1
|
Gholami M, Souraki BA, Shomali A, Pendashteh A. Saline wastewater treatment by bioelectrochemical process (BEC) based on Al-electrocoagulation and halophilic bacteria: optimization using ANN with new approach. ENVIRONMENTAL TECHNOLOGY 2024; 45:4419-4439. [PMID: 37640518 DOI: 10.1080/09593330.2023.2253365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
ABSTRACTIn the present study, a bioelectrochemical reactor (BEC) was utilized to treat two types of real saline produced water (PW). BEC was designed based on the combination of electrocoagulation (EC) process with halophilic microorganisms, and it was assessed in terms of biodegradation of hydrocarbons. The effects of various operating parameters including the current density, electrical contact time (On/Off), hydraulic retention time (HRT), and total dissolved solids (TDS) at different levels on the chemical oxygen demand (COD) removal efficiency, settleability, and performance of isolated halophilic microorganisms were examined. Additionally, a novel neural network (ANN) approach modelling using adaptive factors was used to predict and optimize the effects and interactions between operating parameters during BEC process by predicting complicated mechanisms and variations associated with microorganisms. In addition, a new algorithm was developed for the sensitivity analysis to achieve the optimum operating conditions and obtain maximum efficiency in COD removal, sludge volume index (SVI), mixed liquor suspended solids (MLSS), and specific electrical energy consumption (SEEC), simultaneously. BEC was found to be significantly more effective at removing most hydrocarbons, particularly pristine and phytane. In addition, the results showed a significant improvement in settling ability of the biological flocs with average SVI of 91.5 mL/g and a size of 178.25 μm using BEC. Based on estimated operating costs and energy consumption, BEC was more cost-effective and efficient than other bioelectrochemical systems.
Collapse
Affiliation(s)
- Moeen Gholami
- Department of Chemical Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran
- Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch, New Zealand
| | - Behrooz Abbasi Souraki
- Department of Chemical Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran
| | - Abbas Shomali
- Department of Chemical Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran
| | - Alireza Pendashteh
- Department of Chemical Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran
- Department of Water Engineering and Environment, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran
| |
Collapse
|
2
|
Mohamed M, Tagliabue M, Tiraferri A. Technical Feasibility of Extraction of Freshwater from Produced Water with Combined Forward Osmosis and Nanofiltration. MEMBRANES 2024; 14:107. [PMID: 38786941 PMCID: PMC11123107 DOI: 10.3390/membranes14050107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
This study assesses the technical feasibility of a forward-osmosis-based system for concentrating produced water and extracting freshwater. Forward osmosis was combined with nanofiltration, the latter system used to restore the initial osmotic pressure of the diluted draw solutions while concurrently obtaining the final freshwater product. Three draw solutions, namely, MgCl2, NaCl, and C3H5NaO2, were initially tested against a synthetic water mimicking a pretreated produced water effluent having an osmotic pressure equal to 16.3 bar. MgCl2 was thus selected for high-recovery experiments. Different combinations of draw solution osmotic pressure (30, 40, 60, 80, and 120) and draw-to-feed initial volume ratios (1, 1.6, and 2.2) were tested at the laboratory scale, achieving recovery rates between roughly 35% and 70% and water fluxes between 4 and 8 L m-2h-1. One-dimensional, system-wide simulations deploying the analytical FO water flux equation were utilized to validate the experiments, investigate co-current and counter-current configurations, and understand the system potential. The diluted draw solutions were then transferred to nanofiltration to regenerate their original osmotic pressure. There, the highest observed rejection was 96.6% with an average flux of 21 L m-2h-1, when running the system to achieve 100% relative recovery.
