evaluate oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and inflammation-related molecules such as Cyclooxygenase-2 (COX-2), chitinase 3-like protein 1 (YKL-40), Interleukin-1 beta (IL-1β), Interleukin-9 (IL-9) in ASD children with and without regression compared to healthy controls. Children with ASD (n = 56) and typically developing children (TDC, n = 12) aged 1.11 to 11 years were studied. Mitochondrial activity was examined in peripheral blood mononuclear cells (PBMCs) isolated from children with ASD and from the control group, using a metabolic analyzer. Gene and protein levels of IL-1β, IL-9, COX-2, and YKL-40 were investigated in parallel. Our results showed that PBMCs of the ASD subgroup of regressed patients (ASD R(+), n = 21) had a specific pattern of mitochondrial activity with significantly increased maximal respiration, respiratory spare capacity, and proton leak compared to the non-regressed group (ASD R(-), n = 35) and TDC. Furthermore, we found an imbalance in the studied proinflammatory molecules and increased levels in ASD R(-) proving the involvement of inflammatory changes. The results of this study provide new evidence for specific bioenergetic profiles of immune cells and elevated inflammation-related molecules in ASD. For the first time, data on a unique metabolic profile in ASD R(+) and its comparison with a random group of children of similar age and sex are provided. Our data show that mitochondrial dysfunction is more significant in ASD R(+), while in ASD R(-) inflammation is more pronounced. Probably, in the group without regression, immune mechanisms (immune dysregulation, leading to inflammation) begin initially, and at a later stage mitochondrial activity is also affected under exogenous factors. On the other hand, in the regressed group, the initial damage is in the mitochondria, and perhaps at a later stage immune dysfunction is involved.
Collapse
Affiliation(s)
- Maria Gevezova
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.G.); (Z.I.); (M.K.); (E.K.)
- Research Institute at MU-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Zdravko Ivanov
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.G.); (Z.I.); (M.K.); (E.K.)
| | - Iliana Pacheva
- Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (I.P.); (I.I.)
- Pediatrics Clinic, St. George University Hospital, 4002 Plovdiv, Bulgaria;
| | - Elena Timova
- Pediatrics Clinic, St. George University Hospital, 4002 Plovdiv, Bulgaria;
| | - Maria Kazakova
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.G.); (Z.I.); (M.K.); (E.K.)
- Research Institute at MU-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Eleonora Kovacheva
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.G.); (Z.I.); (M.K.); (E.K.)
- Research Institute at MU-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Ivan Ivanov
- Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (I.P.); (I.I.)
- Pediatrics Clinic, St. George University Hospital, 4002 Plovdiv, Bulgaria;
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.G.); (Z.I.); (M.K.); (E.K.)
- Research Institute at MU-Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
2
|
Ryu J, Statz JP, Chan W, Oyama K, Custer M, Wienisch M, Chen R, Hanna CB, Hennebold JD. Generation of Rhesus Macaque Embryos with Expanded CAG Trinucleotide Repeats in the Huntingtin Gene. Cells 2024; 13:829. [PMID: 38786052 PMCID: PMC11119628 DOI: 10.3390/cells13100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Huntington's disease (HD) arises from expanded CAG repeats in exon 1 of the Huntingtin (HTT) gene. The resultant misfolded HTT protein accumulates within neuronal cells, negatively impacting their function and survival. Ultimately, HTT accumulation results in cell death, causing the development of HD. A nonhuman primate (NHP) HD model would provide important insight into disease development and the generation of novel therapies due to their genetic and physiological similarity to humans. For this purpose, we tested CRISPR/Cas9 and a single-stranded DNA (ssDNA) containing expanded CAG repeats in introducing an expanded CAG repeat into the HTT gene in rhesus macaque embryos. Analyses were conducted on arrested embryos and trophectoderm (TE) cells biopsied from blastocysts to assess the insertion of the ssDNA into the HTT gene. Genotyping results demonstrated that 15% of the embryos carried an expanded CAG repeat. The integration of an expanded CAG repeat region was successfully identified in five blastocysts, which were cryopreserved for NHP HD animal production. Some off-target events were observed in biopsies from the cryopreserved blastocysts. NHP embryos were successfully produced, which will help to establish an NHP HD model and, ultimately, may serve as a vital tool for better understanding HD's pathology and developing novel treatments.
