1
|
Back P, Yu M, Modaresahmadi S, Hajimirzaei S, Zhang Q, Islam MR, Schwendeman AA, La-Beck NM. Immune Implications of Cholesterol-Containing Lipid Nanoparticles. ACS NANO 2024; 18:28480-28501. [PMID: 39388645 PMCID: PMC11505898 DOI: 10.1021/acsnano.4c06369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
The majority of clinically approved nanoparticle-mediated therapeutics are lipid nanoparticles (LNPs), and most of these LNPs are liposomes containing cholesterol. LNP formulations significantly alter the drug pharmacokinetics (PK) due to the propensity of nanoparticles for uptake by macrophages. In addition to readily engulfing LNPs, the high expression of cholesterol hydroxylases and reactive oxygen species (ROS) in macrophages suggests that they will readily produce oxysterols from LNP-associated cholesterol. Oxysterols are a heterogeneous group of cholesterol oxidation products that have potent immune modulatory effects. Oxysterols are implicated in the pathogenesis of atherosclerosis and certain malignancies; they have also been found in commercial liposome preparations. Yet, the in vivo metabolic fate of LNP-associated cholesterol remains unclear. We review herein the mechanisms of cellular uptake, trafficking, metabolism, and immune modulation of endogenous nanometer-sized cholesterol particles (i.e., lipoproteins) that are also relevant for cholesterol-containing nanoparticles. We believe that it would be imperative to better understand the in vivo metabolic fate of LNP-associated cholesterol and the immune implications for LNP-therapeutics. We highlight critical knowledge gaps that we believe need to be addressed in order to develop safer and more efficacious lipid nanoparticle delivery systems.
Collapse
Affiliation(s)
- Patricia
Ines Back
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Minzhi Yu
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Shadan Modaresahmadi
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Sahelosadat Hajimirzaei
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Qisheng Zhang
- Division
of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Md Rakibul Islam
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Anna A. Schwendeman
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, North
Campus Research Complex, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Ninh M. La-Beck
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
- Department
of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas 79601, United States
| |
Collapse
|
2
|
Mohammadi M, Karimi M, Raofie F. Preparation irinotecan hydrochloride loaded PEGylated liposomes using novel method supercritical fluid and condition optimized by Box-Behnken design. DISCOVER NANO 2024; 19:141. [PMID: 39237795 PMCID: PMC11377383 DOI: 10.1186/s11671-024-04071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 09/07/2024]
Abstract
A semi-synthetic camptothecin derivative known as irinotecan hydrochloride is frequently used to treat colorectal cancer, including colorectal adenocarcinoma and lung cancers involving small cells. Irinotecan has a very short half-life; therefore, continuous infusions are required to keep the drug's blood levels at therapeutic levels, which could produce cumulative toxicities. Effective delivery techniques, including liposomes, have been developed to address these shortcomings. In this study, a continuous supercritical fluid approach dubbed Expansion Supercritical Fluid into an aqueous solution, in which the pressure decreases rapidly but remains over the critical pressure, is proposed to manufacture polyethylene glycolylated (PEGylated) liposomes carrying irinotecan hydrochloride. To accomplish this, PEGylated liposomes were created using a Box-Behnken design, and the operating parameters (flow rate, temperature, and pressure drop) were optimized. Encapsulation efficiency, mean size, and prepared liposome count were 94.6%, 55 nm, and 758 under ideal circumstances. Additionally, the stability of the PEGylated liposome was investigated during 8 weeks, and also PEGylated liposome-loaded irinotecan release profile was compared to conventional liposomes and free irinotecan, and a constant drug release was seen after the first burst release from liposomes.
Collapse
Affiliation(s)
- Misagh Mohammadi
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Mehrnaz Karimi
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Farhad Raofie
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, 1983969411, Iran.
| |
Collapse
|
3
|
Barbieri BD, Peeler DJ, Samnuan K, Day S, Hu K, Sallah HJ, Tregoning JS, McKay PF, Shattock RJ. The role of helper lipids in optimising nanoparticle formulations of self-amplifying RNA. J Control Release 2024; 374:280-292. [PMID: 39142355 DOI: 10.1016/j.jconrel.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/25/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Lipid nanoparticle (LNP) formulation plays a vital role in RNA vaccine delivery. However, further optimisation of self-amplifying RNA (saRNA) vaccine formulation could help enhance seroconversion rates in humans and improve storage stability. Altering either the ionisable or helper lipid can alter the characteristics and performance of formulated saRNA through the interplay of the phospholipid's packing parameter and the geometrical shape within the LNP membrane. In this study, we compared the impact of three helper lipids (DSPC, DOPC, or DOPE) used with two different ionisable lipids (MC3 and C12-200) on stability, transfection efficiency and the inflammation and immunogenicity of saRNA. While helper lipid identity altered saRNA expression across four cell lines in vitro, this was not predictive of an ex vivo or in vivo response. The helper lipid used influenced LNP storage where DSPC provided the best stability profile over four weeks at 2-8 °C. Importantly, helper lipid impact on LNP storage stability was the best predictor of expression in human skin explants, where C12-200 in combination with DSPC provided the most durable expression. C12-200 LNPs also improved protein expression (firefly luciferase) and humoral responses to a SARS-CoV-2 spike saRNA vaccine compared to MC3 LNPs, where the effect of helper lipids was less apparent. Nevertheless, the performance of C12-200 in combination with DSPC appears optimal for saRNA when balancing preferred storage stability requirements against in vivo and ex vivo potency. These data suggest that helper lipid influences the stability and functionality of ionisable lipid nanoparticle-formulated saRNA.
Collapse
Affiliation(s)
| | - David J Peeler
- Department of Infectious Disease, Imperial College London, London, UK; Department of Materials, Imperial College London, London, UK
| | - Karnyart Samnuan
- Department of Infectious Disease, Imperial College London, London, UK
| | - Suzanne Day
- Department of Infectious Disease, Imperial College London, London, UK
| | - Kai Hu
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - John S Tregoning
- Department of Infectious Disease, Imperial College London, London, UK
| | - Paul F McKay
- Department of Infectious Disease, Imperial College London, London, UK
| | - Robin J Shattock
- Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
4
|
Akl MA, Eldeen MA, Kassem AM. Beyond Skin Deep: Phospholipid-Based Nanovesicles as Game-Changers in Transdermal Drug Delivery. AAPS PharmSciTech 2024; 25:184. [PMID: 39138693 DOI: 10.1208/s12249-024-02896-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Transdermal administration techniques have gained popularity due to their advantages over oral and parenteral methods. Noninvasive, self-administered delivery devices improve patient compliance and control drug release. Transdermal delivery devices struggle with the skin's barrier function. Molecules over 500 Dalton (Da) and ionized compounds don't permeate through the skin. Drug encapsulation in phospholipid-based vesicular systems is the most effective skin delivery technique. Vesicular carriers include bi-layered liposomes, ultra-deformable liposomes, ethanolic liposomes, transethosomes, and invasomes. These technologies enhance skin drug permeation by increasing formula solubilization, partitioning into the skin, and fluidizing the lipid barrier. Phospholipid-based delivery systems are safe and efficient, making them a promising pharmaceutical and cosmeceutical drug delivery technique. Still, making delivery systems requires knowledge about the physicochemical properties of the drug and carrier, manufacturing and process variables, skin delivery mechanisms, technological advances, constraints, and regulatory requirements. Consequently, this review covers recent research achievements addressing the mentioned concerns.
Collapse
Affiliation(s)
- Mohamed A Akl
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.
- Department of Pharmaceutics, College of Pharmacy, The Islamic University, Najaf, 54001, Iraq.
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology, & Genetics Division, Zoology Department, Faculty of Science, Zagazig University, Alsharquia, 7120001, Egypt
| | - Abdulsalam M Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.
| |
Collapse
|
5
|
Tai W, Arnold JC, Chan HK, Kwok PCL. Spray freeze dried cannabidiol with dipalmitoylphosphatidylcholine (DPPC) for inhalation and solubility enhancement. Int J Pharm 2024; 659:124235. [PMID: 38762165 DOI: 10.1016/j.ijpharm.2024.124235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Pulmonary delivery is an efficient route of administration to deliver cannabidiol (CBD) due to the high bioavailability and fast onset of action. The major formulation challenge is the poor aqueous solubility of CBD. This study aimed to produce inhalable CBD powders with enhanced solubility and characterise their solid-state properties. CBD was spray freeze dried with mannitol or trehalose dihydrate with and without dipalmitoylphosphatidylcholine (DPPC). All four powders had acceptable yields at > 70 % with porous and spherical particles. The two crystalline mannitol powders contained less residual solvent than both amorphous trehalose ones. The addition of DPPC did not affect the crystallinity and residual solvent level of the powders. Instead, DPPC made the particles more porous, decreased the particle size from 19-23 µm to 11-13 µm, and increased CBD solubility from 0.36 µg/mL to over 2 µg/mL. The two DPPC powders were dispersed from a low resistance RS01 inhaler, showing acceptable aerosol performance with emitted fractions at 91-93 % and fine particle fractions < 5 µm at 34-43 %. These formulations can be used as a platform to deliver CBD and other cannabinoids by inhalation.
Collapse
Affiliation(s)
- Waiting Tai
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Jonathon Carl Arnold
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, NSW 2050, Australia; Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Philip Chi Lip Kwok
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
6
|
Rudzińska M, Grygier A, Knight G, Kmiecik D. Liposomes as Carriers of Bioactive Compounds in Human Nutrition. Foods 2024; 13:1814. [PMID: 38928757 PMCID: PMC11202941 DOI: 10.3390/foods13121814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
This article provides an overview of the literature data on the role of liposomal structures and encapsulated substances in food technology and human nutrition. The paper briefly describes how liposomes are created and how they encapsulate food ingredients, which can either be individual compounds or plant extracts. Another very interesting application of liposomes is their use as antimicrobial carriers to protect food products from spoilage during storage. The encapsulation of food ingredients in liposomes can increase their bioavailability, which is particularly important for compounds with health-promoting properties but low bioavailability. Particular attention was paid to compounds such as phytosterols, which lower blood cholesterol levels but have very low absorption in the human body. In addition, consumer expectations and regulations for liposomes in food are discussed. To date, no in vivo human studies have been conducted to indicate which encapsulation methods give the best results for gastrointestinal effects and which food-added substances are most stable during food storage and processing. The paper identifies further lines of research that are needed before liposomes can be introduced into food.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Faculty of Food Science and Nutrition, University of Life Sciences, 60-637 Poznań, Poland; (A.G.); (G.K.); (D.K.)
| | | | | | | |
Collapse
|
7
|
Zhang Y, Zhang Y, Ding R, Zhang K, Guo H, Lin Y. Self-Assembled Nanocarrier Delivery Systems for Bioactive Compounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310838. [PMID: 38214694 DOI: 10.1002/smll.202310838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/25/2023] [Indexed: 01/13/2024]
Abstract
Although bioactive compounds (BCs) have many important functions, their applications are greatly limited due to their own defects. The development of nanocarriers (NCs) technology has gradually overcome the defects of BCs. NCs are equally important as BCs to some extent. Self-assembly (SA) methods to build NCs have many advantages than chemical methods, and SA has significant impact on the structure and function of NCs. However, the relationship among SA mechanism, structure, and function has not been given enough attention. Therefore, from the perspective of bottom-up building mechanism, the concept of SA-structure-function of NCs is emphasized to promote the development of SA-based NCs. First, the conditions and forces for occurring SA are introduced, and then the SA basis and molecular mechanism of protein, polysaccharide, and lipid are summarized. Then, varieties of the structures formed based on SA are introduced in detail. Finally, facing the defects of BCs and how to be well solved by NCs are also elaborated. This review attempts to describe the great significance of constructing artificial NCs to deliver BCs from the aspects of SA-structure-function, so as to promote the development of SA-based NCs and the wide application of BCs.