Collapse
Affiliation(s)
- Madina Mohamed
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy;
| | - Marco Tagliabue
- Eni S.p.A., Research and Development, Via F. Maritano, 26, 20097 San Donato M.se, Italy
| | - Alberto Tiraferri
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy;
| |
Collapse
|
3
|
Qiu B, Liu J, Liu Y, Wang Y, Xiao Z, Fan S. Water and salt recovery from shale gas produced water by vacuum membrane distillation followed by crystallization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119094. [PMID: 37776792 DOI: 10.1016/j.jenvman.2023.119094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
A vacuum membrane distillation (VMD) followed by crystallization (VMD-C) was developed for the recovery of water and salts from shale gas produced water (SGPW). Before VMD, the pretreatment of SGPW with Fenton oxidation-flocculation is applied, with the chemical oxygen demand (COD) concentration reduction of 75% and the total removal of the total suspended solids (TSS), Ca2+, and Mg2+ in SGPW. The pretreatment of SGPW mitigated the membrane fouling in the VMD and effectively prevented the reduction of membrane flux over time. The average flux of the PTFE membrane reached 12.1 kg m-2 h-1 during the separation of the pretreated SGPW at a feed flux of 40 L h-1 and a feed temperature of 40 °C. The rejection rate of the membrane to TDS in SGPW was over 99%. Fresh water with a conductivity of below 20 μs cm-1 was produced by VMD-C. The salts concentrated upstream of the membrane were recovered by a stirring crystallization process. The VMD-C system resulted in a 61% cost savings compared to conventional SGPW treatment.
Collapse
Affiliation(s)
- Boya Qiu
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Jingyun Liu
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China.
| | - Yicai Liu
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Yinan Wang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Zeyi Xiao
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Senqing Fan
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| |
Collapse
|
4
|
Chang H, Zhu Y, Huang L, Yan Z, Qu F, Liang H. Mineral scaling induced membrane wetting in membrane distillation for water treatment: Fundamental mechanism and mitigation strategies. WATER RESEARCH 2023; 247:120807. [PMID: 37924685 DOI: 10.1016/j.watres.2023.120807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
The scaling-induced wetting phenomenon seriously affects the application of membrane distillation (MD) technology in hypersaline wastewater treatment. Unlike the large amount of researches on membrane scaling and membrane wetting, scaling-induced wetting is not sufficiently studied. In this work, the current research evolvement of scaling-induced wetting in MD was systematically summarized. Firstly, the theories involving scaling-induced wetting were discussed, including evaluation of scaling potential of specific solutions, classical and non-classical crystal nucleation and growth theories, observation and evolution of scaling-induced processes. Secondly, the primary pretreatment methods for alleviating scaling-induced wetting were discussed in detail, focusing on adding agents composed of coagulation, precipitation, oxidation, adsorption and scale inhibitors, filtration including granular filtration, membrane filtration and mesh filtration and application of external fields including sound, light, heat, electromagnetism, magnetism and aeration. Then, the roles of operation conditions and cleaning conditions in alleviating scaling-induced wetting were evaluated. The main operation parameters included temperature, flow rate, pressure, ultrasound, vibration and aeration, while different types of cleaning reagents, cleaning frequency and a series of assisted cleaning measures were summarized. Finally, the challenges and future needs in the application of nucleation theory to scaling-induced wetting, the speculation, monitoring and mitigation of scaling-induced wetting were proposed.
Collapse
Affiliation(s)
- Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China.
| | - Yingyuan Zhu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Lin Huang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fuzhou 350116, China
| | - Fangshu Qu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
5
|
Dib EC, Kraus S, Machado RAF, Alves JLF, Marangoni C. A novel intensified approach for treating produced water from oil extraction using a multi-tube type falling-film distillation column equipped with a biphasic thermosiphon: a promising feasibility study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95025-95034. [PMID: 37596477 DOI: 10.1007/s11356-023-29387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
This study has the novel aim of experimentally examining the efficiency of a pilot-scale treatment plant, composed of a multi-tube type falling-film distillation column equipped with a biphasic thermosiphon, for treating a real sample of high-salinity produced water (electrical conductivity of 20,700 μS cm-1). It investigates the influence of operational parameters, including feed temperature and steam chamber temperature of the biphasic thermosiphon, on distillate flow rate and reduction of conductivity. All experimental conditions tested achieved a reduction greater than 98% in terms of electrical conductivity. The production of treated water increased with increasing feed temperature; the flow rate increased from 20.8 L h-1 to 28.2 L h-1 as the feed temperature was increased from 80 °C to 90 °C, when the steam chamber temperature was fixed at 119 °C. Within the temperature range of the steam chamber, the specific energy consumption during the treatment process, with respect to the biphasic thermosiphon, remained practically unchanged between 0.58 kWh L-1 and 0.60 kWh L-1, when the feed temperature was 90 °C. The results proved the potential of the falling-film distillation technology assisted by heat pipes to be a promising proposal for removing salinity from produced water from oil extraction operations.