Collapse
Affiliation(s)
- Junghyun Ryu
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; (J.R.); (J.P.S.); (W.C.); (K.O.); (M.C.); (C.B.H.)
| | - John P. Statz
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; (J.R.); (J.P.S.); (W.C.); (K.O.); (M.C.); (C.B.H.)
| | - William Chan
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; (J.R.); (J.P.S.); (W.C.); (K.O.); (M.C.); (C.B.H.)
| | - Kiana Oyama
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; (J.R.); (J.P.S.); (W.C.); (K.O.); (M.C.); (C.B.H.)
| | - Maggie Custer
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; (J.R.); (J.P.S.); (W.C.); (K.O.); (M.C.); (C.B.H.)
| | - Martin Wienisch
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA;
| | | | - Carol B. Hanna
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; (J.R.); (J.P.S.); (W.C.); (K.O.); (M.C.); (C.B.H.)
- Assisted Reproductive Technologies Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jon D. Hennebold
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; (J.R.); (J.P.S.); (W.C.); (K.O.); (M.C.); (C.B.H.)
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
3
|
Rose S, Landes RD, Vyas KK, Delhey L, Blossom S. Regulatory T cells and bioenergetics of peripheral blood mononuclear cells linked to pediatric obesity. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00040. [PMID: 38680993 PMCID: PMC11045398 DOI: 10.1097/in9.0000000000000040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/14/2024] [Indexed: 05/01/2024]
Abstract
Background Obesity-associated inflammation drives the development of insulin resistance and type 2 diabetes. We sought to identify associations of circulating regulatory T cells (Treg) with the degree of obesity (eg, body mass index Z-score [BMIz]), insulin resistance (homeostatic model of insulin resistance [HOMA-IR]), and glycemic control (HbA1c) in children and adolescents. We further sought to examine associations among bioenergetics of peripheral blood mononuclear cells (PBMCs) and CD4 T cells and BMIz, HOMA-IR, and HbA1c. Methods A total of 65 children and adolescents between the ages 5 and 17 years were studied. HbA1c and fasting levels of plasma glucose and insulin were measured. We quantified circulating Tregs (CD3+CD4+CD25+CD127-FoxP3+) by flow cytometry, and measured mitochondrial respiration (oxygen consumption rate [OCR]) and glycolysis (extracellular acidification rate [ECAR]) in PBMCs and isolated CD4 T cells by Seahorse extracellular flux analysis. Results Tregs (% CD4) are negatively associated with BMIz but positively associated with HOMA-IR. In PBMCs, OCR/ECAR (a ratio of mitochondrial respiration to glycolysis) is positively associated with BMIz but negatively associated with HbA1c. Conclusions In children, Tregs decrease as body mass index increases; however, the metabolic stress and inflammation associated with insulin resistance may induce a compensatory increase in Tregs. The degree of obesity is also associated with a shift away from glycolysis in PBMCs but as HbA1c declines, metabolism shifts back toward glycolysis. Comprehensive metabolic assessment of the immune system is needed to better understand the implications immune cell metabolic alterations in the progression from a healthy insulin-sensitive state toward glucose intolerance in children. Trial registration This observational study was registered at the ClinicalTrials.gov (NCT03960333, https://clinicaltrials.gov/study/NCT03960333?term=NCT03960333&rank=1).
Collapse
Affiliation(s)
- Shannon Rose
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children’s Research Institute, Little Rock, AR, USA
| | - Reid D. Landes
- Department of Biostatistics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kanan K. Vyas
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children’s Research Institute, Little Rock, AR, USA
| | - Leanna Delhey
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Sarah Blossom
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
4
|
Wilczyński KM, Auguściak-Duma A, Stasik A, Cichoń L, Kawalec A, Janas-Kozik M. Association of OXTR, AVPR1a, LNPEP, and CD38 Genes' Expression with the Clinical Presentation of Autism Spectrum Disorder. Curr Issues Mol Biol 2023; 45:8359-8371. [PMID: 37886970 PMCID: PMC10604998 DOI: 10.3390/cimb45100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that affects social interactions, communication, and behavior. Although the predominant genetic predisposition to ASD seems beyond doubt, its exact nature remains unclear. In the context of social cognition disorders and the basis of ASD, the oxytocinergic and vasopresynergic systems arouse great interest among researchers. The aim of the present study was to analyze gene expression levels for oxytocin and vasopressin receptors, as well as CD38 protein and oxytocinase, in the context of the clinical picture of autism spectrum disorders. The study included 90 people, of whom 63 were diagnosed with ASD based on anamnesis, mental status testing, and the ADOS-2 protocol. The results obtained in the presented study indicate that the balance between the levels of expression of the CD38 gene and the oxytocinase gene plays a key role in the risk and clinical presentation of ASD. In a hypothetical scenario, an imbalance in the expression of CD38 and LNPEP could potentially lead to alterations in the concentrations of oxytocin and vasopressin. At the same time, the most frequently studied genes-AVPR1a and OXTR-seem to be at best of marginal importance for the risk of ASD.
