1
|
Sopjani M, Falco F, Impellitteri F, Guarrasi V, Nguyen Thi X, Dërmaku-Sopjani M, Faggio C. Flavonoids derived from medicinal plants as a COVID-19 treatment. Phytother Res 2024; 38:1589-1609. [PMID: 38284138 DOI: 10.1002/ptr.8123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 disease. Through its viral spike (S) protein, the virus enters and infects epithelial cells by utilizing angiotensin-converting enzyme 2 as a host cell's receptor protein. The COVID-19 pandemic had a profound impact on global public health and economies. Although various effective vaccinations and medications are now available to prevent and treat COVID-19, natural compounds derived from medicinal plants, particularly flavonoids, demonstrated therapeutic potential to treat COVID-19 disease. Flavonoids exhibit dual antiviral mechanisms: direct interference with viral invasion and inhibition of replication. Specifically, they target key viral molecules, particularly viral proteases, involved in infection. These compounds showcase significant immunomodulatory and anti-inflammatory properties, effectively inhibiting various inflammatory cytokines. Additionally, emerging evidence supports the potential of flavonoids to mitigate the progression of COVID-19 in individuals with obesity by positively influencing lipid metabolism. This review aims to elucidate the molecular structure of SARS-CoV-2 and the underlying mechanism of action of flavonoids on the virus. This study evaluates the potential anti-SARS-CoV-2 properties exhibited by flavonoid compounds, with a specific interest in their structure and mechanisms of action, as therapeutic applications for the prevention and treatment of COVID-19. Nevertheless, a significant portion of existing knowledge is based on theoretical frameworks and findings derived from in vitro investigations. Further research is required to better assess the effectiveness of flavonoids in combating SARS-CoV-2, with a particular emphasis on in vivo and clinical investigations.
Collapse
Affiliation(s)
- Mentor Sopjani
- Faculty of Medicine, University of Prishtina, Prishtina, Kosova
| | - Francesca Falco
- Institute for Marine Biological Resources and Biotechnology (IRBIM)-CNR, Mazara del Vallo, Italy
| | | | - Valeria Guarrasi
- Institute of Biophysics, National Research Council (CNR), Palermo, Italy
| | - Xuan Nguyen Thi
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | | | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
- Department of Eco sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
2
|
da Rocha JAP, da Costa RA, da Costa ADSS, da Rocha ECM, Gomes AJB, Machado AK, Fagan SB, Brasil DDSB, Lima e Lima AH. Harnessing Brazilian biodiversity database: identification of flavonoids as potential inhibitors of SARS-CoV-2 main protease using computational approaches and all-atom molecular dynamics simulation. Front Chem 2024; 12:1336001. [PMID: 38456183 PMCID: PMC10917896 DOI: 10.3389/fchem.2024.1336001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) is the etiological agent responsible for the global outbreak of COVID-19 (Coronavirus Disease 2019). The main protease of SARS-CoV-2, Mpro, is a key enzyme that plays a vital role in mediating viral replication and transcription. In this study, a comprehensive computational approach was employed to investigate the binding affinity, selectivity, and stability of natural product candidates as potential new antivirals acting on the viral polyprotein processing mediated by SARS-CoV-2 Mpro. A library of 288 flavonoids extracted from Brazilian biodiversity was screened to select potential Mpro inhibitors. An initial filter based on Lipinski's rule of five was applied, and 204 compounds that did not violate any of the Lipinski rules were selected. The compounds were then docked into the active site of Mpro using the GOLD program, and the poses were subsequently re-scored using MM-GBSA (Molecular Mechanics Generalized Born Surface Area) binding free energy calculations performed by AmberTools23. The top five flavonoids with the best MM-GBSA binding free energy values were selected for analysis of their interactions with the active site residues of the protein. Next, we conducted a toxicity and drug-likeness analysis, and non-toxic compounds were subjected to molecular dynamics simulation and free energy calculation using the MM-PBSA (Molecular Mechanics Poisson-Boltzmann Surface Area) method. It was observed that the five selected flavonoids had lower MM-GBSA binding free energy with Mpro than the co-crystal ligand. Furthermore, these compounds also formed hydrogen bonds with two important residues, Cys145 and Glu166, in the active site of Mpro. Two compounds that passed the drug-likeness filter showed stable conformations during the molecular dynamics simulations. Among these, NuBBE_867 exhibited the best MM-PBSA binding free energy value compared to the crystallographic inhibitor. Therefore, this study suggests that NuBBE_867 could be a potential inhibitor against the main protease of SARS-CoV-2 and may be further examined to confirm our results.
Collapse
Affiliation(s)
- João Augusto Pereira da Rocha
- Laboratory of Modeling and Computational Chemistry, Federal Institute of Education, Science and Technology of Paraná (IFPA) Campus Bragança, Bragança, Brazil
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Graduate Program in Chemistry, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
| | - Renato Araújo da Costa
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Laboratory of Molecular Biology, Evolution and Microbiology, Federal Institute of Education Science and Technology of Paraná (IFPA) Campus Abaetetuba, Abaetetuba, Brazil
| | - Andreia do Socorro Silva da Costa
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - Elaine Cristina Medeiros da Rocha
- Laboratory of Modeling and Computational Chemistry, Federal Institute of Education, Science and Technology of Paraná (IFPA) Campus Bragança, Bragança, Brazil
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Graduate Program in Chemistry, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
| | - Anderson José Bahia Gomes
- Laboratory of Molecular Biology, Evolution and Microbiology, Federal Institute of Education Science and Technology of Paraná (IFPA) Campus Abaetetuba, Abaetetuba, Brazil
| | | | | | - Davi do Socorro Barros Brasil
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Graduate Program in Chemistry, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
| | - Anderson Henrique Lima e Lima
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
- Graduate Program in Chemistry, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
3
|
Dobhal K, Garg R, Singh A, Semwal A. Insight into the Natural Biomolecules (BMs): Promising Candidates as Zika Virus Inhibitors. Infect Disord Drug Targets 2024; 24:e020224226681. [PMID: 38318833 DOI: 10.2174/0118715265272414231226092146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 02/07/2024]
Abstract
Zika virus (ZIKV) is among the relatively new infectious disease threats that include SARS-CoV-2, coronavirus, monkeypox (Mpox) virus, etc. ZIKV has been reported to cause severe health risks to the fetus. To date, satisfactory treatment is still not available for the treatment of ZIKV infection. This review examines the last five years of work using natural biomolecules (BMs) to counteract the ZIKV through virtual screening and in vitro investigations. Virtual screening has identified doramectin, pinocembrin, hesperidins, epigallocatechin gallate, pedalitin, and quercetin as potentially active versus ZIKV infection. In vitro, testing has shown that nordihydroguaiaretic acid, mefloquine, isoquercitrin, glycyrrhetinic acid, patentiflorin-A, rottlerin, and harringtonine can reduce ZIKV infections in cell lines. However, in vivo, testing is limited, fortunately, emetine, rottlerin, patentiflorin-A, and lycorine have shown in vivo anti- ZIKV potential. This review focuses on natural biomolecules that show a particularly high selective index (>10). There is limited in vivo and clinical trial data for natural BMs, which needs to be an active area of investigation. This review aims to compile the known reference data and discuss the barriers associated with discovering and using natural BM agents to control ZIKV infection.
Collapse
Affiliation(s)
- Kiran Dobhal
- College of Pharmacy, Shivalik College, Dehradun, Uttarakhand, India
| | - Ruchika Garg
- School of Pharmacy, Maharaja Agrasen Universities, Baddi, Solan, Himachal Pradesh, 174103, India
| | - Alka Singh
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University Balawala, Dehradun, Uttarakhand, India
| | - Amit Semwal
- College of Pharmacy, Shivalik College, Dehradun, Uttarakhand, India
| |
Collapse
|
4
|
Camacho-Concha N, Santana-Román ME, Sánchez NC, Velasco I, Pando-Robles V, Pedraza-Alva G, Pérez-Martínez L. Insights into Zika Virus Pathogenesis and Potential Therapeutic Strategies. Biomedicines 2023; 11:3316. [PMID: 38137537 PMCID: PMC10741857 DOI: 10.3390/biomedicines11123316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 12/24/2023] Open
Abstract
Zika virus (ZIKV) has emerged as a significant public health threat, reaching pandemic levels in 2016. Human infection with ZIKV can manifest as either asymptomatic or as an acute illness characterized by symptoms such as fever and headache. Moreover, it has been associated with severe neurological complications in adults, including Guillain-Barre syndrome, and devastating fetal abnormalities, like microcephaly. The primary mode of transmission is through Aedes spp. mosquitoes, and with half of the world's population residing in regions where Aedes aegypti, the principal vector, thrives, the reemergence of ZIKV remains a concern. This comprehensive review provides insights into the pathogenesis of ZIKV and highlights the key cellular pathways activated upon ZIKV infection. Additionally, we explore the potential of utilizing microRNAs (miRNAs) and phytocompounds as promising strategies to combat ZIKV infection.
Collapse
Affiliation(s)
- Nohemi Camacho-Concha
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - María E. Santana-Román
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - Nilda C. Sánchez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - Iván Velasco
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Ciudad de México 14269, Mexico
| | - Victoria Pando-Robles
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Morelos, Mexico;
| | - Gustavo Pedraza-Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| |
Collapse
|
5
|
de Arruda TB, Bavia L, Mosimann ALP, Aoki MN, Sarzi ML, Conchon-Costa I, Wowk PF, Duarte dos Santos CN, Pavanelli WR, Silveira GF, Bordignon J. Viremia and Inflammatory Cytokines in Dengue: Interleukin-2 as a Biomarker of Infection, and Interferon-α and -γ as Markers of Primary versus Secondary Infection. Pathogens 2023; 12:1362. [PMID: 38003826 PMCID: PMC10675515 DOI: 10.3390/pathogens12111362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The pathogenesis of Dengue virus (DENV) infection is complex and involves viral replication that may trigger an inflammatory response leading to severe disease. Here, we investigated the correlation between viremia and cytokine levels in the serum of DENV-infected patients. Between 2013 and 2014, 138 patients with a diagnosis of acute-phase DENV infection and 22 patients with a non-dengue acute febrile illness (AFI) were enrolled. Through a focus-forming assay (FFU), we determined the viremia levels in DENV-infected patients and observed a peak in the first two days after the onset of symptoms. A higher level of viremia was observed in primary versus secondary DENV-infected patients. Furthermore, no correlation was observed between viremia and inflammatory cytokine levels in DENV-infected patients. Receiver operating characteristic (ROC) curve analysis revealed that IL-2 has the potential to act as a marker to distinguish dengue from other febrile illnesses and is positively correlated with Th1 cytokines. IFN-α and IFN-γ appear to be potential markers of primary versus secondary infection in DENV-infected patients, respectively. The results also indicate that viremia levels are not the main driving force behind inflammation in dengue and that cytokines could be used as infection biomarkers and for differentiation between primary versus secondary infection.