Collapse
Affiliation(s)
- Eduardo Carpes Dib
- Laboratory of Control and Polymerization Processes, Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), Campus Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil
| | - Samaira Kraus
- Laboratory of Control and Polymerization Processes, Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), Campus Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil
| | - Ricardo Antonio Francisco Machado
- Laboratory of Control and Polymerization Processes, Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), Campus Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil
| | - José Luiz Francisco Alves
- Laboratory of Control and Polymerization Processes, Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), Campus Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil.
| | - Cintia Marangoni
- Laboratory of Control and Polymerization Processes, Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), Campus Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
6
|
Zhou S, Huang L, Wang G, Wang W, Zhao R, Sun X, Wang D. A review of the development in shale oil and gas wastewater desalination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162376. [PMID: 36828060 DOI: 10.1016/j.scitotenv.2023.162376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/19/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The development of the shale oil and gas extraction industry has heightened concerns about shale oil and gas wastewater (SOGW). This review comprehensively summarizes, analyzes, and evaluates multiple issues in SOGW desalination. The detailed analysis of SOGW water quality and various disposal strategies with different water quality standards reveals the water quality characteristics and disposal status of SOGW, clarifying the necessity of desalination for the rational management of SOGW. Subsequently, potential and implemented technologies for SOGW desalination are reviewed, mainly including membrane-based, thermal-based, and adsorption-based desalination technologies, as well as bioelectrochemical desalination systems, and the research progress of these technologies in desalinating SOGW are highlighted. In addition, various pretreatment methods for SOGW desalination are comprehensively reviewed, and the synergistic effects on SOGW desalination that can be achieved by combining different desalination technologies are summarized. Renewable energy sources and waste heat are also discussed, which can be used to replace traditional fossil energy to drive SOGW desalination and reduce the negative impact of shale oil and gas exploitation on the environment. Moreover, real project cases for SOGW desalination are presented, and the full-scale or pilot-scale on-site treatment devices for SOGW desalination are summarized. In order to compare different desalination processes clearly, operational parameters and performance data of varying desalination processes, including feed salinity, water flux, salt removal rate, water recovery, energy consumption, and cost, are collected and analyzed, and the applicability of different desalination technologies in desalinating SOGW is qualitatively evaluated. Finally, the recovery of valuable inorganic resources in SOGW is discussed, which is a meaningful research direction for SOGW desalination. At present, the development of SOGW desalination has not reached a satisfactory level, and investing enough energy in SOGW desalination in the future is still necessary to achieve the optimal management of SOGW.
Collapse
Affiliation(s)
- Simin Zhou
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Likun Huang
- School of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Guangzhi Wang
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| | - Wei Wang
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Rui Zhao
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Xiyu Sun
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Dongdong Wang
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| |
Collapse
|
7
|
Yousefi S, Bahrami M, Hesam Najibi S. Hydrate phase equilibria of carbon dioxide/propane gas mixture in concentrated aqueous sodium chloride solutions: experimental data and prediction. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
8
|
|
9
|
Amakiri KT, Canon AR, Molinari M, Angelis-Dimakis A. Review of oilfield produced water treatment technologies. CHEMOSPHERE 2022; 298:134064. [PMID: 35240151 DOI: 10.1016/j.chemosphere.2022.134064] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/04/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Produced water is the wastewater formed when water is brought from subsurface reservoirs during oil or gas extraction. Currently, produced water is mainly treated using conventional trains that contain adsorbates, membrane filters, phase separators and cyclones. This paper reviewed the detailed characteristics of oilfield-produced water and the assessment of multiple technologies at primary, secondary, and tertiary treatments stages. The effectiveness of the treatment technology from the production of waste, energy requirements, usage of chemicals and the treatment effect of contaminants has been discussed. Then a qualitative assessment was presented in terms of energy requirements, robustness, flexibility, waste generation, modularity, and mobility, which has become critical to the development and application prospects of any technology.
