1
|
Kalboush ZA, Mazrou YSA, Hassan AA, Sherif A, Gabr WE, Ali Q, Nehela Y. Revisiting the emerging pathosystem of rice sheath blight: deciphering the Rhizoctonia solani virulence, host range, and rice genotype-based resistance. FRONTIERS IN PLANT SCIENCE 2024; 15:1499785. [PMID: 39748817 PMCID: PMC11693681 DOI: 10.3389/fpls.2024.1499785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025]
Abstract
Sheath blight, caused by Rhizoctonia solani AG1 IA, is a challenging disease of rice worldwide. In the current study, nine R. solani isolates, within the anastomosis group AG-1 IA, were isolated, characterized based on their macroscopic and microscopic features, as well as their ability to produce cell wall degrading enzymes (CWDEs), and further molecularly identified via ITS sequencing. Although all isolates were pathogenic and produced typical sheath blight symptoms the susceptible rice cultivar, Sakha 101, R. solani AG1 IA -isolate SHBP9 was the most aggressive isolate. The virulence of isolate SHBP9 was correlated with its overproduction of CWDEs, where it had the highest pectinase, amylase, and cellulase activity in vitro. R. solani AG1 IA -isolate SHBP9 was able to infect 12 common rice-associated weeds from the family Poaceae, as well as over 25 economic crops from different families, except chickpea (Cicer arietinum) from Fabaceae, Rocket (Eruca sativa) from Brassicaceae, and the four crops from Solanaceae. Additionally, rice genotype-based resistance was evaluated using 11 rice genotypes for their response to R. solani isolates, morphological traits, yield components, and using 12 SSR markers linked to sheath blight resistance. Briefly, the tested 11 rice genotypes were divided into three groups; Cluster "I" included only two resistant genotypes (Egyptian Yasmine and Giza 182), Cluster "II" included four moderately resistant genotypes (Egyptian hybrid 1, Giza 178, 181, and 183), whereas Cluster "III" included five susceptible (Sakha 104, 101, 108, Super 300 and Giza 177). Correspondingly, only surface-mycelium growth was microscopically noticed on the resistant cultivar Egyptian Yasmine, as well as the moderately resistant Egyptian hybrid 1, however, on the susceptible Sakha 104, the observed mycelium was branched, shrunk, and formed sclerotia. Accordingly, Indica and Indica/Japonica rice genotypes showed more resistance to R. solani than Japonica genotypes. These findings provide insights into its pathogenicity mechanisms and identify potential targets for disease control which ultimately contributes to the development of sustainable eco-friendly disease management strategies. Moreover, our findings might pave the way for developing resistant rice varieties by using more reliable resistance sources of non-host plants, as well as, rice genotype-based resistance as a genetic resource.
Collapse
Affiliation(s)
- Zeinab A. Kalboush
- Rice Pathology Department, Plant Pathology Research Institute, Agricultural Research Center, Sakha, Kafrelsheikh, Egypt
| | - Yasser S. A. Mazrou
- Business Administration Department, Community College, King Khalid University, Guraiger, Abha, Saudi Arabia
| | - Amr A. Hassan
- Rice Pathology Department, Plant Pathology Research Institute, Agricultural Research Center, Sakha, Kafrelsheikh, Egypt
| | - Ahmed Sherif
- Rice Research Department, Field Crops Research Institute, Agricultural Research Center, Sakha, Kafrelsheikh, Egypt
| | - Wael E. Gabr
- Rice Pathology Department, Plant Pathology Research Institute, Agricultural Research Center, Sakha, Kafrelsheikh, Egypt
| | - Qurban Ali
- Department of Biology, College of Science, United Arab Emirates University, Al-ain, Abu-Dhabi, United Arab Emirates
| | - Yasser Nehela