Collapse
Affiliation(s)
- Thaís Bonato de Arruda
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
| | - Lorena Bavia
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, Paraná, Brazil
| | - Ana Luiza Pamplona Mosimann
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
| | - Mateus Nobrega Aoki
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
- Laboratório de Ciências & Tecnologias Aplicadas a Saúde, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil
| | - Maria Lo Sarzi
- Secretaria Municipal de Saúde de Cambé, Cambé 86057-970, Paraná, Brazil
| | - Ivete Conchon-Costa
- Laboratório de Protozoologia Experimental, Universidade Estadual de Londrina, Londrina 86057-970, Paraná, Brazil (W.R.P.)
| | - Pryscilla Fanini Wowk
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
| | - Claudia Nunes Duarte dos Santos
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
| | - Wander Rogério Pavanelli
- Laboratório de Protozoologia Experimental, Universidade Estadual de Londrina, Londrina 86057-970, Paraná, Brazil (W.R.P.)
| | | | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
| |
Collapse
|
6
|
Yu J, Shi H, Song K, Yang Y, Li X, Peng L, Fu B, Yi P. Naringenin Improves Innate Immune Suppression after PRRSV Infection by Reactivating the RIG-I-MAVS Signaling Pathway, Promoting the Production of IFN-I. Viruses 2023; 15:2172. [PMID: 38005850 PMCID: PMC10674737 DOI: 10.3390/v15112172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has been prevalent for nearly forty years since it was first reported. It has been one of the major diseases jeopardizing the healthy development of the world swine industry, as well as causing great economic losses to the industry's economic development. Furthermore, no way has been found to combat the disease due to the immunosuppressive properties of its pathogen porcine reproductive and respiratory syndrome virus (PRRSV) infection. We previously examined the mRNA expression of IFN-I in PRRSV-infected Marc-145 cells at different time periods using qRT-PCR, and found that the mRNA expression of IFN-I in the late stage of PRRSV infection showed suppression. Naringenin is a flavonoid found in citrus fruits and has a very wide range of pharmacological activities. Therefore, the aim of the present study was to investigate the modulatory effect of naringenin on the suppressed innate immune response after PRRSV infection. The expression of IFN-I, IL-10, and ISGs in the late stage of PRRSV infection was examined using qRT-PCR, and the results showed that naringenin improved the expression of antiviral cytokines suppressed by PRRSV infection. Further results showed that naringenin treatment significantly up-regulated the expression of proteins related to the RIG-I-MAV immune signaling pathway, and that naringenin could not significantly activate the RIG-I-MAVS signaling pathway after the addition of the RIG-I inhibitor Cyclo. Overall, these data demonstrated that naringenin could improve the innate immune response suppressed by PRRSV infection by modulating the RIG-I-MAVS signaling pathway. Therefore, our study will provide a theoretical basis for the development of naringenin as a drug against immunosuppressive viral infectious disease infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pengfei Yi
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (J.Y.); (H.S.); (K.S.); (Y.Y.); (X.L.); (L.P.); (B.F.)
| |
Collapse
|
7
|
da Silva PG, Chaves EJF, Silva TMS, Rocha GB, Dantas WM, de Oliveira RN, Pena LJ. Antiviral Activity of Flavonoids from Geopropolis of the Brazilian Jandaira Bee against Zika and Dengue Viruses. Pharmaceutics 2023; 15:2494. [PMID: 37896254 PMCID: PMC10609720 DOI: 10.3390/pharmaceutics15102494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 10/29/2023] Open
Abstract
Arthropod-borne viruses within the Flaviviridae family such as Zika (ZIKV) and dengue (DENV) are responsible for major outbreaks in tropical countries, and there are no specific treatments against them. Naringenin and 7-O-methyl naringenin are flavonoids that can be extracted from geopropolis, a natural material that the Brazilian Jandaira stingless bee (Melipona subnitida Ducke) produces to protect its nest. Here, these flavonoids were tested against ZIKV and DENV using Vero cells as a cellular model to perform a cytotoxicity assay and to define the effective concentrations of TCID50 as the readout method. The results demonstrated the antiviral activity of the compounds against both viruses upon the treatment of infected cells. The tested flavonoids had antiviral activity comparable with 6-methylmercaptopurine riboside (6-MMPr), used here as a positive control. In addition, to identify the possible action mechanism of the antiviral candidates, we carried out a docking analysis followed by a molecular dynamics simulation to elucidate naringenin and 7-O-methyl naringenin binding sites to each virus. Altogether, these results demonstrate that both flavonoids have potent antiviral effects against both viruses and warrant further in vivo trials.
Collapse
Affiliation(s)
- Poliana Gomes da Silva
- Laboratory of Virology and Experimental Therapy (Lavite), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife 50670-420, Pernambuco, Brazil; (P.G.d.S.); (E.J.F.C.); (W.M.D.)
| | - Elton José Ferreira Chaves
- Laboratory of Virology and Experimental Therapy (Lavite), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife 50670-420, Pernambuco, Brazil; (P.G.d.S.); (E.J.F.C.); (W.M.D.)
| | - Tania Maria Sarmento Silva
- Phytochemical Bioprospecting Laboratory, Department of Chemistry, Federal Rural University of Pernambuco, Recife 52171-900, Pernambuco, Brazil;
| | - Gerd Bruno Rocha
- Laboratory of Computational Quantum Chemistry, Department of Chemistry, Federal University of Paraiba, João Pessoa 58050-085, Paraiba, Brazil;
| | - Willyenne Marília Dantas
- Laboratory of Virology and Experimental Therapy (Lavite), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife 50670-420, Pernambuco, Brazil; (P.G.d.S.); (E.J.F.C.); (W.M.D.)
- Bioactive Compounds Synthesis Laboratory, Department of Chemistry, Federal Rural University of Pernambuco (UFRPE), Recife 52171-900, Pernambuco, Brazil;
| | - Ronaldo Nascimento de Oliveira
- Bioactive Compounds Synthesis Laboratory, Department of Chemistry, Federal Rural University of Pernambuco (UFRPE), Recife 52171-900, Pernambuco, Brazil;
| | - Lindomar José Pena
- Laboratory of Virology and Experimental Therapy (Lavite), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife 50670-420, Pernambuco, Brazil; (P.G.d.S.); (E.J.F.C.); (W.M.D.)
| |
Collapse
|
8
|
Aleebrahim-Dehkordi E, Ghoshouni H, Koochaki P, Esmaili-Dehkordi M, Aleebrahim E, Chichagi F, Jafari A, Hanaei S, Heidari-Soureshjani E, Rezaei N. Targeting the vital non-structural proteins (NSP12, NSP7, NSP8 and NSP3) from SARS-CoV-2 and inhibition of RNA polymerase by natural bioactive compound naringenin as a promising drug candidate against COVID-19. J Mol Struct 2023; 1287:135642. [PMID: 37131962 PMCID: PMC10131750 DOI: 10.1016/j.molstruc.2023.135642] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 04/16/2023] [Accepted: 04/21/2023] [Indexed: 05/04/2023]
Abstract
The prevalence of SARS-CoV-2-induced respiratory infections is now a major challenge worldwide. There is currently no specific antiviral drug to prevent or treat this disease. Infection with COVID-19 seriously needs to find effective therapeutic agents. In the present study, naringenin, as a potential inhibitor candidate for RNA Polymerase SARS-CoV-2 was compared with remdesivir (FDA-approved drug) and GS-441,524 (Derivative of the drug remdesivir) by screening with wild-type and mutant SARS-CoV-2 NSP12 (NSP7-NSP8) and NSP3 interfaces, then complexes were simulated by molecular dynamics (MD) simulations to gain their stabilities. The docking results displayed scores of -3.45 kcal/mol and -4.32 kcal/mol against NSP12 and NSP3, respectively. Our results showed that naringenin had ΔG values more negative than the ΔG values of Remdesivir (RDV) and GS-441,524. Hence, naringenin was considered to be a potential inhibitor. Also, the number of hydrogen bonds of naringenin with NSP3 and later NSP12 are more than Remdesivir and its derivative. In this research, Mean root mean square deviation (RMSD) values of NSP3 and NSP12with naringenin ligand (5.55±1.58 nm to 3.45±0.56 nm and 0.238±0.01 to 0.242±0.021 nm, respectively showed stability in the presence of ligand. The root mean square fluctuations (RMSF) values of NSP3 and NSP12 amino acid units in the presence of naringenin in were 1.5 ± 0.31 nm and 0.118±0.058, respectively. Pharmacokinetic properties and prediction of absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of naringenin and RDV showed that these two compounds had no potential cytotoxicity.
Collapse
Affiliation(s)
- Elahe Aleebrahim-Dehkordi
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Nutritional Health Team (NHT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hamed Ghoshouni
- Medical student, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Pooneh Koochaki
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Elham Aleebrahim
- PhD Student in Food Sciences and Engineering, Islamic Azad University, Tehran North Branch, Tehran, Iran
| | - Fatemeh Chichagi
- Research Development Center, Sina Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Ali Jafari
- Nutritional Health Team (NHT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, Department of Nutrition, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sara Hanaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ehsan Heidari-Soureshjani
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box. 115, Iran
- Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Nima Rezaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Cai J, Wen H, Zhou H, Zhang D, Lan D, Liu S, Li C, Dai X, Song T, Wang X, He Y, He Z, Tan J, Zhang J. Naringenin: A flavanone with anti-inflammatory and anti-infective properties. Biomed Pharmacother 2023; 164:114990. [PMID: 37315435 DOI: 10.1016/j.biopha.2023.114990] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
Although a growing body of research has recently shown how crucial inflammation and infection are to all major diseases, several of the medications currently available on the market have various unfavourable side effects, necessitating the development of alternative therapeutic choices. Researchers are increasingly interested in alternative medications or active components derived from natural sources. Naringenin is a commonly consumed flavonoid found in many plants, and since it was discovered to have nutritional benefits, it has been utilized to treat inflammation and infections caused by particular bacteria or viruses. However, the absence of adequate clinical data and naringenin's poor solubility and stability severely restrict its usage as a medicinal agent. In this article, we discuss naringenin's effects and mechanisms of action on autoimmune-induced inflammation, bacterial infections, and viral infections based on recent research. We also present a few suggestions for enhancing naringenin's solubility, stability, and bioavailability. This paper emphasizes the potential use of naringenin as an anti-inflammatory and anti-infective agent and the next prophylactic substance for the treatment of various inflammatory and infectious diseases, even though some mechanisms of action are still unclear, and offers some theoretical support for its clinical application.
Collapse
Affiliation(s)
- Ji Cai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Hongli Wen
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China.
| | - He Zhou
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Dan Zhang
- Zunyi Medical University Library, Zunyi 563000, China.
| | - Dongfeng Lan
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Songpo Liu
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Chunyang Li
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Xiaofang Dai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China.
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi 563000, China.
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
10
|
Rababi D, Nag A. Evaluation of therapeutic potentials of selected phytochemicals against Nipah virus, a multi-dimensional in silico study. 3 Biotech 2023; 13:174. [PMID: 37180429 PMCID: PMC10170460 DOI: 10.1007/s13205-023-03595-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023] Open
Abstract
The current study attempted to evaluate the potential of fifty-three (53) natural compounds as Nipah virus attachment glycoprotein (NiV G) inhibitors through in silico molecular docking study. Pharmacophore alignment of the four (4) selected compounds (Naringin, Mulberrofuran B, Rutin and Quercetin 3-galactoside) through Principal Component Analysis (PCA) revealed that common pharmacophores, namely four H bond acceptors, one H bond donor and two aromatic groups were responsible for the residual interaction with the target protein. Out of these four compounds, Naringin was found to have the highest inhibitory potential ( - 9.19 kcal mol-1) against the target protein NiV G, when compared to the control drug, Ribavirin ( - 6.95 kcal mol-1). The molecular dynamic simulation revealed that Naringin could make a stable complex with the target protein in the near-native physiological condition. Finally, MM-PBSA (Molecular Mechanics-Poisson-Boltzmann Solvent-Accessible Surface Area) analysis in agreement with our molecular docking result, showed that Naringin ( - 218.664 kJ mol-1) could strongly bind with the target protein NiV G than the control drug Ribavirin ( - 83.812 kJ mol-1). Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03595-y.
Collapse
Affiliation(s)
- Deblina Rababi
- Department of Life Sciences, Bangalore Central Campus, CHRIST (Deemed to be University), Bangalore, India
| | - Anish Nag
- Department of Life Sciences, Bangalore Central Campus, CHRIST (Deemed to be University), Bangalore, India
| |
Collapse
|
11
|
Pereira RS, Santos FCP, Campana PRV, Costa VV, de Pádua RM, Souza DG, Teixeira MM, Braga FC. Natural Products and Derivatives as Potential Zika virus Inhibitors: A Comprehensive Review. Viruses 2023; 15:v15051211. [PMID: 37243296 DOI: 10.3390/v15051211] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Zika virus (ZIKV) is an arbovirus whose infection in humans can lead to severe outcomes. This article reviews studies reporting the anti-ZIKV activity of natural products (NPs) and derivatives published from 1997 to 2022, which were carried out with NPs obtained from plants (82.4%) or semisynthetic/synthetic derivatives, fungi (3.1%), bacteria (7.6%), animals (1.2%) and marine organisms (1.9%) along with miscellaneous compounds (3.8%). Classes of NPs reported to present anti-ZIKV activity include polyphenols, triterpenes, alkaloids, and steroids, among others. The highest values of the selectivity index, the ratio between cytotoxicity and antiviral activity (SI = CC50/EC50), were reported for epigallocatechin gallate (SI ≥ 25,000) and anisomycin (SI ≥ 11,900) obtained from Streptomyces bacteria, dolastane (SI = 1246) isolated from the marine seaweed Canistrocarpus cervicorni, and the flavonol myricetin (SI ≥ 862). NPs mostly act at the stages of viral adsorption and internalization in addition to presenting virucidal effect. The data demonstrate the potential of NPs for developing new anti-ZIKV agents and highlight the lack of studies addressing their molecular mechanisms of action and pre-clinical studies of efficacy and safety in animal models. To the best of our knowledge, none of the active compounds has been submitted to clinical studies.