Collapse
Affiliation(s)
- Krzysztof Maria Wilczyński
- Department of Developmental Age Psychiatry and Psychotherapy, Medical University of Silesia, 40-061 Katowice, Poland
- John Paul II Children’s and Family Health Center in Sosnowiec sp. z o.o., Gabrieli Zapolskiej 3, 41-218 Sosnowiec, Poland
| | - Aleksandra Auguściak-Duma
- Department of Molecular Biology and Genetics, Medical University of Silesia, 40-061 Katowice, Poland
| | - Aleksandra Stasik
- John Paul II Children’s and Family Health Center in Sosnowiec sp. z o.o., Gabrieli Zapolskiej 3, 41-218 Sosnowiec, Poland
| | - Lena Cichoń
- Department of Developmental Age Psychiatry and Psychotherapy, Medical University of Silesia, 40-061 Katowice, Poland
- John Paul II Children’s and Family Health Center in Sosnowiec sp. z o.o., Gabrieli Zapolskiej 3, 41-218 Sosnowiec, Poland
| | - Alicja Kawalec
- Department of Developmental Age Psychiatry and Psychotherapy, Medical University of Silesia, 40-061 Katowice, Poland
| | - Małgorzata Janas-Kozik
- Department of Developmental Age Psychiatry and Psychotherapy, Medical University of Silesia, 40-061 Katowice, Poland
- John Paul II Children’s and Family Health Center in Sosnowiec sp. z o.o., Gabrieli Zapolskiej 3, 41-218 Sosnowiec, Poland
| |
Collapse
|
5
|
Al-Mazidi SH. The Physiology of Cognition in Autism Spectrum Disorder: Current and Future Challenges. Cureus 2023; 15:e46581. [PMID: 37808604 PMCID: PMC10557542 DOI: 10.7759/cureus.46581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 10/10/2023] Open
Abstract
Cognitive impairment is among the most challenging characteristics of autism spectrum disorder (ASD). Although ASD is one of the common neurodevelopmental disorders, we are still behind in diagnosing and treating cognitive impairment in ASD. Cognitive impairment in ASD varies, meaning it could be at the sensory perception level to cognitive processing, learning, and memory. There are no diagnostic criteria for cognitive impairment that are specific to ASD. The leading causes of cognitive impairment in ASD could be neurological, immune, and gastrointestinal dysfunction. Immune dysfunction might lead to neuroinflammation, affecting neural connectivity, glutamate/gamma-aminobutyric acid (GABA) balance, and plasticity. The gut-brain axes are essential in the developing brain. Special retinal changes have recently been detected in ASD, which need clinical investigation to find their possible role in early diagnosis. Early intervention is crucial for ASD cognitive dysfunction. Due to the heterogeneity of the disease, the clinical manifestation of ASD makes it difficult for clinicians to develop gold-standard diagnostic and therapeutic criteria. We suggest a triad for diagnosis, which includes clinical tests for immune and gastrointestinal dysfunction biomarkers, clinical examination for the retina, and an objective neurocognitive evaluation for ASD, and to develop a treatment strategy involving these three aspects. Developing clear treatment criteria for cognitive impairment for ASD would improve the quality of life of ASD people and their caregivers and would delay or prevent dementia-related disorders in ASD people.