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Wang Y, Guo Y, Guo S, Qi L, Li B, Jiang L, Xu C, An M, Wu Y. RNA interference-based exogenous double-stranded RNAs confer resistance to Rhizoctonia solani AG-3 on Nicotiana tabacum. PEST MANAGEMENT SCIENCE 2024; 80:2170-2178. [PMID: 38284497 DOI: 10.1002/ps.7962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Rhizoctonia solani Kühn is a pathogenic fungus causing tobacco target spot disease, and leads to great losses worldwide. At present, resistant varieties and effective control strategy on tobacco target spot disease are very limited. Host-induced gene silencing (HIGS) as well as the exogenous dsRNA can be used to suppress disease progression, and reveal the function of crucial genes involved in the growth and pathogenesis of the fungus. RESULTS The silencing of endoPGs or RPMK1 in host plants by TRV-based HIGS resulted in a significant reduction in disease development in Nicotiana benthamiana. In vitro analysis validated that red fluorescence signals were consistently observed in the hyphae treated with Cy3-fluorescein-labeled dsRNA at 12, 24, 48 and 72 h postinoculation (hpi). Additionally, application of dsRNA-endoPGs, dsRNA-RPMK1 and dsRNA-PGMK (fusion of partial endoPGs and RPMK1 sequences) effectively inhibited the hyphal growth of R. solani YC-9 in vitro and suppressed disease progression in the leaves, and quantitative real-time PCR confirmed that the application of dsRNAs significantly reduced the expression levels of endoPGs and RPMK1. CONCLUSION These results provide theoretical basis and new direction for RNAi approaches on the prevention and control of disease caused by R. solani. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan Wang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yi Guo
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Shiping Guo
- Sichuan Province Tobacco Company, Chengdu, China
| | - Lin Qi
- Sichuan Province Tobacco Company, Chengdu, China
| | - Bin Li
- Sichuan Province Tobacco Company, Chengdu, China
| | - Lianqiang Jiang
- Liangshanzhou Branch of Sichuan Province Tobacco Company, Xichang, China
| | - Chuantao Xu
- Luzhou Branch of Sichuan Province Tobacco Company, Luzhou, China
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
3
|
Das J, Ghosh S, Tyagi K, Sahoo D, Jha G. Methionine biosynthetic genes and methionine sulfoxide reductase A are required for Rhizoctonia solani AG1-IA to cause sheath blight disease in rice. Microb Biotechnol 2024; 17:e14441. [PMID: 38568774 PMCID: PMC10990046 DOI: 10.1111/1751-7915.14441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2024] Open
Abstract
Rhizoctonia solani is a polyphagous necrotrophic fungal pathogen that causes sheath blight disease in rice. It deploys effector molecules as well as carbohydrate-active enzymes and enhances the production of reactive oxygen species for killing host tissues. Understanding R. solani ability to sustain growth under an oxidative-stress-enriched environment is important for developing disease control strategies. Here, we demonstrate that R. solani upregulates methionine biosynthetic genes, including Rs_MET13 during infection in rice, and double-stranded RNA-mediated silencing of these genes impairs the pathogen's ability to cause disease. Exogenous treatment with methionine restores the disease-causing ability of Rs_MET13-silenced R. solani and facilitates its growth on 10 mM H2O2-containing minimal-media. Notably, the Rs_MsrA gene that encodes methionine sulfoxide reductase A, an antioxidant enzyme involved in the repair of oxidative damage of methionine, is upregulated upon H2O2 treatment and also during infection in rice. Rs_MsrA-silenced R. solani is unable to cause disease, suggesting that it is important for the repair of oxidative damage in methionine during host colonization. We propose that spray-induced gene silencing of Rs_MsrA and designing of antagonistic molecules that block MsrA activity can be exploited as a drug target for effective control of sheath blight disease in rice.
