1
|
Farouk H, Moustafa PE, Khattab MS, El-Marasy SA. Diacerein ameliorates amiodarone-induced pulmonary fibrosis via targeting the TGFβ1/α-SMA/Smad3 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03450-8. [PMID: 39417843 DOI: 10.1007/s00210-024-03450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024]
Abstract
This study is aimed at investigating the possible protective effect of diacerein (DIA) against AMD-induced pulmonary fibrosis in rats. Rats were classified into 4 groups: a normal group that received distilled water, control group that received AMD (100 mg/kg, p.o.) for 21 days to induce pulmonary fibrosis, and 2 treatment groups that received diacerein, in 2 dose levels (50 and 100 mg/kg, p.o., respectively) in addition to AMD (100 mg/kg, p.o.), for 21 days. Lung function test was assessed using a spirometer; serum and tissue were collected. Biochemical, real-time PCR, histopathological, and immunohistopathological analyses were carried out. AMD reduced tidal volume (TV), peripheral expiratory rate (PER), forced vital capacity (FVC), serum reduced glutathione (GSH) levels, Beclin, and LCII, while it elevated transform growth factor (TGF-β1) gene expression, serum malondialdehyde (MDA) level, alpha-smooth muscle actin (α-SMA), Smad3, phosphorylated signal transducer and activator of transcription (p-STAT3), and p62 lung content. Also, AMD elevated tumor necrosis factor-alpha (TNF-α) and caspase-3 protein expression. DIA elevated TV, PER, FVC, serum GSH level, Beclin, and LCII, while it reduced TGF-β1 gene expression, serum MDA level, α-SMA, Smad3, p-STAT-3, and p62 lung content. Moreover, DIA reduced TNF-α and caspase-3 protein expression. DIA attenuated AMD-induced pulmonary fibrosis via alleviating the TGF1/α-SMA/Smad3 pathway, reducing STAT-3 activation, and combating oxidative stress and inflammation in addition to promoting autophagy and abrogating apoptosis.
Collapse
Affiliation(s)
- Hadir Farouk
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Passant E Moustafa
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Salma A El-Marasy
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
| |
Collapse
|
2
|
Zheng CM, Hou YC, Tsai KW, Hu WC, Yang HC, Liao MT, Lu KC. Resveratrol Mitigates Uremic Toxin-Induced Intestinal Barrier Dysfunction in Chronic Kidney Disease by Promoting Mitophagy and Inhibiting Apoptosis Pathways. Int J Med Sci 2024; 21:2437-2449. [PMID: 39439463 PMCID: PMC11492888 DOI: 10.7150/ijms.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/05/2024] [Indexed: 10/25/2024] Open
Abstract
Background: Chronic Kidney Disease (CKD) is a systemic progressive disorder related to uremic toxins. Uremic toxins disturb intestinal epithelial destruction and barrier dysfunction leading to gut-renal axis disorders in CKD. We examine the protective role of Resveratrol (RSV) against uremic toxin indoxyl sulphate (IS) related intestinal barrier disturbances among CKD. METHODS 5/6 nephrectomized mice and isolated primary mouse intestinal epithelial cells (IEC-6) are used to assess the influence of IS on intestinal epithelial tight junction barriers. Serum biochemistry parameters, hematoxylin & eosin (H&E) and immunohistochemistry staining (IHC), Western blot analysis, q-PCR, and si-RNA targeted against AhR were used in this study. RESULTS IS decreases the expression of tight junction proteins (TJPs) ZO-1 and claudins, increases the apoptosis and impairs mitophagy within IECs. Treatment with RSV not only reduces the loss of TJPs but also modulates mitophagy markers LC3 and P62, and concurrently decreases the levels of apoptosis-related proteins. Significantly, RSV ameliorates intestinal barrier dysfunction in CKD by modulating mitophagy via the IRF1-DRP1 axis, restoring autophagy, and inhibiting apoptosis through the activation of the PI3K/Akt-Ho-1 anti-oxidant pathway, and mTOR regulated pathways. CONCLUSION This study establishes RSV as a potential therapeutic agent that can ameliorate gut-renal axis disturbances in CKD. These findings provide valuable insights into mechanisms underlying RSV RSV-mediated gut-renal axis, highlighting its effectiveness as a potential treatment option for CKD-associated intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Centre of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chou Hou
- Division of Nephrology, Department of Internal Medicine, Cardinal Tien Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Kuo-Wang Tsai
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Wan-Chung Hu
- Department of Clinical Pathology and Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Hsiu-Chien Yang
- Division of Nephrology, Department of Internal Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
3
|
Chakraborty J, Pakrashi S, Bandyopadhyay J. Copper-induced pro-apoptotic response and its alleviation by Quercetin through autophagic modulation in HEPG2 cells. J Trace Elem Med Biol 2024; 86:127508. [PMID: 39178556 DOI: 10.1016/j.jtemb.2024.127508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/14/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Recent studies indicated that the liver is susceptible to Cu-induced stress as it stores and distributes the metal to other cellular organelles. To counteract the hepatocytic damage, a known polyphenol, quercetin, was employed for its remarkable antioxidant properties. Thus, the study aimed to assess quercetin's potency against Cu-induced toxicity in HEPG2 cells. METHODS The cellular viability of HEPG2 cells was carried out by MTT assay. All the cellular experiments were divided into control, Cu 100 µM, Cu 100 µM (with Q μM), Cu 300 µM, Cu 300 µM (with Q 50 nM), and only quercetin (50 nM). Following this, reactive oxygen species (ROS) levels and mitochondrial membrane potential (MMP) were evaluated in co-exposure studies. Moreover, rhodamine-123, Hoechst stain, monodansylcadaverine (MDC), and acridine orange (AO) stain were used to visualize the morphological changes under bright field and fluorescent microscopy. Subsequently, western blotting was adopted to determine the expression level of apoptotic and autophagic marker proteins. RESULTS Copper increased intracellular ROS, resulted in morphological abnormalities, nuclear condensation, and disrupted MMP. Moreover, Cu caused apoptotic cell deaths characterized by overexpressed pro-apoptotic proteins such as poly (ADP-ribose) polymerase (PARP), cysteine-dependent aspartate-specific proteases 3 (Caspase 3), and Bcl-2-associated X protein (Bax) and downregulated anti-apoptotic proteins such as B-cell lymphoma 2 (Bcl-2), respectively. However, quercetin restored overexpressed pro-apoptotic proteins and induced autophagosome-bound microtubule-associated protein light chain-3 (LC3II) conversion from LC3I. Furthermore, Cu-modulated autophagy marker proteins, including sequestosome-1 (p62), heat shock cognate proteins (Hsc 70, Hsc 90), lysosome-associated membrane protein (LAMP-2A), and AMP-associated protein kinase (AMPK). CONCLUSION This study promotes the nutraceutical ability of quercetin to combat Cu-induced hepatotoxicity by understanding the intricate biological signaling pathways within cells.
Collapse
Affiliation(s)
- Joyeeta Chakraborty
- Maulana Abul Kalam Azad University of Technology, Department of Biotechnology, NH 12, Haringhata, West Bengal 741249, India
| | - Sourav Pakrashi
- Maulana Abul Kalam Azad University of Technology, Department of Biotechnology, NH 12, Haringhata, West Bengal 741249, India; Bidhannagar College, Department of Microbiology, Kolkata, West Bengal 700064, India
| | - Jaya Bandyopadhyay
- Maulana Abul Kalam Azad University of Technology, Department of Biotechnology, NH 12, Haringhata, West Bengal 741249, India.
| |
Collapse
|
4
|
Haroun AM, El-Sayed WM, Hassan RE. Quercetin and L-Arginine Ameliorated the Deleterious Effects of Copper Oxide Nanoparticles on the Liver of Mice Through Anti-inflammatory and Anti-apoptotic Pathways. Biol Trace Elem Res 2024; 202:3128-3140. [PMID: 37775700 DOI: 10.1007/s12011-023-03884-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
The widespread use and applications of copper oxide nanoparticles (CuO NPs) in daily life make human exposure to these particles inevitable. This study was carried out to investigate the deteriorations in hepatic and serum biochemical parameters induced by CuO NPs in adult male mice and the potential ameliorative effect of L-arginine and quercetin, either alone or in combination. Seventy adult male mice were equally allocated into seven groups: untreated group, L-arginine, quercetin, CuO NPs, arginine + CuO NPs, quercetin + CuO NPs, and quercetin + arginine + CuO NPs. Treating mice with CuO NPs resulted in bioaccumulation of copper in the liver and consequent liver injury as typified by elevation of serum ALT activity, reduction in the synthetic ability of the liver indicated by a decrease in the hepatic arginase activity, and serum total protein content. This copper accumulation increased oxidative stress, lipid peroxidation, inflammation, and apoptosis as manifested by elevation in malondialdehyde, nitric oxide, tumor necrosis factor-α, the expression level of caspase-3 and bax quantified by qPCR, and the activity of caspase-3, in addition to the reduction of superoxide dismutase activity. It also resulted in severe DNA fragmentation as assessed by Comet assay and significant pathological changes in the liver architecture. The study proved the efficiency of quercetin and L-arginine in mitigating CuO NPs-induced sub-chronic liver toxicity due to their antioxidant, anti-inflammatory, and anti-apoptotic properties; ability to inhibit DNA damage; and the potential as good metal chelators. The results of histopathological analysis confirmed the biochemical and molecular studies.