Collapse
Affiliation(s)
- Yafei Zhang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuning Zhang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Rui Ding
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| | - Kai Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Huiyuan Guo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| | - Yingying Lin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
- Food Laboratory of Zhongyuan, Luohe, 462300, China
| |
Collapse
|
8
|
Li Q, Li Y, Pu Q, Yang H, Du M, Li X, Li Y, Li X. Exposure estimation and neurotoxicity inhibition of dioxins in sensitive populations near domestic waste incineration plant through adverse outcome pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134066. [PMID: 38522193 DOI: 10.1016/j.jhazmat.2024.134066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/09/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
The neurotoxicity induced by dioxins has been recognized as a serious concern to sensitive population living near waste incineration plants. However, investigating the intracellular neurotoxicity of dioxin in humans and the corresponding mitigation strategies has been barely studied. Thus, a domestic waste incineration plant was selected in this study to characterize the neurotoxicity risks of sensitive populations by estimating the ratio of dioxin in human cells using membrane structure dynamics simulation; and constructing a complete dioxin neurotoxicity adverse outcome pathway considering the binding process of AhR/ARNT dimer protein and dioxin response element (DRE). Six dioxins with high neurotoxicity risk were identified. According to the composite neurotoxicity risk analysis, the highest composite neurotoxicity risk appeared when the six dioxins were jointly exposed. Dietary schemes were designed using 1/2 partial factor experimental design to mitigate the composite neurotoxicity risk of six dioxins and No. 16 was screened as the optimum combination which can effectively alleviate the composite neurotoxicity risk by 29.52%. Mechanism analysis shows that the interaction between AhR/ARNT dimer protein and DRE was inhibited under the optimal dietary scheme. This study provides theoretical feasibility and reference significance for assessing composite toxicity risks of pollutants and safety mitigation measures for toxic effects.
Collapse
Affiliation(s)
- Qing Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yunxiang Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Qikun Pu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hao Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Meijin Du
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xinao Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xixi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada.
| |
Collapse
|
9
|
Dong E, Huo Q, Zhang J, Han H, Cai T, Liu D. Advancements in nanoscale delivery systems: optimizing intermolecular interactions for superior drug encapsulation and precision release. Drug Deliv Transl Res 2024:10.1007/s13346-024-01579-w. [PMID: 38573495 DOI: 10.1007/s13346-024-01579-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Nanoscale preparations, such as nanoparticles, micelles, and liposomes, are increasingly recognized in pharmaceutical technology for their high capability in tailoring the pharmacokinetics of the encapsulated drug within the body. These preparations have great potential in extending drug half-life, reducing dosing frequency, mitigating drug side effects, and enhancing drug efficacy. Consequently, nanoscale preparations offer promising prospects for the treatment of metabolic disorders, malignant tumors, and various chronic diseases. Nevertheless, the complete clinical potential of nanoscale preparations remains untapped due to the challenges associated with low drug loading degrees and insufficient control over drug release. In this review, we comprehensively summarize the vital role of intermolecular interactions in enhancing encapsulation and controlling drug release within nanoscale delivery systems. Our analysis critically evaluates the characteristics of common intermolecular interactions and elucidates the techniques employed to assess them. Moreover, we highlight the significant potential of intermolecular interactions in clinical translation, particularly in the screening and optimization of preparation prescriptions. By attaining a deeper understanding of intermolecular interaction properties and mechanisms, we can adopt a more rational approach to designing drug carriers, leading to substantial advancements in the application and clinical transformation of nanoscale preparations. Moving forward, continued research in this field offers exciting prospects for unlocking the full clinical potential of nanoscale preparations and revolutionizing the field of drug delivery.
Collapse
Affiliation(s)
- Enpeng Dong
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Qingqing Huo
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Hanghang Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Ting Cai
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China.
| | - Dongfei Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
10
|
Baek SH, Hwang EH, Hur GH, Kim G, An YJ, Park JH, Hong JJ. Intranasal administration enhances size-dependent pulmonary phagocytic uptake of poly(lactic-co-glycolic acid) nanoparticles. EJNMMI Radiopharm Chem 2024; 9:12. [PMID: 38358577 PMCID: PMC10869321 DOI: 10.1186/s41181-023-00227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/15/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Nanoparticles exhibit distinct behaviours within the body, depending on their physicochemical properties and administration routes. However, in vivo behaviour of poly(lactic-co-glycolic acid) (PLGA) nanoparticles, especially when administered nasally, remains unexplored; furthermore, there is a lack of comparative analysis of uptake efficiency among different administration routes. Therefore, here, we aimed to comprehensively investigate the real-time in vivo behaviour of PLGA nanoparticles across various administration routes. PLGA-NH2 nanoparticles of three sizes were synthesised using an oil-in-water single-emulsion method. We assessed their uptake by murine macrophage RAW264.7 cells using fluorescence microscopy. To enable real-time tracking, we conjugated p-SCN-Bn-deferoxamine to PLGA-NH2 nanoparticles and further radiolabelled them with 89Zr-oxalate before administration to mice via different routes. Nanoparticle internalisation by lung immune cells was monitored using fluorescence-activated cell sorting analysis. RESULTS The nanoparticle sizes were 294 ± 2.1 (small), 522.5 ± 5.58 (intermediate), and 850 ± 18.52 nm (large). Fluorescent labelling did not significantly alter the nanoparticle size and charge. The level of uptake of small and large nanoparticles by RAW264.7 cells was similar, with phagocytosis inhibition primarily reducing the internalisation of large particles. Positron emission tomography revealed that intranasal delivery resulted in the highest and most targeted pulmonary uptake, whereas intravenous administration led to accumulation mainly in the liver and spleen. Nasal delivery of large nanoparticles resulted in enhanced uptake by myeloid immune cells relative to lymphoid cells, whereas dendritic cell uptake initially peaked but declined over time. CONCLUSIONS Our study provides valuable insights into advancing nanomedicine and drug delivery, with the potential for expanding the clinical applications of nanoparticles.
Collapse
Affiliation(s)
- Seung Ho Baek
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yeongudanji-ro, Ochang-eup, Chengwon-gu, Cheongju, Chungcheongbuk, 28116, Republic of Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Eun-Ha Hwang
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yeongudanji-ro, Ochang-eup, Chengwon-gu, Cheongju, Chungcheongbuk, 28116, Republic of Korea
| | | | - Green Kim
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yeongudanji-ro, Ochang-eup, Chengwon-gu, Cheongju, Chungcheongbuk, 28116, Republic of Korea
| | - You Jung An
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yeongudanji-ro, Ochang-eup, Chengwon-gu, Cheongju, Chungcheongbuk, 28116, Republic of Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Jung Joo Hong
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yeongudanji-ro, Ochang-eup, Chengwon-gu, Cheongju, Chungcheongbuk, 28116, Republic of Korea.
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
11
|
Davoudi S, Raemdonck K, Braeckmans K, Ghysels A. Capric Acid and Myristic Acid Permeability Enhancers in Curved Liposome Membranes. J Chem Inf Model 2023; 63:6789-6806. [PMID: 37917127 DOI: 10.1021/acs.jcim.3c00936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Liposomes are considered as advanced drug delivery systems for cancer treatment. A generation of pH-sensitive liposomes is being developed that use fatty acids (FAs) as a trigger for drug release in tumor tissues. However, FAs are also known to enhance permeability, and it is unclear whether FAs in liposomes may cause drug leakage or premature drug release. The passive permeability of the drug through the membrane of the liposome is thus a crucial factor for timely drug delivery. To investigate how the curvature and lipid composition of liposomes affect their passive permeability, coarse-grained molecular dynamics were performed. The permeability was determined with a counting method. Flat bilayers and three liposomes with varying diameters were studied, which had varying lipid compositions of dipalmitoylphosphatidylcholine, cholesterol, and deprotonated or neutral saturated FAs. The investigated permeants were water and two other small permeants, which have different free energy profiles (solubility) across the membrane. First, for the curvature effect, our results showed that curvature increases the water permeability by reducing the membrane thickness. The permeability increase for water is about a factor of 1.7 for the most curved membranes. However, a high curvature decreases permeability for permeants with free energy profiles that are a mix of wells and barriers in the headgroup region of the membrane. Importantly, the type of experimental setup is expected to play a dominant role in the permeability value, i.e., whether permeants are escaping or entering the liposomes. Second, for the composition effect, FAs decrease both the area per lipid (APL) and the membrane thickness, resulting in permeability increases of up to 55%. Cholesterol has a similar effect on the APL but has the opposite impact on membrane thickness and permeability. Therefore, FAs and cholesterol have opposing effects on permeability, with cholesterol's effect being slightly stronger in our simulated bilayers. As all permeability values were well within a factor of 2, and with liposomes usually being larger and less curved in experimental applications, it can be concluded that the passive drug release from a pH-sensitive liposome does not seem to be significantly affected by the presence of FAs.
Collapse
Affiliation(s)
- Samaneh Davoudi
- IBiTech─BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Block B-Entrance 36, 9000 Gent, Belgium
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Kevin Braeckmans
- Bio-Photonic Imaging Group, Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - An Ghysels
- IBiTech─BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Block B-Entrance 36, 9000 Gent, Belgium
| |
Collapse
|
12
|
Grillo DA, Albano JMR, Valladares T. RE, Mocskos EE, Facelli JC, Pickholz M, Ferraro MB. Molecular dynamics study of the mechanical properties of drug loaded model systems: A comparison of a polymersome with a bilayer. J Chem Phys 2023; 159:174908. [PMID: 37929867 PMCID: PMC10629967 DOI: 10.1063/5.0165478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023] Open
Abstract
In this work we implement a new methodology to study structural and mechanical properties of systems having spherical and planar symmetries throughout Molecular Dynamics simulations. This methodology is applied here to a drug delivery system based in polymersomes, as an example. The chosen model drug was the local anesthetic prilocaine due to previous parameterization within the used coarse grain scheme. In our approach, mass density profiles (MDPs) are used to obtain key structural parameters of the systems, and pressure profiles are used to estimate the curvature elastic parameters. The calculation of pressure profiles and radial MPDs required the development of specific methods, which were implemented in an in-house built version of the GROMACS 2018 code. The methodology presented in this work is applied to characterize poly(ethylene oxide)-poly(butadiene) polymersomes and bilayers loaded with the model drug prilocaine. Our results show that structural properties of the polymersome membrane could be obtained from bilayer simulations, with significantly lower computational cost compared to whole polymersome simulations, but the bilayer simulations are insufficient to get insights on their mechanical aspects, since the elastic parameters are canceled out for the complete bilayer (as consequence of the symmetry). The simulations of entire polymersomes, although more complex, offer a complementary approach to get insights on the mechanical behavior of the systems.
