1
|
Zhai S, Gao Y, Jiang Y, Li Y, Fan Q, Tie S, Wu Y, Gu S. Weizmannia coagulans BC99 affects valeric acid production via regulating gut microbiota to ameliorate inflammation and oxidative stress responses in Helicobacter pylori mice. J Food Sci 2024; 89:9985-10002. [PMID: 39556495 DOI: 10.1111/1750-3841.17514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024]
Abstract
Helicobacter pylori is a highly prevalent pathogen in human gastric mucosa epithelial cells with strong colonization ability. Weizmannia coagulans is a kind of active microorganism that is beneficial to the improvement of host gut microbiota balance and can prevent and treat intestinal diseases. We investigated the beneficial effects of W. coagulans BC99 in H. pylori infected mice and measured inflammation response, oxidative stress, and gut microbiota. Results showed that BC99 could alleviate the gastric inflammation, inhibit the increasing of inflammation parameters endotoxin, interleukin-10, transforming growth factor-β, and interferon-γ and oxidative stress myeloperoxidase and malondialdehyde, promote the levels of superoxide dismutase and catalase. Furthermore, 16S rRNA gene sequencing analysis revealed that BC99 reversed the change of gut microbiota by reducing the abundance of Olsenella, Candidatus_Saccharimonas, Monoglobus, and increasing the abundance of Tyzzerella. Meanwhile, BC99 caused elevated levels of Ligilactobacillus and Lactobacillus. In view of the beneficial effect of BC99 on the content of short-chain fatty acid, valeric acid with sodium valerate interfered with H. pylori infection in mice found that valeric acid had a good restorative effect of H. pylori infection relating inflammation and oxidative stress responses. These results suggest that W. coagulans BC99 can be used as a potential probiotic to prevent and treat H. pylori infection by regulating the inflammation, oxidative stress, and gut microbiota.
Collapse
Affiliation(s)
- Shirui Zhai
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Yinyin Gao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Yiru Jiang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Yuwan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang, China
| | - Qiuxia Fan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Shanshan Tie
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang, China
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Food Microbiology, Luoyang, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Food Microbiology, Luoyang, China
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang, China
| |
Collapse
|
2
|
Mazhar MU, Naz S, Khan JZ, Azam S, Ghazanfar S, Tipu MK. Protective potential of Bacillus subtilis (NMCC-path-14) against extraarticular manifestations during acute and sub-acute phase of arthritis using mice model. Biochem Biophys Res Commun 2024; 733:150708. [PMID: 39298918 DOI: 10.1016/j.bbrc.2024.150708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/29/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Extra-articular manifestations (EAM), which are associated with rheumatoid arthritis (RA), affect the quality of life of patients and are one of the critical causes of early mortality. This study was aimed at investigating whether Bacillus subtilis NMCC-path-14 (1 × 108 CFU/animal/day) could serve as a valuable therapeutic agent in managing EAM using complete Freund's adjuvant (CFA) induced arthritis during acute and sub-acute phases. Arthritis was induced using intra-dermal administration of CFA in the right hind paw of mice on day 1. Dexamethasone (Dexa) (5 mg/kg/day/animal) was used as a standard treatment. Animals in Dexa and Bacillus subtilis concurrent treatment (BS-CT) received treatments on day 1. The Bacillus subtilis pre-treatment (BS-PT) group received a probiotic dose 7 days before arthritis induction. Parameters like body weight, relative organ weight, colon length, hematology, serum biochemistry, antioxidant capacity, and histopathology of liver, kidney, spleen, colon, stress-related behavioral changes, and cortisol levels were evaluated on days 7 (acute) and 14 (sub-acute). Dexa failed to manage the EAM in arthritic mice and instead exacerbated them. On the other hand, B. subtilis NMCC-path-14 significantly declined EAM with no notable side effects, highlighting its safety and effectiveness. The current data show that B. subtilis NMCC-path-14 may be an alternative option for arthritis treatment that can reduce systemic symptoms associated with arthritis. More studies are required to comprehend the underlying mechanisms of mitigating the EAM by B. subtilis NMCC-path-14.
Collapse
Affiliation(s)
- Muhammad Usama Mazhar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Sadaf Naz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Jehan Zeb Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Shahzad Azam
- Department of Pathology, Fazaia Medical College, Air University, Islamabad, Pakistan.
| | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan.