Collapse
Affiliation(s)
- Rosângela Santos Pereira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Françoise Camila Pereira Santos
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | | | - Vivian Vasconcelos Costa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Rodrigo Maia de Pádua
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Daniele G Souza
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Fernão Castro Braga
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
12
|
Saivish MV, Menezes GDL, da Silva RA, Fontoura MA, Shimizu JF, da Silva GCD, Teixeira IDS, Mistrão NFB, Hernandes VM, Rahal P, Sacchetto L, Pacca CC, Marques RE, Nogueira ML. Antiviral Activity of Quercetin Hydrate against Zika Virus. Int J Mol Sci 2023; 24:7504. [PMID: 37108665 PMCID: PMC10144977 DOI: 10.3390/ijms24087504] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 04/29/2023] Open
Abstract
Zika virus (ZIKV) has re-emerged in recent decades, leading to outbreaks of Zika fever in Africa, Asia, and Central and South America. Despite its drastic re-emergence and clinical impact, no vaccines or antiviral compounds are available to prevent or control ZIKV infection. This study evaluated the potential antiviral activity of quercetin hydrate against ZIKV infection and demonstrated that this substance inhibits virus particle production in A549 and Vero cells under different treatment conditions. In vitro antiviral activity was long-lasting (still observed 72 h post-infection), suggesting that quercetin hydrate affects multiple rounds of ZIKV replication. Molecular docking indicates that quercetin hydrate can efficiently interact with the specific allosteric binding site cavity of the NS2B-NS3 proteases and NS1-dimer. These results identify quercetin as a potential compound to combat ZIKV infection in vitro.
Collapse
Affiliation(s)
- Marielena Vogel Saivish
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
| | - Gabriela de Lima Menezes
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal 59072-970, RN, Brazil
- Unidade Especial de Ciências Exatas, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil
| | | | - Marina Alves Fontoura
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
| | - Jacqueline Farinha Shimizu
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
| | - Gislaine Celestino Dutra da Silva
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Igor da Silva Teixeira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Natalia Franco Bueno Mistrão
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Victor Miranda Hernandes
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Paula Rahal
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto 15054-000, SP, Brazil
| | - Lívia Sacchetto
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Carolina Colombelli Pacca
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto 15054-000, SP, Brazil
- Departamento de Microbiologia, Faceres Medical School, São José do Rio Preto 15090-000, SP, Brazil
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| |
Collapse
|
13
|
Giordano D, Facchiano A, Carbone V. Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview. Molecules 2023; 28:molecules28062470. [PMID: 36985442 PMCID: PMC10058909 DOI: 10.3390/molecules28062470] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Natural products and plant extracts exhibit many biological activities, including that related to the defense mechanisms against parasites. Many studies have investigated the biological functions of secondary metabolites and reported evidence of antiviral activities. The pandemic emergencies have further increased the interest in finding antiviral agents, and efforts are oriented to investigate possible activities of secondary plant metabolites against human viruses and their potential application in treating or preventing SARS-CoV-2 infection. In this review, we performed a comprehensive analysis of studies through in silico and in vitro investigations, also including in vivo applications and clinical trials, to evaluate the state of knowledge on the antiviral activities of secondary metabolites against human viruses and their potential application in treating or preventing SARS-CoV-2 infection, with a particular focus on natural compounds present in food plants. Although some of the food plant secondary metabolites seem to be useful in the prevention and as a possible therapeutic management against SARS-CoV-2, up to now, no molecules can be used as a potential treatment for COVID-19; however, more research is needed.
Collapse
Affiliation(s)
- Deborah Giordano
- Institute of Food Sciences, National Research Council, via Roma 64, 83100 Avellino, Italy
| | - Angelo Facchiano
- Institute of Food Sciences, National Research Council, via Roma 64, 83100 Avellino, Italy
| | - Virginia Carbone
- Institute of Food Sciences, National Research Council, via Roma 64, 83100 Avellino, Italy
| |
Collapse
|
14
|
Yu W, Zhang B, Hong X, Cai H, Wang Y, Lu J, Hu X, Cao B. Identification of desoxyrhapontigenin as a novel antiviral agent against congenital Zika virus infection. Antiviral Res 2023; 211:105542. [PMID: 36646387 DOI: 10.1016/j.antiviral.2023.105542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Zika virus (ZIKV) infection arises as a global health threat owing to its association with Guillain-Barre syndrome and microcephaly in adults and fetuses since the most recent epidemics. Although extraordinary efforts have been underway globally to identify safe and effective treatments for ZIKV, therapeutic progressions seem to remain stagnant, especially for treating congenital ZIKV infection. Bio-compounds from medicinal plants evolutionarily optimized as drug-like molecules offer eligible sources of pharmaceuticals and lead drugs to fight against viral infections. Here, we identified desoxyrhapontigenin (DES), a naturally occurring bioactive product, as the strongest inhibitory compound against ZIKV infection among six conventional polyphenols in vitro. We also leveraged the trophoblast cell line, human trophoblast stem cells, and complex placental organoid models to provide solid evidence to support the anti-ZIKV bioactivity of DES. Notably, DES treatment effectively reduced the ZIKV burden in serum and target tissues, and correspondingly improved ZIKV-induced pathologic changes including weight loss, tissue inflammation, cell apoptosis, and adverse pregnancy outcomes, while it did not lead to obvious toxicity in both adult and pregnant mice. Furthermore, mechanistic studies revealed that DES could suppress ZIKV entry via dual mechanisms of direct targeting ZIKV E proteins and downregulating putative ZIKV receptors. These findings elucidate a previously unappreciated protective role of desoxyrhapontigenin against ZIKV infection both in vitro and in vivo, which shed light on the development of a novel and potent treatment for congenital ZIKV infection.
Collapse
Affiliation(s)
- Wenzhe Yu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361002, China
| | - Beiang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361002, China
| | - Xiao Hong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361002, China
| | - Han Cai
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361002, China
| | - Yinan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361002, China
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361002, China
| | - Xiaoqian Hu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361002, China.
| | - Bin Cao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361002, China.
| |
Collapse
|
15
|
Quercetin: A Functional Food-Flavonoid Incredibly Attenuates Emerging and Re-Emerging Viral Infections through Immunomodulatory Actions. Molecules 2023; 28:molecules28030938. [PMID: 36770606 PMCID: PMC9920550 DOI: 10.3390/molecules28030938] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Many of the medicinally active molecules in the flavonoid class of phytochemicals are being researched for their potential antiviral activity against various DNA and RNA viruses. Quercetin is a flavonoid that can be found in a variety of foods, including fruits and vegetables. It has been reported to be effective against a variety of viruses. This review, therefore, deciphered the mechanistic of how Quercetin works against some of the deadliest viruses, such as influenza A, Hepatitis C, Dengue type 2 and Ebola virus, which cause frequent outbreaks worldwide and result in significant morbidity and mortality in humans through epidemics or pandemics. All those have an alarming impact on both human health and the global and national economies. The review extended computing the Quercetin-contained natural recourse and its modes of action in different experimental approaches leading to antiviral actions. The gap in effective treatment emphasizes the necessity of a search for new effective antiviral compounds. Quercetin shows potential antiviral activity and inhibits it by targeting viral infections at multiple stages. The suppression of viral neuraminidase, proteases and DNA/RNA polymerases and the alteration of many viral proteins as well as their immunomodulation are the main molecular mechanisms of Quercetin's antiviral activities. Nonetheless, the huge potential of Quercetin and its extensive use is inadequately approached as a therapeutic for emerging and re-emerging viral infections. Therefore, this review enumerated the food-functioned Quercetin source, the modes of action of Quercetin for antiviral effects and made insights on the mechanism-based antiviral action of Quercetin.
Collapse
|
16
|
Muthuraj PG, Krishnamoorthy C, Anderson-Berry A, Hanson C, Natarajan SK. Novel Therapeutic Nutrients Molecules That Protect against Zika Virus Infection with a Special Note on Palmitoleate. Nutrients 2022; 15:124. [PMID: 36615782 PMCID: PMC9823984 DOI: 10.3390/nu15010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Zika virus (ZIKV) is a Flavivirus from the Flaviviridae family and a positive-sense single strand RNA virus. ZIKV infection can cause a mild infection to the mother but can be vertically transmitted to the developing fetus, causing congenital anomalies. The prevalence of ZIKV infections was relatively insignificant with sporadic outbreaks in the Asian and African continents until 2006. However, recent epidemic in the Caribbean showed significant increased incidence of Congenital Zika Syndrome. ZIKV infection results in placental pathology which plays a crucial role in disease transmission from mother to fetus. Currently, there is no Food and Drug Administration (FDA) approved vaccine or therapeutic drug against ZIKV. This review article summarizes the recent advances on ZIKV transmission and diagnosis and reviews nutraceuticals which can protect against the ZIKV infection. Further, we have reviewed recent advances related to the novel therapeutic nutrient molecules that have been shown to possess activity against Zika virus infected cells. We also review the mechanism of ZIKV-induced endoplasmic reticulum and apoptosis and the protective role of palmitoleate (nutrient molecule) against ZIKV-induced ER stress and apoptosis in the placental trophoblasts.
Collapse
Affiliation(s)
- Philma Glora Muthuraj
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Chandan Krishnamoorthy
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ann Anderson-Berry
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Corrine Hanson
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Medical Nutrition Education, College of Allied Health Profession, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Medical Nutrition Education, College of Allied Health Profession, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
17
|
Picos-Salas MA, Cabanillas-Bojórquez LÁ, Elizalde-Romero CA, Leyva-López N, Montoya-Inzunza LA, Heredia JB, Gutiérrez-Grijalva EP. Naringenin as a Natural Agent Against Oxidative Stress and Inflammation, and Its Bioavailability. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2123502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Manuel Adrian Picos-Salas
- Functional Foods and Nutraceuticals Laboratory, Centro de Investigación en Alimentación y Desarrollo A.C., Sinalora, México
| | | | | | - Nayely Leyva-López
- Functional Foods and Nutraceuticals Laboratory, Centro de Investigación en Alimentación y Desarrollo A.C., Sinalora, México
| | - Luis Aurelio Montoya-Inzunza
- Functional Foods and Nutraceuticals Laboratory, Centro de Investigación en Alimentación y Desarrollo A.C., Sinalora, México
| | - J. Basilio Heredia
- Functional Foods and Nutraceuticals Laboratory, Centro de Investigación en Alimentación y Desarrollo A.C., Sinalora, México
| | - Erick P. Gutiérrez-Grijalva
- Functional Foods and Nutraceuticals Laboratory, Centro de Investigación en Alimentación y Desarrollo A.C., Sinalora, México
- Functional Foods and Nutraceuticals Laboratory, Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo A.C., Sinaloa, Mexico
| |
Collapse
|
18
|
Pharmacological Potential of Flavonoids against Neurotropic Viruses. Pharmaceuticals (Basel) 2022; 15:ph15091149. [PMID: 36145370 PMCID: PMC9502241 DOI: 10.3390/ph15091149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Flavonoids are a group of natural compounds that have been described in the literature as having anti-inflammatory, antioxidant, and neuroprotective compounds. Although they are considered versatile molecules, little has been discussed about their antiviral activities for neurotropic viruses. Hence, the present study aimed to investigate the pharmacological potential of flavonoids in the face of viruses that can affect the central nervous system (CNS). We carried out research from 2011 to 2021 using the Pubmed platform. The following were excluded: articles not in the English language, letters to editors, review articles and papers that did not include any experimental or clinical tests, and papers that showed antiviral activities against viruses that do not infect human beings. The inclusion criteria were in silico predictions and preclinical pharmacological studies, in vitro, in vivo and ex vivo, and clinical studies with flavonoids, flavonoid fractions and extracts that were active against neurotropic viruses. The search resulted in 205 articles that were sorted per virus type and discussed, considering the most cited antiviral activities. Our investigation shows the latest relevant data about flavonoids that have presented a wide range of actions against viruses that affect the CNS, mainly influenza, hepatitis C and others, such as the coronavirus, enterovirus, and arbovirus. Considering that these molecules present well-known anti-inflammatory and neuroprotective activities, using flavonoids that have demonstrated both neuroprotective and antiviral effects could be viewed as an alternative for therapy in the course of CNS infections.