Collapse
|
6
|
László K, Vörös D, Correia P, Fazekas CL, Török B, Plangár I, Zelena D. Vasopressin as Possible Treatment Option in Autism Spectrum Disorder. Biomedicines 2023; 11:2603. [PMID: 37892977 PMCID: PMC10603886 DOI: 10.3390/biomedicines11102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is rather common, presenting with prevalent early problems in social communication and accompanied by repetitive behavior. As vasopressin was implicated not only in salt-water homeostasis and stress-axis regulation, but also in social behavior, its role in the development of ASD might be suggested. In this review, we summarized a wide range of problems associated with ASD to which vasopressin might contribute, from social skills to communication, motor function problems, autonomous nervous system alterations as well as sleep disturbances, and altered sensory information processing. Beside functional connections between vasopressin and ASD, we draw attention to the anatomical background, highlighting several brain areas, including the paraventricular nucleus of the hypothalamus, medial preoptic area, lateral septum, bed nucleus of stria terminalis, amygdala, hippocampus, olfactory bulb and even the cerebellum, either producing vasopressin or containing vasopressinergic receptors (presumably V1a). Sex differences in the vasopressinergic system might underline the male prevalence of ASD. Moreover, vasopressin might contribute to the effectiveness of available off-label therapies as well as serve as a possible target for intervention. In this sense, vasopressin, but paradoxically also V1a receptor antagonist, were found to be effective in some clinical trials. We concluded that although vasopressin might be an effective candidate for ASD treatment, we might assume that only a subgroup (e.g., with stress-axis disturbances), a certain sex (most probably males) and a certain brain area (targeting by means of virus vectors) would benefit from this therapy.
Collapse
Affiliation(s)
- Kristóf László
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
| | - Dávid Vörös
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
| | - Pedro Correia
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
- Hungarian Research Network, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Csilla Lea Fazekas
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
- Hungarian Research Network, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Bibiána Török
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
- Hungarian Research Network, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Imola Plangár
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
| | - Dóra Zelena
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
- Hungarian Research Network, Institute of Experimental Medicine, 1083 Budapest, Hungary
| |
Collapse
|
7
|
Mondal A, Sharma R, Abiha U, Ahmad F, Karan A, Jayaraj RL, Sundar V. A Spectrum of Solutions: Unveiling Non-Pharmacological Approaches to Manage Autism Spectrum Disorder. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1584. [PMID: 37763703 PMCID: PMC10536417 DOI: 10.3390/medicina59091584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder that causes difficulty while socializing and communicating and the performance of stereotyped behavior. ASD is thought to have a variety of causes when accompanied by genetic disorders and environmental variables together, resulting in abnormalities in the brain. A steep rise in ASD has been seen regardless of the numerous behavioral and pharmaceutical therapeutic techniques. Therefore, using complementary and alternative therapies to treat autism could be very significant. Thus, this review is completely focused on non-pharmacological therapeutic interventions which include different diets, supplements, antioxidants, hormones, vitamins and minerals to manage ASD. Additionally, we also focus on complementary and alternative medicine (CAM) therapies, herbal remedies, camel milk and cannabiodiol. Additionally, we concentrate on how palatable phytonutrients provide a fresh glimmer of hope in this situation. Moreover, in addition to phytochemicals/nutraceuticals, it also focuses on various microbiomes, i.e., gut, oral, and vaginal. Therefore, the current comprehensive review opens a new avenue for managing autistic patients through non-pharmacological intervention.
Collapse
Affiliation(s)
- Arunima Mondal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Ghudda 151401, India
| | - Rashi Sharma
- Department of Biotechnology, Delhi Technological University, Bawana, Delhi 110042, India
| | - Umme Abiha
- IDRP, Indian Institute of Technology, Jodhpur 342030, India
- All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Faizan Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, Delhi 110062, India
| | | | - Richard L. Jayaraj
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Vaishnavi Sundar
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
8
|
Mühle C, Mazza M, Weinland C, von Zimmermann C, Bach P, Kiefer F, Grinevich V, Zoicas I, Kornhuber J, Lenz B. Elevated Oxytocin Receptor Blood Concentrations Predict Higher Risk for, More, and Earlier 24-Month Hospital Readmissions after In-Patient Detoxification in Males with Alcohol Use Disorder. Int J Mol Sci 2022; 23:ijms23179940. [PMID: 36077337 PMCID: PMC9455990 DOI: 10.3390/ijms23179940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Alcohol use disorder (AUD) is a major global mental health challenge. Knowledge concerning mechanisms underlying AUD and predictive biomarkers of AUD progression and relapse are insufficient. Recently, addiction research is focusing attention on the oxytocin system. However, to our knowledge, blood concentrations of the oxytocin receptor (OXTR) have not yet been studied in AUD. Here, in sex-separated analyses, OXTR serum concentrations were compared between early-abstinent in-patients with AUD (113 men, 87 women) and age-matched healthy controls (133 men, 107 women). The OXTR concentrations were correlated with sex hormone and oxytocin concentrations and alcohol-related hospital readmissions during a 24-month follow-up. In male patients with AUD, higher OXTR concentrations were found in those with an alcohol-related readmission than in those without (143%; p = 0.004), and they correlated with more prospective readmissions (ρ = 0.249; p = 0.008) and fewer days to the first readmission (ρ = −0.268; p = 0.004). In men and women, OXTR concentrations did not significantly differ between patients with AUD and controls. We found lower OXTR concentrations in smokers versus non-smokers in female patients (61%; p = 0.001) and controls (51%; p = 0.003). In controls, OXTR concentrations correlated with dihydrotestosterone (men, ρ = 0.189; p = 0.030) and testosterone concentrations (women, ρ = 0.281; p = 0.003). This clinical study provides novel insight into the role of serum OXTR levels in AUD. Future studies are encouraged to add to the available knowledge and investigate clinical implications of OXTR blood concentrations.