Collapse
Affiliation(s)
- Joyati Das
- National Institute of Plant Genome Research, Aruna Asaf Ali MargNew DelhiIndia
| | - Srayan Ghosh
- National Institute of Plant Genome Research, Aruna Asaf Ali MargNew DelhiIndia
- Department of BiosciencesDurham UniversityDurhamUK
| | - Kriti Tyagi
- National Institute of Plant Genome Research, Aruna Asaf Ali MargNew DelhiIndia
| | - Debashis Sahoo
- National Institute of Plant Genome Research, Aruna Asaf Ali MargNew DelhiIndia
| | - Gopaljee Jha
- National Institute of Plant Genome Research, Aruna Asaf Ali MargNew DelhiIndia
| |
Collapse
|
4
|
Singh J, Kumar A, Nayal AS, Vikal S, Shukla G, Singh A, Singh A, Goswami S, Kumar A, Gautam YK, Verma Y, Gaurav SS, Pratap D. Comprehensive antifungal investigation of green synthesized silver nanoformulation against four agriculturally significant fungi and its cytotoxic applications. Sci Rep 2024; 14:5934. [PMID: 38467843 PMCID: PMC10928228 DOI: 10.1038/s41598-024-56619-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/08/2024] [Indexed: 03/13/2024] Open
Abstract
The present study reports the green synthesis of silver nanoparticles (AgNPs) in powder form using the leaf extract of Azadirachta indica. The synthesis of AgNPs was confirmed by UV-vis spectroscopy, FTIR, XRD, FESEM, and EDX. The synthesized AgNPs were in a powdered state and dispersed completely in 5% polyethylene glycol (PEG) and demonstrated prolonged shelf life and enhanced bioavailability over a year without any aggregation. The resulting silver nanoformulation demonstrated complete inhibition against Sclerotinia sclerotiorum and Colletotrichum falcatum and 68% to 80% inhibition against Colletotrichum gloeosporioides and Rhizoctonia solani respectively, at 2000 ppm. The EC50 values determined through a statistical analysis were 66.42, 157.7, 19.06, and 33.30 ppm for S. sclerotiorum, C. falcatum, C. gloeosporioides, and R. solani respectively. The silver nanoformulation also established significant cytotoxicity, with a 74.96% inhibition rate against the human glioblastoma cell line U87MG at 250 ppm. The IC50 value for the cancerous cell lines was determined to be 56.87 ppm through statistical analysis. The proposed silver nanoformulation may be used as a next-generation fungicide in crop improvement and may also find application in anticancer investigations. To the best of our knowledge, this is also the first report of silver nanoformulation demonstrating complete inhibition against the economically significant phytopathogen C. falcatum.
Collapse
Affiliation(s)
- Jyoti Singh
- Plant Molecular Virology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Ankit Kumar
- Plant Molecular Virology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Amit Singh Nayal
- Department of Statistics, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Sagar Vikal
- Smart Materials and Sensor Laboratory, Department of Physics, Chaudhary Charan Singh University, Meerut, 250004, Uttar Pradesh, India
| | - Gyanika Shukla
- NanoScience and NanoBiology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Amardeep Singh
- NanoScience and NanoBiology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Anupma Singh
- Department of Zoology, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Sakshi Goswami
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Ashwani Kumar
- Departemnt of Physics, Regional Institute of Education (RIE), Bhubaneswar, Odisha, 751022, India
| | - Yogendra K Gautam
- Smart Materials and Sensor Laboratory, Department of Physics, Chaudhary Charan Singh University, Meerut, 250004, Uttar Pradesh, India
| | - Yeshvandra Verma
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Shailendra Singh Gaurav
- NanoScience and NanoBiology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Dharmendra Pratap
- Plant Molecular Virology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India.