Collapse
Affiliation(s)
| | - Juan M. R. Albano
- CONICET - Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
| | - Rufino E. Valladares T.
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina
| | | | - Julio C. Facelli
- Department of Biomedical Informatics, University of Utah, 421 Wakara Way, Suite 140, Salt Lake City, Utah 84108, USA
| | | | | |
Collapse
|
13
|
Aceves-Luna H, Glossman-Mitnik D, Flores-Holguín N. Permeability of antioxidants through a lipid bilayer model with coarse-grained simulations. J Biomol Struct Dyn 2023; 42:11251-11269. [PMID: 37768552 DOI: 10.1080/07391102.2023.2262044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Oxidative stress caused by pollution and lifestyle changes causes an excess of free radicals that react chemically with cell constituents leading to irreversible damage. There are molecules known as antioxidants that reduce the levels of free radicals. Some pigments of fruits and vegetables known as anthocyanins have antioxidant properties. Their interaction with the cell membrane becomes a crucial step in studying these substances. In this research, molecular dynamics simulations, particularly, coarse-grained molecular dynamics (CGMD) were used. This technique aims to replace functional groups with corresponding beads that represent their level of polarity and affinities to other chemical groups. Also, umbrella sampling was carried out to obtain free energy profiles that describe well the orientation and location of antioxidants in a membrane considering Trolox, Cyanidin, Gallic Acid, and Resveratrol molecules to study the structural effects they cause on it. It was concluded in this study that an antioxidant when crossing the membrane does not cause either damage to the structural properties or the loss of packing and stratification of phospholipids. it was also observed that the most reactive part of the molecules could easily approach area A prone to lipid oxidation, which can describe the antioxidant capacity of these molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hugo Aceves-Luna
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Chih, Mexico
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Chih, Mexico
| | - Norma Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Chih, Mexico
| |
Collapse
|
14
|
He Y, Grandi DD, Chandradoss S, LuTheryn G, Cidonio G, Nunes Bastos R, Pereno V, Carugo D. Rapid Production of Nanoscale Liposomes Using a 3D-Printed Reactor-In-A-Centrifuge: Formulation, Characterisation, and Super-Resolution Imaging. MICROMACHINES 2023; 14:1763. [PMID: 37763926 PMCID: PMC10535575 DOI: 10.3390/mi14091763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Nanoscale liposomes have been extensively researched and employed clinically for the delivery of biologically active compounds, including chemotherapy drugs and vaccines, offering improved pharmacokinetic behaviour and therapeutic outcomes. Traditional laboratory-scale production methods often suffer from limited control over liposome properties (e.g., size and lamellarity) and rely on laborious multistep procedures, which may limit pre-clinical research developments and innovation in this area. The widespread adoption of alternative, more controllable microfluidic-based methods is often hindered by complexities and costs associated with device manufacturing and operation, as well as the short device lifetime and the relatively low liposome production rates in some cases. In this study, we demonstrated the production of liposomes comprising therapeutically relevant lipid formulations, using a cost-effective 3D-printed reactor-in-a-centrifuge (RIAC) device. By adjusting formulation- and production-related parameters, including the concentration of polyethylene glycol (PEG), temperature, centrifugation time and speed, and lipid concentration, the mean size of the produced liposomes could be tuned in the range of 140 to 200 nm. By combining selected experimental parameters, the method was capable of producing liposomes with a therapeutically relevant mean size of ~174 nm with narrow size distribution (polydispersity index, PDI ~0.1) at a production rate of >8 mg/min. The flow-through method proposed in this study has potential to become an effective and versatile laboratory-scale approach to simplify the synthesis of therapeutic liposomal formulations.
Collapse
Affiliation(s)
- Yongqing He
- Department of Pharmaceutics, School of Pharmacy, University College London, London WC1N 1AX, UK;
| | - Davide De Grandi
- Institute of Biomedical Engineering (IBME), Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK;
| | - Stanley Chandradoss
- Oxford Nanoimaging Limited (ONI), Oxford OX2 8TA, UK; (S.C.); (R.N.B.); (V.P.)
| | - Gareth LuTheryn
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), The Botnar Research Centre, University of Oxford, Windmill Road, Oxford OX3 7HE, UK;
| | - Gianluca Cidonio
- 3D Microfluidic Biofabrication Laboratory, Center for Life Nano- & Neuro-Science—CLN2S, Italian Institute of Technology (IIT), 00161 Rome, Italy;
| | | | - Valerio Pereno
- Oxford Nanoimaging Limited (ONI), Oxford OX2 8TA, UK; (S.C.); (R.N.B.); (V.P.)
| | - Dario Carugo
- Department of Pharmaceutics, School of Pharmacy, University College London, London WC1N 1AX, UK;
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), The Botnar Research Centre, University of Oxford, Windmill Road, Oxford OX3 7HE, UK;
| |
Collapse
|
15
|
Raj A, Dua K, Nair RS, Sarath Chandran C, Alex AT. Transethosome: An ultra-deformable ethanolic vesicle for enhanced transdermal drug delivery. Chem Phys Lipids 2023; 255:105315. [PMID: 37356610 DOI: 10.1016/j.chemphyslip.2023.105315] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Drug delivery through the skin improves solubility, bioavailability, and unwanted systemic side effects of the drug. The selection of a suitable carrier is a challenging process. The conventional lipid vesicles have some limitations. They deliver the drug in the stratum corneum and have poor colloidal stability. Here comes the need for ultra-deformable lipid vesicles to provide the drug beyond the stratum corneum. Transethosomes are novel ultra-deformable vesicles that can deliver drugs into deeper tissues. The composition of transethosomes includes phospholipid, ethanol and surfactants. Each ingredient has a pivotal role in the properties of the carrier. This review covers the design, preparation method, characterisation, and characteristics of the novel vesicle. Also, we cover the impact of surfactants on vesicular properties and the skin permeation behaviour of novel vesicles.
Collapse
Affiliation(s)
- Alan Raj
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Rajesh Sreedharan Nair
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - C Sarath Chandran
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Government Medical College Kannur, Pariyaram, Kerala, India
| | - Angel Treasa Alex
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
16
|
Pisani S, Di Martino D, Cerri S, Genta I, Dorati R, Bertino G, Benazzo M, Conti B. Investigation and Comparison of Active and Passive Encapsulation Methods for Loading Proteins into Liposomes. Int J Mol Sci 2023; 24:13542. [PMID: 37686348 PMCID: PMC10487800 DOI: 10.3390/ijms241713542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
In this work, four different active encapsulation methods, microfluidic (MF), sonication (SC), freeze-thawing (FT), and electroporation (EP), were investigated to load a model protein (bovine serum albumin-BSA) into neutral liposomes made from 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC):cholesterol (Chol) and charged liposomes made from DSPC:Chol:Dioleoyl-3-trimethylammonium propane (DOTAP), DSPC:Chol:1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS), and DSPC:Chol:phosphatidylethanolamine (PE). The aim was to increase the protein encapsulation efficiency (EE%) by keeping the liposome size below 200 nm and the PDI value below 0.7, which warrants a nearly monodisperse preparation. Electroporation (100 V) yielded the best results in terms of EE%, with a dramatic increase in liposome size (>600 nm). The FT active-loading method, either applied to neutral or charged liposomes, allowed for obtaining suitable EE%, keeping the liposome size range below 200 nm with a suitable PDI index. Cationic liposomes (DSPC:Chol:DOTAP) loaded with the FT active method showed the best results in terms of EE% (7.2 ± 0.8%) and size (131.2 ± 11.4 nm, 0.140 PDI). In vitro release of BSA from AM neutral and charged liposomes resulted slower compared to PM liposomes and was affected by incubation temperature (37 °C, 4 °C). The empty charged liposomes tested for cell viability on Human Normal Dermal Fibroblast (HNDF) confirmed their cytocompatibility also at high concentrations (1010 particles/mL) and cellular uptake at 4 °C and 37 °C. It can be concluded that even if both microfluidic passive and active methods are more easily transferable to an industrial scale, the FT active-loading method turned out to be the best in terms of BSA encapsulation efficiencies, keeping liposome size below 200 nm.
Collapse
Affiliation(s)
- Silvia Pisani
- Department of Drug Sciences, University of Pavia, Viale T. Taramelli 12, 27100 Pavia, Italy; (S.P.); (I.G.); (R.D.)
| | - Deborah Di Martino
- Unit of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (D.D.M.); (S.C.)
| | - Silvia Cerri
- Unit of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (D.D.M.); (S.C.)
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Viale T. Taramelli 12, 27100 Pavia, Italy; (S.P.); (I.G.); (R.D.)
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Viale T. Taramelli 12, 27100 Pavia, Italy; (S.P.); (I.G.); (R.D.)
| | - Giulia Bertino
- Otorhinolaryngology Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (G.B.); (M.B.)
| | - Marco Benazzo
- Otorhinolaryngology Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (G.B.); (M.B.)
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Viale T. Taramelli 12, 27100 Pavia, Italy; (S.P.); (I.G.); (R.D.)
| |
Collapse
|
17
|
Roy M, Roy A, Rustagi S, Pandey N. An Overview of Nanomaterial Applications in Pharmacology. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4838043. [PMID: 37388336 PMCID: PMC10307208 DOI: 10.1155/2023/4838043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/06/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Nanotechnology has become one of the most extensive fields of research. Nanoparticles (NPs) form the base for nanotechnology. Recently, nanomaterials (NMs) are widely used due to flexible chemical, biological, and physical characteristics with improved efficacy in comparison to bulk counterparts. The significance of each class of NMs is enhanced by identifying their properties. Day by day, there is an emergence of various applications of NMs, but the toxic effects associated with them cannot be avoided. NMs demonstrate therapeutic abilities by enhancing the drug delivery system, diagnosis, and therapeutic effects of numerous agents, but determining the benefits of NMs over other clinical applications (disease-specific) or substances is an ongoing investigation. This review is aimed at defining NMs and NPs and their types, synthesis, and pharmaceutical, biomedical, and clinical applications.
Collapse
Affiliation(s)
- Madhura Roy
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, India
| | - Arpita Roy
- Department of Biotechnology, Sharda School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Sarvesh Rustagi
- School of Applied and Life sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Neha Pandey
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| |
Collapse
|
18
|
Gardea-Gutiérrez D, Núñez-García E, Oseguera-Guerra BE, Román-Aguirre M, Montes-Fonseca SL. Asymmetric Lipid Vesicles: Techniques, Applications, and Future Perspectives as an Innovative Drug Delivery System. Pharmaceuticals (Basel) 2023; 16:777. [PMID: 37375725 DOI: 10.3390/ph16060777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/12/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Novel lipid-based nanosystems have been of interest in improving conventional drug release methods. Liposomes are the most studied nanostructures, consisting of lipid bilayers ideal for drug delivery, thanks to their resemblance to the cell plasma membrane. Asymmetric liposomes are vesicles with different lipids in their inner and outer layers; because of this, they can be configured to be compatible with the therapeutic drug while achieving biocompatibility and stability. Throughout this review, topics such as the applications, advantages, and synthesis techniques of asymmetric liposomes will be discussed. Further, an in silico analysis by computational tools will be examined as a helpful tool for designing and understanding asymmetric liposome mechanisms in pharmaceutical applications. The dual-engineered design of asymmetric liposomes makes them an ideal alternative for transdermal drug delivery because of the improved protection of pharmaceuticals without lowering adsorption rates and system biocompatibility.