Collapse
Affiliation(s)
- Kingsley Tamunokuro Amakiri
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, HD1 3DH, UK.
| | | | - Marco Molinari
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, HD1 3DH, UK
| | - Athanasios Angelis-Dimakis
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, HD1 3DH, UK
| |
Collapse
|
10
|
Spatiotemporal Analysis of Produced Water Demand for Fit-For-Purpose Reuse—A Permian Basin, New Mexico Case Study. WATER 2022. [DOI: 10.3390/w14111735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study created a framework for assessing the spatial and temporal distribution of the supply and demand of four potential produced water (PW) reuse options: agriculture, dust suppression, power generation, and river flow augmentation using Eddy and Lea counties in the southeastern New Mexico Permian Basin as a case study. Improving the PW management in the oil and gas industry is important in areas with limited water resources and increasing restrictions on PW disposal. One option in the PW management portfolio is fit-for-purpose reuse, but a lack of adequate information on PW quality, volumes, and the spatiotemporal distribution of PW supply and demand precludes its reuse. Using the framework, we determined that a 1.1-mile grid cell for data aggregation is a sufficient spatial scale for capturing the granular data needed for PW management decisions. The annual available PW supply for the two counties was estimated to be 45,460,875 m3 (36,870 acre-feet). The annual cumulative estimated demand was 647,656,261 m3 (525,064 acre-feet) for the four potential use cases—far exceeding PW supply. The maps generated using the framework illustrated that much of the supply and demand are spatially dispersed. The spatiotemporal analysis framework provides a generic methodology that can be used for PW management in other basins or for assessing alternative waters at the local and regional scales where management occurs.
Collapse
|
11
|
Ghafoori S, Omar M, Koutahzadeh N, Zendehboudi S, Malhas RN, Mohamed M, Al-Zubaidi S, Redha K, Baraki F, Mehrvar M. New advancements, challenges, and future needs on treatment of oilfield produced water: A state-of-the-art review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Membrane distillation as a second stage treatment of hydrothermal liquefaction wastewater after ultrafiltration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Chen L, Xu P, Wang H. Photocatalytic membrane reactors for produced water treatment and reuse: Fundamentals, affecting factors, rational design, and evaluation metrics. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127493. [PMID: 34879511 DOI: 10.1016/j.jhazmat.2021.127493] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/02/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Treatment and reuse of produced water (PW), the largest wastewater stream generated during oil and gas production, provides a promising option to address the increasing clean water demands. High-performance treatment technologies are needed to efficiently remove the organic and inorganic contaminants in PW for fit-for-purpose applications. Photocatalytic membrane reactor (PMR) is an emerging green technology for removal of organic pollutants, photoreduction of heavy metals, photo-inactivation of bacteria, and resource recovery. This study critically reviewed the mechanisms of photocatalysis and membrane processes in PMR, factors affecting PMR performance, rational design, and evaluation metrics for PW treatment. Specifically, PW characteristics, photocatalysts properties, membranes applied, and operating conditions are of utmost importance for rational design and reliable operation of PMR. PW pretreatment to remove oil and grease, colloidal and suspended solids is necessary to reduce membrane fouling and ensure optimal PMR performance. The metrics to evaluate PMR performance were developed including light utilization, exergetic efficiency, water recovery, product water improvement, lifetime of the photocatalyst, and costs. This review also presented the research gaps and outlook for future research.