Collapse
|
19
|
Fong YD, Chu JJH. Natural products as Zika antivirals. Med Res Rev 2022; 42:1739-1780. [PMID: 35593443 PMCID: PMC9540820 DOI: 10.1002/med.21891] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/06/2022] [Accepted: 05/04/2022] [Indexed: 12/13/2022]
Abstract
Zika virus (ZIKV) is an arbovirus belonging to the flavivirus genus and is transmitted in Aedes mosquito vectors. Since its discovery in humans in 1952 in Uganda, ZIKV has been responsible for many outbreaks in South America, Africa, and Asia. Patients infected with ZIKV are usually asymptomatic; mild symptoms include fever, joint and muscle pain, and fatigue. However, severe infections may have neurological implications, such as Guillain-Barré syndrome and fetal microcephaly. To date, there are no existing approved therapeutic drugs or vaccines against ZIKV infections; treatments mainly target the symptoms of infection. Preventive measures against mosquito breeding are the main strategy for limiting the spread of the virus. Antiviral drug research for the treatment of ZIKV infection has been rapidly developing, with many drug candidates emerging from drug repurposing studies, and compound screening. In particular, several studies have demonstrated the potential of natural products as antivirals for ZIKV infection. Hence, this paper will review recent advances in natural products in ZIKV antiviral drug discovery.
Collapse
Affiliation(s)
- Yuhui Deborah Fong
- Integrative Sciences and Engineering Programme (ISEP), NUS Graduate School (NUSGS)National University of SingaporeSingaporeSingapore
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Justin Jang Hann Chu
- Integrative Sciences and Engineering Programme (ISEP), NUS Graduate School (NUSGS)National University of SingaporeSingaporeSingapore
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Infectious Diseases Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for ScienceTechnology and Research (A*STAR)SingaporeSingapore
| |
Collapse
|
20
|
Aggio JB, Porto BN, Duarte dos Santos CN, Mosimann ALP, Wowk PF. Human Neutrophils Present Mild Activation by Zika Virus But Reduce the Infection of Susceptible Cells. Front Immunol 2022; 13:784443. [PMID: 35747137 PMCID: PMC9210994 DOI: 10.3389/fimmu.2022.784443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
The emergence of the Zika virus (ZIKV) has highlighted the need for a deeper understanding of virus-host interactions in order to pave the way for the development of antiviral therapies. The present work aimed to address the response of neutrophils during ZIKV infection. Neutrophils are important effector cells in innate immunity implicated in the host’s response to neurotropic arboviruses. Our results indicate that human neutrophils were not permissive to Asian or African ZIKV strain replication. In fact, after stimulation with ZIKV, neutrophils were mild primed against the virus as evaluated through CD11b and CD62L modulation, secretion of inflammatory cytokines and granule content, production of reactive oxygen species, and neutrophil extracellular traps formation. Overall, neutrophils did not affect ZIKV infectivity. Moreover, in vitro ZIKV infection of primary innate immune cells did not trigger neutrophil migration. However, neutrophils co-cultured with ZIKV susceptible cell lineages resulted in lower cell infection frequencies, possibly due to cell-to-cell contact. In vivo, neutrophil depletion in immunocompetent mice did not affect ZIKV spreading to the draining lymph nodes. The data suggest that human neutrophils do not play an antiviral role against ZIKV per se, but these cells might participate in an infected environment shaping the ZIKV infection in other target cells.
Collapse
Affiliation(s)
- Juliana Bernardi Aggio
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil
| | - Bárbara Nery Porto
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | | | - Ana Luiza Pamplona Mosimann
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil
- *Correspondence: Pryscilla Fanini Wowk, ; Ana Luiza Pamplona Mosimann,
| | - Pryscilla Fanini Wowk
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil
- *Correspondence: Pryscilla Fanini Wowk, ; Ana Luiza Pamplona Mosimann,
| |
Collapse
|
21
|
Mirza MU, Alanko I, Vanmeert M, Muzzarelli KM, Salo-Ahen OMH, Abdullah I, Kovari IA, Claes S, De Jonghe S, Schols D, Schinazi RF, Kovari LC, Trant JF, Ahmad S, Froeyen M. The discovery of Zika virus NS2B-NS3 inhibitors with antiviral activity via an integrated virtual screening approach. Eur J Pharm Sci 2022; 175:106220. [PMID: 35618201 DOI: 10.1016/j.ejps.2022.106220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 11/15/2022]
Abstract
With expanding recent outbreaks and a lack of treatment options, the Zika virus (ZIKV) poses a severe health concern. The availability of ZIKV NS2B-NS3 co-crystallized structures paved the way for rational drug discovery. A computer-aided structure-based approach was used to screen a diverse library of compounds against ZIKV NS2B-NS3 protease. The top hits were selected based on various binding free energy calculations followed by per-residue decomposition analysis. The selected hits were then evaluated for their biological potential with ZIKV protease inhibition assay and antiviral activity. Among 26 selected compounds, 8 compounds showed promising activity against ZIKV protease with a percentage inhibition of greater than 25 and 3 compounds displayed ∼50% at 10 µM, which indicates an enrichment rate of approximately 36% (threshold IC50 < 10 µM) in the ZIKV-NS2B-NS3 protease inhibition assay. Of these, only one compound (23) produced whole-cell anti-ZIKV activity, and the binding mode of 23 was extensively analyzed through long-run molecular dynamics simulations. The current study provides a promising starting point for the further development of novel compounds against ZIKV.
Collapse
Affiliation(s)
- Muhammad Usman Mirza
- KU Leuven, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, Medicinal Chemistry, Herestraat 49, box 1041, Leuven 3000, Belgium; Department of Chemistry and Biochemistry, University of Windsor, Windsor N9B 3P4, ON, Canada
| | - Ida Alanko
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, FI-20520 Turku, Finland; Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, FI-20520 Turku, Finland
| | - Michiel Vanmeert
- KU Leuven, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, Medicinal Chemistry, Herestraat 49, box 1041, Leuven 3000, Belgium
| | - Kendall M Muzzarelli
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - Outi M H Salo-Ahen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, FI-20520 Turku, Finland; Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, FI-20520 Turku, Finland
| | - Iskandar Abdullah
- Drug Design Development Research Group, Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Iulia A Kovari
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - Sandra Claes
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Herestraat 49, box 1043, Leuven, Belgium
| | - Steven De Jonghe
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Herestraat 49, box 1043, Leuven, Belgium
| | - Dominique Schols
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Herestraat 49, box 1043, Leuven, Belgium
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta 30322, GA, USA
| | - Ladislau C Kovari
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, Windsor N9B 3P4, ON, Canada
| | - Sarfraz Ahmad
- Drug Design Development Research Group, Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Matheus Froeyen
- KU Leuven, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, Medicinal Chemistry, Herestraat 49, box 1041, Leuven 3000, Belgium.
| |
Collapse
|
22
|
Santos Pereira R, Vasconcelos Costa V, Luiz Menezes Gomes G, Rodrigues Valadares Campana P, Maia de Pádua R, Barbosa M, Oki Y, Heiden G, Fernandes GW, Menezes de Oliveira D, Souza DG, Martins Teixeira M, Castro Braga F. Anti-Zika Virus Activity of Plant Extracts Containing Polyphenols and Triterpenes on Vero CCL-81 and Human Neuroblastoma SH-SY5Y Cells. Chem Biodivers 2022; 19:e202100842. [PMID: 35285139 DOI: 10.1002/cbdv.202100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/09/2022] [Indexed: 11/06/2022]
Abstract
Zika virus (ZIKV) infection is a global threat associated to neurological disorders in adults and microcephaly in children born to infected mothers. No vaccine or drug is available against ZIKV. We herein report the anti-ZIKV activity of 36 plant extracts containing polyphenols and/or triterpenes. ZIKV-infected Vero CCL-81 cells were treated with samples at non-cytotoxic concentrations, determined by MTT and LDH assays. One third of the extracts elicited concentration-dependent anti-ZIKV effect, with viral loads reduction from 0.4 to 3.8 log units. The 12 active extracts were tested on ZIKV-infected SH-SY5Y cells and significant reductions of viral loads (in log units) were induced by Maytenus ilicifolia (4.5 log), Terminalia phaeocarpa (3.7 log), Maytenus rigida (1.7 log) and Echinodorus grandiflorus (1.7 log) extracts. Median cytotoxic concentration (CC50 ) of these extracts in Vero cells were higher than in SH-SY5Y lineage. M. ilicifolia (IC50 =16.8±10.3 μg/mL, SI=3.4) and T. phaeocarpa (IC50 =22.0±6.8 μg/mL, SI=4.8) were the most active extracts. UPLC-ESI-MS/MS analysis of M. ilicifolia extract led to the identification of 7 triterpenes, of which lupeol and a mixture of friedelin/friedelinol showed no activity against ZIKV. The composition of T. phaeocarpa extract comprises phenolic acids, ellagitannins and flavonoids, as recently reported by us. In conclusion, the anti-ZIKV activity of 12 plant extracts is here described for the first time and polyphenols and triterpenes were identified as the probable bioactive constituents of T. phaeocarpa and M. ilicifolia, respectively.
Collapse
Affiliation(s)
- Rosângela Santos Pereira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Brazil
| | - Vivian Vasconcelos Costa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil.,Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | - Gabriel Luiz Menezes Gomes
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Brazil
| | - Priscilla Rodrigues Valadares Campana
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Brazil
| | - Rodrigo Maia de Pádua
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Brazil
| | - Milton Barbosa
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | - Yumi Oki
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | - Gustavo Heiden
- Empresa Brasileira de Pesquisa Agropecuária Clima Temperado, CEP 96010-971, Pelotas, Brazil
| | - Geraldo Wilson Fernandes
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | | | - Daniele G Souza
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | - Fernão Castro Braga
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Brazil
| |
Collapse
|
23
|
Shahhamzehei N, Abdelfatah S, Efferth T. In Silico and In Vitro Identification of Pan-Coronaviral Main Protease Inhibitors from a Large Natural Product Library. Pharmaceuticals (Basel) 2022; 15:308. [PMID: 35337106 PMCID: PMC8952009 DOI: 10.3390/ph15030308] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 01/27/2023] Open
Abstract
The main protease (Mpro or 3CLpro) in coronaviruses represents a promising specific drug target as it is essential for the cleavage of the virus polypeptide and has a unique cleavage site that does not exist in human host proteases. In this study, we explored potential natural pan-coronavirus drugs using in vitro and in silico approaches and three coronavirus main proteases as treatment targets. The PyRx program was used to screen 39,442 natural-product-like compounds from the ZINC database and 121 preselected phytochemicals from medicinal plants with known antiviral activity. After assessment with Lipinski's rule of five, molecular docking was performed for the top 33 compounds of both libraries. Enzymatic assays were applied for the top candidates from both in silico approaches to test their ability to inhibit SARS-CoV-2 Mpro. The four compounds (hypericin, rosmarinic acid, isorhamnetin, and luteolin) that most efficiently inhibited SARS-CoV-2 Mpro in vitro were further tested for their efficacy in inhibiting Mpro of SARS-CoV-1 and MERS-CoV. Microscale thermophoresis was performed to determine dissociation constant (Kd) values to validate the binding of these active compounds to recombinant Mpro proteins of SARS-CoV-2, SARS-CoV-1, and MERS-CoV. The cytotoxicity of hypericin, rosmarinic acid, isorhamnetin, and luteolin was assessed in human diploid MRC-5 lung fibroblasts using the resazurin cell viability assay to determine their therapeutic indices. Sequence alignment of Mpro of SARS-CoV-2 demonstrated 96.08%, 50.83%, 49.17%, 48.51%, 44.04%, and 41.06% similarity to Mpro of other human-pathogenic coronaviruses (SARS-CoV-1, MERS-CoV, HCoV-NL63, HCoV-OC43, HCoV-HKU1, and HCoV-229E, respectively). Molecular docking showed that 12 out of 121 compounds were bound to SARS-CoV-2 Mpro at the same binding site as the control inhibitor, GC376. Enzyme inhibition assays revealed that hypericin, rosmarinic acid, isorhamnetin, and luteolin inhibited Mpro of SARS-CoV-2, while hypericin and isorhamnetin inhibited Mpro of SARS-CoV-1; hypericin showed inhibitory effects toward Mpro of MERS-CoV. Microscale thermophoresis confirmed the binding of these compounds to Mpro with high affinity. Resazurin assays showed that rosmarinic acid and luteolin were not cytotoxic toward MRC-5 cells, whereas hypericin and isorhamnetin were slightly cytotoxic. We demonstrated that hypericin represents a potential novel pan-anti-coronaviral agent by binding to and inhibiting Mpro of several human-pathogenic coronaviruses. Moreover, isorhamnetin showed inhibitory effects toward SARS-CoV-2 and SARS-CoV-1 Mpro, indicating that this compound may have some pan-coronaviral potential. Luteolin had inhibitory effects against SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg5, 55128 Mainz, Germany; (N.S.); (S.A.)
| |
Collapse
|
24
|
Bioactive Compounds of Citrus Fruits: A Review of Composition and Health Benefits of Carotenoids, Flavonoids, Limonoids, and Terpenes. Antioxidants (Basel) 2022; 11:antiox11020239. [PMID: 35204122 PMCID: PMC8868476 DOI: 10.3390/antiox11020239] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
The increased consumption of fruits, vegetables, and whole grains contributes to the reduced risk of many diseases related to metabolic syndrome, including neurodegenerative diseases, cardiovascular disease (CVD), diabetes, and cancer. Citrus, the genus Citrus L., is one of the most important fruit crops, rich in carotenoids, flavonoids, terpenes, limonoids, and many other bioactive compounds of nutritional and nutraceutical value. Moreover, polymethoxylated flavones (PMFs), a unique class of bioactive flavonoids, abundantly occur in citrus fruits. In addition, citrus essential oil, rich in limonoids and terpenes, is an economically important product due to its potent antioxidant, antimicrobial, and flavoring properties. Mechanistic, observational, and intervention studies have demonstrated the health benefits of citrus bioactives in minimizing the risk of metabolic syndrome. This review provides a comprehensive view of the composition of carotenoids, flavonoids, terpenes, and limonoids of citrus fruits and their associated health benefits.