Collapse
Affiliation(s)
- Denisse Gardea-Gutiérrez
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. H. Colegio Militar 4700, Nombre de Dios, Chihuahua 31300, Chih, Mexico
| | - Eduardo Núñez-García
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. H. Colegio Militar 4700, Nombre de Dios, Chihuahua 31300, Chih, Mexico
| | - Berenice E Oseguera-Guerra
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. H. Colegio Militar 4700, Nombre de Dios, Chihuahua 31300, Chih, Mexico
| | - Manuel Román-Aguirre
- Centro de Investigación en Materiales Avanzados CIMAV, Av. Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Chih, Mexico
| | - Silvia L Montes-Fonseca
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Av. H. Colegio Militar 4700, Nombre de Dios, Chihuahua 31300, Chih, Mexico
| |
Collapse
|
19
|
Han R, Ye Z, Zhang Y, Cheng Y, Zheng Y, Ouyang D. Predicting liposome formulations by the integrated machine learning and molecular modeling approaches. Asian J Pharm Sci 2023; 18:100811. [PMID: 37274923 PMCID: PMC10232664 DOI: 10.1016/j.ajps.2023.100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/20/2023] [Accepted: 03/22/2023] [Indexed: 06/07/2023] Open
Abstract
Liposome is one of the most widely used carriers for drug delivery because of the great biocompatibility and biodegradability. Due to the complex formulation components and preparation process, formulation screening mostly relies on trial-and-error process with low efficiency. Here liposome formulation prediction models have been built by machine learning (ML) approaches. The important parameters of liposomes, including size, polydispersity index (PDI), zeta potential and encapsulation, are predicted individually by optimal ML algorithm, while the formulation features are also ranked to provide important guidance for formulation design. The analysis of key parameter reveals that drug molecules with logS [-3, -6], molecular complexity [500, 1000] and XLogP3 (≥2) are priority for preparing liposome with higher encapsulation. In addition, naproxen (NAP) and palmatine HCl (PAL) represented the insoluble and water-soluble molecules are prepared as liposome formulations to validate prediction ability. The consistency between predicted and experimental value verifies the satisfied accuracy of ML models. As the drug properties are critical for liposome particles, the molecular interactions and dynamics of NAP and PAL liposome are further investigated by coarse-grained molecular dynamics simulations. The modeling structure reveals that NAP molecules could distribute into lipid layer, while most PAL molecules aggregate in the inner aqueous phase of liposome. The completely different physical state of NAP and PAL confirms the importance of drug properties for liposome formulations. In summary, the general prediction models are built to predict liposome formulations, and the impacts of key factors are analyzed by combing ML with molecular modeling. The availability and rationality of these intelligent prediction systems have been proved in this study, which could be applied for liposome formulation development in the future.
Collapse
Affiliation(s)
- Run Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macao 999078, China
| | - Zhuyifan Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macao 999078, China
| | - Yunsen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macao 999078, China
| | - Yaxin Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macao 999078, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macao 999078, China
- Faculty of Health Sciences, University of Macau, Macao 999078, China
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macao 999078, China
- Faculty of Health Sciences, University of Macau, Macao 999078, China
| |
Collapse
|
20
|
Altwaijry N, Almutairi GS, Khan MS, Alokail MS, Alafaleq N, Ali R. The effect of novel antihypertensive drug valsartan on lysozyme aggregation: A combined in situ and in silico study. Heliyon 2023; 9:e15270. [PMID: 37123968 PMCID: PMC10130856 DOI: 10.1016/j.heliyon.2023.e15270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/10/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Protein misfolding can result in amyloid fiber aggregation, which is associated with various types of diseases. Therefore, preventing or treating abnormally folded proteins may provide therapeutic intervention for these diseases. Valsartan (VAL) is an angiotensin II receptor blocker (ARB) that is used to treat hypertension. In this study, we examine the anti-aggregating effect of VAL against hen egg-white lysozyme (HEWL) amyloid fibrils through spectroscopy, docking, and microscopic analysis. In vitro formation of HEWL amyloid fibrils was indicated by increased turbidity, RLS (Rayleigh light scattering), and ThT fluorescence intensity. 10 μM VAL, amyloid/aggregation was inhibited up to 83% and 72% as measured by ThT and RLS respectively. In contrast, 100 μM VAL significantly increases the fibril aggregation of HEWL. CD spectroscopy results show a stabilization of HEWL α-helical structures in the presence of 10 μM VAL while the increase in β-sheet was detected at 100 μM concentration of VAL. The hydrophobicity of HEWL was increased at 100 μM VAL, suggesting the promotion of aggregation via its self-association. Steady-state quenching revealed that VAL and HEWL interact spontaneously via hydrogen bonds and van der Waals forces. Transmission electron microscopy (TEM) images illustrate that the needle-like fibers of HEWL amyloid were reduced at 10 μM VAL, while at 100 μM the fibrils of amyloid were increased. Additionally, our computational studies showed that VAL could bind to two binding sites within HEWL. In the BS-1 domain of HEWL, VAL binds to ASN59, ILE98, ILE58, TRP108, VAL109, SER50, ASP52, ASN59, ALA107, and TRP108 residues with a binding energy of -9.72 kcal mol-1. Also, it binds to GLU7, ALA10, ALA11, CYS6, ARG128, and ARG14 in the BS-2 domain with a binding energy of -5.89 kcal mol-1. VAL, therefore, appears to have dual effect against HEWL aggregation. We suggest that VAL stabilizes HEWL's aggregation-prone region (APR) at 10 μM, preventing aggregation. Also, we assume that at 100 μM, VAL occupies BS-2 beside BS-1 and destabilizes the folding structure of HEWL, resulting in aggregation. Further studies are needed to investigate the mechanism of action and determine its potential side effects.
Collapse
Affiliation(s)
- Nojood Altwaijry
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Corresponding author.
| | - Ghaliah S. Almutairi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Shahhnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Corresponding author.
| | - Majed S. Alokail
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf Alafaleq
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rizwan Ali
- King Abdullah International Medial Research Center (KAIMRC), Medical Research Core Facility and Platforms (MRCFP), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh, 11481, Saudi Arabia
| |
Collapse
|
21
|
Santos-Luna D, Sixto-López Y, Bravo-Alfaro D, Cano-Sarmiento C, García H, Correa-Basurto J. Design and simulation of a caprylic acid enzymatically modified phosphatidylcholine micelle using a coarse-grained molecular dynamics simulations approach. J Biomol Struct Dyn 2023; 41:13902-13913. [PMID: 36826442 DOI: 10.1080/07391102.2023.2180434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023]
Abstract
Computationally simulated micelle models provide useful structural information on the molecular and biological sciences. One strategy to study the self-aggregation process of surfactant molecules that make up a micelle is through molecular dynamics (MD) simulations. In this study, a theoretical approach with a coarse-grained MD simulation (CG-MD) was employed to evaluate the critical micellar concentration (CMC), the micellization process, building a tridimensional (3D) model system of a micelle using data from the experimentally enzymatically modified phospholipids (PL) by phospholipase A1 (PA1). This required enzymatic interesterification of soybean phosphatidylcholine (PC) with caprylic acid, along with purification and characterization by chromatographic techniques to measure the esterified fatty acids and the corresponding PL composition. The number of molecules used in the CG-MD simulation system was determined from the experimental CMC data which was 0.025%. The molecular composition of the system is: 1 C 18:2, 2 C 8:0/8:0, 3 C 8:0/18:3n-9, 4 C 8:0/18:0, 5 C8:0/18:2n-6, 6 C8:0/18:1n-9, and 7 C 8:0/16:0. According to our theoretical results, the micelle model is structurally stable with an average Rg of 3.64 ± 0.10 Å, and might have an elliptical form with a radius of 24.6 Å. Regarding CMC value there was a relationship between the experimental data of the modified PLs and the theoretical analysis by GC-MD, which suggest that the enzymatic modification of PLs does not affect their self-aggregation properties. Finally, the micellar system obtained in the current research can be used as a simple and useful model to design optimal biocompatible nanoemulsions as possible vehicles for bioactive small molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dalia Santos-Luna
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/IT de Veracruz, Veracruz, México
| | - Yudibeth Sixto-López
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, Granada, Spain
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation) SEPI-ESM, Instituto Politécnico Nacional, México, Mexico City, Mexico
| | - Diego Bravo-Alfaro
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/IT de Veracruz, Veracruz, México
| | - Cynthia Cano-Sarmiento
- CONACyT-Unidad de Investigación y Desarrollo de Alimentos, Tecnologico Nacional de México/IT de Veracruz, Veracruz, México
| | - Hugo García
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/IT de Veracruz, Veracruz, México
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation) SEPI-ESM, Instituto Politécnico Nacional, México, Mexico City, Mexico
| |
Collapse
|
22
|
Effect of Antihypertensive Drug (Chlorothiazide) on Fibrillation of Lysozyme: A Combined Spectroscopy, Microscopy, and Computational Study. Int J Mol Sci 2023; 24:ijms24043112. [PMID: 36834523 PMCID: PMC9959601 DOI: 10.3390/ijms24043112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
Amyloid fibrils abnormally accumulate together in the human body under certain conditions, which can result in lethal conditions. Thus, blocking this aggregation may prevent or treat this disease. Chlorothiazide (CTZ) is a diuretic and is used to treat hypertension. Several previous studies suggest that diuretics prevent amyloid-related diseases and reduce amyloid aggregation. Thus, in this study we examine the effects of CTZ on hen egg white lysozyme (HEWL) aggregation using spectroscopic, docking, and microscopic approaches. Our results showed that under protein misfolding conditions of 55 °C, pH 2.0, and 600 rpm agitation, HEWL aggregated as evidenced by the increased turbidity and Rayleigh light scattering (RLS). Furthermore, thioflavin-T, as well as trans electron microscope (TEM) analysis confirmed the formation of amyloid structures. An anti-aggregation effect of CTZ is observed on HEWL aggregations. Circular dichroism (CD), TEM, and Thioflavin-T fluorescence show that both CTZ concentrations reduce the formation of amyloid fibrils as compared to fibrillated. The turbidity, RLS, and ANS fluorescence increase with CTZ increasing. This increase is attributed to the formation of a soluble aggregation. As evidenced by CD analysis, there was no significant difference in α-helix content and β-sheet content between at 10 µM CTZ and 100 µM. A TEM analysis of HEWL coincubated with CTZ at different concentrations validated all the above-mentioned results. The TEM results show that CTZ induces morphological changes in the typical structure of amyloid fibrils. The steady-state quenching study demonstrated that CTZ and HEWL bind spontaneously via hydrophobic interactions. HEWL-CTZ also interacts dynamically with changes in the environment surrounding tryptophan. Computational results revealed the binding of CTZ to ILE98, GLN57, ASP52, TRP108, TRP63, TRP63, ILE58, and ALA107 residues in HEWL via hydrophobic interactions and hydrogen bonds with a binding energy of -6.58 kcal mol-1. We suggest that at 10 µM and 100 μM, CTZ binds to the aggregation-prone region (APR) of HEWL and stabilizes it, thus preventing aggregation. Based on these findings, we can conclude that CTZ has antiamyloidogenic activity and can prevent fibril aggregation.