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
3
|
Sankararaman S, Venegas C, Seth S, Palchaudhuri S. "Feed a Cold, Starve a Fever?" A Review of Nutritional Strategies in the Setting of Bacterial Versus Viral Infections. Curr Nutr Rep 2024; 13:314-322. [PMID: 38587572 DOI: 10.1007/s13668-024-00536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
PURPOSE OF REVIEW Some data, mostly originally derived from animal studies, suggest that low glucose intake is protective in bacterial sepsis but detrimental in overwhelming viral infections. This has been interpreted into a broad belief that different forms of sepsis may potentially require different nutritional management strategies. There are a few mechanistic differences between the host interactions with virus and bacteria which can explain why there may be opposing responses to macronutrient and micronutrient during the infected state. Here, we aim to review relevant evidence on the mechanisms and pathophysiology of nutritional management strategies in various infectious syndromes and summarize their clinical implications. RECENT FINDINGS Newer literature - in the context of the SARS-CoV-19 pandemic - offers some insight to viral infections. There is still limited clinically applicable data during infection that clearly delineate the role of nutrition during an active viral vs bacterial infections. Based on contrasting findings in different models of viruses and bacteria, the macronutrient and micronutrient needs may depend more on specific infectious organisms that may not be generalizable as bacterial versus viral. Overall, the metabolic effects of sepsis are context dependent, and various host-specific (e.g., age, baseline nutritional status, immune status, comorbidities) and illness variables (phase, duration, and severity of illness) play a significant role in determining the outcome besides pathogen-specific (virus or bacterial or fungi and combined infections) factors. Microbe therapy (probiotics and prebiotics) seems to have therapeutic potential in both viral and bacterial infected states, and this seems like a promising area for further practical research.
Collapse
Affiliation(s)
- Senthilkumar Sankararaman
- Division of Pediatric Gastroenterology, UH Rainbow Babies & Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Carla Venegas
- Department Critical Care Medicine and Nutrition Support Team, Mayo Clinic, Jacksonville, FL, USA
| | - Sonia Seth
- Upstate Medical University, Syracuse, NY, USA
| | - Sonali Palchaudhuri
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
4
|
Mazhar MU, Naz S, Zulfiqar T, Khan JZ, Ghazanfar S, Tipu MK. Immunostimulant, hepatoprotective, and nephroprotective potential of Bacillus subtilis (NMCC-path-14) in comparison to dexamethasone in alleviating CFA-induced arthritis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3275-3299. [PMID: 37930392 DOI: 10.1007/s00210-023-02814-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
To investigate and compare efficacy as well as safety of Bacillus subtilis and dexamethasone (Dexa) in complete Freund's adjuvant (CFA)-induced arthritis, we used glucocorticoid monotherapy (Dexa 5 mg/kg/day) and B. subtilis (1 × 108 CFU/animal/day p.o) as pre-treatment and concurrent treatment for a duration of 35 days. Specific emphasis was on chronic aspect of this study since long-term use of Dexa is known to produce undesirable side effects. Treatment with Dexa significantly attenuated the arthritic symptoms but produced severe side effects like weight loss, increased mortality, immunosuppression, and altered histology of liver, kidney, and spleen. Oxidative stress was also elevated by Dexa in these organs which contributed to the damage. Treatment with B. subtilis improved symptoms of arthritis without producing any deleterious side effects as seen with Dexa therapy. Immunohistochemistry (IHC) profile revealed decreased expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin (IL)-1β, tumor necrosis factor alpha (TNF-α), and increased nuclear factor erythroid 2-related factor 2 (Nrf-2) expression by B. subtilis and Dexa treatment in ankle joint of arthritic mice. Radiological scores were also improved by both treatments. This study concludes that B. subtilis could be an effective alternative for treating arthritis than Dexa since it does not produce life-threatening side effects on prolong treatment.
Collapse
Affiliation(s)
- Muhammad Usama Mazhar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sadaf Naz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tayyaba Zulfiqar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
5
|
Han Z, Min Y, Pang K, Wu D. Therapeutic Approach Targeting Gut Microbiome in Gastrointestinal Infectious Diseases. Int J Mol Sci 2023; 24:15654. [PMID: 37958637 PMCID: PMC10650060 DOI: 10.3390/ijms242115654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
While emerging evidence highlights the significance of gut microbiome in gastrointestinal infectious diseases, treatments like Fecal Microbiota Transplantation (FMT) and probiotics are gaining popularity, especially for diarrhea patients. However, the specific role of the gut microbiome in different gastrointestinal infectious diseases remains uncertain. There is no consensus on whether gut modulation therapy is universally effective for all such infections. In this comprehensive review, we examine recent developments of the gut microbiome's involvement in several gastrointestinal infectious diseases, including infection of Helicobacter pylori, Clostridium difficile, Vibrio cholerae, enteric viruses, Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa Staphylococcus aureus, Candida albicans, and Giardia duodenalis. We have also incorporated information about fungi and engineered bacteria in gastrointestinal infectious diseases, aiming for a more comprehensive overview of the role of the gut microbiome. This review will provide insights into the pathogenic mechanisms of the gut microbiome while exploring the microbiome's potential in the prevention, diagnosis, prediction, and treatment of gastrointestinal infections.