Collapse
|
25
|
Fadilah NQ, Jittmittraphap A, Leaungwutiwong P, Pripdeevech P, Dhanushka D, Mahidol C, Ruchirawat S, Kittakoop P. Virucidal Activity of Essential Oils From Citrus x aurantium L. Against Influenza A Virus H1N1:Limonene as a Potential Household Disinfectant Against Virus. Nat Prod Commun 2022. [DOI: 10.1177/1934578x211072713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This work explored the compositions of a crude extract of peels of Citrus x aurantium using a gas chromatography-mass spectrometry (GC-MS) technique. The crude extract of peels of C. × aurantium was analyzed by GC-MS revealing the presence of limonene as the major compound, accounting for 93.7% of the total. Virucidal activity of the oil of C. x aurantium peels against influenza A virus H1N1 was evaluated by the ASTM E1053-20 method. Moreover, the virucidal activity was also investigated of D-limonene, the major terpene in essential oils of C. x aurantium, and its enantiomer L-limonene. The essential oil of the C. x aurantium peels produced a log reduction of 1.9 to 2.0, accounting for 99% reduction of the virus, while D- and L-limonene exhibited virucidal activity with a log reduction of 3.70 to 4.32 at concentrations of 125 and 250.0 µg/mL, thus reducing the virus by 99.99%. Previous work found that D-limonene exhibited antiviral activity against herpes simplex virus, but L-limonene, an enantiomer of D-limonene, has never been reported for antiviral activity. This work demonstrates the antiviral activity of L-limonene for the first time. Moreover, this work suggests that concentrations of 0.0125% to 0.025% of either D- or L-limonene can possibly be used as a disinfectant against viruses, probably in the form of essential oil sprays, which may be useful disinfectants against the airborne transmission of viruses, such as influenza and COVID-19.
Collapse
Affiliation(s)
- Nurul Q. Fadilah
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Chulabhorn Royal Academy, Bangkok, Thailand
| | | | | | | | - Darshana Dhanushka
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Chulabhorn Mahidol
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Chulabhorn Royal Academy, Bangkok, Thailand
- Chulabhorn Research Institute, Bangkok, Thailand
| | - Somsak Ruchirawat
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Chulabhorn Royal Academy, Bangkok, Thailand
- Chulabhorn Research Institute, Bangkok, Thailand
- CHE, Ministry of Education, Bangkok, Thailand
| | - Prasat Kittakoop
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Chulabhorn Royal Academy, Bangkok, Thailand
- Chulabhorn Research Institute, Bangkok, Thailand
- CHE, Ministry of Education, Bangkok, Thailand
| |
Collapse
|
26
|
Pizzato M, Baraldi C, Boscato Sopetto G, Finozzi D, Gentile C, Gentile MD, Marconi R, Paladino D, Raoss A, Riedmiller I, Ur Rehman H, Santini A, Succetti V, Volpini L. SARS-CoV-2 and the Host Cell: A Tale of Interactions. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2021.815388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ability of a virus to spread between individuals, its replication capacity and the clinical course of the infection are macroscopic consequences of a multifaceted molecular interaction of viral components with the host cell. The heavy impact of COVID-19 on the world population, economics and sanitary systems calls for therapeutic and prophylactic solutions that require a deep characterization of the interactions occurring between virus and host cells. Unveiling how SARS-CoV-2 engages with host factors throughout its life cycle is therefore fundamental to understand the pathogenic mechanisms underlying the viral infection and to design antiviral therapies and prophylactic strategies. Two years into the SARS-CoV-2 pandemic, this review provides an overview of the interplay between SARS-CoV-2 and the host cell, with focus on the machinery and compartments pivotal for virus replication and the antiviral cellular response. Starting with the interaction with the cell surface, following the virus replicative cycle through the characterization of the entry pathways, the survival and replication in the cytoplasm, to the mechanisms of egress from the infected cell, this review unravels the complex network of interactions between SARS-CoV-2 and the host cell, highlighting the knowledge that has the potential to set the basis for the development of innovative antiviral strategies.
Collapse
|
27
|
Saaty AH. Grapefruit Seed Extracts’ Antibacterial and Antiviral Activity: Anti-Severe Acute Respiratory Syndrome Coronavirus 2 Impact. ARCHIVES OF PHARMACY PRACTICE 2022. [DOI: 10.51847/rq6b89xgf9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
28
|
Agrawal PK, Agrawal C, Blunden G. Naringenin as a Possible Candidate Against SARS-CoV-2 Infection and in the Pathogenesis of COVID-19. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211066723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Naringenin, widely distributed in fruits and vegetables, is endowed with antiviral and other health beneficial activities, such as immune-stimulating and anti-inflammatory actions that could play a role in contributing, to some extent, to either preventing or alleviating coronavirus infection. Several computational studies have identified naringenin as one of the prominent flavonoids that can possibly inhibit internalization of the virus, virus-host interactions that trigger the cytokine storm, and replication of the virus. This review highlights the antiviral potential of naringenin in COVID-19 associated risk factors and its predicted therapeutic targets against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Pawan K. Agrawal
- Natural Product Inc., 7963 Anderson Park Lane, Westerville, OH 43081, USA
| | - Chandan Agrawal
- Natural Product Inc., 7963 Anderson Park Lane, Westerville, OH 43081, USA
| | | |
Collapse
|
29
|
Ávila EP, Mendes LA, De Almeida WB, Santos HFD, De Almeida MV. Conformational analysis and reactivity of naringenin. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Singla RK, He X, Chopra H, Tsagkaris C, Shen L, Kamal MA, Shen B. Natural Products for the Prevention and Control of the COVID-19 Pandemic: Sustainable Bioresources. Front Pharmacol 2021; 12:758159. [PMID: 34925017 PMCID: PMC8671886 DOI: 10.3389/fphar.2021.758159] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/27/2021] [Indexed: 02/05/2023] Open
Abstract
Background: The world has been unprecedentedly hit by a global pandemic which broke the record of deadly pandemics that faced humanity ever since its existence. Even kids are well-versed in the terminologies and basics of the SARS-CoV-2 virus and COVID-19 now. The vaccination program has been successfully launched in various countries, given that the huge global population of concern is still far behind to be vaccinated. Furthermore, the scarcity of any potential drug against the COVID-19-causing virus forces scientists and clinicians to search for alternative and complementary medicines on a war-footing basis. Aims and Objectives: The present review aims to cover and analyze the etiology and epidemiology of COVID-19, the role of intestinal microbiota and pro-inflammatory markers, and most importantly, the natural products to combat this deadly SARS-CoV-2 virus. Methods: A primary literature search was conducted through PubMed and Google Scholar using relevant keywords. Natural products were searched from January 2020 to November 2020. No timeline limit has been imposed on the search for the biological sources of those phytochemicals. Interactive mapping has been done to analyze the multi-modal and multi-target sources. Results and Discussion: The intestinal microbiota and the pro-inflammatory markers that can serve the prognosis, diagnosis, and treatment of COVID-19 were discussed. The literature search resulted in yielding 70 phytochemicals and ten polyherbal formulations which were scientifically analyzed against the SARS-CoV-2 virus and its targets and found significant. Retrospective analyses led to provide information about 165 biological sources that can also be screened if not done earlier. Conclusion: The interactive analysis mapping of biological sources with phytochemicals and targets as well as that of phytochemical class with phytochemicals and COVID-19 targets yielded insights into the multitarget and multimodal evidence-based complementary medicines.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Xuefei He
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | | | - Li Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics; Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Naringenin: A Promising Therapeutic Agent against Organ Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1210675. [PMID: 34804359 PMCID: PMC8601819 DOI: 10.1155/2021/1210675] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
Fibrosis is the final common pathology of most chronic diseases as seen in the heart, liver, lung, kidney, and skin and contributes to nearly half of death in the developed countries. Fibrosis, or scarring, is mainly characterized by the transdifferentiation of fibroblasts into myofibroblasts and the excessive accumulation of extracellular matrix (ECM) secreted by myofibroblasts. Despite immense efforts made in the field of organ fibrosis over the past decades and considerable understanding of the occurrence and development of fibrosis gained, there is still lack of an effective treatment for fibrotic diseases. Therefore, identifying a new therapeutic strategy against organ fibrosis is an unmet clinical need. Naringenin, a flavonoid that occurs naturally in citrus fruits, has been found to confer a wide range of pharmacological effects including antioxidant, anti-inflammatory, and anticancer benefits and thus potentially exerting preventive and curative effects on numerous diseases. In addition, emerging evidence has revealed that naringenin can prevent the pathogenesis of fibrosis in vivo and in vitro via the regulation of various pathways that involved signaling molecules such as transforming growth factor-β1/small mother against decapentaplegic protein 3 (TGF-β1/Smad3), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), sirtuin1 (SIRT1), nuclear factor-kappa B (NF-κB), or reactive oxygen species (ROS). Targeting these profibrotic pathways by naringenin could potentially become a novel therapeutic approach for the management of fibrotic disorders. In this review, we present a comprehensive summary of the antifibrotic roles of naringenin in vivo and in vitro and their underlying mechanisms of action. As a food derived compound, naringenin may serve as a promising drug candidate for the treatment of fibrotic disorders.
Collapse
|
32
|
Fakhri S, Mohammadi Pour P, Piri S, Farzaei MH, Echeverría J. Modulating Neurological Complications of Emerging Infectious Diseases: Mechanistic Approaches to Candidate Phytochemicals. Front Pharmacol 2021; 12:742146. [PMID: 34764869 PMCID: PMC8576094 DOI: 10.3389/fphar.2021.742146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/23/2021] [Indexed: 12/02/2022] Open
Abstract
Growing studies are revealing the critical manifestations of influenza, dengue virus (DENV) infection, Zika virus (ZIKV) disease, and Ebola virus disease (EVD) as emerging infectious diseases. However, their corresponding mechanisms of major complications headed for neuronal dysfunction are not entirely understood. From the mechanistic point of view, inflammatory/oxidative mediators are activated during emerging infectious diseases towards less cell migration, neurogenesis impairment, and neuronal death. Accordingly, the virus life cycle and associated enzymes, as well as host receptors, cytokine storm, and multiple signaling mediators, are the leading players of emerging infectious diseases. Consequently, chemokines, interleukins, interferons, carbohydrate molecules, toll-like receptors (TLRs), and tyrosine kinases are leading orchestrates of peripheral and central complications which are in near interconnections. Some of the resulting neuronal manifestations have attracted much attention, including inflammatory polyneuropathy, encephalopathy, meningitis, myelitis, stroke, Guillain-Barré syndrome (GBS), radiculomyelitis, meningoencephalitis, memory loss, headaches, cranial nerve abnormalities, tremor, and seizure. The complex pathophysiological mechanism behind the aforementioned complications urges the need for finding multi-target agents with higher efficacy and lower side effects. In recent decades, the natural kingdom has been highlighted as promising neuroprotective natural products in modulating several dysregulated signaling pathways/mediators. The present study provides neuronal manifestations of some emerging infectious diseases and underlying pathophysiological mechanisms. Besides, a mechanistic-based strategy is developed to introduce candidate natural products as promising multi-target agents in combating major dysregulated pathways towards neuroprotection in influenza, DENV infection, ZIKV disease, and EVD.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pardis Mohammadi Pour
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
33
|
Nanotechnology Applications of Flavonoids for Viral Diseases. Pharmaceutics 2021; 13:pharmaceutics13111895. [PMID: 34834309 PMCID: PMC8625292 DOI: 10.3390/pharmaceutics13111895] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/14/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Recent years have witnessed the emergence of several viral diseases, including various zoonotic diseases such as the current pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Other viruses, which possess pandemic-causing potential include avian flu, Ebola, dengue, Zika, and Nipah virus, as well as the re-emergence of SARS (Severe Acute Respiratory Syndrome) and MERS (Middle East Respiratory Syndrome) coronaviruses. Notably, effective drugs or vaccines against these viruses are still to be discovered. All the newly approved vaccines against the SARS-CoV-2-induced disease COVID-19 possess real-time possibility of becoming obsolete because of the development of ‘variants of concern’. Flavonoids are being increasingly recognized as prophylactic and therapeutic agents against emerging and old viral diseases. Around 10,000 natural flavonoid compounds have been identified, being phytochemicals, all plant-based. Flavonoids have been reported to have lesser side effects than conventional anti-viral agents and are effective against more viral diseases than currently used anti-virals. Despite their abundance in plants, which are a part of human diet, flavonoids have the problem of low bioavailability. Various attempts are in progress to increase the bioavailability of flavonoids, one of the promising fields being nanotechnology. This review is a narrative of some anti-viral dietary flavonoids, their bioavailability, and various means with an emphasis on the nanotechnology system(s) being experimented with to deliver anti-viral flavonoids, whose systems show potential in the efficient delivery of flavonoids, resulting in increased bioavailability.
