1
|
Sun S, Lv J, Lei K, Wang Z, Wang W, Li Z, Li M, Zhou J. Correlation Analysis of the Transcriptome and Gut Microbiota in Salmo trutta Resistance to Aeromonas salmonicida. Microorganisms 2024; 12:1983. [PMID: 39458292 PMCID: PMC11509326 DOI: 10.3390/microorganisms12101983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Aeromonas salmonicida is a major pathogenic bacterium that poses a significant threat to salmonid fish. Yadong County, located in the Xizang Autonomous Region, is renowned for its characteristic industry of Salmo trutta aquaculture. In recent years, the outbreak of Bacterial Gill Disease (BGD) has led to substantial economic losses for S. trutta farmers. Our prior research identified A. salmonicida as one of the primary culprits behind BGD. To mitigate the impact of A. salmonicida on S. trutta, we conducted a comprehensive study aimed at identifying genes associated with resistance to A. salmonicida. This involved transcriptome sequencing and 16S rRNA sequencing of intestinal flora, providing valuable insights for the study of disease resistance in S. trutta. In this study, we identified 324 genera with 5171 ASVs in the susceptible group and 293 genera with 5669 ASVs in the resistant group. Notably, Methylobacterium and Sphingomonas were common bacteria present in the salmon's gut, and their proportions remained relatively stable before and after infection. Shewanella, with its antagonistic relationship with Aeromonas, may play a crucial role in the salmon's defense against A. salmonicida. Several related genes were identified, including angptl4, cipcb, grasp, ccr9a, sulf1, mtmr11, B3GNT3, mt2, PLXDC1, and ank1b.
Collapse
Affiliation(s)
- Shuaijie Sun
- Institute of Fisheries Science, Xizang Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China; (S.S.); (K.L.); (Z.W.); (W.W.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Z.L.); (M.L.)
- Henan Academy of Fishery Sciences, Henan Academy of Agricultural Sciences, Zhengzhou 450044, China;
| | - Jun Lv
- Henan Academy of Fishery Sciences, Henan Academy of Agricultural Sciences, Zhengzhou 450044, China;
| | - Kuankuan Lei
- Institute of Fisheries Science, Xizang Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China; (S.S.); (K.L.); (Z.W.); (W.W.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Z.L.); (M.L.)
| | - Zhuangzhuang Wang
- Institute of Fisheries Science, Xizang Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China; (S.S.); (K.L.); (Z.W.); (W.W.)
| | - Wanliang Wang
- Institute of Fisheries Science, Xizang Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China; (S.S.); (K.L.); (Z.W.); (W.W.)
| | - Zhichao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Z.L.); (M.L.)
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Z.L.); (M.L.)
| | - Jianshe Zhou
- Institute of Fisheries Science, Xizang Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China; (S.S.); (K.L.); (Z.W.); (W.W.)
| |
Collapse
|
2
|
Clinton M, Wyness AJ, Martin SAM, Brierley AS, Ferrier DEK. Association of microbial community structure with gill disease in marine-stage farmed Atlantic salmon (Salmo salar); a yearlong study. BMC Vet Res 2024; 20:340. [PMID: 39090695 PMCID: PMC11293161 DOI: 10.1186/s12917-024-04125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Understanding the relationship between resident microbiota and disease in cultured fish represents an important and emerging area of study. Marine gill disorders in particular are considered an important challenge to Atlantic salmon (Salmo salar) aquaculture, however relatively little is known regarding the role resident gill microbiota might play in providing protection from or potentiating different gill diseases. Here, 16S rRNA sequencing was used to examine the gill microbiome alongside fish health screening in farmed Atlantic salmon. Results were used to explore the relationship between microbial communities and gill disease. RESULTS Microbial community restructuring was observed throughout the sampling period and linked to varied drivers of change, including environmental conditions and severity of gill pathology. Taxa with significantly greater relative abundance on healthier gills included isolates within genus Shewanella, and taxa within family Procabacteriaceae. In contrast, altered abundance of Candidatus Branchiomonas and Rubritalea spp. were associated with damaged gills. Interestingly, more general changes in community richness and diversity were not associated with altered gill health, and thus not apparently deleterious to fish. Gross and histological gill scoring demonstrated seasonal shifts in gill pathology, with increased severity of gill damage in autumn. Specific infectious causes that contributed to observed pathology within the population included the gill disorder amoebic gill disease (AGD), however due to the uncontrolled nature of this study and likely mixed contribution of various causes of gill disease to observed pathology results do not strongly support an association between the microbial community and specific infectious or non-infectious drivers of gill pathology. CONCLUSIONS Results suggest that the microbial community of farmed Atlantic salmon gills undergo continual restructuring in the marine environment, with mixed influences upon this change including environmental, host, and pathogenic factors. A significant association of specific taxa with different gill health states suggests these taxa might make meaningful indicators of gill health. Further research with more frequent sampling and deliberate manipulation of gills would provide important advancement of knowledge in this area. Overall, although much is still to be learnt regarding what constitutes a healthy or maladapted gill microbial community, the results of this study provide clear advancement of the field, providing new insight into the microbial community structure of gills during an annual production cycle of marine-stage farmed Atlantic salmon.
Collapse
Affiliation(s)
- Morag Clinton
- Scottish Oceans Institute, University of St Andrews, St Andrews, UK.
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, AK, USA.
- Sitka Sound Science Center, Alaska, Sitka, USA.
| | - Adam J Wyness
- Scottish Oceans Institute, University of St Andrews, St Andrews, UK
- Scottish Association for Marine Science, Oban, UK
| | - Samuel A M Martin
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen, UK
| | | | - David E K Ferrier
- Scottish Oceans Institute, University of St Andrews, St Andrews, UK.
| |
Collapse
|
3
|
Bell AG, McMurtrie J, Bolaños LM, Cable J, Temperton B, Tyler CR. Influence of host phylogeny and water physicochemistry on microbial assemblages of the fish skin microbiome. FEMS Microbiol Ecol 2024; 100:fiae021. [PMID: 38366921 PMCID: PMC10903987 DOI: 10.1093/femsec/fiae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/10/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024] Open
Abstract
The skin of fish contains a diverse microbiota that has symbiotic functions with the host, facilitating pathogen exclusion, immune system priming, and nutrient degradation. The composition of fish skin microbiomes varies across species and in response to a variety of stressors, however, there has been no systematic analysis across these studies to evaluate how these factors shape fish skin microbiomes. Here, we examined 1922 fish skin microbiomes from 36 studies that included 98 species and nine rearing conditions to investigate associations between fish skin microbiome, fish species, and water physiochemical factors. Proteobacteria, particularly the class Gammaproteobacteria, were present in all marine and freshwater fish skin microbiomes. Acinetobacter, Aeromonas, Ralstonia, Sphingomonas and Flavobacterium were the most abundant genera within freshwater fish skin microbiomes, and Alteromonas, Photobacterium, Pseudoalteromonas, Psychrobacter and Vibrio were the most abundant in saltwater fish. Our results show that different culturing (rearing) environments have a small but significant effect on the skin bacterial community compositions. Water temperature, pH, dissolved oxygen concentration, and salinity significantly correlated with differences in beta-diversity but not necessarily alpha-diversity. To improve study comparability on fish skin microbiomes, we provide recommendations for approaches to the analyses of sequencing data and improve study reproducibility.
Collapse
Affiliation(s)
- Ashley G Bell
- College of Life and Environmental Sciences, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
- Sustainable Aquaculture Futures, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
| | - Jamie McMurtrie
- College of Life and Environmental Sciences, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
- Sustainable Aquaculture Futures, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
| | - Luis M Bolaños
- College of Life and Environmental Sciences, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Ben Temperton
- College of Life and Environmental Sciences, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
| | - Charles R Tyler
- College of Life and Environmental Sciences, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
- Sustainable Aquaculture Futures, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
| |
Collapse
|
4
|
Godoy M, Coca Y, Suárez R, Montes de Oca M, Bledsoe JW, Burbulis I, Caro D, Pontigo JP, Maracaja-Coutinho V, Arias-Carrasco R, Rodríguez-Córdova L, Sáez-Navarrete C. Salmo salar Skin and Gill Microbiome during Piscirickettsia salmonis Infection. Animals (Basel) 2023; 14:97. [PMID: 38200828 PMCID: PMC10778177 DOI: 10.3390/ani14010097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/13/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Maintaining the high overall health of farmed animals is a central tenant of their well-being and care. Intense animal crowding in aquaculture promotes animal morbidity especially in the absence of straightforward methods for monitoring their health. Here, we used bacterial 16S ribosomal RNA gene sequencing to measure bacterial population dynamics during P. salmonis infection. We observed a complex bacterial community consisting of a previously undescribed core pathobiome. Notably, we detected Aliivibrio wodanis and Tenacibaculum dicentrarchi on the skin ulcers of salmon infected with P. salmonis, while Vibrio spp. were enriched on infected gills. The prevalence of these co-occurring networks indicated that coinfection with other pathogens may enhance P. salmonis pathogenicity.
Collapse
Affiliation(s)
- Marcos Godoy
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Lago Panguipulli 1390, Puerto Montt 5480000, Región de Los Lagos, Chile; (M.M.d.O.); (D.C.)
- Laboratorio de Biotecnología, Facultad de Ciencias de la Naturaleza, Escuela de Medicina Veterinaria, Universidad San Sebastián, Sede Patagonia, Lago Panguipulli 1390, Puerto Montt 5480000, Región de Los Lagos, Chile
| | - Yoandy Coca
- Doctorado en Ciencias de la Ingeniería, Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Macul, Chile;
| | - Rudy Suárez
- Programa de Magíster en Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1780000, Elqui, Chile;
| | - Marco Montes de Oca
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Lago Panguipulli 1390, Puerto Montt 5480000, Región de Los Lagos, Chile; (M.M.d.O.); (D.C.)
| | - Jacob W. Bledsoe
- Department of Animal, Veterinary, and Food Sciences, Aquaculture Research Institute, University of Idaho, Hagerman, ID 83332, USA;
| | - Ian Burbulis
- Facultad de Medicina y Ciencia, Centro de Investigación Biomédica, Universidad San Sebastián, Sede Patagonia, Lago Panguipulli 1390, Puerto Montt 5480000, Región de Los Lagos, Chile;
| | - Diego Caro
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Lago Panguipulli 1390, Puerto Montt 5480000, Región de Los Lagos, Chile; (M.M.d.O.); (D.C.)