Collapse
Affiliation(s)
- Christiane Mühle
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
- Correspondence: or ; Tel.: +49-9131-85-44738; Fax: +49-9131-85-36381
| | - Massimiliano Mazza
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, J 5, D-68159 Mannheim, Germany
| | - Christian Weinland
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Claudia von Zimmermann
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Patrick Bach
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, J 5, D-68159 Mannheim, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, J 5, D-68159 Mannheim, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, J 5, D-68159 Mannheim, Germany
| | - Iulia Zoicas
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, J 5, D-68159 Mannheim, Germany
| |
Collapse
|
9
|
Integrative analysis prioritised oxytocin-related biomarkers associated with the aetiology of autism spectrum disorder. EBioMedicine 2022; 81:104091. [PMID: 35665681 PMCID: PMC9301877 DOI: 10.1016/j.ebiom.2022.104091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/26/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder with high phenotypic and genetic heterogeneity. The common variants of specific oxytocin-related genes (OTRGs), particularly OXTR, are associated with the aetiology of ASD. The contribution of rare genetic variations in OTRGs to ASD aetiology remains unclear. Methods We catalogued publicly available de novo mutations (DNMs) [from 6,511 patients with ASD and 3,391 controls], rare inherited variants (RIVs) [from 1,786 patients with ASD and 1,786 controls], and both de novo copy number variations (dnCNVs) and inherited CNVs (ihCNVs) [from 15,581 patients with ASD and 6,017 controls] in 963 curated OTRGs to explore their contribution to ASD pathology, respectively. Finally, a combined model was designed to prioritise the contribution of each gene to ASD aetiology by integrating DNMs and CNVs. Findings The rare genetic variations of OTRGs were significantly associated with ASD aetiology, in the order of dnCNVs > ihCNVs > DNMs. Furthermore, 172 OTRGs and their connected 286 ASD core genes were prioritised to positively contribute to ASD aetiology, including top-ranked MAPK3. Probands carrying rare disruptive variations in these genes were estimated to account for 10∼11% of all ASD probands. Interpretation Our findings suggest that rare disruptive variations in 172 OTRGs and their connected 286 ASD core genes are associated with ASD aetiology and may be potential biomarkers predicting the effects of oxytocin treatment. Funding Guangdong Key Project, National Natural Science Foundation of China, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province.
Collapse
|
10
|
Almeida D, Fiori LM, Chen GG, Aouabed Z, Lutz PE, Zhang TY, Mechawar N, Meaney MJ, Turecki G. Oxytocin receptor expression and epigenetic regulation in the anterior cingulate cortex of individuals with a history of severe childhood abuse. Psychoneuroendocrinology 2022; 136:105600. [PMID: 34839083 DOI: 10.1016/j.psyneuen.2021.105600] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/20/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
Childhood abuse significantly increases the lifetime risk of negative mental health outcomes. The oxytocinergic system, which plays a role in complex social and emotional behaviors, has been shown to be sensitive to early-life experiences. While previous studies have investigated the relationship between early-life adversity and oxytocin, they did so with peripheral samples. We, therefore, aimed to characterize the relationship between early-life adversity and oxytocin receptor (OXTR) expression in the brain, using post-mortem human samples, as well as a rodent model of naturally occurring variation in early-life environment. Focusing on the dorsal anterior cingulate cortex, we compared OXTR expression and epigenetic regulation between MDD suicides with (N = 26) and without history of childhood abuse (N = 24), as well as psychiatrically healthy controls (N = 23). We also compared Oxtr expression in the cingulate cortex of adult rats raised by dams displaying high (N = 13) and low levels (N = 12) of licking and grooming (LG) behavior. Overall, our results indicate that childhood abuse associates with an upregulation of OXTR expression, and that similarly, this relationship is also observed in the cingulate cortex of adult rats raised by low-LG dams. Additionally, we found an effect of rs53576 genotype on expression, showing that carriers of the A variant also show upregulated OXTR expression. The effects of early-life adversity and rs53576 genotype on OXTR expression are, however, not explained by differences in DNA methylation within and around the MT region of the OXTR gene.