Collapse
Affiliation(s)
- Amina M Haroun
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| | - Rasha E Hassan
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| |
Collapse
|
5
|
Hashim AR, Bashir DW, Rashad E, Galal MK, Rashad MM, Deraz NM, Drweesh EA, El-Gharbawy SM. Alleviative effect of betaine against copper oxide nanoparticles-induced hepatotoxicity in adult male albino rats: histopathological, biochemical, and molecular studies. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2024; 13:47. [DOI: 10.1186/s43088-024-00505-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/13/2024] [Indexed: 08/14/2024] Open
Abstract
Abstract
Background
Copper oxide nanoparticles (CuO-NPs) have gained interest due to their availability, efficiency, and their cost-effectiveness. Betaine is an essential methyl donor and takes part in various physiological activities inside the body; it is found to have protective and curative effects against various liver diseases. The present study aimed to evaluate the hepatotoxic effect of CuO-NPs on adult male albino rats and the ability of betaine to alleviate such hepatotoxicity.
Methods
Forty adult male albino Wister rats were grouped into 4 groups (10 rats/group): group I a negative control, group II (CuO-NPs) injected with CuO-NPs intra peritoneal by insulin needle (0.5 mg/kg/day), group III (betaine + CuO-NPs) administered betaine orally by gavage needle (250 mg/kg/day 1 h before CuO-NPs) and CuO-NPs (0.5 mg/kg/day) finally, group IV (betaine) administered betaine orally by gavage needle (250 mg/kg/day) for consecutive 28 days. Blood and liver samples were gathered and processed for biochemical, molecular, histopathological, and immunohistochemical investigations.
Results
Group II displayed a marked rise in alanine aminotransferase (ALT), aspartate aminotransferase (AST), and malondialdehyde (MDA) levels. Furthermore, there is an excessive upregulation of the inflammatory biomarkers interleukin1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). On the other hand, substantial reduction in glutathione (GSH) levels and significant downregulation at glutathione peroxidase (GPx) mRNA gene expression. Regarding the histopathological deviations, there were severe congestion, dilatation and hyalinization of blood vessels, steatosis, hydropic degeneration, hepatocytic necrosis, increased binucleation, degenerated bile ducts, hyperplasia of ducts epithelial lining, and inflammatory cells infiltration. Immunohistochemically, there was a pronounced immunoreactivity toward IL-1β. Luckily, the pre-administration of betaine was able to mitigate these changes. MDA was dramatically reduced, resulting in the downregulation of IL-1β and TNF-α. Additionally, there was a considerable rise in GSH levels and an upregulation of GPx. Histopathological deviations were substantially improved as diminished dilatation, hyalinization and congestion of blood vessels, hepatocytes, and bile ducts are normal to some extent. In addition, IL-1β immunohistochemical analysis revealed marked decreased intensity.
Conclusion
Betaine can effectively reduce the hepatotoxicity caused by CuO-NPs via its antioxidant properties and its ability to stimulate the cell redox system.
Collapse
|
6
|
Hashim AR, Bashir DW, Rashad E, Galal MK, Rashad MM, Khalil HMA, Deraz NM, S M EG. Neuroprotective Assessment of Betaine against Copper Oxide Nanoparticle-Induced Neurotoxicity in the Brains of Albino Rats: A Histopathological, Neurochemical, and Molecular Investigation. ACS Chem Neurosci 2024; 15:1684-1701. [PMID: 38564598 DOI: 10.1021/acschemneuro.3c00810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Copper oxide nanoparticles (CuO-NPs) are commonly used metal oxides. Betaine possesses antioxidant and neuroprotective activities. The current study aimed to investigate the neurotoxic effect of CuO-NPs on rats and the capability of betaine to mitigate neurotoxicity. Forty rats; 4 groups: group I a control, group II intraperitoneally CuO-NPs (0.5 mg/kg/day), group III orally betaine (250 mg/kg/day) and CuO-NPs, group IV orally betaine for 28 days. Rats were subjected to neurobehavioral assessments. Brain samples were processed for biochemical, molecular, histopathological, and immunohistochemical analyses. Behavioral performance of betaine demonstrated increasing locomotion and cognitive abilities. Group II exhibited significantly elevated malondialdehyde (MDA), overexpression of interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α). Significant decrease in glutathione (GSH), and downregulation of acetylcholine esterase (AChE), nuclear factor erythroid 2-like protein 2 (Nrf-2), and superoxide dismutase (SOD). Histopathological alterations; neuronal degeneration, pericellular spaces, and neuropillar vacuolation. Immunohistochemically, an intense immunoreactivity is observed against IL-1β and glial fibrillary acidic protein (GFAP). Betaine partially neuroprotected against CuO-NPs associated alterations. A significant decrease at MDA, downregulation of IL-1β, and TNF-α, a significant increase at GSH, and upregulation of AChE, Nrf-2, and SOD. Histopathological alterations partially ameliorated. Immunohistochemical intensity of IL-1β and GFAP reduced. It is concluded that betaine neuroprotected against most of CuO-NP neurotoxic effects through antioxidant and cell redox system stimulating efficacy.
Collapse
Affiliation(s)
- Asmaa R Hashim
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Dina W Bashir
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mona K Galal
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Maha M Rashad
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Heba M A Khalil
- Veterinary Hygiene and Management Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Nasrallah M Deraz
- Physical Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - El-Gharbawy S M
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
7
|
Hadwan MH, Hussein MJ, Mohammed RM, Hadwan AM, Saad Al-Kawaz H, Al-Obaidy SSM, Al Talebi ZA. An improved method for measuring catalase activity in biological samples. Biol Methods Protoc 2024; 9:bpae015. [PMID: 38524731 PMCID: PMC10957919 DOI: 10.1093/biomethods/bpae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024] Open
Abstract
Catalase (CAT) is an important enzyme that protects biomolecules against oxidative damage by breaking down hydrogen peroxide (H2O2) into water and oxygen. CAT is present in all aerobic microbes, animals, and plants. It is, however, absent from normal human urine but can be detected in pathological urine. CAT testing can thus help to detect such urine. This study presents a novel spectrophotometric method for determining CAT activity characterized by its simplicity, sensitivity, specificity, and rapidity. The method involves incubating enzyme-containing samples with a carefully chosen concentration of H2O2 for a specified incubation period. Subsequently, a solution containing ferrous ammonium sulfate (FAS) and sulfosalicylic acid (SSA) is added to terminate the enzyme activity. A distinctive maroon-colored ferrisulfosalicylate complex is formed. The formation of this complex is a direct result of the reaction between FAS and any residual peroxide present. This leads to the generation of ferric ions when coordinated with SSA. The complex has a maximum absorbance of 490 nm. This advanced method eliminates the need for concentrated acids to stop CAT activity, making it safer and easier to handle. A comparative analysis against the standard ferrithiocyanate method showed a correlation coefficient of 0.99, demonstrating the new method's comparable effectiveness and reliability. In conclusion, a simple and reliable protocol for assessing CAT activity, which utilizes a cuvette or microplate, has been demonstrated in this study. This interference-free protocol can easily be used in research and clinical analysis with considerable accuracy and precision.
Collapse
Affiliation(s)
| | - Marwah Jaber Hussein
- Department of Chemistry, College of Science, University of Babylon, Hilla 51002, Iraq
| | - Rawa M Mohammed
- Department of Medical Physics, University of Al-Mustaqbal, Hilla 51001, Iraq
| | - Asad M Hadwan
- Faculty of Natural Sciences, University of Tabriz, Tabriz, po 5166616471, Iran
- Al-Manara College for Medical Sciencespo Al-Amarah 62001, Iraq
| | - Hawraa Saad Al-Kawaz
- Department of Medical Laboratories Techniques, University of Al-Mustaqbal, Hilla 51001, Iraq
| | - Saba S M Al-Obaidy
- Department of Chemistry, College of Science, University of Babylon, Hilla 51002, Iraq
| | | |
Collapse
|
8
|
Jarrar Q, Almansour M, Jarrar B, Al-Doaiss A, Shati A. Hepatic ultrastructural alterations induced by copper oxide nanoparticles: In vivo electron microscopy study. Toxicol Ind Health 2023; 39:651-663. [PMID: 37789601 DOI: 10.1177/07482337231205921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Copper oxide nanomaterials (CuO NPs) have been widely utilized in many fields, including antibacterial materials, anti-tumor, osteoporosis treatments, imaging, drug delivery, cosmetics, lubricants for metallic coating, the food industry, and electronics. Little is known about the potential risk to human health and ecosystems. The present work was conducted to investigate the ultrastructural changes induced by 20 ± 5 nm CuO NPs in hepatic tissues. Adult healthy male Wister albino rats were exposed to 36 intraperitoneal (ip) injections of 25 nm CuO NPs (2 mg/kg bw). Liver biopsies from all rats under study were processed for transmission electron microscopy (TEM) processing and examination for hepatic ultrastructural alterations. The hepatic tissue of rats exposed to repeated administrations of CuO NPs exhibited the following ultrastructural alterations: extensive mitochondrial damage in the form of swelling, crystolysis and matrix lysis, formation of phagocytized bodies and myelin multilayer figures, lysosomal hyperplasia, cytoplasmic degeneration and vacuolation, fat globules precipitation, chromatin clumping, and nuclear envelope irregularity. The findings indicated that CuO NPs interact with the hepatic tissue components and could induce alterations in the hepatocytes with the mitochondria as the main target organelles of copper nanomaterials. More work is recommended for better understanding the pathogenesis of CuO NPs.