| | - Juan Pablo Pontigo
- Laboratorio Institucional, Facultad de Ciencias de la Naturaleza, Escuela de Medicina Veterinaria, Universidad San Sebastián, Sede Patagonia, Lago Panguipulli 1390, Puerto Montt 5480000, Región de Los Lagos, Chile;
| | - Vinicius Maracaja-Coutinho
- Unidad de Genómica Avanzada, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7820436, Macul, Chile;
- Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7820436, Macul, Chile
- Beagle Bioinformatics, Santiago 7820436, Macul, Chile
| | - Raúl Arias-Carrasco
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago 7820436, Macul, Chile;
| | | | - César Sáez-Navarrete
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Macul, Chile;
- Centro de Investigación en Nanotecnología y Materiales Avanzados (CIEN-UC), Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Macul, Chile
| |
Collapse
|
5
|
Troitsky TS, Laine VN, Lilley TM. When the host's away, the pathogen will play: the protective role of the skin microbiome during hibernation. Anim Microbiome 2023; 5:66. [PMID: 38129884 PMCID: PMC10740296 DOI: 10.1186/s42523-023-00285-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
The skin of animals is enveloped by a symbiotic microscopic ecosystem known as the microbiome. The host and microbiome exhibit a mutualistic relationship, collectively forming a single evolutionary unit sometimes referred to as a holobiont. Although the holobiome theory highlights the importance of the microbiome, little is known about how the skin microbiome contributes to protecting the host. Existing studies focus on humans or captive animals, but research in wild animals is in its infancy. Specifically, the protective role of the skin microbiome in hibernating animals remains almost entirely overlooked. This is surprising, considering the massive population declines in hibernating North American bats caused by the fungal pathogen Pseudogymnoascus destructans, which causes white-nose syndrome. Hibernation offers a unique setting in which to study the function of the microbiome because, during torpor, the host's immune system becomes suppressed, making it susceptible to infection. We conducted a systematic review of peer-reviewed literature on the protective role of the skin microbiome in non-human animals. We selected 230 publications that mentioned pathogen inhibition by microbes residing on the skin of the host animal. We found that the majority of studies were conducted in North America and focused on the bacterial microbiome of amphibians infected by the chytrid fungus. Despite mentioning pathogen inhibition by the skin microbiome, only 30.4% of studies experimentally tested the actual antimicrobial activity of symbionts. Additionally, only 7.8% of all publications studied defensive cutaneous symbionts during hibernation. With this review, we want to highlight the knowledge gap surrounding skin microbiome research in hibernating animals. For instance, research looking to mitigate the effects of white-nose syndrome in bats should focus on the antifungal microbiome of Palearctic bats, as they survive exposure to the Pseudogymnoascus destructans -pathogen during hibernation. We also recommend future studies prioritize lesser-known microbial symbionts, such as fungi, and investigate the effects of a combination of anti-pathogen microbes, as both areas of research show promise as probiotic treatments. By incorporating the protective skin microbiome into disease mitigation strategies, conservation efforts can be made more effective.
Collapse
Affiliation(s)
- T S Troitsky
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - V N Laine
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - T M Lilley
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
6
|
Coca Y, Godoy M, Pontigo JP, Caro D, Maracaja-Coutinho V, Arias-Carrasco R, Rodríguez-Córdova L, de Oca MM, Sáez-Navarrete C, Burbulis I. Bacterial networks in Atlantic salmon with Piscirickettsiosis. Sci Rep 2023; 13:17321. [PMID: 37833268 PMCID: PMC10576039 DOI: 10.1038/s41598-023-43345-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
An unbalanced composition of gut microbiota in fish is hypothesized to play a role in promoting bacterial infections, but the synergistic or antagonistic interactions between bacterial groups in relation to fish health are not well understood. We report that pathogenic species in the Piscirickettsia, Aeromonas, Renibacterium and Tenacibaculum genera were all detected in the digesta and gut mucosa of healthy Atlantic salmon without clinical signs of disease. Although Piscirickettsia salmonis (and other pathogens) occurred in greater frequencies of fish with clinical Salmonid Rickettsial Septicemia (SRS), the relative abundance was about the same as that observed in healthy fish. Remarkably, the SRS-positive fish presented with a generalized mid-gut dysbiosis and positive growth associations between Piscirickettsiaceae and members of other taxonomic families containing known pathogens. The reconstruction of metabolic phenotypes based on the bacterial networks detected in the gut and mucosa indicated the synthesis of Gram-negative virulence factors such as colanic acid and O-antigen were over-represented in SRS positive fish. This evidence indicates that cooperative interactions between organisms of different taxonomic families within localized bacterial networks might promote an opportunity for P. salmonis to cause clinical SRS in the farm environment.
Collapse
Affiliation(s)
- Yoandy Coca
- Doctorado en Ciencias de la Ingeniería, Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436, Santiago, Región Metropolitana, Chile
| | - Marcos Godoy
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Avenida Lago Panguipulli 1390, Puerto Montt, Región de Los Lagos, Chile.
- Laboratorio Institucional, Facultad de Ciencias de la Naturaleza, Escuela de Medicina Veterinaria, Universidad San Sebastián, Sede Patagonia, Avenida Lago Panguipulli 1390, Puerto Montt, Región de Los Lagos, Chile.
| | - Juan Pablo Pontigo
- Laboratorio Institucional, Facultad de Ciencias de la Naturaleza, Escuela de Medicina Veterinaria, Universidad San Sebastián, Sede Patagonia, Avenida Lago Panguipulli 1390, Puerto Montt, Región de Los Lagos, Chile
| | - Diego Caro
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Avenida Lago Panguipulli 1390, Puerto Montt, Región de Los Lagos, Chile
| | - Vinicius Maracaja-Coutinho
- Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Avenida Dr. Carlos Lorca Tobar 964, 8380494, Santiago, Región Metropolitana, Chile
- Beagle Bioinformatics, Santiago, Región Metropolitana, Chile
- Unidad de Genómica Avanzada, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Avenida Dr. Carlos Lorca Tobar 964, 8380494, Santiago, Región Metropolitana, Chile
| | - Raúl Arias-Carrasco
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Avenida Dieciocho 161, 8330383, Santiago, Región Metropolitana, Chile
| | - Leonardo Rodríguez-Córdova
- Facultad de Ingeniería, Escuela de Ingeniería, Universidad Santo Tomás, Avenida Ejército Libertador 146, Santiago, Región Metropolitana, Chile
| | - Marco Montes de Oca
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Avenida Lago Panguipulli 1390, Puerto Montt, Región de Los Lagos, Chile
| | - César Sáez-Navarrete
- Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Avenida. Vicuña Mackenna 4860, 7820436, Santiago, Región Metropolitana, Chile.
- Centro de Investigación en Nanotecnología y Materiales Avanzados (CIEN-UC), Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436, Santiago, Región Metropolitana, Chile.
| | - Ian Burbulis
- Centro de Investigación Biomédica, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Patagonia, Avenida Lago Panguipulli 1390, Puerto Montt, Región de Los Lagos, Chile.
| |
Collapse
|
7
|
Rigas D, Grivas N, Nelli A, Gouva E, Skoufos I, Kormas K, Tzora A, Lagkouvardos I. Persistent Dysbiosis, Parasite Rise and Growth Impairment in Aquacultured European Seabass after Oxytetracycline Treatment. Microorganisms 2023; 11:2302. [PMID: 37764146 PMCID: PMC10534334 DOI: 10.3390/microorganisms11092302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The use of antibiotics in open-water aquaculture is often unavoidable when faced with pathogens with high mortality rates. In addition, seasonal pathogen surges have become more common and more intense over the years. Apart from the apparent cost of antibiotic treatment, it has been observed that, in aquaculture practice, the surviving fish often display measurable growth impairment. To understand the role of gut microbiota on the observed growth impairment, in this study, we follow the incidence of Photobacterium damselae subsp. piscicida in a seabass commercial open-water aquaculture setting in Galaxidi (Greece). Fish around 10 months of age were fed with feed containing oxytetracycline (120 mg/kg/day) for twelve days, followed by a twelve-day withdrawal period, and another eighteen days of treatment. The fish were sampled 19 days before the start of the first treatment and one month after the end of the second treatment cycle. Sequencing of the 16S rRNA gene was used to measure changes in the gut microbiome. Overall, the gut microbiota community, even a month after treatment, was highly dysbiotic and characterized by very low alpha diversity. High abundances of alkalophilic bacteria in the post-antibiotic-treated fish indicated a rise in pH that was coupled with a significant increase in gut parasites. This study's results indicate that oxytetracycline (OTC) treatment causes persistent dysbiosis even one month after withdrawal and provides a more suitable environment for an increase in parasites. These findings highlight the need for interventions to restore a healthy and protective gut microbiome.
Collapse
Affiliation(s)
- Dimitris Rigas
- Galaxidi Marine Farm S.A., 33200 Galaxidi, Greece; (D.R.); (N.G.)
| | - Nikos Grivas
- Galaxidi Marine Farm S.A., 33200 Galaxidi, Greece; (D.R.); (N.G.)
| | - Aikaterini Nelli
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.N.); (E.G.); (I.S.); (A.T.)
| | - Evangelia Gouva
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.N.); (E.G.); (I.S.); (A.T.)
| | - Ioannis Skoufos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.N.); (E.G.); (I.S.); (A.T.)
| | - Konstantinos Kormas
- Department of Ichthyology and Aquatic Environment, University of Thessaly, 38446 Volos, Greece;
- Agricultural Development Institute, University Research and Innovation Centre “IASON”, Argonafton & Filellinon, 38221 Volos, Greece
| | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.N.); (E.G.); (I.S.); (A.T.)
| | - Ilias Lagkouvardos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.N.); (E.G.); (I.S.); (A.T.)
- Department of Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, 71500 Heraklion, Greece
| |
Collapse
|
8
|
Wang LC, Chen LH, Chiu YC, Liou CY, Chen HC, Lu CY, Chen JL. Teleost skin microbiome: An intimate interplay between the environment and the host immunity. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108869. [PMID: 37285875 DOI: 10.1016/j.fsi.2023.108869] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
The mucosal microbiome plays a role in regulating host health. The research conducted in humans and mice has governed and detailed the information on microbiome-host immunity interactions. Teleost fish, different from humans and mice, lives in and relies on the aquatic environment and is subjected to environmental variation. The growth of teleost mucosal microbiome studies, the majority in the gastrointestinal tract, has emphasized the essential role of the teleost microbiome in growth and health. However, research in the teleost external surface microbiome, as the skin microbiome, has just started. In this review, we examine the general findings in the colonization of the skin microbiome, how the skin microbiome is subjected to environmental change and the reciprocal regulation with the host immune system, and the current challenges that potential study models can address. The information collected from teleost skin microbiome-host immunity research would help future teleost culturing from the potential parasitic infestation and bacterial infection as foreseeing growing threats.
Collapse
Affiliation(s)
- Liang-Chun Wang
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan; Committee of Fisheries Extension Service, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan.
| | - Li-Hsuan Chen
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan; Department of Veterinary and Animal Sciences, Aarhus University, Tjele, Denmark
| | - Yu-Che Chiu
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Chung-Yi Liou
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Han-Chung Chen
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Chia-Yun Lu
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Jian-Lin Chen
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
| |
Collapse
|
9
|
Casadei E, Mani A, Cisco M, Vågnes Ø, Salinas I, Patel S. Sex-dependent effects of mechanical delousing on the skin microbiome of broodstock Atlantic salmon (Salmo salar L.). Sci Rep 2023; 13:10824. [PMID: 37402791 DOI: 10.1038/s41598-023-37670-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/26/2023] [Indexed: 07/06/2023] Open
Abstract
Delousing strategies, including mechanical delousing, are typically used to treat Atlantic salmon (Salmo salar) sea lice infestations. In this study, we evaluate the impact of mechanical delousing (Hydrolicer) on the skin bacterial microbiome of broodstock female and male Atlantic salmon. 16S rDNA sequencing of salmon skin microbial communities was performed immediately before delousing, right after delousing and 2 and 13 days post-delousing (dpd). The skin bacterial community of female salmon was more diverse than that of males at the start of the experiment. Overall, hydrolycer caused losses in alpha diversity in females and increases in alpha diversity in males. Hydrolicer also caused rapid shifts in the skin microbial community composition immediately after delicing in a sex-specific manner. There was a decrease in abundance of Proteobacteria and Bacteriodetes in both female and male salmon, whereas Firmicutes and Tenericutes abundances increased. Interestingly, the female community recovered faster, while the male community remained dysbiotic 13 dpd due to expansions in Bacteroidetes (Pseudomonadaceae) and Firmicutes. Our data suggest that female broodstock are more resilient to Hydrolicer treatment due to their more diverse skin microbiota community, and that sex influences the skin microbial community and therefore host health outcomes during common farming manipulations.