Collapse
Affiliation(s)
- Ziying Han
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing 100730, China
| | - Yiyang Min
- Peking Union Medical College, Beijing 100730, China
| | - Ke Pang
- Peking Union Medical College, Beijing 100730, China
| | - Dong Wu
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing 100730, China
| |
Collapse
|
6
|
Rashid M, Narang A, Thakur S, Jain SK, Kaur S. Therapeutic and prophylactic effects of oral administration of probiotic Enterococcus faecium Smr18 in Salmonella enterica-infected mice. Gut Pathog 2023; 15:23. [PMID: 37208771 DOI: 10.1186/s13099-023-00548-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/25/2023] [Indexed: 05/21/2023] Open
Abstract
Salmonella enterica serotype Typhi causes chronic enteric fever known as typhoid. Prolonged treatment regimen used for the treatment of typhoid and indiscriminate use of antibiotics has led to the emergence of resistant strains of S. enterica that has further increased the severity of the disease. Therefore, alternative therapeutic agents are urgently required. In this study, probiotic and enterocin-producing bacteria Enterococcus faecium Smr18 was compared for both its prophylactic and therapeutic efficacy in S. enterica infection mouse model. E. faecium Smr18 possessed high tolerance to bile salts and simulated gastric juice, as treatment for 3 and 2 h resulted in 0.5 and 0.23 log10 reduction in the colony forming units, respectively. It exhibited 70% auto aggregation after 24 h of incubation and formed strong biofilms at both pH 5 and 7. Oral administration of E. faecium in BALB/c mice infected with S. enterica significantly (p < 0.05) reduced the mortality of the infected mice and prevented the weight loss in mice. Administration of E. faecium prior to infection inhibited the translocation of S. enterica to liver and spleen, whereas, its administration post-infection completely cleared the pathogen from the organs within 8 days. Further, in both pre- and post-E. faecium-treated infected groups, sera levels of liver enzymes were restored back to normal; whereas the levels of creatinine, urea and antioxidant enzymes were significantly (p < 0.05) reduced compared to the untreated-infected group. E. faecium Smr18 administration significantly increased the sera levels of nitrate by 1.63-fold and 3.22-fold in pre- and post-administration group, respectively. Sera levels of interferon-γ was highest (tenfold) in the untreated-infected group, whereas the levels of interleukin-10 was highest in the post-infection E. faecium-treated group thereby indicating the resolution of infection in the probiotic-treated group, plausibly due to the increased production of reactive nitrogen intermediates.
Collapse
Affiliation(s)
- Muzamil Rashid
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Anmol Narang
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
7
|
Elleithy EMM, Bawish BM, Kamel S, Ismael E, Bashir DW, Hamza D, Fahmy KNED. Influence of dietary Bacillus coagulans and/or Bacillus licheniformis-based probiotics on performance, gut health, gene expression, and litter quality of broiler chickens. Trop Anim Health Prod 2023; 55:38. [PMID: 36640209 PMCID: PMC9840593 DOI: 10.1007/s11250-023-03453-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
Probiotics are non-pathogenic microorganisms that are potentially important non-antibiotic alternatives. This study aimed to compare novel multi-strain and single-strain Bacillus probiotics and their respective influences on broiler chickens' performance, gut health, litter quality, immune response, and NBN and TLR gene expression. A total of 1200 Arbor-Acres 1-day-old broiler chicks were randomly allocated into three treatments (T1 was a control, T2 was supplemented with a combined Bacillus coagulans (2 × 109 cfu/g) and Bacillus licheniformis (8 × 109 cfu/g) probiotic strains (0.2 kg/ton of feed), and T3 was supplemented with Bacillus licheniformis (3.2 × 109 cfu/g) probiotic (0.5 kg/ton of feed) with eight replicas of each. Supplementing the broiler diet with either the single-strain (T3) or the multi-strain (T2) Bacillus-based probiotic raised the overall birds' body weight, body weight gain, feed conversion ratio, and European production efficiency factor compared to the control (T1), with a significant enhancement achieved by the multi-strain Bacillus product (P = 0.005). T2 and T3 exhibited significantly improved cholesterol, Alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and alkaline phosphatase levels than the control (P ≤ 0.05). The transcript levels of both NBN and TLR genes were upregulated in the liver in the T2 and T3 groups. The T2 group experienced significant reductions in gut bacterial counts, especially for Clostridia, and recorded the lowest litter moisture and nitrogen. In conclusion, supplementing broiler diets with probiotics of multiple Bacillus strains increased production profitability by promoting bird growth, improving feed intake, enhancing gut mucosa and immune organs, and upregulating genes responsible for immunity. All these inhibit the overgrowth of enteric pathogens and sustain litter quality.