Collapse
Affiliation(s)
- Qais Jarrar
- Department of Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman, Jordan
| | - Mansour Almansour
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bashir Jarrar
- Nanobiolgy Unit, College of Applied Medical Sciences, Jerash University, Jerash, Jordan
| | - Amin Al-Doaiss
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ali Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
9
|
Ghareeb OA. Hematotoxicity Induced by Copper Oxide Nanoparticles and the Attenuating Role of Giloy In Vivo. Cureus 2023; 15:e46577. [PMID: 37936991 PMCID: PMC10626200 DOI: 10.7759/cureus.46577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
Background In line with the growing industrial applications of copper oxide nanoparticles (CuONPs) in various fields, concerns about their potentially harmful consequences on the environment, human, and animal health are increasing. Giloy is considered an alternative medicine to treat various ailments. Giloy's potential in helping manage diabetes, alleviating arthritis and joint pain, and addressing skin disorders such as eczema and acne underscores its multifaceted role in traditional medicine. Moreover, it is deemed beneficial for reducing stress and anxiety levels, promoting liver health, and potentially impacting heart health by regulating cholesterol levels. Emerging research also explores its potential in cancer prevention. This study aimed to evaluate the hematotoxicity of CuONPs and the alleviating effect of giloy in adult rats. Materials and methods In this experiment, 28 laboratory rats were used, set to four groups (7/group), as follows: control group without any dose; CuONPs group administered copper oxide nanoparticles at 300 mg/kg/day; CuONPs + giloy group dosed with CuONPs at 300 mg/kg/day plus giloy at 100 mg/kg/day; giloy group treated only with giloy at 100 mg/kg/day. All treatments were given by gastric gavage and continued for 28 uninterrupted days. Results Dosing animals with CuONPs led to significant adverse changes in the examined blood profile. In contrast, when the animals were coadministered with giloy, restoring the disturbed blood levels was observed. Conclusion Copper oxide nanoparticles at a high dose had notable hematotoxicity in laboratory rats and, supplemented with giloy, could reduce this hematological toxicity.
Collapse
|
10
|
Sutunkova MP, Ryabova YV, Minigalieva IA, Bushueva TV, Sakhautdinova RR, Bereza IA, Shaikhova DR, Amromina AM, Chemezov AI, Shelomencev IG, Amromin LA, Valamina IE, Toropova LV. Features of the response to subchronic low-dose exposure to copper oxide nanoparticles in rats. Sci Rep 2023; 13:11890. [PMID: 37482581 PMCID: PMC10363540 DOI: 10.1038/s41598-023-38976-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/18/2023] [Indexed: 07/25/2023] Open
Abstract
Copper is an essential trace element for human health and, at the same time, a major industrial metal widely used both in its elemental form and in compounds. We conducted a dose-dependent assessment of the response of outbred albino male rats to subchronic low-dose exposure to copper oxide nanoparticles administered intraperitoneally at cumulative doses of 18 and 36 mg/kg during 6 weeks to exposure groups 1 and 2, respectively. We observed disorders at different levels of organization of the body in the exposed animals, from molecular to organismal. The observed decrease in the activity of succinate dehydrogenase in nucleated blood cells gave evidence of impaired bioenergetics processes. In view of the results of the metabolomics analysis, we assume mitochondrial damage and contribution of apoptotic processes to the pathology induced by copper poisoning. We also assume neurodegenerative effects based on the assessed morphological parameters of the nervous system, results of behavioral tests, and a decreased level of expression of genes encoding NMDA receptor subunits in the hippocampus. The hepatotoxic effect noted by a number of metabolomics-based, biochemical, and cytological indicators was manifested by the impaired protein-synthesizing function of the liver and enhanced degenerative processes in its cells. We also observed a nephrotoxic effect of nanosized copper oxide with a predominant lesion of proximal kidney tubules. At the same time, both doses tested demonstrated such positive health effects as a statistically significant decrease in the activity of alkaline phosphatase and the nucleated blood cell DNA fragmentation factor. Judging by the changes observed, the cumulative dose of copper oxide nanoparticles of 18 mg/kg body weight administered intraperitoneally approximates the threshold one for rats. The established markers of health impairments may serve as a starting point in the development of techniques of early diagnosis of copper poisoning.
Collapse
Affiliation(s)
- Marina P Sutunkova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, Yekaterinburg, Russian Federation, 620014
| | - Yuliya V Ryabova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, Yekaterinburg, Russian Federation, 620014
- Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Ural Federal University, 51 Lenin Avenue, Yekaterinburg, Russian Federation, 620000
| | - Ilzira A Minigalieva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, Yekaterinburg, Russian Federation, 620014
- Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Ural Federal University, 51 Lenin Avenue, Yekaterinburg, Russian Federation, 620000
| | - Tatiana V Bushueva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, Yekaterinburg, Russian Federation, 620014
| | - Renata R Sakhautdinova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, Yekaterinburg, Russian Federation, 620014
| | - Ivan A Bereza
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, Yekaterinburg, Russian Federation, 620014
| | - Daria R Shaikhova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, Yekaterinburg, Russian Federation, 620014
| | - Anna M Amromina
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, Yekaterinburg, Russian Federation, 620014
| | - Aleksei I Chemezov
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, Yekaterinburg, Russian Federation, 620014
| | - Ivan G Shelomencev
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, Yekaterinburg, Russian Federation, 620014
| | - Lev A Amromin
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, Yekaterinburg, Russian Federation, 620014
| | - Irene E Valamina
- Ural State Medical University, 2 Repin Street, Yekaterinburg, Russian Federation, 620014
| | - Liubov V Toropova
- Laboratory of Mathematical Modeling of Physical and Chemical Processes in Multiphase Media, Ural Federal University, 51 Lenin Ave, Yekaterinburg, Russian Federation, 620000.
- Otto-Schott-Institut Für Materialforschung, Friedrich-Schiller-Universität-Jena, 07743, Jena, Germany.
| |
Collapse
|
11
|
Nassar ARA, Atta HM, Abdel-Rahman MA, El Naghy WS, Fouda A. Myco-synthesized copper oxide nanoparticles using harnessing metabolites of endophytic fungal strain Aspergillus terreus: an insight into antibacterial, anti-Candida, biocompatibility, anticancer, and antioxidant activities. BMC Complement Med Ther 2023; 23:261. [PMID: 37481531 PMCID: PMC10363295 DOI: 10.1186/s12906-023-04056-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/26/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND The overuse of antibiotics leads to the emergence of antibiotic-resistant microbes which causes high mortality worldwide. Therefore, the synthesis of new active compounds has multifunctional activities are the main challenge. Nanotechnology provides a solution for this issue. METHOD The endophytic fungal strain Aspergillus terreus BR.1 was isolated from the healthy root of Allium sativum and identified using internal transcribed spacer (ITS) sequence analysis. The copper oxide nanoparticles (CuO-NPs) were synthesized by harnessing the metabolites of the endophytic fungal strain. The UV-Visble spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Transmission electron micrscopy (TEM), Energy dispersive X-ray (EDX), X-ray diffraction (XRD), Dynamic light scattering (DLS), and zeta potential (ζ) were used for the characterization of synthesized CuO-NPs. The activity against different pathogenic bacteria and Candida species were investigated by agar well-diffusion method. The biocombatibility and anticancer activity were assessed by MTT assay method. The scavenging of DPPH was used to investigate the antioxidant activity of synthesized CuO-NPs. RESULTS Data showed the successful formation of crystalline nature and spherical shape CuO-NPs with sizes in the ranges of 15-55 nm. The EDX reveals that the as-formed sample contains ions of C, O, Cl, and Cu with weight percentages of 18.7, 23.82, 11.31, and 46.17%, respectively. The DLS and ζ-potential showed high homogeneity and high stability of synthesized CuO-NPs with a polydispersity index (PDI) of 0.362 and ζ-value of - 26.6 mV. The synthesized CuO-NPs exhibited promising antibacterial and anti-Candida activity (concentration-dependent) with minimum inhibitory concentration (MIC) values in the ranges of 25-50 µg mL-1. Moreover, the fungal mediated-CuO-NPs targeted cancer cells of MCF7 and PC3 at low IC50 concentrations of 159.2 ± 4.5 and 116.2 ± 3.6 µg mL-1, respectively as compared to normal cells (Vero and Wi38 with IC50 value of 220.6 ± 3.7 and 229.5 ± 2.1 µg mL-1, respectively). The biosynthesized CuO-NPs showed antioxidant activity as detected by the DPPH method with scavenging percentages of 80.5 ± 1.2% at a concentration of 1000 µg mL-1 and decreased to 20.4 ± 4.2% at 1.9 µg mL-1 as compared to ascorbic acid (control) with scavenging activity of 97.3 ± 0.2 and 37.5 ± 1.3% at the same concentrations, respectively. CONCLUSION The fungal mediated-CuO-NPs exhibited promising activity and can be integrated into various biomedical and theraputic applications.