Collapse
|
23
|
Romero HAM, Piñon TP, Sagarnaga D, Rico RD, Rascón AN, Pérez CAM, Piñon DP, Flores de los Ríos JP, Carrillo MS, Chacón-Nava JG. Aligned TiO 2 Scaffolds in the Presence of a Galactopyranose Matrix by Sol-Gel Process. Polymers (Basel) 2023; 15:polym15030478. [PMID: 36771782 PMCID: PMC9921417 DOI: 10.3390/polym15030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/01/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
In this work, titanium dioxide scaffolds were synthesized. Titanium isopropoxide (IV) was used as a precursor in its formation, using a polymeric network of galactopyranose as a template. The powder sample obtained was evaluated by scanning tunneling microscopy (STM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis, and thermal gravimetric analysis (TGA-DTA). According to the results, it was found that these scaffolds can be successfully synthesized in solution using the sol-gel method. The synthesized scaffolds have diameters from 50 nm with porosity of approximately 0.3-10 nm. Important parameters, such as pH and the concentration of the metallic precursors, were optimized in this solution. The values of maximum average roughness R(max) and roughness value (Ra) were 0.50 and 1.45, respectively. XRD diffraction analysis shows the formation of crystalline phases in the TiO2 scaffold at 700 °C. The use of biological polymers represents an alternative for the synthesis of new materials at low cost, manipulating the conditions in the production processes and making the proposed system more efficient.
Collapse
Affiliation(s)
- Humberto Alejandro Monreal Romero
- Department of Biomaterials Science and Nanotechnology, University of Chihuahua (UACH), Avenue University, Chihuahua 31000, Mexico
- Correspondence:
| | - Teresa Pérez Piñon
- Department of Biomaterials Science and Nanotechnology, University of Chihuahua (UACH), Avenue University, Chihuahua 31000, Mexico
| | - Diana Sagarnaga
- Department of Biomaterials Science and Nanotechnology, University of Chihuahua (UACH), Avenue University, Chihuahua 31000, Mexico
| | - Raquel Duarte Rico
- Department of Biomaterials Science and Nanotechnology, University of Chihuahua (UACH), Avenue University, Chihuahua 31000, Mexico
| | - Alfredo Nevárez Rascón
- Department of Biomaterials Science and Nanotechnology, University of Chihuahua (UACH), Avenue University, Chihuahua 31000, Mexico
| | | | - Dagoberto Pérez Piñon
- Department of Polymers and Biomaterials, University of Chihuahua (UACH), University Circuit Campus II, Chihuahua 31110, Mexico
| | - Juan Pablo Flores de los Ríos
- Department Metal-Mechanical, National Technological of Mexico-Technological Institute of Chihuahua, Technological Avenue 2909, Chihuahua 31130, Mexico
| | - Mario Sánchez Carrillo
- Department Metal-Mechanical, National Technological of Mexico-Technological Institute of Chihuahua, Technological Avenue 2909, Chihuahua 31130, Mexico
| | - José Guadalupe Chacón-Nava
- Advanced Materials Research Center, S.C. (CIMAV) and National Nanotechnology Laboratory, Avenue M. Cervantes 120, Industrial Complex Chihuahua, Chihuahua 31136, Mexico
| |
Collapse
|
24
|
Chronobiology and Nanotechnology for Personalized Cancer Therapy. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
25
|
Dwiastuti R, Radifar M, Putri DCA, Riswanto FDO, Hariono M. In silico modeling and empirical study of 4- n-Butylresorcinol nanoliposome formulation. J Biomol Struct Dyn 2022; 40:10603-10613. [PMID: 34238124 DOI: 10.1080/07391102.2021.1946430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A study to incorporate in silico modeling with an empirical experiment has been carried out to formulate nanoliposome containing 4-n-butylresorcinol as the active ingredient. The in silico modeling was performed using molecular dynamics simulation followed by radius of gyration observation to provide insight into the mechanisms of 4-n-butylresorcinol stabilization by liposome due to their nano-size. The empirical experiment was conducted by formulating the nanoliposome using soy lecithin phospholipid formula as suggested by the in silico modeling followed by determining its particle size as well as its shape. From their incorporation, it was found that 3200 phospholipid molecules were selected in formulating nanoliposome containing 4-n-butylresorcinol. The results of the nanoliposomes size observation in the modeling of 3200 lipid molecules was 87.01 (± 0.59) nm, whereas the size from the empirical study was 87.57 (± 0.06) nm. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rini Dwiastuti
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Sanata Dharma University, Yogyakarta, Indonesia
| | - Muhammad Radifar
- Medical Laboratory Technology, Guna Bangsa Institute of Health Science, Yogyakarta, Indonesia
| | - Dina Christin Ayuning Putri
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Sanata Dharma University, Yogyakarta, Indonesia
| | - Florentinus Dika Octa Riswanto
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Sanata Dharma University, Yogyakarta, Indonesia
| | - Maywan Hariono
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Sanata Dharma University, Yogyakarta, Indonesia
| |
Collapse
|
26
|
Zhou M, Wei T, Gu L, Yang H, Li M, Zhou Y. Focal opening of the neuronal plasma membrane by shock-induced bubble collapse for drug delivery: a coarse-grained molecular dynamics simulation. Phys Chem Chem Phys 2022; 24:29862-29869. [PMID: 36468436 DOI: 10.1039/d2cp03442e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell permeabilization using shock-induced bubble collapse provides an attractive choice for drug delivery systems. In this work, based on a realistically human brain plasma membrane (PM) model, we investigated the focal opening of this complex model by the jet from cavitation, focusing on the effect of characteristic membrane components, particle velocity (up) and bubble diameters (D). Both high levels of cholesterol and specific cerebrosides in the PM model limit the pore opening of cavitation jets. Sphingomyelin is the opposite, but has little effect due to its low content. Two adjustable parameters of up and D can be coupled to control the opening size. The relationship between them and the maximum pore area was provided for the first time. The maximum pore area increases with the up (or the impulse that is positively related to up) in the low-speed range, which agrees with the experimentally observed impulse determinism. However, the maximum area drops in the high-speed range. Combined with D, we proposed that the jet size determines the pore size, not the impulse. Larger bubbles that can create a larger pore in the membrane have a larger jet size, but their impulse is relatively small. Finally, the recovery simulation shows that the membrane with a small pore can be quickly recovered within 300 ps, while that with a larger pore did not recover until 2 μs. These rules from this work may be helpful to optimize the choice of shock waves for the delivery of different drugs across membranes.
Collapse
Affiliation(s)
- Mi Zhou
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.,Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900, Mianyang, China.
| | - Tong Wei
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900, Mianyang, China.
| | - Lingzhi Gu
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900, Mianyang, China.
| | - Hong Yang
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900, Mianyang, China.
| | - Ming Li
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900, Mianyang, China.
| | - Yang Zhou
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900, Mianyang, China.
| |
Collapse
|
27
|
Mansoor A, Khurshid Z, Khan MT, Mansoor E, Butt FA, Jamal A, Palma PJ. Medical and Dental Applications of Titania Nanoparticles: An Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203670. [PMID: 36296859 PMCID: PMC9611494 DOI: 10.3390/nano12203670] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 05/25/2023]
Abstract
Currently, titanium oxide (TiO2) nanoparticles are successfully employed in human food, drugs, cosmetics, advanced medicine, and dentistry because of their non-cytotoxic, non-allergic, and bio-compatible nature when used in direct close contact with the human body. These NPs are the most versatile oxides as a result of their acceptable chemical stability, lower cost, strong oxidation properties, high refractive index, and enhanced aesthetics. These NPs are fabricated by conventional (physical and chemical) methods and the latest biological methods (biological, green, and biological derivatives), with their advantages and disadvantages in this epoch. The significance of TiO2 NPs as a medical material includes drug delivery release, cancer therapy, orthopedic implants, biosensors, instruments, and devices, whereas their significance as a dental biomaterial involves dentifrices, oral antibacterial disinfectants, whitening agents, and adhesives. In addition, TiO2 NPs play an important role in orthodontics (wires and brackets), endodontics (sealers and obturating materials), maxillofacial surgeries (implants and bone plates), prosthodontics (veneers, crowns, bridges, and acrylic resin dentures), and restorative dentistry (GIC and composites).
Collapse
Affiliation(s)
- Afsheen Mansoor
- Department of Dental Material Sciences, School of Dentistry, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44080, Pakistan
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Muhammad Talal Khan
- Department of Dental Biomaterials, Bakhtawar Amin Medical and Dental College, Multan 60650, Pakistan;
| | - Emaan Mansoor
- Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan;
| | - Faaz Ahmad Butt
- Department of Materials Engineering, NED University of Engineering & Technology, Karachi 74200, Pakistan;
| | - Asif Jamal
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Paulo J. Palma
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| |
Collapse
|
28
|
Alhaj-Suliman SO, Wafa EI, Salem AK. Engineering nanosystems to overcome barriers to cancer diagnosis and treatment. Adv Drug Deliv Rev 2022; 189:114482. [PMID: 35944587 DOI: 10.1016/j.addr.2022.114482] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
Over the past two decades, multidisciplinary investigations into the development of nanoparticles for medical applications have continually increased. However, nanoparticles are still subject to biological barriers and biodistribution challenges, which limit their overall clinical potential. This has motivated the implementation of innovational modifications to a range of nanoparticle formulations designed for cancer imaging and/or cancer treatment to overcome specific barriers and shift the accumulation of payloads toward the diseased tissues. In recent years, novel technological and chemical approaches have been employed to modify or functionalize the surface of nanoparticles or manipulate the characteristics of nanoparticles. Combining these approaches with the identification of critical biomarkers provides new strategies for enhancing nanoparticle specificity for both cancer diagnostic and therapeutic applications. This review discusses the most recent advances in the design and engineering of nanoparticles as well as future directions for developing the next generation of nanomedicines.