Collapse
Affiliation(s)
- Elisa Casadei
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Amir Mani
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Mariela Cisco
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Øyvind Vågnes
- Vaxxinova Norway, Kong Christian Frederiks Plass 3, 5006, Bergen, Norway
- Blue Analytics AS, Kong Christian Frederiks Plass 3, 5006, Bergen, Norway
| | - Irene Salinas
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Sonal Patel
- Vaxxinova Norway, Kong Christian Frederiks Plass 3, 5006, Bergen, Norway.
- Norwegian Veterinary Institute, Thormøhlens Gate 53C, 5006, Bergen, Norway.
| |
Collapse
|
10
|
Zhou S, Yang Q, Song Y, Cheng B, Ai X. Effect of Copper Sulphate Exposure on the Oxidative Stress, Gill Transcriptome and External Microbiota of Yellow Catfish, Pelteobagrus fulvidraco. Antioxidants (Basel) 2023; 12:1288. [PMID: 37372018 DOI: 10.3390/antiox12061288] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to investigate the potential adverse effects of the practical application of copper sulfate on yellow catfish (Pelteobagrus fulvidraco) and to provide insights into the gill toxicity induced by copper sulphate. Yellow catfish were exposed to a conventional anthelmintic concentration of copper sulphate (0.7 mg/L) for seven days. Oxidative stress biomarkers, transcriptome, and external microbiota of gills were examined using enzymatic assays, RNA-sequencing, and 16S rDNA analysis, respectively. Copper sulphate exposure led to oxidative stress and immunosuppression in the gills, with increased levels of oxidative stress biomarkers and altered expression of immune-related differentially expressed genes (DEGs), such as IL-1β, IL4Rα, and CCL24. Key pathways involved in the response included cytokine-cytokine receptor interaction, NOD-like receptor signaling pathway, and Toll-like receptor signaling pathway. The 16S rDNA analysis revealed copper sulphate altered the diversity and composition of gill microbiota, as evidenced by a significant decrease in the abundance of Bacteroidotas and Bdellovibrionota and a significant increase in the abundance of Proteobacteria. Notably, a substantial 8.5-fold increase in the abundance of Plesiomonas was also observed at the genus level. Our findings demonstrated that copper sulphate induced oxidative stress, immunosuppression, and gill microflora dysbiosis in yellow catfish. These findings highlight the need for sustainable management practices and alternative therapeutic strategies in the aquaculture industry to mitigate the adverse effects of copper sulphate on fish and other aquatic organisms.
Collapse
Affiliation(s)
- Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan 430223, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan 430223, China
| | - Yi Song
- Chinese Academy of Fishery Sciences, No.150, Qingta West Road, Fengtai District, Beijing 100141, China
- Key Laboratory of Aquatic Product Quality and Safety Control, Ministry of Agriculture, No.150, Qingta West Road, Fengtai District, Beijing 100141, China
| | - Bo Cheng
- Chinese Academy of Fishery Sciences, No.150, Qingta West Road, Fengtai District, Beijing 100141, China
- Key Laboratory of Aquatic Product Quality and Safety Control, Ministry of Agriculture, No.150, Qingta West Road, Fengtai District, Beijing 100141, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan 430223, China
| |
Collapse
|
11
|
Rosado D, Canada P, Marques Silva S, Ribeiro N, Diniz P, Xavier R. Disruption of the skin, gill, and gut mucosae microbiome of gilthead seabream fingerlings after bacterial infection and antibiotic treatment. FEMS MICROBES 2023; 4:xtad011. [PMID: 37389204 PMCID: PMC10306326 DOI: 10.1093/femsmc/xtad011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/01/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
The activity of the microbiome of fish mucosae provides functions related to immune response, digestion, or metabolism. Several biotic and abiotic factors help maintaining microbial homeostasis, with disruptions leading to dysbiosis. Diseases and antibiotic administration are known to cause dysbiosis in farmed fish. Pathogen infections greatly affect the production of gilthead seabream, and antibiotic treatment is still frequently required. Here, we employed a 16S rRNA high-throughput metataxonomics approach to characterize changes in the gut, skin, and gill microbiomes occurring due to infection with Photobacterium damselae subsp. piscicida and subsequent antibiotic treatment with oxytetracycline (OTC), as well as during recovery. Although microbiota response differed between studied tissues, overall changes in composition, diversity, structure, and predicted function were observed in all mucosae. The skin and gill microbiomes of diseased fish became largely dominated by taxa that have been frequently linked to secondary infections, whereas in the gut the genus Vibrio, known to include pathogenic bacteria, increased with OTC treatment. The study highlights the negative impacts of disease and antibiotic treatment on the microbiome of farmed fish. Our results also suggest that fish transportation operations may have profound effects on the fish microbiome, but further studies are needed to accurately evaluate their impact.
Collapse
Affiliation(s)
- Daniela Rosado
- S2AQUA – Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Avenida Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Paula Canada
- Corresponding author. Paula Canada, CIIMAR – Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros de Leixões. Av. General Norton de Matos, 4450-208 Matosinhos, Portugal, CMC; Centro de Maricultura da Calheta, Direcção Regional do Mar, Av. D. Manuel I, nº 7, 9370-135 Calheta, Madeira, Portugal
| | - Sofia Marques Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, R. Padre Armando Quintas 7, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, R. Padre Armando Quintas 7, 4485-661 Vairão, Portugal
| | - Nuno Ribeiro
- MVAQUA – Serviços Médico Veterinários dedicados a Aquacultura, Av. do Parque de Campismo Lote 24, Fração C, 3840-264 Gafanha da Boa Hora, Portugal
| | - Pedro Diniz
- Marismar – Aquicultura Marinha, Lda, Rua do Cabrestante 28, 9000-105 Funchal, Portugal
| | - Raquel Xavier
- Raquel Xavier, CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, R. Padre Armando Quintas 7, 4485-661 Vairão, Portugal, BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, R. Padre Armando Quintas 7, 4485-661 Vairão, Portugal; E-mail:
| |
Collapse
|
12
|
Rocha SDC, Lei P, Morales-Lange B, Mydland LT, Øverland M. From a cell model to a fish trial: Immunomodulatory effects of heat-killed Lactiplantibacillus plantarum as a functional ingredient in aquafeeds for salmonids. Front Immunol 2023; 14:1125702. [PMID: 36993984 PMCID: PMC10040762 DOI: 10.3389/fimmu.2023.1125702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
Paraprobiotics (dead/inactivated probiotics) are promising candidates in functional feeds to promote growth performance, modulate intestinal microbiota and enhance immune response of fish. During industrial production, fish are exposed to several stressful conditions such as handling, sub-optimal nutrition and diseases that can lead to reduced growth, increased mortalities and large economical losses. Such problems can be mitigated by use of functional feeds, leading to more-sustainable aquaculture and improved animal welfare. Lactiplantibacillus plantarum strain L-137 is a common bacterium found in fermented Southeast Asian dish made from fish and rice. The benefits of its heat-killed form (HK L-137) related to growth performance and immunomodulation have been studied in farmed fish such as Nile Tilapia (Oreochromis niloticus), striped catfish (Pangasianodon hypophthalmus) and bighead catfish (Clarias macrocephalus). To study if such benefits can also be observed in salmonids, we worked both at in vitro level using an intestinal epithelium cell line from rainbow trout (Oncorhynchus mykiss; RTgutGC) stimulated with HK L-137 (Feed LP20™) and at in vivo level with pre-smolt Atlantic salmon (Salmo salar) fed HK L-137 at different inclusion levels (20, 100 and 500 mg of Feed LP20™ kg-1 feed). In RTgutGC, the results showed that the barrier function of the cell monolayer was strengthened along with an increased production of IL-1β and a decreased production of Anxa1, indicating a modulation of the immune response. Interestingly, a similar trend was detected at the in vivo level in distal intestine from fish fed the highest inclusion level of HK L-137. Here, a lower production of Anxa1 was also detected (after a 61-day feeding period) in addition to an increase of total plasma IgM in the same group. Furthermore, the RNA-seq analysis showed that HK L-137 was able to modulate the gene expression of pathways related to molecular function, biological process and cellular component in distal intestine, without compromising fish performance and gut microbiota. Taken together, our study has shown that HK L-137 can modulate physiological response of Atlantic salmon, making fish more robust against stressful conditions during production.
Collapse
|
13
|
Liao X, Zhao P, Hou L, Adyari B, Xu EG, Huang Q, Hu A. Network analysis reveals significant joint effects of microplastics and tetracycline on the gut than the gill microbiome of marine medaka. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:129996. [PMID: 36152547 DOI: 10.1016/j.jhazmat.2022.129996] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Microplastics could accumulate and enrich antibiotics in the aquatic environment. Despite this, the joint effects of microplastics and antibiotics on aquatic organisms are not clear. Here, we investigated the changes of microbial interactions in both gill and gut of marine medaka exposed to polystyrene microbeads (PS) and/or tetracycline for 30 days by using co-occurrence network analysis based on 16S rRNA gene amplicon sequences. We found that the single and combined effects of PS and tetracycline were more profound on the gut than on the gill microbiome. SourceTracker analysis showed that the relative contributions from the gill microbiome to the gut microbiome increased under combined exposure. Moreover, the combined exposure reduced the complexity and stability of the gut microbial network more than those induced by any single exposure, suggesting the synergistic effects of PS and tetracycline on the gut microbiome. The PS and tetracycline combined exposure also caused a shift in the keystone taxa of the gut microbial network. However, no similar pattern was found for gill microbial networks. Furthermore, single and combined exposure to PS and/or tetracycline altered the associations between the gut network taxa and indicator liver metabolites. Altogether, these findings enhanced our understanding of the hazards of the co-occurring environmental microplastics and antibiotics to the fish commensal microbiome.
Collapse
Affiliation(s)
- Xin Liao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiqiang Zhao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; School of Public Utilities, Jiangsu Urban and Rural Construction College, Changzhou 213147, China
| | - Liyuan Hou
- Department of Civil and Environmental Engineering, Utah state university, Utah UT 84322, USA
| | - Bob Adyari
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Environmental Engineering, Universitas Pertamina, Jakarta 12220, Indonesia
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Qiansheng Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; National Basic Science Data Center, Beijing 100190, China.