Collapse
Affiliation(s)
| | - Hossam M Atta
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Mohamed Ali Abdel-Rahman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Wageih S El Naghy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| |
Collapse
|
12
|
Mandil R, Prakash A, Rahal A, Koli S, Kumar R, Garg SK. Evaluation of oxidative stress-mediated cytotoxicity and genotoxicity of copper and flubendiamide: amelioration by antioxidants in vivo and in vitro. Toxicol Res (Camb) 2023; 12:232-252. [PMID: 37125329 PMCID: PMC10141782 DOI: 10.1093/toxres/tfad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/03/2022] [Accepted: 01/30/2023] [Indexed: 03/09/2023] Open
Abstract
Present study was designed to evaluate toxic effects of copper (Cu) (@ 33 mg/kg b.wt.) and flubendimide (Flb) (@ 200 mg/kg b.wt.) alone and/or in combination on blood-biochemical indices, oxidative stress, and drug metabolizing enzymes (DMEs) in vivo in male Wistar rats following oral exposure continuously for 90 days and their immunotoxic (cyto-genotoxic and apoptotic) potential in vitro on thymocytes. In in vivo study, ameliorative potential of α-tocopherol was assessed, whereas α-tocopherol, curcumin, resveratrol, and catechin were evaluated for protective effect in vitro. Significantly (P < 0.05) increased AST activity and increment in total bilirubin, uric acid, creatinine, and BUN levels; however, reduction in total protein, GSH content, reduced activities of SOD and GST, and increased lipid peroxidation and GPx activity with severe degenerative changes in histopathological examination of liver and kidney in group of Cu and Flb were observed. Treatment with α-tocopherol improved biochemical variables, redox status, and histoarchitecture of liver and kidney tissues. Reduced hepatic CYP450, CYPb5, APH, UGT, and GST activities observed in both Cu and α-tocopherol alone and their combination groups, whereas significant increment in Flb alone, while α-tocopherol in combination with xenobiotics improved the activities of hepatic DMEs. Primary cell culture of thymocytes (106 cells/ml) exposed to Cu and Flb each @ 40 μM increased TUNEL+ve cells, micronuclei induction, DNA shearing, and comet formation establishes their apoptotic and genotoxic potential, whereas treatment with antioxidants showed concentration-dependent significant reduction and their order of potency on equimolar concentration (10 μM) basis is: curcumin > resveratrol > catechin = α-tocopherol.
Collapse
Affiliation(s)
- Rajesh Mandil
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, India
| | - Atul Prakash
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, India
| | - Anu Rahal
- Central Institute for Research on Goat (CIRG), Makhdoom, Farah, Mathura 281122, India
| | - Swati Koli
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, India
| | - Rahul Kumar
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishvidyalay Evam Go- Anushandhan Sansthan (DUVASU), Near Civil Line, Mathura 281001, India
| | - Satish K Garg
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, India
| |
Collapse
|
13
|
Çiçek S. Influences of l-ascorbic acid on cytotoxic, biochemical, and genotoxic damages caused by copper II oxide nanoparticles in the rainbow trout gonad cells-2. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109559. [PMID: 36738901 DOI: 10.1016/j.cbpc.2023.109559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
In parallel with the raising use of copper oxide nanoparticles (CuO NPs) in various industrial and commercial practices, scientific reports on their release to the environment and toxicity are increasing. The toxicity of CuO NPs is mostly based on their oxidative stress. Therefore, it is necessary to investigate the efficacy of well-known therapeutic agents as antioxidants against CuO NPs damage. This study aimed to investigate the mechanism of this damage and to display whether l-ascorbic acid could preserve against the cell toxicities induced by CuO NPs in the rainbow trout gonad cells-2 (RTG-2). While CuO NPs treatment significantly diminished cell viability, the l-ascorbic acid supplement reversed this. l-ascorbic acid treatment reversed the changes in expressions of sod1, sod2, gpx1a, and gpx4b genes while playing a supportive role in the changes in the expression of the cat gene induced by CuO NPs treatment. Moreover, CuO NPs treatment caused an upregulation in the expressions of growth-related genes (gh1, igf1, and igf2) and l-ascorbic acid treatment further increased these effects. CuO NPs treatment significantly up-regulated the expression of the gapdh gene (glycolytic enzyme gene) compared to the control group, and l-ascorbic acid treatment significantly down-regulated the expression of the gapdh gene compared to CuO NPs treatment. The genotoxicity test demonstrated that l-ascorbic acid treatment increased the genotoxic effect caused by CuO NPs by acting as a co-mutagen. Based on the findings, l-ascorbic acid has the potential to be sometimes inhibitory and sometimes supportive of cellular mechanisms caused by CuO NPs.
Collapse
Affiliation(s)
- Semra Çiçek
- Animal Biotechnology Department, Faculty of Agriculture, Atatürk University, Erzurum 25400, Turkey.
| |
Collapse
|
14
|
Abdel-Azeem AM, Abdel-Rehiem ES, Farghali AA, Khidr FK, Abdul-Hamid M. Comparative toxicological evaluations of novel forms nano-pesticides in liver and lung of albino rats. J Mol Histol 2023; 54:157-172. [PMID: 37000336 PMCID: PMC10079706 DOI: 10.1007/s10735-023-10115-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/08/2023] [Indexed: 04/01/2023]
Abstract
Copper oxide Nanoparticles (CuONPs) are used in different agricultural applications. Large amounts of CuONPs cause organ dysfunction in animals. Our study aim to compare between the toxic effects of CuONanSphere (CuONSp) and CuONanoFlower (CuONF) as new nano-pesticides, determine a less toxic form when used in agricultural applications. To characterize CuONSp and CuONF, we used X-ray diffraction (XRD), Field emission scanning electron microscopy (SEM), and High resolution transmission electron microscopy (HRTEM) and Zeta-sizer device.18 adult male albino rats were divided into three groups (n = 6), (I) control group, (II) and (III) groups were given orally 50 mg/kg/day of CuONSp and CuONF 30 days respectively. CuONSp induced oxidant-antioxidant abnormalities, including an increase in malondialdhyde (MDA) and a decrease in glutathione (GSH) in comparison to CuONF-treated one. CuONSp induced an increase in liver enzymes activities compared to CuONF. Tumour necrosis factor-alfa (TNF-α) detected an increased in liver and lung compared to CuONF. However, histological examinations revealed changes in CuONSp group than CuONF group. Changes in immune-expressions of TNF-α, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kβ) and tumour suppressor gene (p53) were also more identified in CuONSp group than CuONF group. Ultrastructural studies of liver and lung tissues marked alternations were observed in CuONSp group than CuONF group. In conclusion, CuONSp induced biological alternation in liver and lung more than CuONF. So, CuONF is less toxic compared to CuONSp when used as nano-pesticide in agricultural applications.
Collapse
Affiliation(s)
- Abeer M Abdel-Azeem
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. BOX 62511, Beni-Suef, Egypt
| | - Eman S Abdel-Rehiem
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62511, Beni-Suef, Egypt
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate studies for Advanced Sciences, Beni-Suef University, P.O. Box 62511, Beni-Suef, Egypt
| | - Fatma K Khidr
- Animal Research Department, Plant Protection Research Institute, Agricultural Research Center, Cairo, Egypt
| | - Manal Abdul-Hamid
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. BOX 62511, Beni-Suef, Egypt.
| |
Collapse
|
15
|
Daei S, Abbasalipourkabir R, Khajvand-Abedini M, Ziamajidi N. The Alleviative Efficacy of Vitamins A, C, and E Against Zinc Oxide Nanoparticles-Induced Hepatic Damage by Reducing Apoptosis in Rats. Biol Trace Elem Res 2023; 201:1252-1260. [PMID: 35364806 DOI: 10.1007/s12011-022-03218-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Nanoparticles are vastly exploited in today's technology. However, it is realized that exposure to high concentrations of nanoparticles (NPs) may have adverse effects on human health. According to previous reports, zinc oxide (ZnO) NPs cause toxic effects in tissues via inducing apoptosis. The current work was designed to evaluate possible protective activities of vitamins (Vits) A, C, and E against ZnO NPs-induced apoptosis in the liver of rats. To this aim, fifty-four adult male Wistar rats were randomly distributed into nine groups (n = 6 rats for each group), namely, Control1 (water), Control2 (olive oil), Vit A (1000 IU/kg), Vit C (200 mg/kg), Vit E (100 IU/kg), ZnO (200 mg/kg), ZnO + VitA, ZnO + VitC, and ZnO + VitE. To investigate apoptosis, the mRNA and protein expression of Bcl-2-associated X (Bax) and B-cell lymphoma protein 2 (Bcl-2) were examined by qRT-PCR and western blot techniques. The mRNA and protein expression of TNF-α as well as the activity of caspase 3,7 were also measured. The results revealed that ZnO NPs considerably enhance the ratio of Bax to Bcl-2 mRNA and protein expression as well as the activity of caspase 3,7 compared to the control group. Furthermore, the findings implied that the elevated level of TNF-α may link with ZnO NPs-mediated apoptosis in the liver of rats. More importantly, Vits A, C, and E exhibited ameliorative properties against apoptosis-inducing effects of ZnO NPs. Thus, administration of Vits A, C, and E may be effective in preventing liver damage and apoptosis caused by ZnO NPs.