Collapse
Affiliation(s)
- Lin Chen
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA.
| | - Pei Xu
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA.
| | - Huiyao Wang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
14
|
Santos PG, Scherer CM, Fisch AG, Rodrigues MAS. Membrane Distillation: Pre-Treatment Effects on Fouling Dynamics. MEMBRANES 2021; 11:membranes11120958. [PMID: 34940459 PMCID: PMC8706986 DOI: 10.3390/membranes11120958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022]
Abstract
In the research reported in this paper, membrane distillation was employed to recover water from a concentrated saline petrochemical effluent. According to the results, the use of membrane distillation is technically feasible when pre-treatments are employed to mitigate fouling. A mathematical model was used to evaluate the fouling mechanism, showing that the deposition of particulate and precipitated material occurred in all tests; however, the fouling dynamic depends on the pre-treatment employed (filtration, or filtration associated with a pH adjustment). The deposit layer formed by particles is not cohesive, allowing its entrainment to the bulk flow. The precipitate fouling showed a minimal tendency to entrainment. Also, precipitate fouling served as a coupling agent among adjacent particles, increasing the fouling layer cohesion.
Collapse
Affiliation(s)
- Paula G. Santos
- Graduation Program in Environmental Quality, Universidade Feevale, Novo Hamburgo 93525-075, Brazil;
| | - Cíntia M. Scherer
- Chemical Engineering Department, Universidade Feevale, Novo Hamburgo 93525-075, Brazil;
| | - Adriano G. Fisch
- Chemical and Materials Engineering Department, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Correspondence:
| | - Marco Antônio S. Rodrigues
- Graduation Program in Technology of Materials and Industrial Processes, Universidade Feevale, Novo Hamburgo 93525-075, Brazil;
| |
Collapse
|
15
|
Farinelli G, Coha M, Minella M, Fabbri D, Pazzi M, Vione D, Tiraferri A. Evaluation of Fenton and modified Fenton oxidation coupled with membrane distillation for produced water treatment: Benefits, challenges, and effluent toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148953. [PMID: 34328879 DOI: 10.1016/j.scitotenv.2021.148953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Membrane distillation is a promising technology to desalinate hypersaline produced waters. However, the organic content can foul and wet the membrane, while some fractions may pass into the distillate and impair its quality. In this study, the applicability of the traditional Fenton process was investigated and preliminarily optimized as a pre-treatment of a synthetic hypersaline produced water for the following step of membrane distillation. The Fenton process was also compared to a modified Fenton system, whereby safe iron ligands, i.e., ethylenediamine-N,N'-disuccinate and citrate, were used to overcome practical limitations of the traditional reaction. The oxidation pre-treatments achieved up to 55% removal of the dissolved organic carbon and almost complete degradation of the low molecular weight toxic organic contaminants. The pre-treatment steps did not improve the productivity of the membrane distillation process, but they allowed for obtaining a final effluent with significantly higher quality in terms of organic content and reduced Vibrio fischeri inhibition, with half maximal effective concentration (EC50) values up to 25 times those measured for the raw produced water. The addition of iron ligands during the oxidation step simplified the process, but resulted in an effluent of slightly lower quality in terms of toxicity compared to the use of traditional Fenton.
Collapse
Affiliation(s)
- Giulio Farinelli
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Marco Coha
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Marco Minella
- Department of Chemistry, Università di Torino, Via Pietro Giuria 5, 10125 Turin, Italy
| | - Debora Fabbri
- Department of Chemistry, Università di Torino, Via Pietro Giuria 5, 10125 Turin, Italy
| | - Marco Pazzi
- Department of Chemistry, Università di Torino, Via Pietro Giuria 5, 10125 Turin, Italy
| | - Davide Vione
- Department of Chemistry, Università di Torino, Via Pietro Giuria 5, 10125 Turin, Italy
| | - Alberto Tiraferri
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy.