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Lakshmi S, Rubeena AS, Subramaniyan SB, Raman T, Vaseeharan B, Arockiaraj J, Karthikeyan S, Anbazhagan V, Preetham E. Hybrid of Metapenaeus dobsoni lectin and platinum nanoparticles exert antimicrobial and immunostimulatory effects to reduce bacterial bioburden in infected Nile tilapia. Sci Rep 2023; 13:525. [DOI: 52.lakshmi s, rubeena as, subramaniyan sb, raman t, vaseeharan b, arockiaraj j, karthikeyan s, anbazhagan v, preetham e (2023) hybrid of metapenaeus dobsoni lectin and platinum nanoparticles exert antimicrobial and immunostimulatory effects to reduce bacterial bioburden in infected nile tilapia.scientific reports 13:525.https:/doi.org/10.1038/s41598-022-26719-5 (if = 4.996)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/19/2022] [Indexed: 10/16/2023] Open
Abstract
AbstractA novel antibacterial immunostimulant using Platinum nanoparticles (PtNPs) and lectin from Metapenaeus dobsoni (Md-Lec) was developed. The Md-Lec and PtNPs (Pt-lec) hybrid formed through non-covalent interaction exhibits antimicrobial activity against fish specific pathogens by affecting membrane integrity and producing excess reactive oxygen species. The therapeutic efficacy of Pt-lec was demonstrated through rescuing Aeromonas hydrophila infected Nile Tilapia. Pt-lec prevents the infection spreading and reduces the bacterial bioburden in less than 12 h, and as a result of this the fish were restored to normalcy. To assess immunostimulation, we studied the expression of three different immune related genes, namely LEC, Myd88 and COX-2 in the gills, liver, spleen and kidney of fish under various experimental conditions. Our results showed that Pt-lec treatment appeared to be better when compared to lectin alone in enhancing the expression of Myd88 and COX-2, but LEC was not as expected. These results suggest that Pt-lec has the ability to protect Nile Tilapia against bacterial infection by restricting bacterial bioburden through their direct effects on the bacterial membrane and indirectly through their effects on host immune-related gene expression. This hybrid could have potential “green” application in fish farming in rescuing infected animals when compared to widely and unregulated antibiotics.
Collapse
|
15
|
Lakshmi S, Rubeena AS, Subramaniyan SB, Raman T, Vaseeharan B, Arockiaraj J, Karthikeyan S, Anbazhagan V, Preetham E. Hybrid of Metapenaeus dobsoni lectin and platinum nanoparticles exert antimicrobial and immunostimulatory effects to reduce bacterial bioburden in infected Nile tilapia. Sci Rep 2023; 13:525. [PMID: 36631627 PMCID: PMC9834305 DOI: 10.1038/s41598-022-26719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
A novel antibacterial immunostimulant using Platinum nanoparticles (PtNPs) and lectin from Metapenaeus dobsoni (Md-Lec) was developed. The Md-Lec and PtNPs (Pt-lec) hybrid formed through non-covalent interaction exhibits antimicrobial activity against fish specific pathogens by affecting membrane integrity and producing excess reactive oxygen species. The therapeutic efficacy of Pt-lec was demonstrated through rescuing Aeromonas hydrophila infected Nile Tilapia. Pt-lec prevents the infection spreading and reduces the bacterial bioburden in less than 12 h, and as a result of this the fish were restored to normalcy. To assess immunostimulation, we studied the expression of three different immune related genes, namely LEC, Myd88 and COX-2 in the gills, liver, spleen and kidney of fish under various experimental conditions. Our results showed that Pt-lec treatment appeared to be better when compared to lectin alone in enhancing the expression of Myd88 and COX-2, but LEC was not as expected. These results suggest that Pt-lec has the ability to protect Nile Tilapia against bacterial infection by restricting bacterial bioburden through their direct effects on the bacterial membrane and indirectly through their effects on host immune-related gene expression. This hybrid could have potential "green" application in fish farming in rescuing infected animals when compared to widely and unregulated antibiotics.
Collapse
Affiliation(s)
- Sreeja Lakshmi
- School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kerala, India
| | - Abdul Salam Rubeena
- School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kerala, India
- Department of Biosciences, MES College Marampally, Ernakulam, Kerala, 683105, India
| | - Siva Bala Subramaniyan
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Thiagarajan Raman
- Department of Zoology, Ramakrishna Mission Vivekananda College, Chennai, Tamil Nadu, 600004, India
| | - Baskaralingam Vaseeharan
- Nanobiosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6th Floor, Alagappa University, Karaikudi, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | | | - Veerappan Anbazhagan
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India.
| | - Elumalai Preetham
- School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kerala, India.
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Lakeside Campus Fine Arts Avenue, Cochin, India.
| |
Collapse
|
16
|
Al-Ashhab A, Alexander-Shani R, Avrahami Y, Ehrlich R, Strem RI, Meshner S, Shental N, Sharon G. Sparus aurata and Lates calcarifer skin microbiota under healthy and diseased conditions in UV and non-UV treated water. Anim Microbiome 2022; 4:42. [PMID: 35729615 PMCID: PMC9210813 DOI: 10.1186/s42523-022-00191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/10/2022] [Indexed: 11/15/2022] Open
Abstract
Background The welfare of farmed fish is influenced by numerous environmental and management factors. Fish skin is an important site for immunity and a major route by which infections are acquired. The objective of this study was to characterize bacterial composition variability on skin of healthy, diseased, and recovered Gilthead Seabream (Sparus aurata) and Barramundi (Lates calcarifer). S. aurata, which are highly sensitive to gram-negative bacteria, were challenged with Vibrio harveyi. In addition, and to provide a wider range of infections, both fish species (S. aurata and L. calcarifer) were infected with gram-positive Streptococcus iniae, to compare the response of the highly sensitive L. calcarifer to that of the more resistant S. aurata. All experiments also compared microbial communities found on skin of fish reared in UV (a general practice used in aquaculture) and non-UV treated water tanks. Results Skin swab samples were taken from different areas of the fish (lateral lines, abdomen and gills) prior to controlled infection, and 24, 48 and 72 h, 5 days, one week and one-month post-infection. Fish skin microbial communities were determined using Illumina iSeq100 16S rDNA for bacterial sequencing. The results showed that naturally present bacterial composition is similar on all sampled fish skin sites prior to infection, but the controlled infections (T1 24 h post infection) altered the bacterial communities found on fish skin. Moreover, when the naturally occurring skin microbiota did not quickly recover, fish mortality was common following T1 (24 h post infection). We further confirmed the differences in bacterial communities found on skin and in the water of fish reared in non-UV and UV treated water under healthy and diseased conditions. Conclusions Our experimental findings shed light on the fish skin microbiota in relation to fish survival (in diseased and healthy conditions). The results can be harnessed to provide management tools for commercial fish farmers; predicting and preventing fish diseases can increase fish health, welfare, and enhance commercial fish yields. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00191-y.
Collapse
|
17
|
Wild-type and cancer-prone zebrafish exhibit distinct gut microbial diversity and differential anti-inflammatory response upon infection. J Biosci 2022. [DOI: 10.1007/s12038-022-00302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
MacAulay S, Ellison AR, Kille P, Cable J. Moving towards improved surveillance and earlier diagnosis of aquatic pathogens: From traditional methods to emerging technologies. REVIEWS IN AQUACULTURE 2022; 14:1813-1829. [PMID: 36250037 PMCID: PMC9544729 DOI: 10.1111/raq.12674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 06/16/2023]
Abstract
Early and accurate diagnosis is key to mitigating the impact of infectious diseases, along with efficient surveillance. This however is particularly challenging in aquatic environments due to hidden biodiversity and physical constraints. Traditional diagnostics, such as visual diagnosis and histopathology, are still widely used, but increasingly technological advances such as portable next generation sequencing (NGS) and artificial intelligence (AI) are being tested for early diagnosis. The most straightforward methodologies, based on visual diagnosis, rely on specialist knowledge and experience but provide a foundation for surveillance. Future computational remote sensing methods, such as AI image diagnosis and drone surveillance, will ultimately reduce labour costs whilst not compromising on sensitivity, but they require capital and infrastructural investment. Molecular techniques have advanced rapidly in the last 30 years, from standard PCR through loop-mediated isothermal amplification (LAMP) to NGS approaches, providing a range of technologies that support the currently popular eDNA diagnosis. There is now vast potential for transformative change driven by developments in human diagnostics. Here we compare current surveillance and diagnostic technologies with those that could be used or developed for use in the aquatic environment, against three gold standard ideals of high sensitivity, specificity, rapid diagnosis, and cost-effectiveness.
Collapse
Affiliation(s)
| | | | - Peter Kille
- School of Biosciences, Cardiff UniversityCardiffUK
| | - Joanne Cable
- School of Biosciences, Cardiff UniversityCardiffUK
| |
Collapse
|
19
|
Rajarajan A, Wolinska J, Walser JC, Mäder M, Spaak P. Infection by a eukaryotic gut parasite in wild Daphnia sp. associates with a distinct bacterial community. FEMS Microbiol Ecol 2022; 98:6677393. [PMID: 36026529 PMCID: PMC9869925 DOI: 10.1093/femsec/fiac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/04/2022] [Accepted: 08/23/2022] [Indexed: 01/26/2023] Open
Abstract
Host-associated bacterial communities play an important role in host fitness and resistance to diseases. Yet, few studies have investigated tripartite interaction between a host, parasite and host-associated bacterial communities in natural settings. Here, we use 16S rRNA gene amplicon sequencing to compare gut- and body- bacterial communities of wild water fleas belonging to the Daphnia longispina complex, between uninfected hosts and those infected with the common and virulent eukaryotic gut parasite Caullerya mesnili (Family: Ichthyosporea). We report community-level changes in host-associated bacteria with the presence of the parasite infection; namely decreased alpha diversity and increased beta diversity at the site of infection, i.e. host gut (but not host body). We also report decreased abundance of bacterial taxa proposed elsewhere to be beneficial for the host, and an appearance of taxa specifically associated with infected hosts. Our study highlights the host-microbiota-infection link in a natural system and raises questions about the role of host-associated microbiota in natural disease epidemics as well as the functional roles of bacteria specifically associated with infected hosts.
Collapse
Affiliation(s)
- Amruta Rajarajan
- Corresponding author: Office BU-G09, Überlandstrasse 133, 8600 Dübendorf, Zürich, Switzerland. E-mail: and
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin, Germany,Department of Biology, Chemistry, Pharmacy, Institut für Biologie, Freie Universität Berlin (FU), 14195 Berlin, Germany
| | - Jean-Claude Walser
- Department of Environmental systems science (D-USYS), Genetic Diversity Centre (GDC), Federal Institute of Technology (ETH) Zürich, 8092, Zürich, Switzerland
| | - Minea Mäder
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Zürich, Switzerland
| | - Piet Spaak
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Zürich, Switzerland
| |
Collapse
|
20
|
Costa S, Lopes I. Saprolegniosis in Amphibians: An Integrated Overview of a Fluffy Killer Disease. J Fungi (Basel) 2022; 8:jof8050537. [PMID: 35628794 PMCID: PMC9144230 DOI: 10.3390/jof8050537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/04/2022] Open
Abstract
Amphibians constitute the class of vertebrates with the highest proportion of threatened species, with infectious diseases being considered among the greatest causes for their worldwide decline. Aquatic oomycetes, known as “water molds,” are fungus-like microorganisms that are ubiquitous in freshwater ecosystems and are capable of causing disease in a broad range of amphibian hosts. Various species of Achlya sp., Leptolegnia sp., Aphanomyces sp., and mainly, Saprolegnia sp., are responsible for mass die-offs in the early developmental stages of a wide range of amphibian populations through a disease known as saprolegniosis, aka, molding or a “Saprolegnia-like infection.” In this context, the main objective of the present review was to bring together updated information about saprolegniosis in amphibians to integrate existing knowledge, identify current knowledge gaps, and suggest future directions within the saprolegniosis–amphibian research field. Based on the available literature and data, an integrated and critical interpretation of the results is discussed. Furthermore, the occurrence of saprolegniosis in natural and laboratory contexts and the factors that influence both pathogen incidence and host susceptibility are also addressed. The focus of this work was the species Saprolegnia sp., due to its ecological importance on amphibian population dynamics and due to the fact that this is the most reported genera to be associated with saprolegniosis in amphibians. In addition, integrated emerging therapies, and their potential application to treat saprolegniosis in amphibians, were evaluated, and future actions are suggested.