Collapse
Affiliation(s)
- Sajedeh Daei
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Khajvand-Abedini
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Molecular Medicine Research Center, Hamadan University of Medical Science, Hamadan, Iran.
| |
Collapse
|
16
|
Abdel-Azeem AM, Abdel-Rehiem ES, Farghali AA, Khidr FK, Abdul-Hamid M. Ameliorative role of nanocurcumin against the toxicological effects of novel forms of Cuo as nanopesticides: a comparative study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26270-26291. [PMID: 36355242 PMCID: PMC9995535 DOI: 10.1007/s11356-022-23886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Copper oxide nanoparticles (CuONPs) have a wide range of uses in agricultural applications. Nanocurcumin (NCur) acts as an antioxidant treatment. The goal of the study is to reduce the toxicity resulting from the use of CuONPs as nanopesticides on living organisms by inducing changes in the morphological shape of CuONPs or treating it with NCur. So, we induced a comparative study between three shapes of CuONPs: CuO nanosphere (CuONSp), CuO nanosheet (CuONS), and CuO nanoflower (CuONF). We characterize each nano-form by using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (HRTEM), and Zetasizer HT device; 36 rats were divided into six groups (n = 6): 1st group was the control group; 2nd group received 50 mg/kg/day of NCur orally for 30 days; 3rd, 4th, and 5th groups received orally 50 mg/kg/day of CuONSp, CuONS, and CuONF, respectively, for 30 days; 6th group received 50 mg/kg/day CuONSp plus 50 mg/kg/day of NCur orally for 30 days. An elevation occurred in malondialdehyde (MDA), liver and kidney functions, tumor necrosis factor-alpha (TNF-α), and B-cell lymphoma 2 (Bcl2) by CuONSp > CuONS > CuONF, respectively. An inhibition occurred in glutathione (GSH), superoxidase (SOD) catalase (CAT), apoptotic Bax gene (Bax), histopathological, and ultrastructural alterations by CuONSp < CuONS < CuONF, respectively. NCur ameliorated these alternations. In conclusion, CuONF is a better form compared to other forms of nanopesticide in agriculture due to its lower toxicity. NCur decreased the biological alternations which induced by CuONSp due to its antioxidant and anti-apoptotic properties.
Collapse
Affiliation(s)
- Abeer M Abdel-Azeem
- Cell Biology, Histology and Genetics Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. BOX 62521, Beni-Suef, Egypt
| | - Eman S Abdel-Rehiem
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, P.O. Box 62511, Beni-Suef, Egypt
| | - Fatma K Khidr
- Animal Research Department, Plant Protection Research Institute, Agricultural Research Center, Cairo, Egypt
| | - Manal Abdul-Hamid
- Cell Biology, Histology and Genetics Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. BOX 62521, Beni-Suef, Egypt.
| |
Collapse
|
17
|
Hussein AS, Hashem AH, Salem SS. Mitigation of the hyperglycemic effect of streptozotocin-induced diabetes albino rats using biosynthesized copper oxide nanoparticles. Biomol Concepts 2023; 14:bmc-2022-0037. [PMID: 38230658 DOI: 10.1515/bmc-2022-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/07/2023] [Indexed: 01/18/2024] Open
Abstract
Diabetes mellitus is a metabolic disorder described by compromised insulin synthesis or resistance to insulin inside the human body. Diabetes is a persistent metabolic condition defined by elevated amounts of glucose in the bloodstream, resulting in a range of potential consequences. The main purpose of this study was to find out how biosynthesized copper oxide nanoparticles (CuONPs) affect the blood sugar levels of diabetic albino rats induced by streptozotocin (STZ). In the current study, CuONPs were successfully biosynthesized using Saccharomyes cervisiae using an eco-friendly method. Characterization results revealed that biosynthesized CuONPs appeared at 376 nm with a spherical shape with sizes ranging from 4 to 47.8 nm. Furthermore, results illustrated that administration of 0.5 and 5 mg/kg CuONP in diabetic rats showed a significant decrease in blood glucose levels accompanied by elevated insulin levels when compared to the diabetic control group; however, administration of 0.5 mg/kg is the best choice for diabetic management. Furthermore, it was found that the group treated with CuONPs exhibited a noteworthy elevation in the HDL-C level, along with a depletion in triglycerides, total cholesterol, LDL-C, and VLDL-cholesterol levels compared to the diabetic control group. This study found that administration of CuONPs reduced hyperglycemia and improved pancreatic function as well as dyslipidemia in diabetic rats exposed to STZ, suggesting their potential as a promising therapeutic agent for diabetes treatment.
Collapse
Affiliation(s)
- Ahmed Saber Hussein
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Salem S Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| |
Collapse
|
18
|
Ara T, Ono S, Hasan M, Ozono M, Kogure K. Protective effects of liposomes encapsulating ferulic acid against CCl 4-induced oxidative liver damage in vivo rat model. J Clin Biochem Nutr 2023; 72:46-53. [PMID: 36777075 PMCID: PMC9899917 DOI: 10.3164/jcbn.22-37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/02/2022] [Indexed: 01/01/2023] Open
Abstract
Antioxidants are useful for the treatment of oxidative stress mediated liver damage. A naturally occurring antioxidant γ-oryzanol is rapidly hydrolyzed to its active hydrophobic metabolite, ferulic acid, inside the body. Limitations associated with the hydrophobicity of ferulic acid can be overcome by encapsulating in a liposomal formulation. As intravenously administered nanoparticles (including liposomes) can effectively reach the liver, such systems may be suitable drug delivery carriers to treat liver injury. In this study, we prepared a liposomal formulation of ferulic acid (ferulic-lipo) and examined its effects on liver damage induced by CCl4. Ferulic-lipo were ~100 nm in size and drug encapsulation efficiency was about 92%. Ferulic-lipo showed potent scavenging efficacy against hydroxyl radical compared to α-tocopherol liposomes. Ferulic-lipo significantly prevented CCl4-mediated cytotoxicity in human hepatocarcinoma cells. Furthermore, intravenous administration of ferulic-lipo significantly reduced alanine aminotransferase and aspartate amino transferase levels in a rat model of liver injury. CCl4-mediated reactive oxygen species generation in liver was also reduced by intravenous administration of ferulic-lipo. Hepatoprotective effects of ferulic-lipo were demonstrated by histological observation of CCl4-induced liver tissue damage. Therefore, ferulic-lipo exhibit potent antioxidative capacity and were suggested to be an effective formulation for prevention of oxidative damage of liver tissue.
Collapse
Affiliation(s)
- Tabassum Ara
- Graduate School of Pharmaceutical Sciences, Tokushima University, Shomachi 1, Tokushima 770-8505, Japan
| | - Satoko Ono
- Graduate School of Pharmaceutical Sciences, Tokushima University, Shomachi 1, Tokushima 770-8505, Japan
| | - Mahadi Hasan
- Research Centre for Experimental Modeling of Human Diseases, Kanazawa University, Takaramachi 13-1, Kanazawa 920-8640, Japan
| | - Mizune Ozono
- Graduate School of Biomedical Sciences, Tokushima University, Shomachi 1, Tokushima 770-8505, Japan
| | - Kentaro Kogure
- Graduate School of Biomedical Sciences, Tokushima University, Shomachi 1, Tokushima 770-8505, Japan,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
19
|
Yousef DM, Hassan HA, Nafea OE, El Fattah ERA. Crocin averts functional and structural rat hepatic disturbances induced by copper oxide nanoparticles. Toxicol Res (Camb) 2022; 11:911-919. [PMID: 36569481 PMCID: PMC9773068 DOI: 10.1093/toxres/tfac064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/26/2022] [Accepted: 07/11/2022] [Indexed: 12/27/2022] Open
Abstract
Background Exposure to nanoparticles became inevitable in our daily life due to their huge industrial uses. Copper oxide nanoparticles (CuONPs) are one of the most frequently utilized metal nanoparticles in numerous applications. Crocin (CRO) is a major active constituent in saffron having anti-inflammatory and antioxidant potentials. Objectives We designed this study to explore the probable defensive role of CRO against CuONPs-induced rat hepatic damage. Materials and methods Therefore, 24 adult rats were randomly distributed into 4 equal groups as negative control, CRO, CuONPs, and co-treated CuONPs with CRO groups. All treatments were administered for 14 days. The hepatotoxic effect of CuONPs was evaluated by estimation of hepatic alanine aminotransferase and aspartate aminotransferase enzymes, hepatic oxidative malondialdehyde and antioxidant glutathione reduced, serum levels of inflammatory biomarkers (tumor necrosis factor-alpha, interleukin-1-beta, and nuclear factor kappa B), and expression of the apoptotic BAX in hepatic tissues; in addition, histopathological examination of the hepatic tissues was conducted. Results We found that concurrent CRO supplement to CuONPs-treated rats significantly averted functional and structural rat hepatic damage as documented by decreased hepatic enzymes activities, restored hepatic oxidant/antioxidant balance, decreased serum levels of inflammatory biomarkers, reversed BAX-mediated apoptotic cell death in hepatic tissues along with repair of CuONPs-induced massive hepatic structural and ultrastructural alterations. Conclusions It is concluded that combined CRO supplement to CuONPs-treated rats improved hepatic function and structure by, at least in part, antioxidant, anti-inflammatory, and antiapoptotic mechanisms.