| |
Collapse
|
16
|
Furia F, Minella M, Gosetti F, Turci F, Sabatino R, Di Cesare A, Corno G, Vione D. Elimination from wastewater of antibiotics reserved for hospital settings, with a Fenton process based on zero-valent iron. CHEMOSPHERE 2021; 283:131170. [PMID: 34467949 DOI: 10.1016/j.chemosphere.2021.131170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/18/2021] [Accepted: 06/05/2021] [Indexed: 06/13/2023]
Abstract
The Fenton process activated by Zero Valent Iron (ZVI-Fenton) is shown here to effectively remove antibiotics reserved for hospital settings (specifically used to treat antibiotic-resistant infections) from wastewater, thereby helping in the fight against bacterial resistance. Effective degradation of cefazolin, imipenem and vancomycin in real urban wastewater was achieved at pH 5, which is quite near neutrality when compared with classic Fenton that works effectively at pH 3-4. The possibility to operate successfully at pH 5 has several advantages compared to operation at lower pH values: (i) lower reagent costs for pH adjustment; (ii) insignificant impact on wastewater conductivity, because lesser acid is required to acidify and lesser or no base for neutralization; (iii) undetectable release of dissolved Fe, which could otherwise be an issue for wastewater quality. The cost of reagents for the treatment ranges between 0.04 and 0.07 $ m-3, which looks very suitable for practical applications. The structures of the degradation intermediates of the studied antibiotics and their likely abundance suggest that, once the primary compound is eliminated, most of the potential to trigger antibiotic action has been removed. Application of the ZVI-Fenton technique to wastewater treatment could considerably lower the possibility for antibiotics to trigger the development of resistance in bacteria.
Collapse
Affiliation(s)
- Francesco Furia
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5,9, 10125, Torino, Italy
| | - Marco Minella
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5,9, 10125, Torino, Italy
| | - Fabio Gosetti
- Dipartimento di Scienze Dell'Ambiente e Della Terra, Università di Milano - Bicocca, Piazza Della Scienza 1, 20126, Milano, Italy
| | - Francesco Turci
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5,9, 10125, Torino, Italy
| | - Raffaella Sabatino
- Molecular Ecology Group, National Research Council of Italy, Water Research Institute, Largo Tonolli 50, 28922, Verbania, VCO, Italy
| | - Andrea Di Cesare
- Molecular Ecology Group, National Research Council of Italy, Water Research Institute, Largo Tonolli 50, 28922, Verbania, VCO, Italy
| | - Gianluca Corno
- Molecular Ecology Group, National Research Council of Italy, Water Research Institute, Largo Tonolli 50, 28922, Verbania, VCO, Italy
| | - Davide Vione
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5,9, 10125, Torino, Italy.
| |
Collapse
|
17
|
Abstract
In the past few decades, the role of nanotechnology has expanded into environmental remediation applications. In this regard, nanofibers have been reported for various applications in water treatment and air filtration. Nanofibers are fibers of polymeric origin with diameters in the nanometer to submicron range. Electrospinning has been the most widely used method to synthesize nanofibers with tunable properties such as high specific surface area, uniform pore size, and controlled hydrophobicity. These properties of nanofibers make them highly sought after as adsorbents, photocatalysts, electrode materials, and membranes. In this review article, a basic description of the electrospinning process is presented. Subsequently, the role of different operating parameters in the electrospinning process and precursor polymeric solution is reviewed with respect to their influence on nanofiber properties. Three key areas of nanofiber application for water treatment (desalination, heavy-metal removal, and contaminant of emerging concern (CEC) remediation) are explored. The latest research in these areas is critically reviewed. Nanofibers have shown promising results in the case of membrane distillation, reverse osmosis, and forward osmosis applications. For heavy-metal removal, nanofibers have been able to remove trace heavy metals due to the convenient incorporation of specific functional groups that show a high affinity for the target heavy metals. In the case of CECs, nanofibers have been utilized not only as adsorbents but also as materials to localize and immobilize the trace contaminants, making further degradation by photocatalytic and electrochemical processes more efficient. The key issues with nanofiber application in water treatment include the lack of studies that explore the role of the background water matrix in impacting the contaminant removal performance, regeneration, and recyclability of nanofibers. Furthermore, the end-of-life disposal of nanofibers needs to be explored. The availability of more such studies will facilitate the adoption of nanofibers for water treatment applications.