| |
Collapse
|
5
|
Naqvi SAH, Abbas A, Farhan M, Kiran R, Hassan Z, Mehmood Y, Ali A, Ahmed N, Hassan MZ, Alrefaei AF, Ölmez F, Yang SH, Baloch FS. Unveiling the Genetic Tapestry: Exploring Rhizoctonia solani AG-3 Anastomosis Groups in Potato Crops across Borders. PLANTS (BASEL, SWITZERLAND) 2024; 13:715. [PMID: 38475561 DOI: 10.3390/plants13050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
The current study was carried out to screen 10 isolates (ARS-01-ARS-10) of Rhizoctonia. solani from potato tubers cv. Kuroda, which were collected from various potato fields in Multan, Pakistan. The isolates were found to be morphologically identical, as the hyphae exhibit the production of branches at right angles and acute angles often accompanied by septum near the emerging branches. Anastomosis grouping showed that these isolates belonged to AG-3. A pathogenicity test was performed against the susceptible Kuroda variety and among the isolates, ARS-05 exhibited the highest mean severity score of approximately 5.43, followed by ARS-09, which showed a mean severity score of about 3.67, indicating a moderate level of severity. On the lower end of the severity scale, isolates ARS-06 and ARS-07 displayed mean severity scores of approximately 0.53 and 0.57, respectively, suggesting minimal symptom severity. These mean severity scores offer insights into the varying degrees of symptom expression among the different isolates of R. solani under examination. PCoA indicates that the severe isolate causing black scurf on the Kuroda variety was AG-3. A comprehensive analysis of the distribution, genetic variability, and phylogenetic relationships of R. solani anastomosis groups (AGs) related to potato crops across diverse geographic regions was also performed to examine AG prevalence in various countries. AG-3 was identified as the most widespread group, prevalent in Sweden, China, and the USA. AG-5 showed prominence in Sweden and the USA, while AG-2-1 exhibited prevalence in China and Japan. The phylogenetic analysis unveiled two different clades: Clade I comprising AG-3 and Clade II encompassing AG-2, AG-4, and AG-5, further subdivided into three subclades. Although AGs clustered together regardless of origin, their genetic diversity revealed complex evolutionary patterns. The findings pave the way for region-specific disease management strategies to combat R. solani's impact on potato crops.
Collapse
Affiliation(s)
- Syed Atif Hasan Naqvi
- Department of Plant Pathology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Aqleem Abbas
- Department of Agriculture and Food Technology, Karakoram International University, Gilgit Baltistan, Gilgit 15100, Pakistan
| | - Muhammad Farhan
- Department of Plant Pathology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Rafia Kiran
- Department of Plant Pathology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Zeshan Hassan
- College of Agriculture, University of Layyah, Layyah 31200, Pakistan
| | - Yasir Mehmood
- Department of Plant Pathology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Amjad Ali
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye
| | - Niaz Ahmed
- Department of Soil Science, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Fatih Ölmez
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye
| | - Seung-Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, Yenişehir, Mersin 33343, Türkiye
| |
Collapse
|
6
|
Stanelle-Bertram S, Beck S, Mounogou NK, Schaumburg B, Stoll F, Al Jawazneh A, Schmal Z, Bai T, Zickler M, Beythien G, Becker K, de la Roi M, Heinrich F, Schulz C, Sauter M, Krasemann S, Lange P, Heinemann A, van Riel D, Leijten L, Bauer L, van den Bosch TPP, Lopuhaä B, Busche T, Wibberg D, Schaudien D, Goldmann T, Lüttjohann A, Ruschinski J, Jania H, Müller Z, Pinho Dos Reis V, Krupp-Buzimkic V, Wolff M, Fallerini C, Baldassarri M, Furini S, Norwood K, Käufer C, Schützenmeister N, von Köckritz-Blickwede M, Schroeder M, Jarczak D, Nierhaus A, Welte T, Kluge S, McHardy AC, Sommer F, Kalinowski J, Krauss-Etschmann S, Richter F, von der Thüsen J, Baumgärtner W, Klingel K, Ondruschka B, Renieri A, Gabriel G. CYP19A1 mediates severe SARS-CoV-2 disease outcome in males. Cell Rep Med 2023; 4:101152. [PMID: 37572667 PMCID: PMC10518605 DOI: 10.1016/j.xcrm.2023.101152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 08/14/2023]
Abstract
Male sex represents one of the major risk factors for severe COVID-19 outcome. However, underlying mechanisms that mediate sex-dependent disease outcome are as yet unknown. Here, we identify the CYP19A1 gene encoding for the testosterone-to-estradiol metabolizing enzyme CYP19A1 (also known as aromatase) as a host factor that contributes to worsened disease outcome in SARS-CoV-2-infected males. We analyzed exome sequencing data obtained from a human COVID-19 cohort (n = 2,866) using a machine-learning approach and identify a CYP19A1-activity-increasing mutation to be associated with the development of severe disease in men but not women. We further analyzed human autopsy-derived lungs (n = 86) and detect increased pulmonary CYP19A1 expression at the time point of death in men compared with women. In the golden hamster model, we show that SARS-CoV-2 infection causes increased CYP19A1 expression in the lung that is associated with dysregulated plasma sex hormone levels and reduced long-term pulmonary function in males but not females. Treatment of SARS-CoV-2-infected hamsters with a clinically approved CYP19A1 inhibitor (letrozole) improves impaired lung function and supports recovery of imbalanced sex hormones specifically in males. Our study identifies CYP19A1 as a contributor to sex-specific SARS-CoV-2 disease outcome in males. Furthermore, inhibition of CYP19A1 by the clinically approved drug letrozole may furnish a new therapeutic strategy for individualized patient management and treatment.