Collapse
Affiliation(s)
- Suhaila O Alhaj-Suliman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Emad I Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States; Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, United States.
| |
Collapse
|
29
|
Singh P, Alka, Maurya P, Nisha R, Singh N, Parashar P, Mishra N, Pal RR, Saraf SA. QbD Assisted Development of Lipidic Nanocapsules for Antiestrogenic Activity of Exemestane in Breast Cancer. J Liposome Res 2022:1-16. [PMID: 35930249 DOI: 10.1080/08982104.2022.2108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Some breast cancers are caused by hormonal imbalances, such as estrogen and progesterone.These hormones play a function in directing the growth of cancer cells. The hormone receptors in hormone receptor-positive breast cancer lead breast cells to proliferate out of control. Cancer therapy such as hormonal, targeted, radiation is still unsatisfactory because of these challenges viz. MDR (Multiple drug resistance), off-targeting, severe adverse effects. A novel aromatase inhibitor exemestane (Exe) exhibits promising therapy in breast cancer. This study aims to develop and optimize Exe-loaded lipid nanocapsules (LNCs) by using DSPC, PF68 and olive oil as lipid, surfactant and oil phase, respectively and to characterize the same. The prepared nanocapsules were investigated via in-vitro cell culture and in-vivo animal models. The LNCs exhibited cytotoxicity in MCF-7 cell lines and enhanced anti-cancer activity and reduced cardiotoxicity in DMBA-induced animal model when compared to the drug. Additionally, in-vivo pharmacokinetics revealed a 4.2-fold increased oral bioavailability when compared with Exe suspension. This study demonstrated that oral administration of Exe-loaded LNCs holds promise for the antiestrogenic activity of exemestane in breast cancer.
Collapse
Affiliation(s)
- Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Alka
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Priyanka Maurya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Raquibun Nisha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Poonam Parashar
- Amity institute of Pharmacy, Amity University, Uttar Pradesh, Lucknow Campus
| | - Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| |
Collapse
|
30
|
Dymek M, Sikora E. Liposomes as biocompatible and smart delivery systems – The current state. Adv Colloid Interface Sci 2022; 309:102757. [DOI: 10.1016/j.cis.2022.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/01/2022]
|
31
|
Hashemzadeh H, Kelkawi AHA, Allahverdi A, Rothbauer M, Ertl P, Naderi-Manesh H. Fingerprinting Metabolic Activity and Tissue Integrity of 3D Lung Cancer Spheroids under Gold Nanowire Treatment. Cells 2022; 11:478. [PMID: 35159286 PMCID: PMC8834455 DOI: 10.3390/cells11030478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Inadequacy of most animal models for drug efficacy assessments has led to the development of improved in vitro models capable of mimicking in vivo exposure scenarios. Among others, 3D multicellular spheroid technology is considered to be one of the promising alternatives in the pharmaceutical drug discovery process. In addition to its physiological relevance, this method fulfills high-throughput and low-cost requirements for preclinical cell-based assays. Despite the increasing applications of spheroid technology in pharmaceutical screening, its application, in nanotoxicity testing is still in its infancy due to the limited penetration and uptake rates into 3D-cell assemblies. To gain a better understanding of gold nanowires (AuNWs) interactions with 3D spheroids, a comparative study of 2D monolayer cultures and 3D multicellular spheroids was conducted using two lung cancer cell lines (A549 and PC9). Cell apoptosis (live/dead assay), metabolic activity, and spheroid integrity were evaluated following exposure to AuNWs at different dose-time manners. Results revealed a distinct different cellular response between 2D and 3D cell cultures during AuNWs treatment including metabolic rates, cell viability, dose-response curves and, uptake rates. Our data also highlighted further need for more physiologically relevant tissue models to investigate in depth nanomaterial-biology interactions. It is important to note that higher concentrations of AuNWs with lower exposure times and lower concentrations of AuNWs with higher exposure times of 3 days resulted in the loss of spheroid integrity by disrupting cell-cell contacts. These findings could help to increase the understanding of AuNWs-induced toxicity on tissue levels and also contribute to the establishment of new analytical approaches for toxicological and drug screening studies.
Collapse
Affiliation(s)
- Hadi Hashemzadeh
- Nanobiotechnology Department, Faculty of Biosciences, Tarbiat Modares University, Tehran 14115-111, Iran; (H.H.); (A.H.A.K.)
| | - Ali Hamad Abd Kelkawi
- Nanobiotechnology Department, Faculty of Biosciences, Tarbiat Modares University, Tehran 14115-111, Iran; (H.H.); (A.H.A.K.)
| | - Abdollah Allahverdi
- Biophysics Department, Faculty of Biosciences, Tarbiat Modares University, Tehran 14115-111, Iran;
| | - Mario Rothbauer
- Faculty of Technical Chemistry, Vienna University of Technology (TUW), Getreidemarkt 9/163-164, 1060 Vienna, Austria;
- Orthopedic Microsystems Group, Karl Chiari Lab for Orthopedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Ertl
- Faculty of Technical Chemistry, Vienna University of Technology (TUW), Getreidemarkt 9/163-164, 1060 Vienna, Austria;
| | - Hossein Naderi-Manesh
- Nanobiotechnology Department, Faculty of Biosciences, Tarbiat Modares University, Tehran 14115-111, Iran; (H.H.); (A.H.A.K.)
- Biophysics Department, Faculty of Biosciences, Tarbiat Modares University, Tehran 14115-111, Iran;
| |
Collapse
|
32
|
Caseinolytic Proteins (Clp) in the Genus Klebsiella: Special Focus on ClpK. Molecules 2021; 27:molecules27010200. [PMID: 35011428 PMCID: PMC8746953 DOI: 10.3390/molecules27010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/15/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Caseinolytic proteins (Clp), which are present in both prokaryotes and eukaryotes, play a major role in cell protein quality control and survival of bacteria in harsh environmental conditions. Recently, a member of this protein family, ClpK was identified in a pathogenic strain of Klebsiella pneumoniae which was responsible for nosocomial infections. ClpK is linked to the thermal stress survival of this pathogen. The genome wide analysis of Clp proteins in Klebsiella spp. indicates that ClpK is present in only 34% of the investigated strains. This suggests that the uptake of the clpk gene is selective and may only be taken up by a pathogen that needs to survive harsh environmental conditions. In silico analyses and molecular dynamic simulations show that ClpK is mainly α-helical and is highly dynamic. ClpK was successfully expressed and purified to homogeneity using affinity and anion exchange chromatography. Biophysical characterization of ClpK showed that it is predominantly alpha-helical, and this is in agreement with in silico analysis of the protein structure. Furthermore, the purified protein is biologically active and hydrolyses ATP in a concentration- dependent manner.
Collapse
|
33
|
Can A, Tyler AI, Mackie AR. Potential use of bile salts in lipid self-assembled systems for the delivery of phytochemicals. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Nakhaei P, Margiana R, Bokov DO, Abdelbasset WK, Jadidi Kouhbanani MA, Varma RS, Marofi F, Jarahian M, Beheshtkhoo N. Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol. Front Bioeng Biotechnol 2021; 9:705886. [PMID: 34568298 PMCID: PMC8459376 DOI: 10.3389/fbioe.2021.705886] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Liposomes are essentially a subtype of nanoparticles comprising a hydrophobic tail and a hydrophilic head constituting a phospholipid membrane. The spherical or multilayered spherical structures of liposomes are highly rich in lipid contents with numerous criteria for their classification, including structural features, structural parameters, and size, synthesis methods, preparation, and drug loading. Despite various liposomal applications, such as drug, vaccine/gene delivery, biosensors fabrication, diagnosis, and food products applications, their use encounters many limitations due to physico-chemical instability as their stability is vigorously affected by the constituting ingredients wherein cholesterol performs a vital role in the stability of the liposomal membrane. It has well established that cholesterol exerts its impact by controlling fluidity, permeability, membrane strength, elasticity and stiffness, transition temperature (Tm), drug retention, phospholipid packing, and plasma stability. Although the undetermined optimum amount of cholesterol for preparing a stable and controlled release vehicle has been the downside, but researchers are still focused on cholesterol as a promising material for the stability of liposomes necessitating explanation for the stability promotion of liposomes. Herein, the prior art pertaining to the liposomal appliances, especially for drug delivery in cancer therapy, and their stability emphasizing the roles of cholesterol.
Collapse
Affiliation(s)
- Pooria Nakhaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
- Cipto Mangunkusumo Hospital, The National Referral Hospital, Central Jakarta, Indonesia
- Master’s Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Dmitry O. Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology, and Food Safety, Moscow, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Mohammad Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Czechia
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, Heidelberg, Germany
| | - Nasrin Beheshtkhoo
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Czechia
| |
Collapse
|
35
|
Hama S, Sakai M, Itakura S, Majima E, Kogure K. Rapid modification of antibodies on the surface of liposomes composed of high-affinity protein A-conjugated phospholipid for selective drug delivery. Biochem Biophys Rep 2021; 27:101067. [PMID: 34258398 PMCID: PMC8260867 DOI: 10.1016/j.bbrep.2021.101067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Antibody-modified liposomes, immuno-liposomes, can selectively deliver encapsulated drug ‘cargos’ to cells via the interaction of cell surface proteins with antibodies. However, chemical modification of both the antibodies and phospholipids is required for the preparation of immuno-liposomes for each target protein using conventional methods, which is time-consuming. In the present study, we demonstrated that high-affinity protein A- (Protein A-R28: PAR28) displaying liposomes prepared by the post-insertion of PAR28-conjugated phospholipid through polyethylene glycol (PEG)-linkers (PAR28-PEG-lipo) can undergo rapid modification of antibodies on their surface, and the liposomes can be delivered to cells based on their modified antibodies. Anti-CD147 and anti-CD31 antibodies could be modified with PAR28-PEG-lipo within 1 h, and each liposome was specifically taken up by CD147- and CD31-positive cells, respectively. The cellular amounts of doxorubicin delivered by anti-CD147 antibody-modified PAR28-PEG-lipo were significantly higher than those of isotype control antibody-modified liposomes. PAR28-PEG-lipo can easily and rapidly undergo modification of various antibodies on their surface, which then makes them capable of selective drug delivery dependent on the antibodies. PAR28-PEG-lipo underwent rapid modification of antibodies on their surface. PAR28-PEG-lipo were modified with various antibodies with Fc regions. Antibody-modified PAR28-PEG-lipo were taken up by the targeting cells. Antibody-modified PAR28-PEG-lipo delivered DXR into the targeting cells.
Collapse
Affiliation(s)
- Susumu Hama
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, 202-8585, Japan
| | - Mika Sakai
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Shoko Itakura
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | | | - Kentaro Kogure
- Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8505, Japan
| |
Collapse
|
36
|
Trivedi S, Wadher K, Umekar M. Development of topical thymoquinone loaded polymer-lipid hybrid vesicular gel: in-vitro and ex-vivo evaluation. J Liposome Res 2021; 32:224-236. [PMID: 34003069 DOI: 10.1080/08982104.2021.1929311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Thymoquinone (TH), a naturally occurring moiety shows excellent anticancer properties and in the present study, TH loaded polymer hybrid lipid vesicles (TH PLH) were formulated, and in-vitro cytotoxicity towards breast cancer cell lines (MCF-7 and MBD-MB 231 cells) was determined. TH PLH was primed by the ethanol spraying method and were characterized for various attributes like particle size, morphology, percentage drug entrapment, elasticity, rheological, zeta potential, etc. The prepared TH PLH Vesicles showed an average particle size from 344.7 ± 3.7 nm to 351.9 ± 2.3 nm and showed very narrow distribution with polydispersity index ranging from 0.245 ± 0.36 to 0.271 ± 0.66. The surface charge on the vesicles was confirmed by zeta potential (þ -21.3 ± 1.08 mV to þ -19.98 ± 3.4 mV). The globular moulded vesicles were in the nano-size range and had high flexibility and an approximately 10-fold increase in elasticity properties. TH PLH Vesicular gel was formulated by means of Carbopol 934 and was evaluated for physical appearance, pH, rheological behaviour, and skin irritation test. Cytotoxicity study reveals paramount inhibition on cells by TH vesicle-loaded gel. These results showed the high potential of TH PLH vesicles for topical anticancer application.