Collapse
|
18
|
Kye H, Kim K, Jung Y, Abrha YW, Nam SN, Choi IH, Kang JW, Yoon Y. Characterization of marine dissolved organic matter and its effect on ozonation. CHEMOSPHERE 2021; 277:130332. [PMID: 33784557 DOI: 10.1016/j.chemosphere.2021.130332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
As the marine industry develops, the importance of seawater treatment process is increasing. To treat seawater, oxidation processes have primarily been used, such as ballast water treatment systems, aquaculture farm operations, aquarium management, and seawater desalination. However, dissolved organic matter in seawater, whose characteristics vary spatially and seasonally, affects the efficiency of oxidation processes. Therefore, in this study, seawater samples were acquired from various locations in the Republic of Korea to understand the spatio-temporal patterns of marine dissolved organic matter. It was reported that the characterization of marine dissolved organic matter using liquid chromatography-organic carbon detector and excitation-emission matrix-parallel factor modeling. Furthermore, the effects of marine dissolved organic matter were evaluated on ozonation, an oxidation process. The results demonstrate that marine dissolved organic matter varies in its aquagenic, pedogenic, and intermediate characteristics based on region and season. These variations affect ozonation by influencing the consumption of oxidants (e.g., bromine). As a result, it was concluded that characterizing marine dissolved organic matter can help improve the effectiveness of oxidation processes, particularly ozonation.
Collapse
Affiliation(s)
- Homin Kye
- Department of Environmental Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Kiho Kim
- Department of Environmental Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Youmi Jung
- Department of Environmental Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Yirga Weldu Abrha
- Department of Environmental Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Seong-Nam Nam
- Department of Civil & Environmental Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Il-Hwan Choi
- Water Analysis and Research Center, Korea Water Resources Corporation, Daejeon, Republic of Korea
| | - Joon-Wun Kang
- School of Chemical and Bio Engineering, Addis Ababa Institute of Technology, Addis Ababa University, King George VI Street, Addis Ababa, Ethiopia.
| | - Yeojoon Yoon
- Department of Environmental Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea.
| |
Collapse
|
19
|
Wei X, Kazemi M, Zhang S, Wolfe FA. Petrochemical wastewater and produced water: Treatment technology and resource recovery. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1695-1700. [PMID: 32762112 DOI: 10.1002/wer.1424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/09/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Petrochemical wastewater and produced water from oil and gas operations typically contain an array of organic and inorganic contaminants. The complexity of the wastewater, stringent environmental regulations, and the need for sustainable solutions have driven many research efforts in studying and developing advanced technology or combined treatment processes. On the other hand, the wastewater itself can be resources for water, energy, and other valuable product if appropriate technology is developed to recover them in a cost-effective fashion. The research advances in wastewater treatment and resource recovery technology are reviewed and summarized. For petrochemical wastewater, progresses were made in advanced oxidation, biological processes, and recovery of energy and water from wastewater. For produced water, many efforts were focused on membrane processes, combined systems, and biological treatment. PRACTITIONER POINTS: Significant progress continued to be made on petrochemical wastewater and produced water treatment. Recent technological advances in various treatment processes were summarized. Technologies focusing on resource recovery (e.g., water or energy) were presented.