Collapse
Affiliation(s)
- Ebtihal M M Elleithy
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Basma M Bawish
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Shaimaa Kamel
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Elshaimaa Ismael
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Dina W Bashir
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Dalia Hamza
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, 12211, Egypt.
| | - Khaled Nasr El-Din Fahmy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
8
|
Word A, Broadway PR, Burdick-Sanchez N, Carroll J, Hales K, Karr K, Holland B, Ellis G, Maxwell C, Canterbury L, Leonhard JT, LaFleur D, Hergenreder J, Trojan S. The effect of supplementing CLOSTAT 500 ( Bacillus subtilis PB6) to yearling steers in a commercial feedyard on health, Salmonella spp. prevalence, feedlot growth performance and carcass characteristics. Transl Anim Sci 2022; 6:txac131. [PMID: 36381948 PMCID: PMC9661306 DOI: 10.1093/tas/txac131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/14/2022] [Indexed: 08/31/2023] Open
Abstract
British and British × Continental crossbred beef steers, n = 2,100; 313 ± 38 kg of initial body weight (BW) were used to evaluate the effects of Bacillus subtilis PB6 supplementation to yearling steers in a commercial feedyard on health, prevalence of Salmonella spp., growth performance, and carcass characteristics. Steers were blocked by arrival date and assigned randomly to pens within the block; pens were randomly assigned to 1 of 2 dietary treatments within block. Treatments, replicated in 15 pens/treatment with 70 steers/pen, included: 1) control (CON), diets containing no supplemental direct-fed microbials; 2) CLOSTAT (CLO), diets supplemented with 0.5 g/steer/d Bacillus subtilis PB6 (CLOSTAT 500, Kemin Industries, Des Moines, IA) to provide 6.6 × 109 CFU/g of the active ingredient. Supplementing CLO decreased the overall incidence of morbidity (P = 0.03), 10.38% (CLO) vs. 13.43% (CON), decreased the percentage of steers treated once for bovine respiratory disease (BRD; P < 0.01), 9.14% (CLO) vs. 12.76% (CON), and decreased the incidence of BRD retreatment (P = 0.03) compared with CON. Mortality did not differ among treatments (P = 0.23); however, overall deads and removals tended to be less for CLO than CON (53 heads vs. 73 heads respectively, P = 0.06). Prevalence of fecal Salmonella did not differ among treatments, (P ≥ 0.35); overall fecal Salmonella counts tended to be less for CLO (1.59 log (10) CFU/g) than CON (2.04 log (10) CFU/g; P = 0.07). Salmonella concentration in subiliac lymph nodes (n =150/treatment) was not different (P = 0.62) between CON (0.22 log (10) CFU/g) or CLO (0.19 log (10) CFU/g); however, there was a 46% reduction in the overall mean prevalence of lymph node Salmonella (P = 0.46; 15.48% vs. 28.66%) for CLO and CON, respectively. With deads and removals included, final BW was heavier for CLO steers than CON, (654 kg vs. 641 kg, respectively, P = 0.05), and average daily gain (ADG; P = 0.08) and gain efficiency (G:F; P = 0.06) tended to be greater for CLO than CON. With deads and removals excluded, final BW, ADG, and G:F did not differ among treatments (P ≥ 0.30). Carcass traits were not different between treatments (P ≥ 0.15). Supplementing CLO throughout the feeding period in a commercial feedyard improved the health outcomes of yearling steers by decreasing BRD and overall treatment rates, reducing the overall abundance of Salmonella, and resulting in fewer steers removed from the study compared with CON.