Collapse
|
21
|
Rosado D, Pérez-Losada M, Severino R, Xavier R. Monitoring Infection and Antibiotic Treatment in the Skin Microbiota of Farmed European Seabass (Dicentrarchus Labrax) Fingerlings. MICROBIAL ECOLOGY 2022; 83:789-797. [PMID: 34245329 DOI: 10.1007/s00248-021-01795-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The microbiota of fish skin, the primary barrier against disease, is highly dynamic and modulated by several factors. In fish aquaculture, disease outbreaks occur mainly during early-life stages, with associated high economic losses. Antibiotic treatments sometimes remain the best option to control bacterial diseases, despite many reported negative impacts of its use on fish and associated microbiota. Notwithstanding, studies monitoring the effects of disease and antibiotic treatment on the microbiota of fingerlings are scarce. We sequenced the bacterial 16S rRNA V4 gene region using a metabarcoding approach to assess the impact of a mixed infection with Photobacterium damselae ssp. piscicida and Vibrio harveyi and subsequent antibiotic treatment with flumequine, on the skin microbiota of farmed seabass (Dicentrarchus labrax) fingerlings. Both infection and antibiotic treatment led to a significant increase in bacterial diversity and core microbial communities and impacted microbiome structure. Dysbiosis was confirmed by changes in the abundance of potential pathogenic and opportunistic bacterial taxa. Skin bacterial metabolic function was also significantly affected by flumequine administration, suggesting a detriment to fish skin health. Our results add to an increasing body of literature, showing how fish microbiome response to infection and antibiotics cannot be easily predicted.
Collapse
Affiliation(s)
- Daniela Rosado
- CIBIO-InBIO, Investigation Centre for Biodiversity, Genetics and Evolution, Porto University, Campus Agrário de Vairão, Vairão, 4485-661, Porto, Portugal.
| | - Marcos Pérez-Losada
- CIBIO-InBIO, Investigation Centre for Biodiversity, Genetics and Evolution, Porto University, Campus Agrário de Vairão, Vairão, 4485-661, Porto, Portugal
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, 20052-0066, USA
| | - Ricardo Severino
- Piscicultura Vale da Lama, Sapal Do Vale da Lama, Odiáxere, 8600-258, Lagos, Portugal
| | - Raquel Xavier
- CIBIO-InBIO, Investigation Centre for Biodiversity, Genetics and Evolution, Porto University, Campus Agrário de Vairão, Vairão, 4485-661, Porto, Portugal.
| |
Collapse
|
22
|
Skin Culturable Microbiota in Farmed European Seabass (Dicentrarchus labrax) in Two Aquacultures with and without Antibiotic Use. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study examined culturable skin microbiota that was associated with farmed European seabass (Dicentrarchus labrax). Healthy European seabass were sampled during summer commercial harvest from one conventional fish farm where antibiotics are used, and from another practicing a certified antibiotic-free fish aquaculture. Physicochemical and microbiological analysis of seawater and sediment were performed, as well as determination of culturable bacteria, including Vibrio, from skin swabs of European seabass and seawater and sediment at both farms. Samples were processed for isolation of bacteria and their characterization by molecular and antibiotic susceptibility tests. In both fish farms, most of the bacteria that were identified in the skin belonged to the genera Pseudomonas and Vibrio. Some of the microbiota that were identified are known to be pathogenic to fish: V. alginolyticus, V. anguillarum, and V. harveyi. Vibrio strains showed higher resistance to certain antibiotics compared to previous studies. This study provides, for the first time, information on the culturable skin bacteria that is associated with healthy European seabass under culture conditions with and without the use of antibiotics. This information will be useful in assessing how changes in culturable microbiota may affect the health of farmed European seabass, indicating a potential problem for fish health management during disease outbreaks.
Collapse
|
23
|
He LX, He LY, Gao FZ, Wu DL, Ye P, Cheng YX, Chen ZY, Hu LX, Liu YS, Chen J, Ying GG. Antibiotics, antibiotic resistance genes and microbial community in grouper mariculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152042. [PMID: 34856250 DOI: 10.1016/j.scitotenv.2021.152042] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Increasing use of feed and medicine in mariculture could cause negative environmental impacts such as habitat modification, microbial disease development and antibiotic resistance. Here we investigated contamination of antibiotics and antibiotic resistance genes (ARGs), and composition of microbial community in grouper mariculture systems in Hainan province, China. Results showed detection of various antibiotic residues with the dominance of fluoroquinolones and tetracyclines in the six grouper cultivation systems. The concentrations of the detected antibiotics in the grouper mariculture water were significantly higher than those in the original seawater. Some of the detected antibiotics such as enrofloxacin, ciprofloxacin, ofloxacin, oxytetracycline and erythromycin in the mariculture water and/or sediment would pose high resistance selection risks. Sulfonamides resistance genes sul1 and sul2 were found to be predominant in water and sediment, while tetracycline resistance genes were prevalent in fish gill and gut. The dominant bacterial phyla in water and sediments were Bacteroides, Actinomycetes, and Proteobacteria, while the dominant ones in fish gill and gut were the Proteobacteria. Genera of Vibrio and Mycobacterium in the core microbiota were important zoonotic pathogens, and there was a significant positive correlation between Vibrio and ARGs. Phyla of Proteobacteria, Actinomyces, and Cyanobacteria were positively correlated to ARGs, indicating that these microorganisms are potential hosts of ARGs. The putative functions of microbiome related to antibiotic resistance and human diseases were significantly higher in fish than in the mariculture environment. This study suggests that mariculture system is a reservoir of ARGs, and the use of antibiotics in mariculture could induce the increase of antibiotic resistance and the prevalence of opportunistic pathogens.
Collapse
Affiliation(s)
- Lu-Xi He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dai-Ling Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Pu Ye
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yu-Xiao Cheng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zi-Yin Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jun Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Pearl River Hydraulic Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou 510611, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
24
|
Anagnostopoulos DA, Parlapani FF, Boziaris IS. The evolution of knowledge on seafood spoilage microbiota from the 20th to the 21st century: Have we finished or just begun? Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Dispersed Crude Oil Induces Dysbiosis in the Red Snapper Lutjanus campechanus External Microbiota. Microbiol Spectr 2022; 10:e0058721. [PMID: 35080447 PMCID: PMC8791192 DOI: 10.1128/spectrum.00587-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The fish external microbiota competitively excludes primary pathogens and prevents the proliferation of opportunists. A shift from healthy microbiota composition, known as dysbiosis, may be triggered by environmental stressors and increases host susceptibility to disease. The Deepwater Horizon (DWH) oil spill was a significant stressor event in the Gulf of Mexico. Despite anecdotal reports of skin lesions on fishes following the oil spill, little information is available on the impact of dispersed oil on the fish external microbiota. In this study, juvenile red snapper (Lutjanus campechanus) were exposed to a chemically enhanced water-accommodated fraction (CEWAF) of Corexit 9500/DWH oil (CEWAF) and/or the bacterial pathogen Vibrio anguillarum in treatments designed to detect changes in and recovery of the external microbiota. In fish chronically exposed to CEWAF, immunoglobulin M (IgM) expression significantly decreased between 2 and 4 weeks of exposure, coinciding with elevated liver total polycyclic aromatic hydrocarbons (PAHs). Dysbiosis was detected on fish chronically exposed to CEWAF compared to seawater controls, and addition of a pathogen challenge altered the final microbiota composition. Dysbiosis was prevented by returning fish to clean seawater for 21 days after 1 week of CEWAF exposure. Four fish exhibited lesions during the trial, all of which were exposed to CEWAF but not all of which were exposed to V. anguillarum. This study indicates that month-long exposure to dispersed oil leads to dysbiosis in the external microbiota. As the microbiota is vital to host health, these effects should be considered when determining the total impacts of pollutants in aquatic ecosystems. IMPORTANCE Fish skin is an immunologically active tissue. It harbors a complex community of microorganisms vital to host homeostasis as, in healthy fish, they competitively exclude pathogens found in the surrounding aquatic environment. Crude oil exposure results in immunosuppression in marine animals, altering the relationship between the host and its microbial community. An alteration of the healthy microbiota, a condition known as dysbiosis, increases host susceptibility to pathogens. Despite reports of external lesions on fishes following the DWH oil spill and the importance of the external microbiota to fish health, there is little information on the effect of dispersed oil on the external microbiota of fishes. This research provides insight into the impact of a stressor event such as an oil spill on dysbiosis and enhances understanding of long-term sublethal effects of exposure to aid in regulatory decisions for protecting fish populations during recovery.
Collapse
|
26
|
Mondal HK, Maji UJ, Mohanty S, Sahoo PK, Maiti NK. Alteration of gut microbiota composition and function of Indian major carp, rohu (Labeo rohita) infected with Argulus siamensis. Microb Pathog 2022; 164:105420. [DOI: 10.1016/j.micpath.2022.105420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 01/16/2023]
|
27
|
La Clair JJ. Accessing Nystatin through Mariculture. Molecules 2021; 26:7649. [PMID: 34946737 PMCID: PMC8708966 DOI: 10.3390/molecules26247649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding our oceans and their marine ecosystems has enabled the development of sustainable systems for mariculture. While the bulk of studies to date have focused on the production of food, its remarkable expanse has inspired the translation of other markets towards aquatic environments. This manuscript outlines an approach to pharmaceutical mariculture, by demonstrating a benchmark for future prototyping. Here, design, field evaluation and natural product chemistry are united to successfully produce nystatin at sea. This study begins by evaluating new designs for culture flasks, illustrating a next step towards developing self-contained bioreactors for culturing in marine environments. Through pilot studies, an underwater system was developed to cost effectively produce cultures that yielded 200 mg of nystatin per deployment. Overall, this study demonstrates the potential for the practical culturing of microbes in a marine environment and provides an important next step for the fledgling field of molecular mariculture.
Collapse
Affiliation(s)
- James J La Clair
- Xenobe Research Institute, P.O. Box 3052, San Diego, CA 92163-1052, USA
| |
Collapse
|
28
|
Roy Choudhury A, Park JY, Kim DY, Choi J, Acharya S, Park JH. Exposure to Oxy-Tetracycline Changes Gut Bacterial Community Composition in Rainbow Trout: A Preliminary Study. Animals (Basel) 2021; 11:ani11123404. [PMID: 34944183 PMCID: PMC8698040 DOI: 10.3390/ani11123404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/15/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022] Open
Abstract
The extensive use of antibiotics is evident in most of the livestock and aquaculture management for inhibiting pathogen infection. Korean aquaculture depends on the usage of oxy-tetracycline for growing rainbow trout. Hence, this study was conducted to evaluate the changes in gut bacterial community profiles of rainbow trout exposed to oxy-tetracycline and predict the metabolic functioning of the bacterial community. The gut bacterial community composition of oxy-tetracycline treated fish was assessed by amplicon sequencing targeting the 16S rRNA gene of bacteria and comparing with the control group that did not receive any antibiotic. The principle coordinate analysis and non-metric multidimensional scaling analysis had shown two distinct clusters that implies the changes in community composition. In phyla level, the relative abundances of Tenericutes and Firmicutes were observed to be significantly higher in oxy-tetracycline treated fish compared to the control. Furthermore, the prediction based metabolic profiling revealed the processes that are affected due to the shift in community profiles. For example, metabolic functioning of membrane efflux system, amino acid metabolism and glycolysis were significantly higher in oxy-tetracycline treated fish compared to the control. This study describes alteration in gut bacterial community composition and potential metabolic profiles of the community that might be responsible for surviving in antibiotic rich environment.