Collapse
|
34
|
Sabrin MS, Selenge E, Takeda Y, Batkhuu J, Ogawa H, Jamsransuren D, Suganuma K, Murata T. Isolation and evaluation of virucidal activities of flavanone glycosides and rosmarinic acid derivatives from Dracocephalum spp. against feline calicivirus. PHYTOCHEMISTRY 2021; 191:112896. [PMID: 34371301 DOI: 10.1016/j.phytochem.2021.112896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Feline calicivirus is one of the surrogate viruses of human norovirus. This study aimed to identify virucidal compounds, chemical constituents of plants from the genus Dracocephalum, which are rich in flavonoids and phenylpropanoid oligomers. Four undescribed compounds, including a flavanone glucoside, two stilbenoid glycosides, and a phenylpropanoid amide glycoside, as well as 17 known compounds, were isolated from the Mongolian plants Dracocephalum fruticulosum Stephan ex Willd., and D. nutans L. belonging to the family Lamiaceae. The structures of the compounds were determined based on NMR, MS, and electronic CD spectroscopic data. In addition to these 21 compounds, 15 previously reported compounds from D. foetidum Bunge in C.F. von Ledebour were included, and a total of 36 compounds were evaluated for their virucidal activities against feline calicivirus. Some of the flavanone glycosides and phenylpropanoid oligomers showed virucidal activities, and their structural features are discussed. The findings suggest that isosakuranetin glycosides and phenylpropanoid oligomers may have the potential for norovirus inactivation.
Collapse
Affiliation(s)
- Mirza Synthia Sabrin
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan; Department of Microbiology and Parasitology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh
| | | | - Yohei Takeda
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan
| | - Javzan Batkhuu
- School of Engineering and Applied Sciences, National University of Mongolia, POB-617/46A, Ulaanbaatar 14201, Mongolia
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan
| | - Dulamjav Jamsransuren
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan
| | - Keisuke Suganuma
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan; National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido, 080-8555, Japan
| | - Toshihiro Murata
- Division of Pharmacognosy, Tohoku Medical and Pharmaceutical University, 4-1 Komatsushima 4-chome Aoba-ku, Sendai, 981-8558, Japan.
| |
Collapse
|
35
|
In Vitro Cytokine Production by Dengue-Infected Human Monocyte-Derived Dendritic Cells. Methods Mol Biol 2021. [PMID: 34709645 DOI: 10.1007/978-1-0716-1879-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Despite many advances on the understanding of dengue pathogenesis in the last decades, some questions remained to be clarified. The virulence of the pathogen and the host immune response are the main factors involved in pathogenesis of dengue infection. In addition, skin dendritic cells (DCs) are one of the primary targets for dengue virus infection. After infection, DCs process and present antigens to T cells and also secrete cytokines that shape the immune response. Although relevant for the development of antiviral immune response, an imbalance in the cytokine production by immune cells could lead to cytokine storm observed in severe dengue fever cases. Therefore, this chapter will describe the protocols for the in vitro differentiation of human monocytes into human monocyte-derived dendritic cells (mdDCs), followed by dengue virus infection, as well as the cytokine quantification produced by mdDCs using a cytometric bead array method.
Collapse
|
36
|
Sun ZC, Chen C, Xu FF, Li BK, Shen JL, Wang T, Jiang HF, Wang GX. Evaluation of the antiviral activity of naringenin, a major constituent of Typha angustifolia, against white spot syndrome virus in crayfish Procambarus clarkii. JOURNAL OF FISH DISEASES 2021; 44:1503-1513. [PMID: 34227114 DOI: 10.1111/jfd.13472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
White spot syndrome virus (WSSV) is a serious pathogen threatening global crustacean aquaculture with no commercially available drugs. Herbal medicines widely used in antiviral research offer a rich reserve for drug discovery. Here, we investigated the inhibitory activity of 13 herbal medicines against WSSV in crayfish Procambarus clarkii and discovered that naringenin (NAR) has potent anti-WSSV activity. In the preliminary screening, the extracts of Typha angustifolia displayed the highest inhibitory activity on WSSV replication (84.62%, 100 mg/kg). Further, NAR, the main active compound of T. angustifolia, showed a much higher inhibition rate (92.85%, 50 mg/kg). NAR repressed WSSV proliferation followed a dose-dependent manner and significantly improved the survival of WSSV-challenged crayfish. Moreover, pre- or post-treatment of NAR displayed a comparable inhibition on the viral loads. NAR decreased the transcriptional levels of vital genes in viral life cycle, particularly for the immediately early-stage gene ie1. Further results showed that NAR could decrease the STAT gene expression to block ie1 transcription. Besides, NAR modulated immune-related gene Hsp70, antioxidant (cMnSOD, mMnSOD, CAT, GST), anti-inflammatory (COX-1, COX-2) and pro-apoptosis-related factors (Bax and BI-1) to inhibit WSSV replication. Overall, these results suggest that NAR may have the potential to be developed as preventive or therapeutic agent against WSSV.
Collapse
Affiliation(s)
- Zhong-Chen Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Cheng Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fei-Fan Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bing-Ke Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jing-Lei Shen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Tao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hai-Feng Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
37
|
Sharma V, Sehrawat N, Sharma A, Yadav M, Verma P, Sharma AK. Multifaceted antiviral therapeutic potential of dietary flavonoids: Emerging trends and future perspectives. Biotechnol Appl Biochem 2021; 69:2028-2045. [PMID: 34586691 DOI: 10.1002/bab.2265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/24/2021] [Indexed: 12/30/2022]
Abstract
Phytochemicals are the natural biomolecules produced by plants via primary or secondary metabolism, which have been known to have many potential health benefits to human beings. Flavonoids or phytoestrogens constitute a major group of such phytochemicals widely available in variety of vegetables, fruits, herbs, tea, and so forth, implicated in a variety of bio-pharmacological and biochemical activities against diseases including bacterial, viral, cancer, inflammatory, and autoimmune disorders. More recently, these natural biomolecules have been shown to have effective antiviral properties via therapeutically active ingredients within them, acting at different stages of infection. Current review emphasizes upon the role of these flavonoids in physiological functions, prevention and treatment of viral diseases. More so the review focuses specifically upon the antiviral effects exhibited by these natural biomolecules against RNA viruses including coronaviruses. Furthermore, the article would certainly provide a lead to the scientific community for the effective therapeutic antiviral use of flavonoids using potential cost-effective tools for improvement of the pharmacokinetics, bioavailability, and biodistribution of such compounds for the concrete action along with the promotion of human health.
Collapse
Affiliation(s)
- Varruchi Sharma
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Nirmala Sehrawat
- Department of Biotechnology, Maharishi Markandeshwar, Ambala, Haryana, India
| | - Ajay Sharma
- Department of Chemistry, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Mukesh Yadav
- Department of Biotechnology, Maharishi Markandeshwar, Ambala, Haryana, India
| | - Pawan Verma
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon LeZion, Israel
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar, Ambala, Haryana, India
| |
Collapse
|
38
|
Cataneo AHD, Ávila EP, Mendes LADO, de Oliveira VG, Ferraz CR, de Almeida MV, Frabasile S, Duarte Dos Santos CN, Verri WA, Bordignon J, Wowk PF. Flavonoids as Molecules With Anti- Zika virus Activity. Front Microbiol 2021; 12:710359. [PMID: 34566915 PMCID: PMC8462986 DOI: 10.3389/fmicb.2021.710359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Zika virus (ZIKV) is an arthropod-born virus that is mainly transmitted to humans by mosquitoes of the genus Aedes spp. Since its first isolation in 1947, only a few human cases had been described until large outbreaks occurred on Yap Island (2007), French Polynesia (2013), and Brazil (2015). Most ZIKV-infected individuals are asymptomatic or present with a self-limiting disease and nonspecific symptoms such as fever, myalgia, and headache. However, in French Polynesia and Brazil, ZIKV outbreaks led to the diagnosis of congenital malformations and microcephaly in newborns and Guillain-Barré syndrome (GBS) in adults. These new clinical presentations raised concern from public health authorities and highlighted the need for anti-Zika treatments and vaccines to control the neurological damage caused by the virus. Despite many efforts in the search for an effective treatment, neither vaccines nor antiviral drugs have become available to control ZIKV infection and/or replication. Flavonoids, a class of natural compounds that are well-known for possessing several biological properties, have shown activity against different viruses. Additionally, the use of flavonoids in some countries as food supplements indicates that these molecules are nontoxic to humans. Thus, here, we summarize knowledge on the use of flavonoids as a source of anti-ZIKV molecules and discuss the gaps and challenges in this area before these compounds can be considered for further preclinical and clinical trials.
Collapse
Affiliation(s)
| | - Eloah Pereira Ávila
- Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | | | | | - Camila Rodrigues Ferraz
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Sandra Frabasile
- Sección Virologia, Facultad de Ciencias, Universidad de La República, Montevideo, Uruguay
| | | | - Waldiceu Aparecido Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Brazil
| | - Pryscilla Fanini Wowk
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Brazil
| |
Collapse
|
39
|
Thongsri P, Pewkliang Y, Borwornpinyo S, Wongkajornsilp A, Hongeng S, Sa-Ngiamsuntorn K. Curcumin inhibited hepatitis B viral entry through NTCP binding. Sci Rep 2021; 11:19125. [PMID: 34580340 PMCID: PMC8476618 DOI: 10.1038/s41598-021-98243-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) has been implicated in hepatitis and hepatocellular carcinoma. Current agents (nucleos(t)ide analogs and interferons) could only attenuate HBV infection. A combination of agents targeting different stages of viral life cycle (e.g., entry, replication, and cccDNA stability) was expected to eradicate the infection. Curcumin (CCM) was investigated for inhibitory action toward HBV attachment and internalization. Immortalized hepatocyte-like cells (imHCs), HepaRG and non-hepatic cells served as host cells for binding study with CCM. CCM decreased viral load, HBeAg, HBcAg (infectivity), intracellular HBV DNA, and cccDNA levels. The CCM-induced suppression of HBV entry was directly correlated with the density of sodium-taurocholate co-transporting polypeptide (NTCP), a known host receptor for HBV entry. The site of action of CCM was confirmed using TCA uptake assay. The affinity between CCM and NTCP was measured using isothermal titration calorimetry (ITC). These results demonstrated that CCM interrupted HBV entry and would therefore suppress HBV re-infection.