Collapse
Affiliation(s)
- Sagar Trivedi
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur, India
| | - Kamlesh Wadher
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur, India
| | - Milind Umekar
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur, India
| |
Collapse
|
37
|
Jahromi AM, Khedri M, Ghasemi M, Omrani S, Maleki R, Rezaei N. Molecular insight into COF monolayers for urea sorption in artificial kidneys. Sci Rep 2021; 11:12085. [PMID: 34103625 PMCID: PMC8187635 DOI: 10.1038/s41598-021-91617-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023] Open
Abstract
Urea removal from an aqueous solution is considered a challenge in the biological process. The state of complete kidney destruction is known as an end-stage renal disease (ESRD). Kidney transplant and hemodialysis are the most common methods for confronting ESRD. More recently, wearable artificial kidney (WAK) devices have shown a significant improvement in urea removal performance. However, low efficiency in physical adsorbents is a barrier in developing them. For the first time, the urea adsorption capacity of five types of last-generation covalent organic framework (COF) nanosheets (NSs) was investigated in this study by applying molecular dynamics (MD) simulation tools. To this end, different analyses have been performed to evaluate the performance of each nanoparticle. The MD all-atom (AA) results demonstrated that all introduced COF NSs had urea removal capacity. Among the five NSs, TPA-COF was shown to have the best outcomes. Moreover, coarse-grained (CG) and density functional theory (DFT) simulations were conducted, and the results show that the TPA-COF nanoparticle modified with -OH functional group has even better properties for urea adsorption. The present molecular study sheds new light on COF NSs as an adsorbent for urea removal.
Collapse
Affiliation(s)
- Ahmad Miri Jahromi
- grid.510410.10000 0004 8010 4431Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Khedri
- grid.510410.10000 0004 8010 4431Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mehdi Ghasemi
- grid.510410.10000 0004 8010 4431Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran ,grid.411368.90000 0004 0611 6995Department of Petroleum Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sina Omrani
- grid.46072.370000 0004 0612 7950Department of Petroleum Engineering, University of Tehran, Tehran, Iran
| | - Reza Maleki
- grid.510410.10000 0004 8010 4431Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- grid.411705.60000 0001 0166 0922Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran ,grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Delfi M, Sartorius R, Ashrafizadeh M, Sharifi E, Zhang Y, De Berardinis P, Zarrabi A, Varma RS, Tay FR, Smith BR, Makvandi P. Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy. NANO TODAY 2021; 38:101119. [PMID: 34267794 PMCID: PMC8276870 DOI: 10.1016/j.nantod.2021.101119] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Self-assembled peptides and proteins possess tremendous potential as targeted drug delivery systems and key applications of these well-defined nanostructures reside in anti-cancer therapy. Peptides and proteins can self-assemble into nanostructures of diverse sizes and shapes in response to changing environmental conditions such as pH, temperature, ionic strength, as well as host and guest molecular interactions; their countless benefits include good biocompatibility and high loading capacity for hydrophobic and hydrophilic drugs. These self-assembled nanomaterials can be adorned with functional moieties to specifically target tumor cells. Stimuli-responsive features can also be incorporated with respect to the tumor microenvironment. This review sheds light on the growing interest in self-assembled peptides and proteins and their burgeoning applications in cancer treatment and immunotherapy.
Collapse
Affiliation(s)
- Masoud Delfi
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia, Naples 80126, Italy
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples 80131, Italy
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, 6517838736, Hamadan, Iran
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples 80125, Italy
| | - Yapei Zhang
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | | | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA 30912, USA
| | - Bryan Ronain Smith
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Radiology and the Molecular Imaging Program, Stanford University, Stanford, CA, 94305, USA
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|
39
|
Lipid nanovesicles for biomedical applications: 'What is in a name'? Prog Lipid Res 2021; 82:101096. [PMID: 33831455 DOI: 10.1016/j.plipres.2021.101096] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/28/2021] [Accepted: 03/28/2021] [Indexed: 12/12/2022]
Abstract
Vesicles, generally defined as self-assembled structures formed by single or multiple concentric bilayers that surround an aqueous core, have been widely used for biomedical applications. They can either occur naturally (e.g. exosomes) or be produced artificially and range from the micrometric scale to the nanoscale. One the most well-known vesicle is the liposome, largely employed as a drug delivery nanocarrier. Liposomes have been modified along the years to improve physicochemical and biological features, resulting in long-circulating, ligand-targeted and stimuli-responsive liposomes, among others. In this process, new nomenclatures were reported in an extensive literature. In many instances, the new names suggest the emergence of a new nanocarrier, which have caused confusion as to whether the vesicles are indeed new entities or could simply be considered modified liposomes. Herein, we discussed the extensive nomenclature of vesicles based on the suffix "some" that are employed for drug delivery and composed of various types and proportions of lipids and others amphiphilic compounds. New names have most often been selected based on changes of vesicle lipid composition, but the payload, structural complexity (e.g. multicompartment) and new/improved proprieties (e.g. elasticity) have also inspired new vesicle names. Based on this discussion, we suggested a rational classification for vesicles.
Collapse
|
40
|
Investigation on drug entrapment location in liposomes and transfersomes based on molecular dynamics simulation. J Mol Model 2021; 27:111. [PMID: 33745026 DOI: 10.1007/s00894-021-04722-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 03/01/2021] [Indexed: 01/11/2023]
Abstract
In this study, liposome and transfersome were successfully constructed using molecular dynamics simulation. Three drugs with different polarity, including 5-fluorouracil, ligustrazine, and osthole, were selected as model drugs to study the distribution of drugs in lipid vesicles by calculating the radial distribution function and the potential of mean force. The solubility parameters between drugs and different regions in lipid vesicles were calculated to characterize the compatibility of drugs in different regions in lipid vesicles, which provided the basis for the conclusion of this paper. It showed that the radial distribution function and the potential of mean force were consistent in the characterization of drug distribution in vesicles, and the drug distribution in vesicles was closely related to the compatibility between drugs and vesicles. Therefore, the radial distribution function and the potential of mean force can be used to characterize the distribution of drugs in vesicles, and molecular simulation technology has a great potential in studying the characteristics of vesicles. Graphical abstract.
Collapse
|
41
|
Kantardjiev A. Coarse-grained simulation of the self-assembly of lipid vesicles concomitantly with novel block copolymers with multiple tails. SOFT MATTER 2021; 17:2753-2764. [PMID: 33533781 DOI: 10.1039/d0sm01898h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We carried out a series of coarse-grained molecular dynamics liposome-copolymer simulations with varying extent of copolymer concentration in an attempt to understand the effect of copolymer structure and concentration on vesicle self-assembly and stability. For one particular case molecular dynamics simulation data was successfully verified against experimental NMR results enhancing the credulity in the simulation methodology. The study focused on a new class of promising copolymers based on ethylene oxide (EO) chains and short blocks of aliphatic double chains that mimic lipid tails. The lipid mimetic units are based on 1,3-didodecyloxy-2-glycidylglycerol (DDGG) and 1,3-didodecyloxy-propane-2-ol (DDP). The conducted simulations indicate that multiple lipid anchor-bearing copolymers lead to stable hybrid liposome formations. Single lipid bearing might incur liposome-stabilizing potential for relatively small ethylene oxide chains but fails dramatically in combination with a longer EO-based moiety. The consistency of the theoretical evidence with experimental NMR observation for certain cases provides confidence for the relevance of the methodology in eliciting the factors governing liposome-polymer stability which is of fundamental and practical significance.
Collapse
Affiliation(s)
- Alexander Kantardjiev
- Nuclear Magnetic Resonance Center, Institute of Organic Chemistry, Bulgarian Academy of Sciences, ulica Acad. G. Bonchev, blok 9, 1113 Sofia, Bulgaria.
| |
Collapse
|
42
|
Mathematical Modelling of Biosensing Platforms Applied for Environmental Monitoring. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9030050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, mathematical modelling has known an overwhelming integration in different scientific fields. In general, modelling is used to obtain new insights and achieve more quantitative and qualitative information about systems by programming language, manipulating matrices, creating algorithms and tracing functions and data. Researchers have been inspired by these techniques to explore several methods to solve many problems with high precision. In this direction, simulation and modelling have been employed for the development of sensitive and selective detection tools in different fields including environmental control. Emerging pollutants such as pesticides, heavy metals and pharmaceuticals are contaminating water resources, thus threatening wildlife. As a consequence, various biosensors using modelling have been reported in the literature for efficient environmental monitoring. In this review paper, the recent biosensors inspired by modelling and applied for environmental monitoring will be overviewed. Moreover, the level of success and the analytical performances of each modelling-biosensor will be discussed. Finally, current challenges in this field will be highlighted.
Collapse
|
43
|
Khuntawee W, Amornloetwattana R, Vongsangnak W, Namdee K, Yata T, Karttunen M, Wong-Ekkabut J. In silico and in vitro design of cordycepin encapsulation in liposomes for colon cancer treatment. RSC Adv 2021; 11:8475-8484. [PMID: 35423402 PMCID: PMC8695206 DOI: 10.1039/d1ra00038a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/17/2021] [Indexed: 01/04/2023] Open
Abstract
Cordycepin or 3'-deoxyadenosine is an interesting anti-cancer drug candidate that is found in abundance in the fungus Cordyceps militaris. It inhibits cellular growth of many cancers including lung carcinoma, melanoma, bladder cancer, and colon cancer by inducing apoptosis, anti-proliferation, anti-metastasis and by arresting the cell cycle. Cordycepin has, however, poor stability and low solubility in water, resulting in loss of its bioactivity. Liposomes can be used to overcome these obstacles. Our aim is to improve cordycepin's anti-colon cancer activity by liposome encapsulation. Cordycepin-encapsulated liposomes were designed and fabricated based on a combination of theoretical and experimental studies. Molecular dynamics (MD) simulations and free energy calculations suggest that phosphatidylcholine (PC) lipid environment is favorable for cordycepin adsorption. Cordycepin passively permeates into PC lipid bilayers without membrane damage and strongly binds to the lipids' polar groups by flipping its deoxyribose sugar toward the bilayer center. Our fabricated liposomes containing 10 : 1 molar ratio of egg yolk PC : cholesterol showed encapsulation efficiency (%EE) of 99% using microfluidic hydrodynamic focusing (MHF) methods. In our in vitro study using the HT-29 colon cancer cell line, cordycepin was able to inhibit growth by induction of apoptosis. Cell viability was significantly decreased below 50% at 125 μg mL-1 dosage after 48 h treatment with non-encapsulated and encapsulated cordycepin. Importantly, encapsulation provided (1) a 2-fold improvement in the inhibition of cancer cell growth at 125 μg mL-1 dosage and (2) 4-fold increase in release time. These in silico and in vitro studies indicate that cordycepin-encapsulated liposomes could be a potent drug candidate for colon cancer therapy.