Collapse
Affiliation(s)
- Aritra Roy Choudhury
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (A.R.C.); (J.-Y.P.); (D.Y.K.); (J.C.)
| | - Ji-Young Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (A.R.C.); (J.-Y.P.); (D.Y.K.); (J.C.)
| | - Do Young Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (A.R.C.); (J.-Y.P.); (D.Y.K.); (J.C.)
| | - Jeongyun Choi
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (A.R.C.); (J.-Y.P.); (D.Y.K.); (J.C.)
| | - Satabdi Acharya
- Department of Bioactive Material Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea;
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (A.R.C.); (J.-Y.P.); (D.Y.K.); (J.C.)
- Department of Bioprocess Engineering, University of Science and Technology (UST) of Korea, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence:
| |
Collapse
|
29
|
Slinger J, Wynne JW, Adams MB. Profiling Branchial Bacteria of Atlantic Salmon (Salmo salar L.) Following Exposure to Antimicrobial Agents. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.756101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microbial gill diseases caused by either opportunistic or specific pathogens are an emerging area of concern for aquaculture producers in part due to their sometimes complex and/or cryptic nature. Many antimicrobial treatments used in aquacultural settings are broad spectrum in nature. The effect of such therapeutics upon reduction and recolonization of commensal or pathogenic microbiota post-treatment has received little attention to date. Commensal bacteria are an integral component of the barrier function of mucosal surfaces in animals. This study evaluated the effect of several commercially relevant antimicrobial treatments upon the diversity and composition of branchial bacteria of Atlantic salmon. Here we exposed Atlantic salmon smolt to a number of commercially relevant antimicrobial treatments including chemotherapeutants (chloramine-t and hydrogen peroxide) and antibiotics (oxytetracycline and florfenicol) in vivo. Subsequently we examined the change in bacterial load, 16S rRNA gene expression, and taxonomic diversity post-treatment upon the gills. Results revealed a decrease in cultivable bacterial colonies after antimicrobial treatment, and a downstream decrease in bacterial richness and abundance post-treatment, with colonization of several prominent pathogenic taxa including Vibrio and Tenacibaculum. Temporal tracing over a 14-day period demonstrated that the bacteriome of gill mucus is sensitive to change, and altered by antimicrobial treatment and handling. This study identified candidate antimicrobial treatments which could be implemented in future studies to illustrate the effect of dysbiosis on microbial gill diseases.
Collapse
|
30
|
Clinton M, Wyness AJ, Martin SAM, Brierley AS, Ferrier DEK. Sampling the fish gill microbiome: a comparison of tissue biopsies and swabs. BMC Microbiol 2021; 21:313. [PMID: 34758745 PMCID: PMC8579561 DOI: 10.1186/s12866-021-02374-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Background Understanding the influence of methodology on results is an essential consideration in experimental design. In the expanding field of fish microbiology, many best practices and targeted techniques remain to be refined. This study aimed to compare microbial assemblages obtained from Atlantic salmon (Salmo salar) gills by swabbing versus biopsy excision. Results demonstrate the variation introduced by altered sampling strategies and enhance the available knowledge of the fish gill microbiome. Results The microbiome was sampled using swabs and biopsies from fish gills, with identical treatment of samples for 16S next generation Illumina sequencing. Results show a clear divergence in microbial communities obtained through the different sampling strategies, with swabbing consistently isolating a more diverse microbial consortia, and suffering less from the technical issue of host DNA contamination associated with biopsy use. Sequencing results from biopsy-derived extractions, however, hint at the potential for more cryptic localisation of some community members. Conclusions Overall, results demonstrate a divergence in the obtained microbial community when different sampling methodology is used. Swabbing appears a superior method for sampling the microbiota of mucosal surfaces for broad ecological research in fish, whilst biopsies might be best applied in exploration of communities beyond the reach of swabs, such as sub-surface and intracellular microbes, as well as in pathogen diagnosis. Most studies on the external microbial communities of aquatic organisms utilise swabbing for sample collection, likely due to convenience. Much of the ultrastructure of gill tissue in live fish is, however, potentially inaccessible to swabbing, meaning swabbing might fail to capture the full diversity of gill microbiota. This work therefore also provides valuable insight into partitioning of the gill microbiota, informing varied applications of different sampling methods in experimental design for future research. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02374-0.
Collapse
Affiliation(s)
- Morag Clinton
- Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK. .,Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA.
| | - Adam J Wyness
- Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK.,Coastal Research Group, Department of Zoology and Entomology, Rhodes University, Makhanda (Grahamstown), 6139, South Africa
| | - Samuel A M Martin
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Andrew S Brierley
- Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK
| | - David E K Ferrier
- Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK.
| |
Collapse
|
31
|
Microbiome of the Successful Freshwater Invader, the Signal Crayfish, and Its Changes along the Invasion Range. Microbiol Spectr 2021; 9:e0038921. [PMID: 34494878 PMCID: PMC8557874 DOI: 10.1128/spectrum.00389-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence denotes the role of the microbiome in biological invasions, since it is known that microbes can affect the fitness of the host. Here, we demonstrate differences in the composition of an invader’s microbiome along the invasion range, suggesting that its microbial communities may affect and be affected by range expansion. Using a 16S rRNA gene amplicon sequencing approach, we (i) analyzed the microbiomes of different tissues (exoskeleton, hemolymph, hepatopancreas, and intestine) of a successful freshwater invader, the signal crayfish, (ii) compared them to the surrounding water and sediment, and (iii) explored their changes along the invasion range. Exoskeletal, hepatopancreatic, and intestinal microbiomes varied between invasion core and invasion front populations. This indicates that they may be partly determined by population density, which was higher in the invasion core than in the invasion front. The highly diverse microbiome of exoskeletal biofilm was partly shaped by the environment (due to the similarity with the sediment microbiome) and partly by intrinsic crayfish parameters (due to the high proportion of exoskeleton-unique amplicon sequence variants [ASVs]), including the differences in invasion core and front population structure. Hemolymph had the most distinct microbiome compared to other tissues and differed between upstream (rural) and downstream (urban) river sections, indicating that its microbiome is potentially more driven by the effects of the abiotic environment. Our findings offer an insight into microbiome changes during dispersal of a successful invader and present a baseline for assessment of their contribution to an invader’s overall health and its further invasion success. IMPORTANCE Invasive species are among the major drivers of biodiversity loss and impairment of ecosystem services worldwide, but our understanding of their invasion success and dynamics still has many gaps. For instance, although it is known that host-associated microbial communities may significantly affect an individual’s health and fitness, the current studies on invasive species are mainly focused on pathogenic microbes, while the effects of the remaining majority of microbial communities on the invasion process are almost completely unexplored. We have analyzed the microbiome of one of the most successful crayfish invaders in Europe, the signal crayfish, and explored its changes along the signal crayfish invasion range in the Korana River, Croatia. Our study sets the perspective for future research required to assess the contribution of these changes to an individual’s overall health status and resilience of dispersing populations and their impact on invasion success.
Collapse
|
32
|
Rosado D, Xavier R, Cable J, Severino R, Tarroso P, Pérez-Losada M. Longitudinal sampling of external mucosae in farmed European seabass reveals the impact of water temperature on bacterial dynamics. ISME COMMUNICATIONS 2021; 1:28. [PMID: 36739461 PMCID: PMC9723769 DOI: 10.1038/s43705-021-00019-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Fish microbiota are intrinsically linked to health and fitness, but they are highly variable and influenced by both biotic and abiotic factors. Water temperature particularly limits bacterial adhesion and growth, impacting microbial diversity and bacterial infections on the skin and gills. Aquaculture is heavily affected by infectious diseases, especially in warmer months, and industry practices often promote stress and microbial dysbiosis, leading to an increased abundance of potentially pathogenic bacteria. In this regard, fish mucosa health is extremely important because it provides a primary barrier against pathogens. We used 16 rRNA V4 metataxonomics to characterize the skin and gill microbiota of the European seabass, Dicentrarchus labrax, and the surrounding water over 12 months, assessing the impact of water temperature on microbial diversity and function. We show that the microbiota of external mucosae are highly dynamic with consistent longitudinal trends in taxon diversity. Several potentially pathogenic genera (Aliivibrio, Photobacterium, Pseudomonas, and Vibrio) were highly abundant, showing complex interactions with other bacterial genera, some of which with recognized probiotic activity, and were also significantly impacted by changes in temperature. The surrounding water temperature influenced fish microbial composition, structure and function over time (days and months). Additionally, dysbiosis was more frequent in warmer months and during transitions between cold/warm months. We also detected a strong seasonal effect in the fish microbiota, which is likely to result from the compound action of several unmeasured environmental factors (e.g., pH, nutrient availability) beyond temperature. Our results highlight the importance of performing longitudinal studies to assess the impact of environmental factors on fish microbiotas.
Collapse
Affiliation(s)
- Daniela Rosado
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal.
| | - Raquel Xavier
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal.
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Ricardo Severino
- Piscicultura Vale da Lama, Sapal do Vale da Lama, Odiáxere, Lagos, Portugal
| | - Pedro Tarroso
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Marcos Pérez-Losada
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| |
Collapse
|
33
|
Crescenzo G, Tinelli A, Centoducati G, Zizzadoro C, Leone R, Piccinno M, Lai O. Residue depletion and histopathological alterations in gilthead sea bream (Sparus aurata) after oral administration of oxytetracycline. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.1921779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Giuseppe Crescenzo
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, Bari 70010, Italy
| | - Antonella Tinelli
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, Bari 70010, Italy
| | - Gerardo Centoducati
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, Bari 70010, Italy
| | - Claudia Zizzadoro
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, Bari 70010, Italy
| | - Rosa Leone
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, Bari 70010, Italy
| | - Mariagrazia Piccinno
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, Bari 70010, Italy
| | - Olimpia Lai
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, Bari 70010, Italy
| |
Collapse
|
34
|
Slinger J, Adams MB, Stratford CN, Rigby M, Wynne JW. The Effect of Antimicrobial Treatment upon the Gill Bacteriome of Atlantic Salmon ( Salmo salar L.) and Progression of Amoebic Gill Disease (AGD) In Vivo. Microorganisms 2021; 9:987. [PMID: 34063289 PMCID: PMC8147422 DOI: 10.3390/microorganisms9050987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 01/04/2023] Open
Abstract
Branchial surfaces of finfish species contain a microbial layer rich in commensal bacteria which can provide protection through competitive colonization and production of antimicrobial products. Upon disturbance or compromise, pathogenic microbiota may opportunistically infiltrate this protective barrier and initiate disease. Amoebic gill disease (AGD) is a globally significant health condition affecting salmonid mariculture. The current study examined whether altering the diversity and/or abundance of branchial bacteria could influence the development of experimentally induced AGD. Here, we challenged Atlantic salmon (Salmo salar) with Neoparamoeba perurans in a number of scenarios where the bacterial community on the gill was altered or in a state of instability. Administration of oxytetracycline (in-feed) and chloramine-T (immersion bath) significantly altered the bacterial load and diversity of bacterial taxa upon the gill surface, and shifted the community profile appreciably. AGD severity was marginally higher in fish previously subjected to chloramine-T treatment following 21 days post-challenge. This research suggests that AGD progression and severity was not clearly linked to specific bacterial taxa present in these systems. However, we identified AGD associated taxa including known pathogenic genus (Aliivibrio, Tenacibaculum and Pseudomonas) which increased in abundance as AGD progressed. Elucidation of a potential role for these bacterial taxa in AGD development is warranted.