Collapse
Affiliation(s)
| | | | | | - Jeff Carroll
- Livestock Issues Research Unit, Lubbock, TX 79403, USA
| | | | | | | | - Guy Ellis
- Cactus Research, Amarillo, TX 79101, USA
| | | | | | | | - Doug LaFleur
- Kemin Industries, Inc., Des Moines, IA 50317, USA
| | | | - Sara Trojan
- Peak Beef Nutrition and Management Consulting, LLC, Casper, WY 82604, USA
| |
Collapse
|
9
|
Antioxidant and Antibacterial Effects of Potential Probiotics Isolated from Korean Fermented Foods. Int J Mol Sci 2022; 23:ijms231710062. [PMID: 36077456 PMCID: PMC9455991 DOI: 10.3390/ijms231710062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
A total of sixteen bacterial strains were isolated and identified from the fourteen types of Korean fermented foods that were evaluated for their in vitro probiotic potentials. The results showed the highest survivability for Bacillus sp. compared to Lactobacillus sp. in simulated gastric pH, and it was found to be maximum for B. inaquosorum KNUAS016 (8.25 ± 0.08 log10 CFU/mL) and minimum for L. sakei KNUAS019 (0.8 ± 0.02 log10 CFU/mL) at 3 h of incubation. Furthermore, B. inaquosorum KNUAS016 and L. brevis KNUAS017 also had the highest survival rates of 6.86 ± 0.02 and 5.37 ± 0.01 log10 CFU/mL, respectively, in a simulated intestinal fluid condition at 4 h of incubation. The percentage of autoaggregation at 6 h for L. sakei KNUAS019 (66.55 ± 0.33%), B. tequilensis KNUAS015 (64.56 ± 0.14%), and B. inaquosorum KNUAS016 (61.63 ± 0.19%) was >60%, whereas it was lower for L. brevis KNUAS017 (29.98 ± 0.09%). Additionally, B. subtilis KNUAS003 showed higher coaggregation at 63.84 ± 0.19% while B. proteolyticus KNUAS001 found at 30.02 ± 0.33%. Among them, Lactobacillus sp. showed the best non-hemolytic activity. The highest DPPH and ABTS radical scavenging activity was observed in L. sakei KNUAS019 (58.25% and 71.88%). The cell-free supernatant of Lactobacillus sp. considerably inhibited pathogenic growth, while the cell-free supernatant of Bacillus sp. was moderately inhibited when incubated for 24 h. However, the overall results found that B. subtilis KNUAS003, B. proteolyticus KNUAS012, L. brevis KNUAS017, L. graminis KNUAS018, and L. sakei KNUAS019 were recognized as potential probiotics through different functional and toxicity assessments.
Collapse
|
10
|
Kruse S, Schenk M, Pierre F, Morlock GE. Bacillus subtilis spores in probiotic feed quantified via bacterial metabolite using planar chromatography. Anal Chim Acta 2022; 1221:340124. [DOI: 10.1016/j.aca.2022.340124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/15/2022] [Accepted: 06/23/2022] [Indexed: 11/01/2022]
|
11
|
Vaz-Rodrigues R, Ferreras-Colino E, Ugarte-Ruíz M, Pesciaroli M, Thomas J, García-Seco T, Sevilla IA, Pérez-Sancho M, Mateo R, Domínguez L, Gortazar C, Risalde MA. Nonspecific protection of heat-inactivated Mycobacterium bovis against Salmonella Choleraesuis infection in pigs. Vet Res 2022; 53:31. [PMID: 35436975 PMCID: PMC9014587 DOI: 10.1186/s13567-022-01047-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractTrained immunity is the capacity of innate immune cells to produce an improved response against a secondary infection after a previous unrelated infection. Salmonellosis represents a public health issue and affects the pig farming industry. In general, vaccination against salmonellosis is still facing problems regarding the control of distinct serovars. Therefore, we hypothesized that an immunostimulant based on heat inactivated Mycobacterium bovis (HIMB) could have an immune training effect in pigs challenged with Salmonella enterica serovar Choleraesuis (S. Choleraesuis) and decided to explore the amplitude of this non-specific immune response. For this purpose, twenty-four 10 days-old female piglets were randomly separated in three groups: immunized group (n = 10) received orally two doses of HIMB prior to the intratracheal S. Choleraesuis-challenge, positive control group (n = 9) that was only challenged with S. Choleraesuis, and negative control group (n = 5) that was neither immunized nor infected. All individuals were necropsied 21 days post-challenge. HIMB improved weight gain and reduced respiratory symptoms and pulmonary lesions caused by S. Choleraesuis in pigs. Pigs immunized with HIMB showed higher cytokine production, especially of serum TNFα and lung CCL28, an important mediator of mucosal trained immunity. Moreover, immunized pigs showed lower levels of the biomarker of lipid oxidation malondialdehyde and higher activity of the antioxidant enzyme superoxide dismutase than untreated challenged pigs. However, the excretion and tissue colonization of S. Choleraesuis remained unaffected. This proof-of-concept study suggests beneficial clinical, pathological, and heterologous immunological effects against bacterial pathogens within the concept of trained immunity, opening avenues for further research.