Collapse
Affiliation(s)
- Piyanoot Thongsri
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand.,Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Yongyut Pewkliang
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand.,Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Adisak Wongkajornsilp
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.
| | - Khanit Sa-Ngiamsuntorn
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
40
|
Bibi Sadeer N, Haddad JG, Oday Ezzat M, Desprès P, Abdallah HH, Zengin G, Uysal A, El Kalamouni C, Gallo M, Montesano D, Mahomoodally MF. Bruguiera gymnorhiza (L.) Lam. at the Forefront of Pharma to Confront Zika Virus and Microbial Infections-An In Vitro and In Silico Perspective. Molecules 2021; 26:5768. [PMID: 34641314 PMCID: PMC8510246 DOI: 10.3390/molecules26195768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023] Open
Abstract
The recent emergence of Zika virus (ZIKV) in Brazil and the increasing resistance developed by pathogenic bacteria to nearly all existing antibiotics should be taken as a wakeup call for the international authority as this represents a risk for global public health. The lack of antiviral drugs and effective antibiotics on the market triggers the need to search for safe therapeutics from medicinal plants to fight viral and microbial infections. In the present study, we investigated whether a mangrove plant, Bruguiera gymnorhiza (L.) Lam. (B. gymnorhiza) collected in Mauritius, possesses antimicrobial and antibiotic potentiating abilities and exerts anti-ZIKV activity at non-cytotoxic doses. Microorganisms Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 70603, methicillin-resistant Staphylococcus aureus ATCC 43300 (MRSA), Salmonella enteritidis ATCC 13076, Sarcina lutea ATCC 9341, Proteus mirabilis ATCC 25933, Bacillus cereus ATCC 11778 and Candida albicans ATCC 26555 were used to evaluate the antimicrobial properties. Ciprofloxacin, chloramphenicol and streptomycin antibiotics were used for assessing antibiotic potentiating activity. ZIKVMC-MR766NIID (ZIKVGFP) was used for assessing anti-ZIKV activity. In silico docking (Autodock 4) and ADME (SwissADME) analyses were performed on collected data. Antimicrobial results revealed that Bruguiera twig ethyl acetate (BTE) was the most potent extract inhibiting the growth of all nine microbes tested, with minimum inhibitory concentrations ranging from 0.19-0.39 mg/mL. BTE showed partial synergy effects against MRSA and Pseudomonas aeruginosa when applied in combination with streptomycin and ciprofloxacin, respectively. By using a recombinant ZIKV-expressing reporter GFP protein, we identified both Bruguiera root aqueous and Bruguiera fruit aqueous extracts as potent inhibitors of ZIKV infection in human epithelial A549 cells. The mechanisms by which such extracts prevented ZIKV infection are linked to the inability of the virus to bind to the host cell surface. In silico docking showed that ZIKV E protein, which is involved in cell receptor binding, could be a target for cryptochlorogenic acid, a chemical compound identified in B. gymnorhiza. From ADME results, cryptochlorogenic acid is predicted to be not orally bioavailable because it is too polar. Scientific data collected in this present work can open a new avenue for the development of potential inhibitors from B. gymnorhiza to fight ZIKV and microbial infections in the future.
Collapse
Affiliation(s)
- Nabeelah Bibi Sadeer
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius;
| | - Juliano G. Haddad
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France; (J.G.H.); (P.D.); (C.E.K.)
| | - Mohammed Oday Ezzat
- Department of Chemistry, College of Education for Women, University of Anbar, Ramadi 31001, Iraq;
| | - Philippe Desprès
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France; (J.G.H.); (P.D.); (C.E.K.)
| | - Hassan H. Abdallah
- Chemistry Department, College of Education, Salahaddin University-Erbil, Erbil 44001, Iraq;
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, 42130 Konya, Turkey;
| | - Ahmet Uysal
- Department of Medicinal Laboratory, Vocational School of Health Services, Selcuk University, 42130 Konya, Turkey;
| | - Chaker El Kalamouni
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France; (J.G.H.); (P.D.); (C.E.K.)
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy;
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius;
| |
Collapse
|
41
|
İSTİFLİ ES, ŞIHOĞLU TEPE A, NETZ PA, SARIKÜRKCÜ C, KILIÇ İH, TEPE B. Determination of the interaction between the receptor binding domain of 2019-nCoV spike protein, TMPRSS2, cathepsin B and cathepsin L, and glycosidic and aglycon forms of some flavonols. Turk J Biol 2021; 45:484-502. [PMID: 34803449 PMCID: PMC8573835 DOI: 10.3906/biy-2104-51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/05/2021] [Indexed: 12/27/2022] Open
Abstract
The novel coronavirus (COVID-19, SARS-CoV-2) is a rapidly spreading disease with a high mortality. In this research, the interactions between specific flavonols and the 2019-nCoV receptor binding domain (RBD), transmembrane protease, serine 2 (TMPRSS2), and cathepsins (CatB and CatL) were analyzed. According to the relative binding capacity index (RBCI) calculated based on the free energy of binding and calculated inhibition constants, it was determined that robinin (ROB) and gossypetin (GOS) were the most effective flavonols on all targets. While the binding free energy of ROB with the spike glycoprotein RBD, TMPRSS2, CatB, and CatL were -5.02, -7.57, -10.10, and -6.11 kcal/mol, the values for GOS were -4.67, -5.24, -8.31, and -6.76, respectively. Furthermore, both compounds maintained their stability for at least 170 ns on respective targets in molecular dynamics simulations. The molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations also corroborated these data. Considering Lipinski's rule of five, ROB and GOS exhibited 3 (MW>500, N or O>10, NH or OH>5), and 1 (NH or OH>5) violations, respectively. Neither ROB nor GOS showed AMES toxicity or hepatotoxicity. The LD50 of these compounds in rats were 2.482 and 2.527 mol/kg, respectively. Therefore, we conclude that these compounds could be considered as alternative therapeutic agents in the treatment of COVID-19. However, the possible inhibitory effects of these compounds on cytochromes (CYPs) should be verified by in vitro or in vivo tests and their adverse effects on cellular energy metabolism should be minimized by performing molecular modifications if necessary.
Collapse
Affiliation(s)
- Erman Salih İSTİFLİ
- Cukurova University, Faculty of Science and Literature, Department of Biology, AdanaTurkey
| | - Arzuhan ŞIHOĞLU TEPE
- Kilis 7 Aralık University, Vocational High School of Health Services, Department of Pharmacy Services, KilisTurkey
| | - Paulo A. NETZ
- Theoretical Chemistry Group, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Porto AlegreBrazil
| | - Cengiz SARIKÜRKCÜ
- Afyonkarahisar Health Sciences University, Faculty of Pharmacy, Department of Analytical Chemistry, AfyonkarahisarTurkey
| | - İbrahim Halil KILIÇ
- Gaziantep University, Faculty of Science and Literature, Department of Biology, GaziantepTurkey
| | - Bektaş TEPE
- Kilis 7 Aralik University, Faculty of Science and Literature, Department of Molecular Biology and Genetics, KilisTurkey
| |
Collapse
|
42
|
Gogoi N, Chowdhury P, Goswami AK, Das A, Chetia D, Gogoi B. Computational guided identification of a citrus flavonoid as potential inhibitor of SARS-CoV-2 main protease. Mol Divers 2021; 25:1745-1759. [PMID: 33236176 PMCID: PMC7685905 DOI: 10.1007/s11030-020-10150-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/20/2020] [Indexed: 11/29/2022]
Abstract
Although vaccine development is being undertaken at a breakneck speed, there is currently no effective antiviral drug for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19. Therefore, the present study aims to explore the possibilities offered by naturally available and abundant flavonoid compounds, as a prospective antiviral drug to combat the virus. A library of 44 citrus flavonoids was screened against the highly conserved Main Protease (Mpro) of SARS-CoV-2 using molecular docking. The compounds which showed better CDocker energy than the co-crystal inhibitor of Mpro were further revalidated by flexible docking within the active site; followed by assessment of drug likeness and toxicity parameters. The non-toxic compounds were further subjected to molecular dynamics simulation and predicted activity (IC50) using 3D-QSAR analysis. Subsequently, hydrogen bonds and dehydration analysis of the best compound were performed to assess the binding affinity to Mpro. It was observed that out of the 44 citrus flavonoids, five compounds showed lower binding energy with Mpro than the co-crystal ligand. Moreover, these compounds also formed H-bonds with two important catalytic residues His41 and Cys145 of the active sites of Mpro. Three compounds which passed the drug likeness filter showed stable conformation during MD simulations. Among these, the lowest predicted IC50 value was observed for Taxifolin. Therefore, this study suggests that Taxifolin, could be a potential inhibitor against SARS-CoV-2 main protease and can be further analysed by in vitro and in vivo experiments for management of the ongoing pandemic.
Collapse
Affiliation(s)
- Neelutpal Gogoi
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, 786004, India
| | - Purvita Chowdhury
- Department of Health Research, Model Rural Health Research Unit, Tripura, 799035, India
| | - Ashis Kumar Goswami
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, 786004, India
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, 786004, India
- Centre for Biotechnology and Bioinformatics, Faculty of Biological sciences, Dibrugarh University, Dibrugarh, 786004, India
| | - Dipak Chetia
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, 786004, India
| | - Bhaskarjyoti Gogoi
- Department of Biotechnology, Royal School of Bio-Science, Royal Global University, Guwahati, 781035, India.
| |
Collapse
|
43
|
Milenkovic D, Ruskovska T, Rodriguez-Mateos A, Heiss C. Polyphenols Could Prevent SARS-CoV-2 Infection by Modulating the Expression of miRNAs in the Host Cells. Aging Dis 2021; 12:1169-1182. [PMID: 34341700 PMCID: PMC8279534 DOI: 10.14336/ad.2021.0223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
Coronaviruses (CoVs) are single-stranded RNA viruses which following virus attachment and entry into the host cell, particularly type 2 pneumocytes but also endothelial cells, release RNA into cytosol where it serves as a matrix for the host translation machinery to produce viral proteins. The viral RNA in cytoplasm can interact with host cell microRNAs which can degrade viral RNA and/or prevent viral replication. As such host cellular miRNAs represent key cellular mediators of antiviral defense. Polyphenols, plant food bioactives, exert antiviral properties, which is partially due to their capacity to modulate the expression of miRNAs. The objective of this work was to assess if polyphenols can play a role in prevention of SARS-CoV-2 associated complications by modulating the expression of host miRNAs. To test this hypothesis, we performed literature search to identify miRNAs that could bind SARS-CoV-2 RNA as well as miRNAs which expression can be modulated by polyphenols in lung, type 2 pneumocytes or endothelial cells. We identified over 600 miRNAs that have capacity to bind viral RNA and 125 miRNAs which expression can be modulated by polyphenols in the cells of interest. We identified that there are 17 miRNAs with both the capacity to bind viral RNA and which expression can be modulated by polyphenols. Some of these miRNAs have been identified as having antiviral properties or can target genes involved in regulation of processes of viral replication, apoptosis or viral infection. Taken together this analysis suggests that polyphenols could modulate expression of miRNAs in alveolar and endothelial cells and exert antiviral capacity.
Collapse
Affiliation(s)
- Dragan Milenkovic
- Université Clermont Auvergne, INRAE, UNH, F-63000 Clermont-Ferrand, France.
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, CA 95616, USA.
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia.
| | | | - Christian Heiss
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London, UK.
| |
Collapse
|
44
|
Badshah SL, Faisal S, Muhammad A, Poulson BG, Emwas AH, Jaremko M. Antiviral activities of flavonoids. Biomed Pharmacother 2021; 140:111596. [PMID: 34126315 PMCID: PMC8192980 DOI: 10.1016/j.biopha.2021.111596] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/16/2022] Open
Abstract
Flavonoids are natural phytochemicals known for their antiviral activity. The flavonoids acts at different stages of viral infection, such as viral entrance, replication and translation of proteins. Viruses cause various diseases such as SARS, Hepatitis, AIDS, Flu, Herpes, etc. These, and many more viral diseases, are prevalent in the world, and some (i.e. SARS-CoV-2) are causing global chaos. Despite much struggle, effective treatments for these viral diseases are not available. The flavonoid class of phytochemicals has a vast number of medicinally active compounds, many of which are studied for their potential antiviral activity against different DNA and RNA viruses. Here, we reviewed many flavonoids that showed antiviral activities in different testing environments such as in vitro, in vivo (mice model) and in silico. Some flavonoids had stronger inhibitory activities, showed no toxicity & the cell proliferation at the tested doses are not affected. Some of the flavonoids used in the in vivo studies also protected the tested mice prophylactically from lethal doses of virus, and effectively prevented viral infection. The glycosides of some of the flavonoids increased the solubility of some flavonoids, and therefore showed increased antiviral activity as compared to the non-glycoside form of that flavonoid. These phytochemicals are active against different disease-causing viruses, and inhibited the viruses by targeting the viral infections at multiple stages. Some of the flavonoids showed more potent antiviral activity than the market available drugs used to treat viral infections.