Collapse
Affiliation(s)
- Xinchao Wei
- School of Engineering, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - Mohammad Kazemi
- School of Engineering, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - Shicheng Zhang
- Department of Environmental Science and Technology, Fudan University, Shanghai, China
| | - Frederick A Wolfe
- College of Engineering, The State University of New York Polytechnic Institute, Utica, New York, USA
| |
Collapse
|
20
|
Improving the performance of vacuum membrane distillation using a 3D-printed helical baffle and a superhydrophobic nanocomposite membrane. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117072] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Farinelli G, Minella M, Pazzi M, Giannakis S, Pulgarin C, Vione D, Tiraferri A. Natural iron ligands promote a metal-based oxidation mechanism for the Fenton reaction in water environments. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122413. [PMID: 32126419 DOI: 10.1016/j.jhazmat.2020.122413] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
The Fenton reaction is an effective advanced oxidation process occurring in nature and applied in engineering processes toward the degradation of harmful substances, including contaminants of emerging concern. The traditional Fenton application can be remarkably improved by using iron complexes with organic ligands, which allow for the degradation of contaminants at near-neutral pH and for the reduction of sludge production. This work discusses the mechanisms involved both in the classic Fenton process and in the presence of ligands that coordinate iron. Cyclohexane was selected as mechanistic probe, by following the formation of the relevant products, namely, cyclohexanol (A) and cyclohexanone (K). As expected, the classic Fenton process was associated with an A/K ratio of approximately 1, evidence of a dominant free radical behavior. Significantly, the presence of widely common natural and synthetic carboxyl ligands selectively produced mostly the alcoholic species in the first oxidation step. A ferryl-based mechanism was thus preferred when iron complexes were formed. Common iron ligands are here proven to direct the reaction pathway towards a selective metal-based catalysis. Such a system may be more easily engineered than a free radical-based one to safely remove hazardous contaminants from water and minimize the production of harmful intermediates.
Collapse
Affiliation(s)
- Giulio Farinelli
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Marco Minella
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy
| | - Marco Pazzi
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid, E.T.S. Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040, Madrid, Spain
| | - Cesar Pulgarin
- SB, ISIC, Group of Advanced Oxidation Processes, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015, Lausanne, Switzerland
| | - Davide Vione
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy.
| | - Alberto Tiraferri
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy.
| |
Collapse
|
22
|
Landsman MR, Sujanani R, Brodfuehrer SH, Cooper CM, Darr AG, Davis RJ, Kim K, Kum S, Nalley LK, Nomaan SM, Oden CP, Paspureddi A, Reimund KK, Rowles LS, Yeo S, Lawler DF, Freeman BD, Katz LE. Water Treatment: Are Membranes the Panacea? Annu Rev Chem Biomol Eng 2020; 11:559-585. [DOI: 10.1146/annurev-chembioeng-111919-091940] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alongside the rising global water demand, continued stress on current water supplies has sparked interest in using nontraditional source waters for energy, agriculture, industry, and domestic needs. Membrane technologies have emerged as one of the most promising approaches to achieve water security, but implementation of membrane processes for increasingly complex waters remains a challenge. The technical feasibility of membrane processes replacing conventional treatment of alternative water supplies (e.g., wastewater, seawater, and produced water) is considered in the context of typical and emerging water quality goals. This review considers the effectiveness of current technologies (both conventional and membrane based), as well as the potential for recent advancements in membrane research to achieve these water quality goals. We envision the future of water treatment to integrate advanced membranes (e.g., mixed-matrix membranes, block copolymers) into smart treatment trains that achieve several goals, including fit-for-purpose water generation, resource recovery, and energy conservation.
Collapse
Affiliation(s)
- Matthew R. Landsman
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Rahul Sujanani
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Samuel H. Brodfuehrer
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Carolyn M. Cooper
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Addison G. Darr
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - R. Justin Davis
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Kyungtae Kim
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Soyoon Kum
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Lauren K. Nalley
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Sheik M. Nomaan
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Cameron P. Oden
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Akhilesh Paspureddi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Kevin K. Reimund
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Lewis Stetson Rowles
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Seulki Yeo
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Desmond F. Lawler
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Benny D. Freeman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Lynn E. Katz
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|