Collapse
Affiliation(s)
- Wasinee Khuntawee
- Department of Physics, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University Bangkok 10900 Thailand
- Thailand Center of Excellence in Physics (ThEP Center), Ministry of Higher Education, Science, Research and Innovation Bangkok 10400 Thailand
| | - Rawiporn Amornloetwattana
- Department of Physics, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University Bangkok 10900 Thailand
- Thailand Center of Excellence in Physics (ThEP Center), Ministry of Higher Education, Science, Research and Innovation Bangkok 10400 Thailand
| | - Wanwipa Vongsangnak
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University Bangkok 10900 Thailand
- Department of Zoology, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| | - Katawut Namdee
- National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency 111 Thailand Science Park, Paholyothin Rd., Klong Luang Pathumthani 12120 Thailand
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University Bangkok 10330 Thailand
- Natural Products and Nanoparticles Research Unit, Chulalongkorn University Bangkok 10330 Thailand
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario 1151 Richmond Street London Ontario N6A 3K7 Canada
- Department of Applied Mathematics, The University of Western Ontario London ON N6A 5B7 Canada
- The Center for Advanced Materials and Biomaterials Research, The University of Western Ontario London ON N6K 3K7 Canada
| | - Jirasak Wong-Ekkabut
- Department of Physics, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University Bangkok 10900 Thailand
- Thailand Center of Excellence in Physics (ThEP Center), Ministry of Higher Education, Science, Research and Innovation Bangkok 10400 Thailand
| |
Collapse
|
44
|
Khaledian M, Nourbakhsh MS, Saber R, Hashemzadeh H, Darvishi MH. Preparation and Evaluation of Doxorubicin-Loaded PLA-PEG-FA Copolymer Containing Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for Cancer Treatment: Combination Therapy with Hyperthermia and Chemotherapy. Int J Nanomedicine 2020; 15:6167-6182. [PMID: 32922000 PMCID: PMC7450214 DOI: 10.2147/ijn.s261638] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/30/2020] [Indexed: 01/13/2023] Open
Abstract
Background Among the novel cancer treatment strategies, combination therapy is a cornerstone of cancer therapy. Materials and Methods Here, combination therapy with targeted polymer, magnetic hyperthermia and chemotherapy was presented as an effective therapeutic technique. The DOX-loaded PLA–PEG–FA magnetic nanoparticles (nanocarrier) were prepared via a double emulsion method. The nanocarriers were characterized by particle size, zeta potential, morphology, saturation magnetizations and heat generation capacity, and the encapsulation efficiency, drug content and in-vitro drug release for various weight ratios of PLA:DOX. Then, cytotoxicity, cellular uptake and apoptosis level of nanocarrier-treated cells for HeLa and CT26 cells were investigated by MTT assay, flow cytometry, and apoptosis detection kit. Results and Conclusions The synthesized nanoparticles were spherical in shape, had low aggregation and considerable magnetic properties. Meanwhile, the drug content and encapsulation efficiency of nanoparticles can be achieved by varying the weight ratios of PLA:DOX. The saturation magnetizations of nanocarriers in the maximum applied magnetic field were 59/447 emu/g and 28/224 emu/g, respectively. Heat generation capacity of MNPs and nanocarriers were evaluated in the external AC magnetic field by a hyperthermia device. The highest temperature, 44.2°C, was measured in the nanocarriers suspension at w/w ratio 10:1 (polymer:DOX weight ratio) after exposed to the magnetic field for 60 minutes. The encapsulation efficiency improved with increasing polymer concentration, since the highest DOX encapsulation efficiency was related to the nanocarriers’ suspension at w/w ratio 50:1 (79.6 ± 6.4%). However, the highest DOX loading efficiency was measured in the nanocarriers’ suspension at w/w ratio 10:1 (5.14 ± 0.6%). The uptake efficiency and apoptosis level of nanocarrier-treated cells were higher than those of nanocarriers (folic acid free) and free DOX-treated cells in both cell lines. Therefore, this targeted nanocarrier may offer a promising nanosystem for cancer-combined chemotherapy and hyperthermia.
Collapse
Affiliation(s)
- Mohammad Khaledian
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| | - Mohammad Sadegh Nourbakhsh
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran.,Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran
| | - Reza Saber
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Hashemzadeh
- Department of Nanobiotechnology, Faculty of Bioscience, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Hasan Darvishi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Jafari S, Mahyad B, Hashemzadeh H, Janfaza S, Gholikhani T, Tayebi L. Biomedical Applications of TiO 2 Nanostructures: Recent Advances. Int J Nanomedicine 2020; 15:3447-3470. [PMID: 32523343 PMCID: PMC7234979 DOI: 10.2147/ijn.s249441] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
Titanium dioxide (TiO2) nanostructures are one of the most plentiful compounds that have emerged in various fields of technology such as medicine, energy and biosensing. Various TiO2 nanostructures (nanotubes [NTs] and nanowires) have been employed in photoelectrochemical (PEC) biosensing applications, greatly enhancing the detection of targets. TiO2 nanostructures, used as reinforced material or coatings for the bare surface of titanium implants, are excellent additive materials to compensate titanium implants deficiencies-like poor surface interaction with surrounding tissues-by providing nanoporous surfaces and hierarchical structures. These nanostructures can also be loaded by diversified drugs-like osteoporosis drugs, anticancer and antibiotics-and used as local drug delivery systems. Furthermore, TiO2 nanostructures and their derivatives are new emerging antimicrobial agents to overcome human pathogenic microorganisms. However, like all other nanomaterials, toxicity and biocompatibility of TiO2 nanostructures must be considered. This review highlights recent advances, along with the properties and numerous applications of TiO2-based nanostructure compounds in nano biosensing, medical implants, drug delivery and antibacterial fields. Moreover, in the present study, some recent advances accomplished on the pharmaceutical applications of TiO2 nanostructures, as well as its toxicity and biocompatibility, are presented.
Collapse
Affiliation(s)
- Sevda Jafari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Baharak Mahyad
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Islamic Republic of Iran
| | - Hadi Hashemzadeh
- Department of Nanobiotechnology, Tarbiat Modares University, Tehran, 14117, Islamic Republic of Iran
| | - Sajjad Janfaza
- Department of Nanobiotechnology, Tarbiat Modares University, Tehran, 14117, Islamic Republic of Iran
| | - Tooba Gholikhani
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI53233, USA
| |
Collapse
|
46
|
Garofalo M, Grazioso G, Cavalli A, Sgrignani J. How Computational Chemistry and Drug Delivery Techniques Can Support the Development of New Anticancer Drugs. Molecules 2020; 25:E1756. [PMID: 32290224 PMCID: PMC7180704 DOI: 10.3390/molecules25071756] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 01/17/2023] Open
Abstract
The early and late development of new anticancer drugs, small molecules or peptides can be slowed down by some issues such as poor selectivity for the target or poor ADME properties. Computer-aided drug design (CADD) and target drug delivery (TDD) techniques, although apparently far from each other, are two research fields that can give a significant contribution to overcome these problems. Their combination may provide mechanistic understanding resulting in a synergy that makes possible the rational design of novel anticancer based therapies. Herein, we aim to discuss selected applications, some also from our research experience, in the fields of anticancer small organic drugs and peptides.
Collapse
Affiliation(s)
- Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Giovanni Grazioso
- Department of Pharmaceutical Sciences, University of Milano, 20133 Milan, Italy
| | - Andrea Cavalli
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI), 6500 Bellinzona, Switzerland
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI), 6500 Bellinzona, Switzerland
| |
Collapse
|
47
|
PDMS Nano-Modified Scaffolds for Improvement of Stem Cells Proliferation and Differentiation in Microfluidic Platform. NANOMATERIALS 2020; 10:nano10040668. [PMID: 32252384 PMCID: PMC7221996 DOI: 10.3390/nano10040668] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/14/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
Microfluidics cell-based assays require strong cell-substrate adhesion for cell viability, proliferation, and differentiation. The intrinsic properties of PDMS, a commonly used polymer in microfluidics systems, regarding cell-substrate interactions have limited its application for microfluidics cell-based assays. Various attempts by previous researchers, such as chemical modification, plasma-treatment, and protein-coating of PDMS revealed some improvements. These strategies are often reversible, time-consuming, short-lived with either cell aggregates formation, not cost-effective as well as not user- and eco-friendly too. To address these challenges, cell-surface interaction has been tuned by the modification of PDMS doped with different biocompatible nanomaterials. Gold nanowires (AuNWs), superparamagnetic iron oxide nanoparticles (SPIONs), graphene oxide sheets (GO), and graphene quantum dot (GQD) have already been coupled to PDMS as an alternative biomaterial enabling easy and straightforward integration during microfluidic fabrication. The synthesized nanoparticles were characterized by corresponding methods. Physical cues of the nanostructured substrates such as Young’s modulus, surface roughness, and nanotopology have been carried out using atomic force microscopy (AFM). Initial biocompatibility assessment of the nanocomposites using human amniotic mesenchymal stem cells (hAMSCs) showed comparable cell viabilities among all nanostructured PDMS composites. Finally, osteogenic stem cell differentiation demonstrated an improved differentiation rate inside microfluidic devices. The results revealed that the presence of nanomaterials affected a 5- to 10-fold increase in surface roughness. In addition, the results showed enhancement of cell proliferation from 30% (pristine PDMS) to 85% (nano-modified scaffolds containing AuNWs and SPIONs), calcification from 60% (pristine PDMS) to 95% (PDMS/AuNWs), and cell surface marker expression from 40% in PDMS to 77% in SPION- and AuNWs-PDMS scaffolds at 14 day. Our results suggest that nanostructured composites have a very high potential for stem cell studies and future therapies.
Collapse
|
48
|
Liposomes for Enhanced Bioavailability of Water-Insoluble Drugs: In Vivo Evidence and Recent Approaches. Pharmaceutics 2020; 12:pharmaceutics12030264. [PMID: 32183185 PMCID: PMC7151102 DOI: 10.3390/pharmaceutics12030264] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
It has been known that a considerable number of drugs in clinical use or under development are water-insoluble drugs with poor bioavailability (BA). The liposomal delivery system has drawn attention as one of the noteworthy approaches to increase dissolution and subsequently absorption in the gastrointestinal (GI) tract because of its biocompatibility and ability to encapsulate hydrophobic molecules in the lipid domain. However, there have been several drawbacks, such as structural instability in the GI tract and poor permeability across intestinal epithelia because of its relatively large size. In addition, there have been no liposomal formulations approved for oral use to date, despite the success of parenteral liposomes. Nevertheless, liposomal oral delivery has resurged with the rapid increase of published studies in the last decade. However, it is discouraging that most of this research has been in vitro studies only and there have not been many water-insoluble drugs with in vivo data. The present review focused on the in vivo evidence for the improved BA of water-insoluble drugs using liposomes to resolve doubts raised concerning liposomal oral delivery and attempted to provide insight by highlighting the approaches used for in vivo achievements.
Collapse
|