Collapse
Affiliation(s)
- Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan.
| | - Shah Faisal
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Akhtar Muhammad
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Benjamin Gabriel Poulson
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Abdul Hamid Emwas
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
45
|
Santhi VP, Masilamani P, Sriramavaratharajan V, Murugan R, Gurav SS, Sarasu VP, Parthiban S, Ayyanar M. Therapeutic potential of phytoconstituents of edible fruits in combating emerging viral infections. J Food Biochem 2021; 45:e13851. [PMID: 34236082 PMCID: PMC8420441 DOI: 10.1111/jfbc.13851] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022]
Abstract
Plant-derived bioactive molecules display potential antiviral activity against various viral targets including mode of viral entry and its replication in host cells. Considering the challenges and search for antiviral agents, this review provides substantiated data on chemical constituents of edible fruits with promising antiviral activity. The bioactive constituents like naringenin, mangiferin, α-mangostin, geraniin, punicalagin, and lectins of edible fruits exhibit antiviral effect by inhibiting viral replication against IFV, DENV, polio, CHIKV, Zika, HIV, HSV, HBV, HCV, and SARS-CoV. The significance of edible fruit phytochemicals to block the virulence of various deadly viruses through their inhibitory action against the entry and replication of viral genetic makeup and proteins are discussed. In view of the antiviral property of active constituents of edible fruits which can strengthen the immune system and reduce oxidative stress, they are suggested to be diet supplements to combat various viral diseases including COVID-19. PRACTICAL APPLICATIONS: Considering the increasing threat of COVID-19, it is suggested to examine the therapeutic efficacy of existing antiviral molecules of edible fruits which may provide prophylactic and adjuvant therapy with their potential antioxidant, anti-inflammatory, and immune-modulatory effects. Several active molecules like geraniin, naringenin, (2R,4R)-1,2,4-trihydroxyheptadec-16-one, betacyanins, mangiferin, punicalagin, isomangiferin, procyanidin B2, quercetin, marmelide, jacalin lectin, banana lectin, and α-mangostin isolated from various edible fruits have showed promising antiviral properties against different pathogenic viruses. Especially flavonoid compounds extracted from edible fruits possess potential antiviral activity against a wide array of viruses like HIV-1, HSV-1 and 2, HCV, INF, dengue, yellow fever, NSV, and Zika virus infection. Hence taking such fruits or edible fruits and their constituents/compounds as dietary supplements could deliver adequate plasma levels in the body to optimize the cell and tissue levels and could lead to possible benefits for the preventive measures for this pandemic COVID-19 situation.
Collapse
Affiliation(s)
- Veerasamy Pushparaj Santhi
- Department of Fruit Science, Horticultural College and Research Institute for WomenTamil Nadu Agricultural UniversityTiruchirappalliIndia
| | - Poomaruthai Masilamani
- Department of Fruit Science, Horticultural College and Research Institute for WomenTamil Nadu Agricultural UniversityTiruchirappalliIndia
- Anbil Dharmalingam Agricultural College and Research InstituteTamil Nadu Agricultural UniversityTiruchirappalliIndia
| | | | - Ramar Murugan
- Centre for Research and Postgraduate Studies in BotanyAyya Nadar Janaki Ammal College (Autonomous)SivakasiIndia
| | - Shailendra S. Gurav
- Department of Pharmacognosy and Phytochemistry, Goa College of PharmacyGoa UniversityPanajiIndia
| | | | - Subbaiyan Parthiban
- Department of Fruit Science, Horticultural College and Research Institute for WomenTamil Nadu Agricultural UniversityTiruchirappalliIndia
| | - Muniappan Ayyanar
- Department of Botany, A.V.V.M. Sri Pushpam College (Autonomous)Bharathidasan UniversityThanjavurIndia
| |
Collapse
|
46
|
Palmitoleate Protects against Zika Virus-Induced Placental Trophoblast Apoptosis. Biomedicines 2021; 9:biomedicines9060643. [PMID: 34200091 PMCID: PMC8226770 DOI: 10.3390/biomedicines9060643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 01/15/2023] Open
Abstract
Zika virus (ZIKV) infection in pregnancy is associated with the development of microcephaly, intrauterine growth restriction, and ocular damage in the fetus. ZIKV infection of the placenta plays a crucial role in the vertical transmission from the maternal circulation to the fetus. Our previous study suggested that ZIKV induces endoplasmic reticulum (ER) stress and apoptosis of placental trophoblasts. Here, we showed that palmitoleate, an omega-7 monounsaturated fatty acid, prevents ZIKV-induced ER stress and apoptosis in placental trophoblasts. Human trophoblast cell lines (JEG-3 and JAR) and normal immortalized trophoblasts (HTR-8) were used. We observed that ZIKV infection of the trophoblasts resulted in apoptosis and treatment of palmitoleate to ZIKV-infected cells significantly prevented apoptosis. However, palmitate (saturated fatty acid) did not offer protection from ZIKV-induced ER stress and apoptosis. We also observed that the Zika viral RNA copies were decreased, and the cell viability improved in ZIKV-infected cells treated with palmitoleate as compared to the infected cells without palmitoleate treatment. Further, palmitoleate was shown to protect against ZIKV-induced upregulation of ER stress markers, C/EBP homologous protein and X-box binding protein-1 splicing in placental trophoblasts. In conclusion, our studies suggest that palmitoleate protects placental trophoblasts against ZIKV-induced ER stress and apoptosis.
Collapse
|
47
|
D’Amore A, Gradogna A, Palombi F, Minicozzi V, Ceccarelli M, Carpaneto A, Filippini A. The Discovery of Naringenin as Endolysosomal Two-Pore Channel Inhibitor and Its Emerging Role in SARS-CoV-2 Infection. Cells 2021; 10:1130. [PMID: 34067054 PMCID: PMC8150892 DOI: 10.3390/cells10051130] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/23/2022] Open
Abstract
The flavonoid naringenin (Nar), present in citrus fruits and tomatoes, has been identified as a blocker of an emerging class of human intracellular channels, namely the two-pore channel (TPC) family, whose role has been established in several diseases. Indeed, Nar was shown to be effective against neoangiogenesis, a process essential for solid tumor progression, by specifically impairing TPC activity. The goal of the present review is to illustrate the rationale that links TPC channels to the mechanism of coronavirus infection, and how their inhibition by Nar could be an efficient pharmacological strategy to fight the current pandemic plague COVID-19.
Collapse
Affiliation(s)
- Antonella D’Amore
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 16 Via A. Scarpa, 00161 Rome, Italy; (A.D.); (F.P.)
| | - Antonella Gradogna
- Institute of Biophysics, National Research Council, Via De Marini 6, 16149 Genova, Italy
| | - Fioretta Palombi
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 16 Via A. Scarpa, 00161 Rome, Italy; (A.D.); (F.P.)
| | - Velia Minicozzi
- INFN and Department of Physics, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy;
| | - Matteo Ceccarelli
- Department of Physics, University of Cagliari, 09042 Monserrato, Italy;
- IOM-CNR Unità di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Armando Carpaneto
- Institute of Biophysics, National Research Council, Via De Marini 6, 16149 Genova, Italy
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Viale Benedetto XV 5, 16132 Genova, Italy
| | - Antonio Filippini
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 16 Via A. Scarpa, 00161 Rome, Italy; (A.D.); (F.P.)
| |
Collapse
|
48
|
Huang ST, Chen Y, Chang WC, Chen HF, Lai HC, Lin YC, Wang WJ, Wang YC, Yang CS, Wang SC, Hung MC. Scutellaria barbata D. Don Inhibits the Main Proteases (M pro and TMPRSS2) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection. Viruses 2021; 13:826. [PMID: 34063247 PMCID: PMC8147405 DOI: 10.3390/v13050826] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
In late 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic emerged to severely impact the global population, creating an unprecedented need for effective treatments. This study aims to investigate the potential of Scutellaria barbata D. Don (SB) as a treatment for SARS-CoV-2 infection through the inhibition of the proteases playing important functions in the infection by SARS-CoV-2. FRET assay was applied to investigate the inhibitory effects of SB on the two proteases involved in SARS-CoV-2 infection, Mpro and TMPRSS2. Additionally, to measure the potential effectiveness of SB treatment on infection inhibition, cellular models based on the Calu3 and VeroE6 cells and their TMPRSS2- expressing derivatives were assessed by viral pseudoparticles (Vpp) infection assays. The experimental approaches were conjugated with LC/MS analyses of the aqueous extracts of SB to identify the major constituent compounds, followed by a literature review to determine the potential active components of the inhibitory effects on protease activities. Our results showed that SB extracts inhibited the enzyme activities of Mpro and TMPRSS2. Furthermore, SB extracts effectively inhibited SARS-CoV-2 Vpp infection through a TMPRSS2-dependent mechanism. The aqueous extract analysis identified six major constituent compounds present in SB. Some of them have been known associated with inhibitory activities of TMPRSS2 or Mpro. Thus, SB may effectively prevent SARS-CoV-2 infection and replication through inhibiting Mpro and TMPRSS2 protease activities.
Collapse
Affiliation(s)
- Sheng-Teng Huang
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan;
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40402, Taiwan; (H.-C.L.); (Y.-C.L.)
- Research Cancer Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
- An-Nan Hospital, China Medical University, Tainan 709, Taiwan
| | - Yeh Chen
- Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan; (Y.C.); (H.-F.C.); (S.-C.W.)
- New Drug Development Center, China Medical University, Taichung 40402, Taiwan
- Graduate Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan; (Y.-C.W.); (C.-S.Y.)
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan;
| | - Hsiao-Fan Chen
- Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan; (Y.C.); (H.-F.C.); (S.-C.W.)
- New Drug Development Center, China Medical University, Taichung 40402, Taiwan
| | - Hsiang-Chun Lai
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40402, Taiwan; (H.-C.L.); (Y.-C.L.)
| | - Yu-Chun Lin
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40402, Taiwan; (H.-C.L.); (Y.-C.L.)
| | - Wei-Jan Wang
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University Taichung 40402, Taiwan
| | - Yu-Chuan Wang
- Graduate Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan; (Y.-C.W.); (C.-S.Y.)
| | - Chia-Shin Yang
- Graduate Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan; (Y.-C.W.); (C.-S.Y.)
| | - Shao-Chun Wang
- Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan; (Y.C.); (H.-F.C.); (S.-C.W.)
- New Drug Development Center, China Medical University, Taichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University Taichung 40402, Taiwan
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Mien-Chie Hung
- Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan; (Y.C.); (H.-F.C.); (S.-C.W.)
- New Drug Development Center, China Medical University, Taichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University Taichung 40402, Taiwan
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
49
|
Liu Y, Wu L, Deng Z, Yu Y. Two putative parallel pathways for naringenin biosynthesis in Epimedium wushanense. RSC Adv 2021; 11:13919-13927. [PMID: 35423948 PMCID: PMC8697707 DOI: 10.1039/d1ra00866h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022] Open
Abstract
Flavonoids that exhibit various biological activities such as antioxidant, antitumor, antiviral, antibacterial and anti-inflammatory properties are found in a wide range of medicinal plants. Among the flavonoid-producing plants identified so far, the genus Epimedium is recognised as a group of prolific prenyl-flavonoid glycoside producers with high economic value in the global dietary supplement market. To date, the biosynthetic genes for prenyl-flavonoid glycosides still remain elusive in Epimedium. Here, we identified five genes in Epimedium wushanense responsible for the biosynthesis of naringenin, the common precursor for flavonoid natural products. We successfully set up the biosynthetic pathway of naringenin using l-tyrosine as the precursor through enzymatic assays of these genes' encoding products, including phenylalanine ammonia-lyase (EwPAL), 4-coumarate-CoA ligase (Ew4CL1), chalcone synthase (EwCHS1), chalcone isomerase (EwCHI1) and CHI-like protein (EwCHIL3). Intriguingly, in vitro characterisation of the above catalytic enzymes' substrate specificity indicated a route parallel to naringenin biosynthesis, which starts from l-phenylalanine and ends in pinocembrin. The fact that there is no pinocembrin or pinocembrin-derived flavonoid accumulated in E. wushanense prompted us to propose that pinocembrin is likely converted into naringenin in vivo, constituting two parallel biosynthetic pathways for naringenin. Therefore, our study provides a basis for the full elucidation of the biosynthetic logic of prenyl-flavonoid glycoside in Epimedium, paving the way for future metabolite engineering and molecular breeding of E. wushanense to acquire a higher titre of desired, bioactive flavonoid compounds.
Collapse
Affiliation(s)
- Yating Liu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University Wuhan 430071 China
| | - Linrui Wu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University Wuhan 430071 China
| | - Zixin Deng
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University Wuhan 430071 China
| | - Yi Yu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University Wuhan 430071 China
| |
Collapse
|
50
|
|