Collapse
Affiliation(s)
- Daniel Almeida
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC H4H 1R3, Canada
| | - Laura M Fiori
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC H4H 1R3, Canada
| | - Gary G Chen
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC H4H 1R3, Canada
| | - Zahia Aouabed
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC H4H 1R3, Canada
| | - Pierre-Eric Lutz
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC H4H 1R3, Canada; Centre National de la Recherche Scientifique, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR3212, 67000 Strasbourg, France
| | - Tie-Yuan Zhang
- Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, QC H4H 1R3, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
| | - Michael J Meaney
- Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2T5, Canada; Singapore Institute for Clinical Sciences, Singapore City, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada.
| |
Collapse
|
11
|
Baristaite G, Gurwitz D. Estradiol reduces ACE2 and TMPRSS2 mRNA levels in A549 human lung epithelial cells. Drug Dev Res 2022; 83:961-966. [PMID: 35103351 PMCID: PMC9015589 DOI: 10.1002/ddr.21923] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 02/06/2023]
Abstract
Epidemiologic studies suggest slightly higher risk of severe Covid‐19 symptoms and fatalities following SARS‐CoV‐2 infection in men compared with women from similar age groups. This bias was suggested to reflect differences in the male and female immune system regulation, driven by different sex hormone levels in men and women, in particular, higher plasma estradiol in women. SARS‐CoV‐2 infects respiratory tract epithelial cells by binding to their cell membrane ACE2, followed by priming for cell entry by the host cell membrane serine protease TMPRSS2. The cell protease FURIN facilitates cell exit of mature SARS‐CoV‐2 virions. Our study examined the effects of in vitro treatment of A549 human lung epithelial cells with 17‐β‐estradiol on mRNA expression of genes coding for these proteins. Treatment of A549 human lung epithelial cells with 17‐β‐estradiol reduced the cellular mRNA levels of ACE2 and TMPRSS2 mRNA, while not affecting FURIN expression. Our findings suggest that 17‐β‐estradiol may reduce SARS‐CoV‐2 infection of lung epithelial cells, which may in part explain the reduced incidence of severe Covid‐19 and fatalities among women compared with men of similar age. Studies into the molecular pathways by which 17‐β‐estradiol reduces ACE2 and TMPRSS2 mRNA expression in lung epithelial cells are needed for assessing its potential protective value against severe Covid‐19.
Collapse
Affiliation(s)
- Gabriele Baristaite
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Baristaite G, Gurwitz D. d-Galactose treatment increases ACE2, TMPRSS2, and FURIN and reduces SERPINA1 mRNA expression in A549 human lung epithelial cells. Drug Dev Res 2021; 83:622-627. [PMID: 34677831 DOI: 10.1002/ddr.21891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 11/09/2022]
Abstract
Several comorbidities including diabetes, immune deficiency, and chronic respiratory disorders increase the risk of severe Covid-19 and fatalities among SARS-CoV-2 infected individuals. Severe Covid-19 risk among diabetes patients may reflect reduced immune response to viral infections. SARS-CoV-2 initially infects respiratory tract epithelial cells by binding to the host cell membrane ACE2, followed by proteolytic priming for cell entry by the host cell membrane serine protease TMPRSS2. Additionally, the protease FURIN facilitates cell exit of mature SARS-CoV-2 virions. Alpha-1 antitrypsin (AAT), the major plasma serine protease inhibitor, encoded by SERPINA1, is known to promote immune response to viral infections. AAT inhibits neutrophil elastase, a key inflammatory serine protease implicated in alveolar cell damage during respiratory infections, and AAT deficiency is associated with susceptibility to lung infections. AAT is implicated in Covid-19 as it inhibits TMPRSS2, a protease essential for SARS-CoV-2 cell entry. Here we show that treatment of A549 human lung epithelial cells for 7 days with 25 mM d-galactose, an inducer of diabetic-like and oxidative stress cellular phenotypes, leads to increased mRNA levels of ACE2, TMPRSS2, and FURIN, along with reduced SERPINA1 mRNA. Together, the dysregulated transcription of these genes following d-galactose treatment suggests that chronic diabetic-like conditions may facilitate SARS-CoV-2 infection of lung epithelial cells. Our findings may in part explain the higher severe Covid-19 risk in diabetes, and highlight the need to develop special treatment protocols for diabetic patients.