Collapse
Affiliation(s)
- Doaa Mohammed Yousef
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Heba Ahmed Hassan
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ola Elsayed Nafea
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | | |
Collapse
|
20
|
Ahamed M, Akhtar MJ, Alhadlaq HA. Combined effect of single-walled carbon nanotubes and cadmium on human lung cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87844-87857. [PMID: 35821329 DOI: 10.1007/s11356-022-21933-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Co-exposure of widely used single-walled carbon nanotubes (SWCNTs) and ubiquitous cadmium (Cd) to humans through ambient air is unavoidable. Studies on joint toxicity of SWCNTs and Cd in human cells are scarce. We aimed to investigate the joint effects of SWCNTs and Cd in human lung epithelial (A549) cells. Results showed that SWCNTs were safe while Cd induce significant toxicity to A549 cells. Remarkably, Cd-induced cell viability reduction, lactate dehydrogenase leakage, cell cycle arrest, dysregulation of apoptotic gene (p53, bax, bcl-2, casp3, and casp9), and mitochondrial membrane potential depletion were significantly mitigated following SWCNTs co-exposure. Cd-induced intracellular level of reactive oxygen species, hydrogen peroxide, and lipid peroxidation were significantly attenuated by SWCNT co-exposure. Moreover, glutathione depletion and lower activity of antioxidant enzymes after Cd exposure were also effectively abrogated by co-exposure of SWCNTs. Inductively coupled plasma-mass spectrometry study indicated that higher adsorption of Cd on SCWNTs might decreased cellular uptake and the toxic potential of Cd in A549 cells. Our work warranted further research to explore the potential mechanism of joint effects of SWCNTs and Cd at in vivo levels.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
21
|
Xie D, Hu J, Wu T, Xu W, Meng Q, Cao K, Luo X. Effects of Flavonoid Supplementation on Nanomaterial-Induced Toxicity: A Meta-Analysis of Preclinical Animal Studies. Front Nutr 2022; 9:929343. [PMID: 35774549 PMCID: PMC9237539 DOI: 10.3389/fnut.2022.929343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 12/09/2022] Open
Abstract
BackgroundNanomaterials, widely applied in various fields, are reported to have toxic effects on human beings; thus, preventive or therapeutic measures are urgently needed. Given the anti-inflammatory and antioxidant activities, supplementation with flavonoids that are abundant in the human diet has been suggested as a potential strategy to protect against nanomaterial-induced toxicities. However, the beneficial effects of flavonoids remain inconclusive. In the present study, we performed a meta-analysis to comprehensively explore the roles and mechanisms of flavonoids for animals intoxicated with nanomaterials.MethodsA systematic literature search in PubMed, EMBASE, and Cochrane Library databases was performed up to April 2022. STATA 15.0 software was used for meta-analyses.ResultsA total of 26 studies were identified. The results showed that flavonoid supplementation could significantly increase the levels of antioxidative enzymes (superoxide dismutase, catalase, glutathione, glutathione peroxidase, and glutathione-S-transferase), reduce the production of oxidative agents (malonaldehyde) and pro-inflammatory mediators (tumor necrosis factor-α, interleukin-6, IL-1β, C-reactive protein, immunoglobulin G, nitric oxide, vascular endothelial growth factor, and myeloperoxidase), and alleviate cell apoptosis (manifested by decreases in the mRNA expression levels of pro-apoptotic factors, such as caspase-3, Fas cell surface death receptor, and Bax, and increases in the mRNA expression levels of Bcl2), DNA damage (reductions in tail length and tail DNA%), and nanomaterial-induced injuries of the liver (reduced alanine aminotransferase and aspartate aminotransferase activities), kidney (reduced urea, blood urea nitrogen, creatinine, and uric acid concentration), testis (increased testosterone, sperm motility, 17β-hydroxysteroid dehydrogenase type, and reduced sperm abnormalities), and brain (enhanced acetylcholinesterase activities). Most of the results were not changed by subgroup analyses.ConclusionOur findings suggest that appropriate supplementation of flavonoids may be effective to prevent the occupational detriments resulting from nanomaterial exposure.
Collapse
Affiliation(s)
- Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Jianchen Hu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Tong Wu
- Shanghai Jing Rui Yang Industrial Co., Ltd, Shanghai, China
| | - Wei Xu
- Shanghai Nutri-woods Bio-Technology Co., Ltd, Shanghai, China
| | - Qingyang Meng
- Shanghai Pechoin Daily Chemical Co., Ltd, Shanghai, China
| | - Kangli Cao
- Shanghai Institute of Spacecraft Equipment, Shanghai, China
| | - Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
- *Correspondence: Xiaogang Luo,
| |
Collapse
|
22
|
Chaudhury D, Sen U, Sahoo BK, Bhat NN, Kumara K S, Karunakara N, Biswas S, Shenoy P S, Bose B. Thorium promotes lung, liver and kidney damage in BALB/c mouse via alterations in antioxidant systems. Chem Biol Interact 2022; 363:109977. [DOI: 10.1016/j.cbi.2022.109977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 01/15/2023]
|
23
|
Malekinejad Z, Aghajani S, Jeddi M, Qahremani R, Shahbazi S, Bagheri Y, Ahmadian E. Prazosin Treatment Protects Brain and Heart by Diminishing Oxidative Stress and Apoptotic Pathways After Renal Ischemia Reperfusion. Drug Res (Stuttg) 2022; 72:336-342. [PMID: 35426094 DOI: 10.1055/a-1806-1453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Acute kidney injury (AKI) is a major medical challenge caused from renal ischemia-reperfusion (IR) injury connected with different cellular events in other distant organs. Renal IR-related oxidative stress and inflammation followed by cell apoptosis play a crucial role in IR-induced distant organ pathological damages. Prazosin has shown protective effects against IR-injuries. Thus, the current study intended to investigate the possible protective role of prazosin against the consequents of renal IR in the heart and brain tissues. To reach this goal, rats were randomly divided into 3 groups (n=7): Sham, IR and prazosin pretreatment-IR animals (1 mg/kg intraperitoneally injection of prazosin 45 min before IR induction). After 6 h reperfusion, lipid peroxidation and antioxidant markers levels were evaluated in the both, brain and heart tissue. Moreover, apoptotic pathway in the heart and brain tissues were assessed by western blotting. Accordingly, prazosin pretreatment in IR model rats could significantly increase the antioxidant capacity and attenuate apoptotic pathways by increasing the bcl-2 levels and decreasing the expression of Bax and caspase 3 enzymes (P<0.05). Thus, prazosin suppressed cellular damages of heart and brain tissues post kidney IR by anti-oxidative and anti-apoptotic effects, which suggests the plausible use of prazosin in improving the clinical outcomes during AKI after further investigations.
Collapse
Affiliation(s)
- Zahra Malekinejad
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Shadi Aghajani
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mostafa Jeddi
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Sina Shahbazi
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Yasin Bagheri
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Aouey B, Boukholda K, Gargouri B, Bhatia HS, Attaai A, Kebieche M, Bouchard M, Fetoui H. Silica Nanoparticles Induce Hepatotoxicity by Triggering Oxidative Damage, Apoptosis, and Bax-Bcl2 Signaling Pathway. Biol Trace Elem Res 2022; 200:1688-1698. [PMID: 34110565 DOI: 10.1007/s12011-021-02774-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023]
Abstract
The increase in the usage of silica nanoparticles (SiNPs) in the industrial and medical fields has raised concerns about their possible adverse effects on human health. The present study aimed to investigate the potential adverse effects of SiNPs at daily doses of 25 and 100 mg/kg body weight intraperitoneally (i.p.) for 28 consecutive days on markers of liver damage in adult male rats. Results revealed that SiNPs induced a marked increase in serum markers of liver damage, including lactate dehydrogenase (LDH), alanine aminotransferase (ALAT), and aspartate aminotransferase (ASAT). SiNPs also induced an elevation of reactive oxygen species (ROS) production in liver, along with an increase in oxidative stress markers (NO, MDA, PCO, and H2O2), and a decrease in antioxidant enzyme activities (CAT, SOD, and GPx). Quantitative real-time PCR showed that SiNPs also induced upregulation of pro-apoptotic gene expression (including Bax, p53, Caspase-9/3) and downregulation of anti-apoptotic factors Bcl-2. Moreover, histopathological analysis revealed that SiNPs induced hepatocyte alterations, which was accompanied by sinusoidal dilatation, Kupffer cell hyperplasia, and the presence of inflammatory cells in the liver. Taken together, these data showed that SiNPs trigger hepatic damage through ROS-activated caspase signaling pathway, which plays a fundamental role in SiNP-induced apoptosis in the liver.