Collapse
Affiliation(s)
| | - Sebastian Beck
- Department for Viral Zoonoses - One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Nancy Kouassi Mounogou
- Department for Viral Zoonoses - One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Berfin Schaumburg
- Department for Viral Zoonoses - One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Fabian Stoll
- Department for Viral Zoonoses - One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Amirah Al Jawazneh
- Department for Viral Zoonoses - One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Zoé Schmal
- Department for Viral Zoonoses - One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Tian Bai
- Department for Viral Zoonoses - One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Martin Zickler
- Department for Viral Zoonoses - One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kathrin Becker
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Madeleine de la Roi
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Fabian Heinrich
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Schulz
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Martina Sauter
- Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Core Facility Experimental Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philine Lange
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Axel Heinemann
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Debby van Riel
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Lonneke Leijten
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Lisa Bauer
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Boaz Lopuhaä
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tobias Busche
- Medical School East Westphalia-Lippe & Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Daniel Wibberg
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Torsten Goldmann
- Pathology of the University Medical Center Schleswig-Holstein, Campus Lübeck and the Research Center Borstel, Research Center Borstel, Leibniz Center for Medicine and Biosciences, German Center for Lung Research (DZL), Borstel, Germany
| | - Anna Lüttjohann
- Department for Viral Zoonoses - One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Jenny Ruschinski
- Department for Viral Zoonoses - One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Hanna Jania
- Department for Viral Zoonoses - One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Zacharias Müller
- Department for Viral Zoonoses - One Health, Leibniz Institute of Virology, Hamburg, Germany
| | | | - Vanessa Krupp-Buzimkic
- Department for Viral Zoonoses - One Health, Leibniz Institute of Virology, Hamburg, Germany; Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Martin Wolff
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Chiara Fallerini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Medical Genetics, University of Siena, Siena, Italy
| | - Margherita Baldassarri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Medical Genetics, University of Siena, Siena, Italy
| | - Simone Furini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Katrina Norwood
- Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Christopher Käufer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Maren von Köckritz-Blickwede
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany; Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maria Schroeder
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Jarczak
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Axel Nierhaus
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease, Member of the German Center for Lung Research, Hannover, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alice C McHardy
- German Center for Infection Research (DZIF), Braunschweig, Germany; Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2355), Hannover Medical School, Hannover, Germany
| | - Frank Sommer
- Division Men's Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Susanne Krauss-Etschmann
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Member of the German Center for Lung Research (DZL), Borstel, Germany; Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jan von der Thüsen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Karin Klingel
- Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessandra Renieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Medical Genetics, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Gülsah Gabriel
- Department for Viral Zoonoses - One Health, Leibniz Institute of Virology, Hamburg, Germany; Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany; German Center for Infection Research (DZIF), Braunschweig, Germany.