Collapse
Affiliation(s)
- Gabriele Baristaite
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
13
|
Co-Stimulation of Oxytocin and Arginine-Vasopressin Receptors Affect Hypothalamic Neurospheroid Size. Int J Mol Sci 2021; 22:ijms22168464. [PMID: 34445168 PMCID: PMC8395152 DOI: 10.3390/ijms22168464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
Oxytocin (OXT) is a neuropeptide involved in a plethora of behavioral and physiological processes. However, there is a prominent lack of 3D cell culture models that investigate the effects of OXT on a cellular/molecular level. In this study, we established a hypothalamic neuronal spheroid model to investigate the cellular response in a more realistic 3D setting. Our data indicate that the formation of spheroids itself does not alter the basic characteristics of the cell line and that markers of cellular morphology and connectivity are stably expressed. We found that both OXT and arginine vasopressin (AVP) treatment increase spheroid size (surface area and volume), as well as individual nucleus size, which serves as an indicator for cellular proliferation. The cellular response to both OXT and AVP seems mainly to be mediated by the AVP receptor 1a (V1aR); however, the OXT receptor (OXTR) contributes significantly to the observed proliferative effect. When we blocked the OXTR pharmacologically or knocked down the OXTR by siRNA, the OXT- or AVP-induced cellular proliferation decreased. In summary, we established a 3D cell culture model of the neuronal response to OXT and AVP and found that spheroids react to the treatment via their respective receptors but also via cross-talk between the two receptor types.
Collapse
|
14
|
Yokoyama H, Hirai T, Nagata T, Enomoto M, Kaburagi H, Leiyo L, Motoyoshi T, Yoshii T, Okawa A, Yokota T. DNA Microarray Analysis of Differential Gene Expression in the Dorsal Root Ganglia of Four Different Neuropathic Pain Mouse Models. J Pain Res 2020; 13:3031-3043. [PMID: 33244261 PMCID: PMC7685567 DOI: 10.2147/jpr.s272952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/22/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Pathological stimuli or injury to the peripheral nervous system can trigger neuropathic pain with common clinical features such as allodynia and hypersensitivity. Although various studies have identified molecules or genes related to neuropathic pain, the essential components are still unclear. Therefore, in this study, we investigated the molecular and genetic factors related to neuropathic pain. Methods We extracted candidate genes in the dorsal root ganglion (DRG) from three nerve injury mouse models and a sham-operated model (sciatic nerve ligation and resection, sural nerve resection, spared nerve injury [SNI], and sham) using DNA microarray to elucidate the genes responsible for the neuropathic pain mechanism in the SNI model, which exhibits hypersensitivity in the hindpaw of the preserved sural nerve area. We eliminated as many biases as possible. We then focused on an upregulated endogenous vasopressin receptor and clarified whether it is closely associated with traumatic neuropathic pain using a knockout mouse and drug-mediated suppression of the gene. Results Algorithm analysis of DNA microarray results identified 50 genes significantly upregulated in the DRG of the SNI model. Two independent genes—cyclin-dependent kinase-1 (CDK-1) and arginine vasopressin receptor 1A (V1a)—were subsequently identified as candidate SNI-specific genes in the DRG by quantitative PCR analysis. Administration of V1a agonist to wild-type SNI mice significantly alleviated neuropathic pain. However, V1a knockout mice did not exhibit higher hypersensitivity to mechanical stimulation than wild-type mice. In addition, V1a knockout mice showed similar pain behaviors after SNI to wild-type mice. Conclusion Through the DNA microarray analysis of several neuropathic models, we detected specific genes related to chronic pain. In particular, our results suggest that V1a in the DRG may partially contribute to the mechanism of neuropathic pain.