Collapse
Affiliation(s)
- Joel Slinger
- CSIRO Agriculture and Food, Bribie Island Research Centre, Woorim, QLD 4507, Australia;
- Institute of Marine and Antarctic Studies, University of Tasmania, Launceston, TAS 7250, Australia;
| | - Mark B. Adams
- Institute of Marine and Antarctic Studies, University of Tasmania, Launceston, TAS 7250, Australia;
| | - Chris N. Stratford
- CSIRO Agriculture and Food, Bribie Island Research Centre, Woorim, QLD 4507, Australia;
| | - Megan Rigby
- CSIRO Agriculture and Food, Castray Esplanade, Hobart, TAS 7004, Australia; (M.R.); (J.W.W.)
| | - James W. Wynne
- CSIRO Agriculture and Food, Castray Esplanade, Hobart, TAS 7004, Australia; (M.R.); (J.W.W.)
| |
Collapse
|
35
|
Jo H, Raza S, Farooq A, Kim J, Unno T. Fish farm effluents as a source of antibiotic resistance gene dissemination on Jeju Island, South Korea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116764. [PMID: 33631683 DOI: 10.1016/j.envpol.2021.116764] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/17/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
The abuse or misuse of antibiotics is directly linked to the emergence of antibiotic-resistant bacteria and antibiotic resistance genes (ARGs) in the environment. Most fish farms located on Jeju Island operate a flow-through system that pumps in seawater for fish farming and discharges it back to the ocean. To investigate the amount of ARGs that these fish farm effluents discharge into the marine environment, we conducted a metagenomic-based resistome analysis. We observed higher levels of ARGs in fish farm effluents than in seawater at beach and residential areas. A greater proportion of ARGs was found on plasmid rather than on chromosomal DNA, especially for sulfonamide and phenicol classes. The distribution of ARGs did not differ between summer and winter, but the microbial community did. In addition, fish farm samples contained significantly more opportunistic pathogens (i.e., Vibrio, Photobacterium, Aliivibrio, and Tenacibaculum) and virulence factors than non-fish farm samples. Vibrio was the most frequently identified host of ARGs and virulence factors. The presence of Vibrio in the coastal area has been increasing owing to the recent rise in the temperature of seawater. This study suggests the need for actions to treat or monitor ARGs in the coastal areas where fish farms operating a flow-through system are located.
Collapse
Affiliation(s)
- Hyejun Jo
- Faculty of Biotechnology, School of Life Sciences, SARI, Jeju, 63243, Republic of Korea
| | - Shahbaz Raza
- Faculty of Biotechnology, School of Life Sciences, SARI, Jeju, 63243, Republic of Korea
| | - Adeel Farooq
- Faculty of Biotechnology, School of Life Sciences, SARI, Jeju, 63243, Republic of Korea
| | - Jungman Kim
- Research Institute for Basic Sciences (RIBS), Jeju National University, Jeju, 63243, Republic of Korea
| | - Tatsuya Unno
- Faculty of Biotechnology, School of Life Sciences, SARI, Jeju, 63243, Republic of Korea.
| |
Collapse
|
36
|
Bozzi D, Rasmussen JA, Carøe C, Sveier H, Nordøy K, Gilbert MTP, Limborg MT. Salmon gut microbiota correlates with disease infection status: potential for monitoring health in farmed animals. Anim Microbiome 2021; 3:30. [PMID: 33879261 PMCID: PMC8056536 DOI: 10.1186/s42523-021-00096-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/04/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Infectious diseases cause significant production losses in aquaculture every year. Since the gut microbiota plays an essential role in regulating the host immune system, health and physiology, altered gut microbiota compositions are often associated with a diseased status. However, few studies have examined the association between disease severity and degree of gut dysbiosis, especially when the gut is not the site of the primary infection. Moreover, there is a lack of knowledge on whether bath treatment with formalin, a disinfectant commonly used in aquaculture to treat external infections, might affect the gut microbiome as a consequence of formalin ingestion. Here we investigate, through 16S rRNA gene metabarcoding, changes in the distal gut microbiota composition of a captive-reared cohort of 80 Atlantic salmon (Salmo salar L.), in consequence of an external bacterial skin infection due to a natural outbreak and subsequent formalin treatment. RESULTS We identified Tenacibaculum dicentrarchi as the causative disease pathogen and we show that the distal gut of diseased salmon presented a different composition from that of healthy individuals. A new, yet undescribed, Mycoplasma genus characterized the gut of healthy salmon, while in the sick fish we observed an increase in terms of relative abundance of Aliivibrio sp., a strain regarded as opportunistic. We also noticed a positive correlation between fish weight and Mycoplasma sp. relative abundance, potentially indicating a beneficial effect for its host. Moreover, we observed that the gut microbiota of fish treated with formalin was more similar to those of sick fish than healthy ones. CONCLUSIONS We conclude that external Tenacibaculum infections have the potential of indirectly affecting the host gut microbiota. As such, treatment optimization procedures should account for that. Formalin treatment is not an optimal solution from a holistic perspective, since we observe an altered gut microbiota in the treated fish. We suggest its coupling with a probiotic treatment aimed at re-establishing a healthy community. Lastly, we have observed a positive correlation of Mycoplasma sp. with salmon health and weight, therefore we encourage further investigations towards its potential utilization as a biomarker for monitoring health in salmon and potentially other farmed fish species.
Collapse
Affiliation(s)
- Davide Bozzi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, DK-1353, Copenhagen, Denmark
| | - Jacob A Rasmussen
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, DK-1353, Copenhagen, Denmark
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Christian Carøe
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, DK-1353, Copenhagen, Denmark
| | | | | | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, DK-1353, Copenhagen, Denmark
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, DK-1353, Copenhagen, Denmark.
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
37
|
Almeida AR, Tacão M, Soares J, Domingues I, Henriques I. Tetracycline-Resistant Bacteria Selected from Water and Zebrafish after Antibiotic Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18063218. [PMID: 33804606 PMCID: PMC8003806 DOI: 10.3390/ijerph18063218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
The emergence of antibiotic-resistant pathogens due to worldwide antibiotic use is raising concern in several settings, including aquaculture. In this work, the selection of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) was evaluated after exposure of zebrafish to oxytetracycline (OTC) for two months, followed by a recovery period. The selection of ARB in water and fish was determined using selective media. The abundance of tetA genes was estimated through qPCR. Higher prevalence of ARB was measured in all samples exposed to the antibiotic when compared to control samples, although statistical significance was only achieved five days after exposure. Isolates recovered from samples exposed to the antibiotic were affiliated with Pseudomonas and Stenotrophomonas. Various antibiotic susceptibility profiles were detected and 37% of the isolates displayed multidrug resistance (MDR). The selection of the tetA gene was confirmed by qPCR at the highest OTC concentration tested. Two MDR isolates, tested using zebrafish embryos, caused significant mortality, indicating a potential impact on fish health and survival. Overall, our work highlights the potential impact of antibiotic contamination in the selection of potential pathogenic ARB and ARGS.
Collapse
Affiliation(s)
- Ana Rita Almeida
- CESAM & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (M.T.); (J.S.); (I.D.)
- Correspondence:
| | - Marta Tacão
- CESAM & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (M.T.); (J.S.); (I.D.)
| | - Joana Soares
- CESAM & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (M.T.); (J.S.); (I.D.)
| | - Inês Domingues
- CESAM & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (M.T.); (J.S.); (I.D.)
| | - Isabel Henriques
- University of Coimbra, CESAM & Department of Life Sciences, Faculty of Science and Technology, Calçada Martins de Freitas, 3000-456 Coimbra, Portugal;
| |
Collapse
|
38
|
Knobloch S, Philip J, Ferrari S, Benhaïm D, Bertrand M, Poirier I. The effect of ultrasonic antifouling control on the growth and microbiota of farmed European sea bass (Dicentrarchus labrax). MARINE POLLUTION BULLETIN 2021; 164:112072. [PMID: 33529875 DOI: 10.1016/j.marpolbul.2021.112072] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 05/11/2023]
Abstract
Biofouling is a serious threat to marine renewable energy structures and marine aquaculture operations alike. As an alternative to toxic surface coatings, ultrasonic antifouling control has been proposed as an environmentally friendly means to reduce biofouling. However, the impact of ultrasound on fish farmed in offshore structures or in marine multi-purpose platforms, combining renewable energy production and aquaculture, has not yet been assessed. Here we study the impact of ultrasound on the growth and microbiota of farmed European sea bass (Dicentrarchus labrax) under laboratory conditions. Whereas growth and survival were not reduced by ultrasound exposure, microbiological analysis using plate counts and 16S rRNA gene based metataxonomics showed a perturbation of the gill and skin microbiota, including an increase in putative pathogenic bacteria. This warrants further research into the long-term effects of ultrasonic antifouling control on the health and wellbeing of farmed fish.
Collapse
Affiliation(s)
- Stephen Knobloch
- Matís ohf., Microbiology Group, Vínlandsleid 12, 113 Reykjavík, Iceland
| | - Joris Philip
- Hólar University, Department of Aquaculture and Fish Biology, Háeyri 1, 550 Saudárkrókur, Iceland
| | - Sébastien Ferrari
- Conservatoire National des Arts et Métiers, Institut National des Sciences et Techniques de la Mer, EPN8, Boulevard Collignon, Tourlaville, 50110 Cherbourg en Cotentin, France; Laboratoire Universitaire des Sciences Appliquées de Cherbourg, EA4253, Normandie Université, UNICAEN, 50130 Cherbourg en Cotentin, France
| | - David Benhaïm
- Hólar University, Department of Aquaculture and Fish Biology, Háeyri 1, 550 Saudárkrókur, Iceland; Conservatoire National des Arts et Métiers, Institut National des Sciences et Techniques de la Mer, EPN8, Boulevard Collignon, Tourlaville, 50110 Cherbourg en Cotentin, France
| | - Martine Bertrand
- Conservatoire National des Arts et Métiers, Institut National des Sciences et Techniques de la Mer, EPN8, Boulevard Collignon, Tourlaville, 50110 Cherbourg en Cotentin, France; Laboratoire Universitaire des Sciences Appliquées de Cherbourg, EA4253, Normandie Université, UNICAEN, 50130 Cherbourg en Cotentin, France
| | - Isabelle Poirier
- Conservatoire National des Arts et Métiers, Institut National des Sciences et Techniques de la Mer, EPN8, Boulevard Collignon, Tourlaville, 50110 Cherbourg en Cotentin, France; Laboratoire Universitaire des Sciences Appliquées de Cherbourg, EA4253, Normandie Université, UNICAEN, 50130 Cherbourg en Cotentin, France.