Collapse
|
12
|
Mazkour S, Shekarforoush SS, Basiri S, Namazi F, Zarei‐Kordshouli F. Protective effects of oral administration of mixed probiotic spores of
Bacillus subtilis
and
Bacillus coagulans
on gut microbiota changes and intestinal and liver damage of rats infected with
Salmonella
Typhimurium
. J Food Saf 2022. [DOI: 10.1111/jfs.12981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Somaye Mazkour
- Department of Food Hygiene and Public Health School of Veterinary Medicine, Shiraz University Shiraz Iran
| | | | - Sara Basiri
- Department of Food Hygiene and Public Health School of Veterinary Medicine, Shiraz University Shiraz Iran
| | - Fatemeh Namazi
- Department of Pathology School of Veterinary Medicine, Shiraz University Shiraz Iran
| | | |
Collapse
|
13
|
Yu Y, Li Q, Zeng X, Xu Y, Jin K, Liu J, Cao G. Effects of Probiotics on the Growth Performance, Antioxidant Functions, Immune Responses, and Caecal Microbiota of Broilers Challenged by Lipopolysaccharide. Front Vet Sci 2022; 9:846649. [PMID: 35265699 PMCID: PMC8899207 DOI: 10.3389/fvets.2022.846649] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022] Open
Abstract
We aimed to study the effects of dietary Bacillus coagulans (B. coagulans) and Lactobacillus plantarum (L. plantarum) on broilers challenged by Escherichia coli lipopolysaccharide (LPS). One-day-old Cobb 500 chicks (360) were divided randomly into three treatment groups for 47 days: no supplementation (control, CON), B. coagulans supplementation (BC), and L. plantarum supplementation (LA). Broilers were routinely fed for 42 days and intraperitoneally injected with 500 μg LPS per kg body weight at 43, 45, and 47 days of age, respectively. Samples were collected 3 h after the last injection. At 1-21 days of age, the ADG in the BC and LA groups was higher than that in the CON group, and the feed to gain ratio (F/G) in the BC group was significantly decreased (P < 0.05). Compared with that in CON birds, the ADG was increased and the F/G was decreased in the BC and LA birds at 22-42 and 1-42 days of age, respectively (P < 0.05). After LPS stimulation, the endotoxin (ET), diamine oxidase (DAO), and D-lactic acid (D-LA) levels in the BC group were lower than those in the CON group (P < 0.05). The IgY, IgA, and IgM contents in the BC group and the IgY and IgM contents in the LA group were higher than those in the CON group (P < 0.05). The pro-inflammatory factor and interferon-β (IFN-β) contents (P < 0.05) decreased, and the anti-inflammatory factor content in the serum (P < 0.05) increased in the BC and LA groups. Compared with the CON and LA treatments, the BC treatment increased the concentrations of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT), and decreased that of malondialdehyde (MDA) (P < 0.05). In contrast with the CON treatment, the BC and LA treatments increased the abundance of Ruminococcaceae and reduced that of Desulfovibrio (P < 0.05). Moreover, BC increased the abundance of beneficial bacteria. Overall, supplementation with B. coagulans and L. plantarum promoted the growth of broilers, improved their immunity and antioxidant capacity, and alleviated the LPS-stimulated inflammatory response by regulating the intestinal flora.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Applied Technology on Green-Eco-Health Animal Husbandry of Zhejiang Province, Zhejiang Province Engineering Laboratory for Animal Health and Internet Technology, College of Ani-mal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Qing Li
- Key Laboratory of Applied Technology on Green-Eco-Health Animal Husbandry of Zhejiang Province, Zhejiang Province Engineering Laboratory for Animal Health and Internet Technology, College of Ani-mal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Xinfu Zeng
- Zhejiang Vegamax Biotechnology Co., Ltd., Anji, China
| | - Yinglei Xu
- Key Laboratory of Applied Technology on Green-Eco-Health Animal Husbandry of Zhejiang Province, Zhejiang Province Engineering Laboratory for Animal Health and Internet Technology, College of Ani-mal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Kan Jin
- College of Standardisation, China Jiliang University, Hangzhou, China
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Anji, China
| | - Guangtian Cao