Collapse
Affiliation(s)
- Hiroyuki Yokoyama
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Takashi Hirai
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Mitsuhiro Enomoto
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Hidetoshi Kaburagi
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Li Leiyo
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Takayuki Motoyoshi
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Toshitaka Yoshii
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Atsushi Okawa
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| |
Collapse
|
15
|
Neuroimaging Markers of Risk and Pathways to Resilience in Autism Spectrum Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:200-210. [PMID: 32839155 DOI: 10.1016/j.bpsc.2020.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/04/2020] [Accepted: 06/28/2020] [Indexed: 01/22/2023]
Abstract
Autism spectrum disorder is a complex, heterogeneous neurodevelopmental condition of largely unknown etiology. This heterogeneity of symptom presentation, combined with high rates of comorbidity with other developmental disorders and a lack of reliable biomarkers, makes diagnosing and evaluating life outcomes for individuals with autism spectrum disorder a challenge. We review the growing literature on neuroimaging-based biomarkers of risk for the development of autism and explore evidence for resilience in some autistic individuals. The current literature suggests that neuroimaging during early infancy, in combination with prebirth and early genetic studies, is a promising tool for identifying biomarkers of risk, while studies of gene expression and DNA methylation have provided some key insights into mechanisms of resilience. With genetics and the environment contributing to both risk for the development of autism spectrum disorder and conditions for resilience, additional studies are needed to understand how risk and resilience interact mechanistically, whereby factors of risk may engender conditions for adaptation. Future studies should prioritize longitudinal designs in global cohorts, with the involvement of the autism community as partners in research to help identify domains of functioning that hold value and importance to the community.
Collapse
|
16
|
Tolomeo S, Chiao B, Lei Z, Chew SH, Ebstein RP. A Novel Role of CD38 and Oxytocin as Tandem Molecular Moderators of Human Social Behavior. Neurosci Biobehav Rev 2020; 115:251-272. [PMID: 32360414 DOI: 10.1016/j.neubiorev.2020.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/18/2020] [Accepted: 04/10/2020] [Indexed: 12/16/2022]
Abstract
Oxytocin is an important modulator of human affiliative behaviors, including social skills, human pair bonding, and friendship. CD38 will be discussed as an immune marker and then in more detail the mechanisms of CD38 on releasing brain oxytocin. Mention is made of the paralogue of oxytocin, vasopressin, that has often overlapping and complementary functions with oxytocin on social behavior. Curiously, vasopressin does not require CD38 to be released from the brain. This review discusses the social salience hypothesis of oxytocin action, a novel view of how this molecule influences much of human social behaviors often in contradictory ways. The oxytocinergic-vasopressinergic systems are crucial modulators of broad aspects of human personality. Of special interest are studies of these two hormones in trust related behavior observed using behavioral economic games. This review also covers the role of oxytocin in parenting and parental attachment. In conclusion, the effects of oxytocin on human behavior depend on the individual's social context and importantly as well, the individual's cultural milieu, viz. East and West. ACRONYMS: ACC = Anterior Cingulate ADP = Adenosine diphosphate AQ = Autism Quotient cADPR = Cyclic ADP-ribose CNS = Central nervous system DA = Dopamine eQTLC = Expression Quantitative Trait Loci LC-NE = Locus Coeruleus-Norepinephrine MRI = Magnetic Resonance Imaging OFC = Orbitofrontal cortices OXT = Oxytocin RAGE = Receptor for advanced glycation end-products SARM1 = Sterile Alpha and toll/interleukin-1 receptor motif-containing 1 TRPM2= Transient Receptor Potential Cation Channel Subfamily M Member 2 AVP = Vasopressin.
Collapse
Affiliation(s)
- Serenella Tolomeo
- Department of Psychology, National University of Singapore, Singapore.
| | - Benjamin Chiao
- CCBEF (China Center for Behavior Economics and Finance) & SOE (School of Economics), Southwestern University of Finance and Economics, Chengdu, China; PSB Paris School of Business, Paris, France
| | - Zhen Lei
- CCBEF (China Center for Behavior Economics and Finance) & SOE (School of Economics), Southwestern University of Finance and Economics, Chengdu, China
| | - Soo Hong Chew
- CCBEF (China Center for Behavior Economics and Finance) & SOE (School of Economics), Southwestern University of Finance and Economics, Chengdu, China.
| | - Richard P Ebstein
- CCBEF (China Center for Behavior Economics and Finance) & SOE (School of Economics), Southwestern University of Finance and Economics, Chengdu, China.
| |
Collapse
|