| |
Collapse
|
39
|
Terova G, Gini E, Gasco L, Moroni F, Antonini M, Rimoldi S. Effects of full replacement of dietary fishmeal with insect meal from Tenebrio molitor on rainbow trout gut and skin microbiota. J Anim Sci Biotechnol 2021; 12:30. [PMID: 33536078 PMCID: PMC7860006 DOI: 10.1186/s40104-021-00551-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background Aquaculture must continue to reduce dependence on fishmeal (FM) and fishoil in feeds to ensure sustainable sector growth. Therefore, the use of novel aquaculture feed ingredients is growing. In this regard, insects can represent a new world of sustainable and protein-rich ingredients for farmed fish feeds. Accordingly, we investigated the effects of full replacement of FM with Tenebrio molitor (TM) larvae meal in the diet of rainbow trout (Oncorhynchus mykiss) on fish gut and skin microbiota. Methods A feeding trial was conducted with 126 trout of about 80 g mean initial weight that were fed for 22 weeks with two isonitrogenous, isolipidic, and isoenergetic extruded experimental diets. Partially defatted TM meal was included in one of the diets to replace 100% (TM 100) of FM, whereas the other diet (TM 0) was without TM. To analyse the microbial communities, the Illumina MiSeq platform for sequencing of 16S rRNA gene and Qiime pipeline were used to identify bacteria in the gut and skin mucosa, and in the diets. Results The data showed no major effects of full FM substitution with TM meal on bacterial species richness and diversity in both, gut mucosa- and skin mucus-associated microbiome. Skin microbiome was dominated by phylum Proteobacteria and especially by Gammaproteobacteria class that constituted approximately half of the bacterial taxa found. The two dietary fish groups did not display distinctive features, except for a decrease in the relative abundance of Deefgea genus (family Neisseriaceae) in trout fed with insect meal. The metagenomic analysis of the gut mucosa indicated that Tenericutes was the most abundant phylum, regardless of the diet. Specifically, within this phylum, the Mollicutes, mainly represented by Mycoplasmataceae family, were the dominant class. However, we observed only a weak dietary modulation of intestinal bacterial communities. The only changes due to full FM replacement with TM meal were a decreased number of Proteobacteria and a reduced number of taxa assigned to Ruminococcaceae and Neisseriaceae families. Conclusions The data demonstrated that TM larvae meal is a valid alternative animal protein to replace FM in the aquafeeds. Only slight gut and skin microbiota changes occurred in rainbow trout after total FM replacement with insect meal. The mapping of the trout skin microbiota represents a novel contribution of the present study. Indeed, in contrast to the increasing knowledge on gut microbiota, the skin microbiota of major farmed fish species remains largely unmapped but it deserves thorough consideration.
Collapse
Affiliation(s)
- Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy.
| | - Elisabetta Gini
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo P. Braccini 2- 10095 Grugliasco, Torino, Italy
| | - Federico Moroni
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy
| | - Micaela Antonini
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy
| |
Collapse
|
40
|
Rosado D, Pérez-Losada M, Pereira A, Severino R, Xavier R. Effects of aging on the skin and gill microbiota of farmed seabass and seabream. Anim Microbiome 2021; 3:10. [PMID: 33499971 PMCID: PMC7934244 DOI: 10.1186/s42523-020-00072-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Background Important changes in microbial composition related to sexual maturation have been already reported in the gut of several vertebrates including mammals, amphibians and fish. Such changes in fish are linked to reproduction and growth during developmental stages, diet transitions and critical life events. We used amplicon (16S rRNA) high-throughput sequencing to characterize the skin and gill bacterial microbiota of farmed seabass and seabream belonging to three different developmental age groups: early and late juveniles and mature adults. We also assessed the impact of the surrounding estuarine water microbiota in shaping the fish skin and gill microbiota. Results Microbial diversity, composition and predicted metabolic functions varied across fish maturity stages. Alpha-diversity in the seabass microbiota varied significantly between age groups and was higher in older fish. Conversely, in the seabream, no significant differences were found in alpha-diversity between age groups. Microbial structure varied significantly across age groups; moreover, high structural variation was also observed within groups. Different bacterial metabolic pathways were predicted to be enriched in the microbiota of both species. Finally, we found that the water microbiota was significantly distinct from the fish microbiota across all the studied age groups, although a high percentage of ASVs was shared with the skin and gill microbiotas. Conclusions We report important microbial differences in composition and potential functionality across different ages of farmed seabass and seabream. These differences may be related to somatic growth and the onset of sexual maturation. Importantly, some of the inferred metabolic pathways could enhance the fish coping mechanisms during stressful conditions. Our results provide new evidence suggesting that growth and sexual maturation have an important role in shaping the microbiota of the fish external mucosae and highlight the importance of considering different life stages in microbiota studies. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-020-00072-2.
Collapse
Affiliation(s)
- Daniela Rosado
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, 4485-661, Porto, Portugal.
| | - Marcos Pérez-Losada
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, 4485-661, Porto, Portugal.,Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, 20052-0066, USA
| | - Ana Pereira
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, 4485-661, Porto, Portugal
| | - Ricardo Severino
- Piscicultura Vale da Lama, Sapal do Vale da Lama, Odiáxere, 8600-258, Lagos, Portugal
| | - Raquel Xavier
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, 4485-661, Porto, Portugal.
| |
Collapse
|
41
|
Antibiotic-induced alterations and repopulation dynamics of yellowtail kingfish microbiota. Anim Microbiome 2020; 2:26. [PMID: 33499964 PMCID: PMC7807502 DOI: 10.1186/s42523-020-00046-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The use of antibiotics in aquaculture is a common infection treatment and is increasing in some sectors and jurisdictions. While antibiotic treatment can negatively shift gut bacterial communities, recovery and examination of these communities in fish of commercial importance is not well documented. Examining the impacts of antibiotics on farmed fish microbiota is fundamental for improving our understanding and management of healthy farmed fish. This work assessed yellowtail kingfish (Seriola lalandi) skin and gut bacterial communities after an oral antibiotic combination therapy in poor performing fish that displayed signs of enteritis over an 18-day period. In an attempt to promote improved bacterial re-establishment after antibiotic treatment, faecal microbiota transplantation (FMT) was also administered via gavage or in the surrounding seawater, and its affect was evaluated over 15 days post-delivery. RESULTS Antibiotic treatment greatly perturbed the global gut bacterial communities of poor-performing fish - an effect that lasted for up to 18 days post treatment. This perturbation was marked by a significant decrease in species diversity and evenness, as well as a concomitant increase in particular taxa like an uncultured Mycoplasmataceae sp., which persisted and dominated antibiotic-treated fish for the entire 18-day period. The skin-associated bacterial communities were also perturbed by the antibiotic treatment, notably within the first 3 days; however, this was unlike the gut, as skin microbiota appeared to shift towards a more 'normal' (though disparate) state after 5 days post antibiotic treatment. FMT was only able to modulate the impacts of antibiotics in some individuals for a short time period, as the magnitude of change varied substantially between individuals. Some fish maintained certain transplanted gut taxa (i.e. present in the FMT inoculum; namely various Aliivibrio related ASVs) at Day 2 post FMT, although these were lost by Day 8 post FMT. CONCLUSION As we observed notable, prolonged perturbations induced by antibiotics on the gut bacterial assemblages, further work is required to better understand the processes/dynamics of their re-establishment following antibiotic exposure. In this regard, procedures like FMT represent a novel approach for promoting improved microbial recovery, although their efficacy and the factors that support their success requires further investigation.
Collapse
|
42
|
Haemato-immunological responses and effectiveness of feed-based bivalent vaccine against Streptococcus iniae and Aeromonas hydrophila infections in hybrid red tilapia (Oreochromis mossambicus × O. niloticus). BMC Vet Res 2020; 16:226. [PMID: 32615969 PMCID: PMC7330267 DOI: 10.1186/s12917-020-02443-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022] Open
Abstract
Background Streptococcosis and Motile Aeromonad Septicemia (MAS) are important diseases of tilapia, Oreochromis spp. and causes huge economic losses in aquaculture globally. The feed-based vaccination may be an alternative to minimize major infectious diseases in tilapia. Thus, this study aims to evaluate the haemato-immunological responses and effectiveness of a newly developed feed-based killed bivalent vaccine against Streptococcus iniae and Aeromonas hydrophila in hybrid red tilapia. A total of 495 hybrid red tilapia of 61.23 ± 4.95 g were distributed into 5 groups (each with triplicate). The fish were immunized orally through bivalent (combined S. iniae and A. hydrophila) spray vaccine (BS group), bivalent formulate vaccine (BF group), monovalent S. iniae vaccine (MS group), monovalent A. hydrophila vaccine (MA group) and unvaccinated as a control group. The vaccine was orally administered on days 0, 14 and 42 applied feed-based bacterin at 5% body weight. The blood and spleen samples were collected from all groups on 7, 21 and 49 days post-vaccination, and also 96 h post-infection to assess their haemato-immune responses. Results Compared with the unvaccinated group, leukocyte, lymphocytes, monocytes, granulocytes counts in vaccinated groups were significantly (P < 0.05) increased on 21, 49 days post-vaccination and also 96 h post-infection, while erythrocytes, haemoglobin and haematocrit in vaccinated groups were significantly (P < 0.05) enhanced only 96 h post-infection. Additionally, the lysozyme and phagocytic activity and, serum antibody (IgM) were significantly higher (P < 0.05) against S. iniae and A. hydrophila in vaccinated groups compared to the unvaccinated group in the pre- and post-infection. Results from the challenge through co-infection with S. iniae and A. hydrophila showed the relative percent survival (RPS) in BF group was 76.67 ± 4.71%, which had the capacity to induce significant protection (P < 0.05) compared to others groups. Conclusions This study demonstrates the bivalent formulate (BF) group could elicit significant non-specific and specific immunological responses with higher protection in hybrid red tilapia. In addition, this newly developed feed-based bivalent vaccination can be a promising technique for effective and large scale fish immunization in the aquaculture industry.
Collapse
|
43
|
Kokou F, Sasson G, Mizrahi I, Cnaani A. Antibiotic effect and microbiome persistence vary along the European seabass gut. Sci Rep 2020; 10:10003. [PMID: 32561815 PMCID: PMC7305304 DOI: 10.1038/s41598-020-66622-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
The constant increase in aquaculture production has led to extensive use of antibiotics as a means to prevent and treat diseases, with adverse implications on the environment, animal health and commensal microbes. Gut microbes are important for the host proper functioning, thus evaluating such impacts is highly crucial. Examining the antibiotic impact on gut segments with different physiological roles may provide insight into their effects on these microhabitats. Hence, we evaluated the effect of feed-administrated antibiotics on the composition and metabolic potential of the gut microbiome in the European seabass, an economically important aquaculture species. We used quantitative PCR to measure bacterial copy numbers, and amplicon sequencing of the 16S rRNA gene to describe the composition along the gut, after 7-days administration of two broad-range antibiotic mixtures at two concentrations. While positive correlation was found between antibiotic concentration and bacterial abundance, we showed a differential effect of antibiotics on the composition along the gut, highlighting distinct impacts on these microbial niches. Moreover, we found an increase in abundance of predicted pathways related to antibiotic-resistance. Overall, we show that a high portion of the European seabass gut microbiome persisted, despite the examined antibiotic intake, indicating high stability to perturbations.
Collapse
Affiliation(s)
- Fotini Kokou
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Rishon LeZion, Israel. .,Department of Life Sciences & the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel. .,Wageningen University and Research, Department of Animal Sciences, Aquaculture and Fisheries Group, Wageningen, Netherlands.
| | - Goor Sasson
- Department of Life Sciences & the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Itzhak Mizrahi
- Department of Life Sciences & the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Avner Cnaani
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Rishon LeZion, Israel.
| |
Collapse
|