- College of Standardisation, China Jiliang University, Hangzhou, China
| |
Collapse
|
14
|
Nahaei A, Mandegani Z, Chamyani S, Fereidoonnezhad M, Shahsavari HR, Kuznetsov NY, Nabavizadeh SM. Half-Sandwich Cyclometalated Rh III Complexes Bearing Thiolate Ligands: Biomolecular Interactions and In Vitro and In Vivo Evaluations. Inorg Chem 2022; 61:2039-2056. [PMID: 35023727 DOI: 10.1021/acs.inorgchem.1c03218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A class of cyclometalated RhIII complexes [Cp*Rh(ppy)(SR)] bearing thiolate ligands, Cp* = pentamethylcyclopentadienyl, ppy = 2-phenylpyridinate, and R = pyridyl (Spy, 2), pyrimidyl (SpyN, 3), benzimidazolyl (Sbi, 4), and benzothiazolyl (Sbt, 5), were produced and identified by means of spectroscopic methods. The in vitro cytotoxicity of the RhIII compounds in three different human mortal cancerous cell lines (ovarian, SKOV3; breast, MCF-7; lung, A549) and a normal lung (MRC-5) cell line were evaluated, indicating the selectivity of these cyclometalated RhIII complexes to cancer cells. Complex 5, selected for in vivo experiment, has shown an effective inhibition of tumor growth in SKOV3 xenograft mouse model relative to control (p-values < 0.05 and < 0.01). Importantly, the outcomes of H&E (hematoxylin and eosin) staining and hematological analysis revealed negligible toxicity of 5 compared to cisplatin on a functioning of the main organs of mouse. Molecular docking, UV-vis, and emission spectroscopies (fluorescence, 3D fluorescence, synchronous) techniques were carried out on 1-5 to peruse the mechanism of the anticancer activities of these complexes. The obtained data help to manifest the binding affinity between the rhodium compounds and calf thymus DNA (CT-DNA) through the interaction by DNA minor groove and moderate binding affinity with bovine serum albumin (BSA), particularly with the cavity in the subdomain IIA. It can be concluded that the Rh-thiolate complexes are highly promising leads for the development of novel effective DNA-targeted anticancer drugs.
Collapse
Affiliation(s)
- Asma Nahaei
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Zeinab Mandegani
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Samira Chamyani
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Masood Fereidoonnezhad
- Toxicology Research Center; Department of Medicinal Chemistry, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Hamid R Shahsavari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Nikolai Yu Kuznetsov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation
| | - S Masoud Nabavizadeh
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| |
Collapse
|
15
|
Zhou Y, Wang B, Wang Q, Tang L, Zou P, Zeng Z, Zhang H, Gong L, Li W. Protective Effects of Lactobacillus plantarum Lac16 on Clostridium perfringens Infection-Associated Injury in IPEC-J2 Cells. Int J Mol Sci 2021; 22:ijms222212388. [PMID: 34830269 PMCID: PMC8620398 DOI: 10.3390/ijms222212388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/31/2022] Open
Abstract
Clostridium perfringens (C. perfringens) causes intestinal injury through overgrowth and the secretion of multiple toxins, leading to diarrhea and necrotic enteritis in animals, including pigs, chickens, and sheep. This study aimed to investigate the protective effects of Lactobacillus plantarum (L. plantarum) Lac16 on C. perfringens infection-associated injury in intestinal porcine epithelial cell line (IPEC-J2). The results showed that L. plantarum Lac16 significantly inhibited the growth of C. perfringens, which was accompanied by a decrease in pH levels. In addition, L. plantarum Lac16 significantly elevated the mRNA expression levels of host defense peptides (HDPs) in IPEC-J2 cells, decreased the adhesion of C. perfringens to IPEC-J2 cells, and attenuated C. perfringens-induced cellular cytotoxicity and intestinal barrier damage. Furthermore, L. plantarum Lac16 significantly suppressed C. perfringens-induced gene expressions of proinflammatory cytokines and pattern recognition receptors (PRRs) in IPEC-J2 cells. Moreover, L. plantarum Lac16 preincubation effectively inhibited the phosphorylation of p65 caused by C. perfringens infection. Collectively, probiotic L. plantarum Lac16 exerts protective effects against C. perfringens infection-associated injury in IPEC-J2 cells.