Collapse
Affiliation(s)
- Bakhta Aouey
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia
| | - Khadija Boukholda
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia
| | - Brahim Gargouri
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia
| | - Harsharan S Bhatia
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum Der Universität München, Ludwig Maximilian University of Munich (LMU), 81377, Munich, Germany
| | - Abdelraheim Attaai
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mohamed Kebieche
- Laboratory of Cellular and Molecular Biology, University of Mohamed Seddik Ben Yahia, Jijel, Algeria
- Faculty of Natural and Life Sciences, LBMBPC, University of Batna 2, 05078, Fesdis, Batna2, Algeria
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U424Main Station, P.O. Box 6128, Montreal, Quebec, H3C 3J7, Canada
| | - Hamadi Fetoui
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| |
Collapse
|
25
|
Guo H, Wang Y, Cui H, Ouyang Y, Yang T, Liu C, Liu X, Zhu Y, Deng H. Copper Induces Spleen Damage Through Modulation of Oxidative Stress, Apoptosis, DNA Damage, and Inflammation. Biol Trace Elem Res 2022; 200:669-677. [PMID: 33740180 DOI: 10.1007/s12011-021-02672-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 01/26/2023]
Abstract
Copper (Cu) is an essential micronutrient for both humans and animals; however, excessive intake of Cu can be immunotoxic. There are limited studies on spleen toxicity induced by Cu. This study was conducted to investigate the effects of Cu on spleen oxidative stress, apoptosis, and inflammatory responses in mice orally administered with 0 mg/kg, 10 mg/kg, 20 mg/kg, and 40 mg/kg of CuSO4 for 42 days. As discovered in this work, copper sulfate (CuSO4) reduced the activities of antioxidant enzymes (SOD, CAT, and GSH-Px), decreased GSH contents, and increased MDA contents. Meanwhile, CuSO4 induced apoptosis by increasing TUNEL-positive cells in the spleen. Also, CuSO4 increased the expression of γ-H2AX, which is the marker of DNA damage. Concurrently, CuSO4 caused inflammation by increasing the mRNA levels of interleukin-1β (IL-1β), IL-2, IL-4, IL-6, IL-12, tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ). In conclusion, the abovementioned findings demonstrate that over 10 mg/kg CuSO4 can cause oxidative stress, apoptosis, DNA damage, and inflammatory responses, which contribute to spleen dysfunction in mice.
Collapse
Affiliation(s)
- Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Yuqin Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Agricultural information engineering of Sichuan Province, Sichuan Agriculture University, Yaan, 625014, Sichuan, China.
| | - Yujuan Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Tingyou Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Caiyun Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xiaoyu Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
| |
Collapse
|
26
|
Zada S, Raza S, Khan S, Iqbal A, Kai Z, Ahmad A, Ullah M, Kakar M, Fu P, Dong H, Xueji Z. Microalgal and cyanobacterial strains used for the bio sorption of copper ions from soil and wastewater and their relative study. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Komarnicka UK, Pucelik B, Wojtala D, Lesiów MK, Stochel G, Kyzioł A. Evaluation of anticancer activity in vitro of a stable copper(I) complex with phosphine-peptide conjugate. Sci Rep 2021; 11:23943. [PMID: 34907288 PMCID: PMC8671550 DOI: 10.1038/s41598-021-03352-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022] Open
Abstract
[CuI(2,9-dimethyl-1,10-phenanthroline)P(p-OCH3-Ph)2CH2SarcosineGlycine] (1-MPSG), highly stable in physiological media phosphino copper(I) complex—is proposed herein as a viable alternative to anticancer platinum-based drugs. It is noteworthy that, 1-MPSG significantly and selectively reduced cell viability in a 3D spheroidal model of human lung adenocarcinoma (A549), in comparison with non-cancerous HaCaT cells. Confocal microscopy and an ICP-MS analysis showed that 1-MPSG effectively accumulates inside A549 cells with colocalization in mitochondria and nuclei. A precise cytometric analysis revealed a predominance of apoptosis over the other types of cell death. In the case of HaCaT cells, the overall cytotoxicity was significantly lower, indicating the selective activity of 1-MPSG towards cancer cells. Apoptosis also manifested itself in a decrease in mitochondrial membrane potential along with the activation of caspases-3/9. Moreover, the caspase inhibitor (Z-VAD-FMK) pretreatment led to decreased level of apoptosis (more pronouncedly in A549 cells than in non-cancerous HaCaT cells) and further validated the caspases dependence in 1-MPSG-induced apoptosis. Furthermore, the 1-MPSG complex presumably induces the changes in the cell cycle leading to G2/M phase arrest in a dose-dependent manner. It was also observed that the 1-MPSG mediated intracellular ROS alterations in A549 and HaCaT cells. These results, proved by fluorescence spectroscopy, and flow cytometry, suggest that investigated Cu(I) compound may trigger apoptosis also through ROS generation.
Collapse
Affiliation(s)
- Urszula K Komarnicka
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383, Wroclaw, Poland.
| | - Barbara Pucelik
- Małopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland.
| | - Daria Wojtala
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383, Wroclaw, Poland
| | - Monika K Lesiów
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383, Wroclaw, Poland
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Agnieszka Kyzioł
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland.
| |
Collapse
|
28
|
Mihailovic V, Katanic Stankovic JS, Selakovic D, Rosic G. An Overview of the Beneficial Role of Antioxidants in the Treatment of Nanoparticle-Induced Toxicities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7244677. [PMID: 34820054 PMCID: PMC8608524 DOI: 10.1155/2021/7244677] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022]
Abstract
Nanoparticles (NPs) are used in many products and materials for humans such as electronics, in medicine for drug delivery, as biosensors, in biotechnology, and in agriculture, as ingredients in cosmetics and food supplements. Besides that, NPs may display potentially hazardous properties on human health and the environment as a consequence of their abundant use in life nowadays. Hence, there is increased interest of researchers to provide possible therapeutic agents or dietary supplements for the amelioration of NP-induced toxicity. This review summarizes the new findings in the research of the use of antioxidants as supplements for the prevention and alleviation of harmful effects caused by exposure of organisms to NPs. Also, mechanisms involved in the formation of NP-induced oxidative stress and protective mechanisms using different antioxidant substances have also been elaborated. This review also highlights the potential of naturally occurring antioxidants for the enhancement of the antioxidant defense systems in the prevention and mitigation of organism damage caused by NP-induced oxidative stress. Based on the presented results of the most recent studies, it may be concluded that the role of antioxidants in the prevention and treatment of nanoparticle-induced toxicity is unimpeachable. This is particularly important in terms of oxidative stress suppression.
Collapse
Affiliation(s)
- Vladimir Mihailovic
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Jelena S. Katanic Stankovic
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijica bb, 34000 Kragujevac, Serbia
| | - Dragica Selakovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Gvozden Rosic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| |
Collapse
|
29
|
Mihailovic V, Katanic Stankovic JS, Selakovic D, Rosic G. An Overview of the Beneficial Role of Antioxidants in the Treatment of Nanoparticle-Induced Toxicities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021. [DOI: https://doi.org/10.1155/2021/7244677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nanoparticles (NPs) are used in many products and materials for humans such as electronics, in medicine for drug delivery, as biosensors, in biotechnology, and in agriculture, as ingredients in cosmetics and food supplements. Besides that, NPs may display potentially hazardous properties on human health and the environment as a consequence of their abundant use in life nowadays. Hence, there is increased interest of researchers to provide possible therapeutic agents or dietary supplements for the amelioration of NP-induced toxicity. This review summarizes the new findings in the research of the use of antioxidants as supplements for the prevention and alleviation of harmful effects caused by exposure of organisms to NPs. Also, mechanisms involved in the formation of NP-induced oxidative stress and protective mechanisms using different antioxidant substances have also been elaborated. This review also highlights the potential of naturally occurring antioxidants for the enhancement of the antioxidant defense systems in the prevention and mitigation of organism damage caused by NP-induced oxidative stress. Based on the presented results of the most recent studies, it may be concluded that the role of antioxidants in the prevention and treatment of nanoparticle-induced toxicity is unimpeachable. This is particularly important in terms of oxidative stress suppression.