Collapse
Affiliation(s)
- Yuanhao Zhou
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Baikui Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Qi Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Li Tang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Peng Zou
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Zihan Zeng
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Huihua Zhang
- Department of Animal Sciences, School of Life Science and Engineering, Foshan University, Foshan 528225, China;
| | - Li Gong
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
- Department of Animal Sciences, School of Life Science and Engineering, Foshan University, Foshan 528225, China;
- Correspondence: (L.G.); (W.L.)
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
- Correspondence: (L.G.); (W.L.)
| |
Collapse
|
16
|
Sudan S, Flick R, Nong L, Li J. Potential Probiotic Bacillus subtilis Isolated from a Novel Niche Exhibits Broad Range Antibacterial Activity and Causes Virulence and Metabolic Dysregulation in Enterotoxic E. coli. Microorganisms 2021; 9:1483. [PMID: 34361918 PMCID: PMC8307078 DOI: 10.3390/microorganisms9071483] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Microbial life in extreme environments, such as deserts and deep oceans, is thought to have evolved to overcome constraints of nutrient availability, temperature, and suboptimal hygiene environments. Isolation of probiotic bacteria from such niche may provide a competitive edge over traditional probiotics. Here, we tested the survival, safety, and antimicrobial effect of a recently isolated and potential novel strain of Bacillus subtilis (CP9) from desert camel in vitro. Antimicrobial assays were performed via radial diffusion, agar spot, and co-culture assays. Cytotoxic analysis was performed using pig intestinal epithelial cells (IPEC-J2). Real time-PCR was performed for studying the effect on ETEC virulence genes and metabolomic analysis was performed using LC-MS. The results showed that CP9 cells were viable in varied bile salts and in low pH environments. CP9 showed no apparent cytotoxicity in IPEC-J2 cells. CP9 displayed significant bactericidal effect against Enterotoxic E. coli (ETEC), Salmonella Typhimurium, and Methicillin-resistant Staphylococcus aureus (MRSA) in a contact inhibitory fashion. CP9 reduced the expression of ETEC virulent genes during a 5 h co-culture. Additionally, a unique emergent metabolic signature in co-culture samples was observed by LC-MS analysis. Our findings indicate that CP9 exhibits a strong antibacterial property and reveals potential mechanisms behind.
Collapse
Affiliation(s)
- Sudhanshu Sudan
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Robert Flick
- Biozone, Mass Spectrometry and Metabolomics, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada;
| | - Linda Nong
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
17
|
Kyrila G, Katsoulas A, Schoretsaniti V, Rigopoulos A, Rizou E, Doulgeridou S, Sarli V, Samanidou V, Touraki M. Bisphenol A removal and degradation pathways in microorganisms with probiotic properties. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125363. [PMID: 33592490 DOI: 10.1016/j.jhazmat.2021.125363] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol-A (BPA) is a constituent of polycarbonate plastics and epoxy resins, widely applied on food packaging materials. As BPA exposure results in health hazards, its efficient removal is of crucial importance. In our study five potentially probiotic microorganisms, namely Lactococcus lactis, Bacillus subtilis, Lactobacillus plantarum, Enterococcus faecalis, and Saccharomyces cerevisiae, were tested for their toxicity tolerance to BPA and their BPA removal ability. Although BPA toxicity, evident on all microorganisms, presented a correlation to both BPA addition time and its concentration, all strains exhibited BPA-removal ability with increased removal rate between 0 and 24 h of incubation. BPA degradation resulted in the formation of two dimer products in cells while the compounds Hydroquinone (HQ), 4-Hydroxyacetophenone (HAP), 4-Hydroxybenzoic acid (HBA) and 4-Isopropenylphenol (PP) were identified in the culture medium. In the proposed BPA degradation pathways BPA adducts formation appears as a common pattern, while BPA decomposition as well as the formation, and the levels of its end products present differences among microorganisms. The BPA degradation ability of the tested beneficial microorganisms demonstrates their potential application in the bioremediation of BPA contaminated foods and feeds and provides a means to suppress the adverse effects of BPA on human and animal health.
Collapse
Affiliation(s)
- Gloria Kyrila
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Antonis Katsoulas
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vasiliki Schoretsaniti
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Angelos Rigopoulos
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleftheria Rizou
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Savvoula Doulgeridou
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vasiliki Sarli
- Organic Chemistry Laboratory, Department of Organic Chemistry and Biochemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Victoria Samanidou
- Laboratory of Analytical Chemistry, Department of Physical, Analytical and Environmental Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54124 Thessaloniki, Greece
| | - Maria Touraki
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|