Collapse
Affiliation(s)
- Vladimir Mihailovic
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Jelena S. Katanic Stankovic
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijica bb, 34000 Kragujevac, Serbia
| | - Dragica Selakovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Gvozden Rosic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| |
Collapse
|
30
|
Sheteiwy MS, Shaghaleh H, Hamoud YA, Holford P, Shao H, Qi W, Hashmi MZ, Wu T. Zinc oxide nanoparticles: potential effects on soil properties, crop production, food processing, and food quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36942-36966. [PMID: 34043175 DOI: 10.1007/s11356-021-14542-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
The use of zinc oxide nanoparticles (ZnO NPs) is expected to increase soil fertility, crop productivity, and food quality. However, the potential effects of ZnO NP utilization should be deeply understood. This review highlights the behavior of ZnO NPs in soil and their interactions with the soil components. The review discusses the potential effects of ZnO NPs on plants and their mechanisms of action on plants and how these mechanisms are related to their physicochemical properties. The impact of current applications of ZnO NPs in the food industry is also discussed. Based on the literature reviewed, soil properties play a vital role in dispersing, aggregation, stability, bioavailability, and transport of ZnO NPs and their release into the soil. The transfer of ZnO NPs into the soil can affect the soil components, and subsequently, the structure of plants. The toxic effects of ZnO NPs on plants and microbes are caused by various mechanisms, mainly through the generation of reactive oxygen species, lysosomal destabilization, DNA damage, and the reduction of oxidative stress through direct penetration/liberation of Zn2+ ions in plant/microbe cells. The integration of ZnO NPs in food processing improves the properties of the relative ZnO NP-based nano-sensing, active packing, and food/feed bioactive ingredients delivery systems, leading to better food quality and safety. The unregulated/unsafe discharge concentrations of ZnO NPs into the soil, edible plant tissues, and processed foods raise environmental/safety concerns and adverse effects. Therefore, the safety issues related to ZnO NP applications in the soil, plants, and food are also discussed.
Collapse
Affiliation(s)
- Mohamed Salah Sheteiwy
- Salt-Soil Agricultural Center, Institute of Agriculture Resources and Environment, Jiangsu Academy of Agriculture Science (JAAS), Nanjing, 210014, China
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Hiba Shaghaleh
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yousef Alhaj Hamoud
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China.
| | - Paul Holford
- School of Science, Western Sydney University, Locked Bag 1797, NSW, 2751, Penrith, Australia
| | - Hongbo Shao
- Salt-Soil Agricultural Center, Institute of Agriculture Resources and Environment, Jiangsu Academy of Agriculture Science (JAAS), Nanjing, 210014, China.
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, China.
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, China.
| | - Weicong Qi
- Salt-Soil Agricultural Center, Institute of Agriculture Resources and Environment, Jiangsu Academy of Agriculture Science (JAAS), Nanjing, 210014, China
| | | | - Tianow Wu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| |
Collapse
|
31
|
Mitigating the Growth, Biochemical Changes, Genotoxic and Pathological Effects of Copper Toxicity in Broiler Chickens by Supplementing Vitamins C and E. Animals (Basel) 2021; 11:ani11061811. [PMID: 34204508 PMCID: PMC8234185 DOI: 10.3390/ani11061811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Copper (Cu) is a trace element necessary for biological utility; nevertheless, it can produce significant harmful impacts when existing in abundance. This study examined the efficiency of vitamin C and vitamin E in alleviating the biochemical, genotoxicity, and pathological alterations in the liver induced by copper sulfate (CuSO4) toxicity in chickens. The broilers were fed on five experimental diets; basal diet with no additives or basal diets supplemented with 300 mg CuSO4/kg, CuSO4 + 250 mg Vit. C/kg diet, CuSO4 + 250 mg Vit. E/kg diet, CuSO4 + 250 mg Vit. C/kg diet + 250 mg Vit. E/kg diet for six weeks. The obtained results suggested that addition of vitamin C and E, especially in combination, was beneficial for alleviating the harmful effects of CuSO4 toxicity on growth performance and liver histoarchitecture in broiler chickens. Abstract This experiment was carried out to explore the efficiency of an individual or combined doses of vitamin C (Vit. C) and vitamin E (Vit. E) in alleviating biochemical, genotoxicity, and pathological changes in the liver induced by copper sulfate (CuSO4) toxicity in broiler chickens. Two hundred and fifty-one-day-old broiler chicks were haphazardly allotted into five groups (five replicates/group, ten chicks/replicate). The birds were fed five experimental diets; (1) basal diet with no additives (CON), (2) basal diets supplemented with 300 mg CuSO4/kg diet (CuSO4), (3) basal diets supplemented with 300 mg CuSO4/kg diet + 250 mg Vit. C /kg diet, (4) basal diets supplemented with 300 mg CuSO4/kg diet +250 mg Vit. E /kg diet, (5) basal diets supplemented with 300 mg CuSO4/kg diet + 250 mg Vit. C /kg diet + 250 mg Vit. E /kg diet for six weeks. The results displayed that CuSO4-intoxicated birds had significantly (p < 0.05) decreased bodyweight, weight gain, and feed intake with increased feed conversion ratio from the 2nd week till the 6th week compared with the CON. However, these changes were minimized by single or combined supplementation of vitamin C and E. The FCR was insignificantly different in birds-fed diets complemented with vitamin C and E singly or in combination from the 3rd week of age compared to the CON. Serum aminotransferases (ALT, AST) and alkaline phosphatase (ALP) were elevated in CuSO4-intoxicated birds (p < 0.05). Additionally, they showed a drop in serum total protein (TP), albumin, globulins, triglycerides (TG), total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), very low-density lipoprotein-cholesterol (VLDL-C), and high-density lipoprotein-cholesterol (HDL-C) levels compared to the CON (p < 0.05). Concomitantly, histopathological and DNA changes were perceived in the liver of CuSO4-intoxicated birds. Co-supplementation of Vit. C and Vit. E single-handedly or combined with CuSO4-intoxicated chickens enhanced the performance traits and abovementioned changes, especially with those given combinations of vitamins. From the extant inquiry, it could be established that supplementation of vitamin C and E was beneficial for mitigating the harmful effects of CuSO4 toxicity on growth performance and liver histoarchitecture in broiler chickens.
Collapse
|
32
|
Wani MR, Maheshwari N, Shadab G. Eugenol attenuates TiO 2 nanoparticles-induced oxidative damage, biochemical toxicity and DNA damage in Wistar rats: an in vivo study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22664-22678. [PMID: 33420693 DOI: 10.1007/s11356-020-12139-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in food, edible dyes, and other commercial products. Human exposure to TiO2 NPs has raised concerns regarding their toxic potential. Various studies have evaluated the TiO2 NPs-induced toxicity, oxidative damage to the cellular components, and genotoxicity. In the present study, we examined whether co-treatment with the dietary antioxidant eugenol can attenuate or protect against TiO2 NPs-induced toxicity. We exposed the adult male Wistar rats to TiO2 NPs (150 mg/kg body weight) by intraperitoneal injection (i.p.) either alone or as co-treatment with eugenol (1-10 mg/kg body weight) once a day for 14 days. The untreated rats were supplied saline and served as control. Titanium (Ti) accumulation in various tissues was analyzed by inductively coupled plasma mass spectrometry. Serum levels of liver and kidney biomarkers and oxidative stress markers in the liver, kidney, and spleen were determined. A significant increase in hydrogen peroxide level confirmed that oxidative stress occurred in these tissues. TiO2 NPs induced oxidation of lipids, and decreased glutathione level and antioxidant enzyme activity in the kidney, liver, and spleen of treated rats. TiO2 NPs also increased the serum levels of alanine aminotransferase, alkaline phosphatase, aspartate aminotransferase, albumin, and total cholesterol and decreased the blood urea nitrogen, uric acid, and total bilirubin in serum, which indicates oxidative damage to the liver and kidney. In eugenol and TiO2 NPs co-treated rats, all these changes were mitigated. Single-cell gel electrophoresis (comet assay) of lymphocytes showed longer comet tail length in TiO2 NPs-treated groups, indicating DNA damage while tail length was reduced in eugenol and TiO2 NPs co-treated groups. Thus, it seems that eugenol can be used as a chemoprotective agent against TiO2 NPs-induced toxicity.
Collapse
Affiliation(s)
- Mohammad Rafiq Wani
- Cytogenetics and Molecular Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Nikhil Maheshwari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Ghulam Shadab
- Cytogenetics and Molecular Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
33
|
Pulmonary Exposure to Copper Oxide Nanoparticles Leads to Neurotoxicity via Oxidative Damage and Mitochondrial Dysfunction. Neurotox Res 2021; 39:1160-1170. [PMID: 33826131 DOI: 10.1007/s12640-021-00358-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Copper oxide nanoparticles (CuONPs) are widely used in pharmaceutical, food, and textile industries. They have been shown to cause lung, liver, and kidney damage. However, whether an intratracheal instillation of CuONPs would affect the brain and its underlying mechanisms remain poorly studied. In this study, healthy C57BL/6J male mice were equally subdivided into control group, low-dose (30 μg/animal), medium-dose (50 μg/animal), and high-dose (100 μg/animal) CuONPs-treated groups. Mice were subjected to acute exposure of CuONPs via intratracheal instillation. Brain histopathology, inflammatory factors, oxidative stress markers, and mitochondrial function-related protein expression were determined. Our results demonstrated that CuONPs caused a dose-dependent brain damage in mice. Histopathological changes in the brain, elevation of inflammatory factors (Tnf, Il-6), and significant alterations in oxidative stress markers were also observed after treatment with CuONPs. Intriguingly, we did not observe infiltration of macrophage cell. Moreover, Tim23, TFAM, and MFN2 protein expression levels showed the decreasing trend after treatment with CuONPs. Taken together, these results indicate that pulmonary exposure to CuONPs induces pathological damage, inflammation, oxidative stress, and mitochondrial dysfunction in the cerebral cortex, suggesting that neurotoxicity caused by pulmonary exposure of CuONPs needs more attention from the public and relevant departments.
Collapse
|