| |
Collapse
|
7
|
Tang Q, Ma Q, Xiao Z, Xiao Y, Wang Y, Liu L, Peng W, Wang B, Liu T, Song N. Identification and characterization of pathogenicity-related genes of Rhizoctonia solani AG3 during tobacco infection. FRONTIERS IN PLANT SCIENCE 2023; 13:1116506. [PMID: 36733585 PMCID: PMC9887180 DOI: 10.3389/fpls.2022.1116506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
Tobacco target spot disease is caused by a ubiquitous soil-borne phytopathogen Rhizoctonia solani; the pathogenic mechanisms underlying the effects of R. solani remain unclear. Deeper understanding of the functional responses to R. solani during host plant infection would help identify the molecular mechanisms essential for successful host invasion. In this study, we performed global transcriptional analysis of R. solani during various stages (12, 24, 48, 72, 96, and 120 h) of tobacco infection via an RNA sequencing method, while utilizing the pathosystem model R. solani AG3-tobacco (Nicotiana tabacum L.). After R. solani inoculation, the number of differentially expressed genes of R. solani differed at the various time points. Moreover, several gene ontology and Kyoto encyclopedia of genes and genomes pathways were unique in different infection stages, especially with respect to the genes involved in plant cell wall degradation and catalysis of biotransformation reactions, such as the pectin metabolic process and pectin catabolic process. The overexpressing-PD8 N. benthamiana plants enhanced the susceptibility to R. solani. In addition, we found that large amounts of reactive oxygen species (ROS) were generated in tobacco after infected by R. solani. R. solani encoding FAD/NAD binding oxidoreductase and peroxidase gene family to eliminating ROS and counteract oxidative stress. Moreover, Perox3 was validated that can enhance the ability of scavenging ROS by co-injecting. Overall, our findings show that pectin-degrading enzymes and cytochrome P450 genes are critical for plant infection. These results provide comprehensive insights into R. solani AG3 transcriptome responses during tobacco invasion.
Collapse
Affiliation(s)
- Qianjun Tang
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Qianqian Ma
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhipeng Xiao
- Tobacco Research Institute of Hunan Provence, Changsha, Hunan, China
| | - Yansong Xiao
- Tobacco Research Institute of Hunan Provence, Changsha, Hunan, China
| | - Yunsheng Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Lei Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Weiye Peng
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Bing Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Tianbo Liu
- Tobacco Research Institute of Hunan Provence, Changsha, Hunan, China
| | - Na Song
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
8
|
Zhao H, He Y, Zhang K, Li S, Chen Y, He M, He F, Gao B, Yang D, Fan Y, Zhu X, Yan M, Giglioli‐Guivarc'h N, Hano C, Fernie AR, Georgiev MI, Janovská D, Meglič V, Zhou M. Rewiring of the seed metabolome during Tartary buckwheat domestication. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:150-164. [PMID: 36148785 PMCID: PMC9829391 DOI: 10.1111/pbi.13932] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 08/30/2022] [Accepted: 09/19/2022] [Indexed: 05/22/2023]
Abstract
Crop domestication usually leads to the narrowing genetic diversity. However, human selection mainly focuses on visible traits, such as yield and plant morphology, with most metabolic changes being invisible to the naked eye. Buckwheat accumulates abundant bioactive substances, making it a dual-purpose crop with excellent nutritional and medical value. Therefore, examining the wiring of these invisible metabolites during domestication is of major importance. The comprehensive profiling of 200 Tartary buckwheat accessions exhibits 540 metabolites modified as a consequence of human selection. Metabolic genome-wide association study illustrates 384 mGWAS signals for 336 metabolites are under selection. Further analysis showed that an R2R3-MYB transcription factor FtMYB43 positively regulates the synthesis of procyanidin. Glycoside hydrolase gene FtSAGH1 is characterized as responsible for the release of active salicylic acid, the precursor of aspirin and indispensably in plant defence. UDP-glucosyltransferase gene FtUGT74L2 is characterized as involved in the glycosylation of emodin, a major medicinal component specific in Polygonaceae. The lower expression of FtSAGH1 and FtUGT74L2 were associated with the reduction of salicylic acid and soluble EmG owing to domestication. This first large-scale metabolome profiling in Tartary buckwheat will facilitate genetic improvement of medicinal properties and disease resistance in Tartary buckwheat.
Collapse
Affiliation(s)
- Hui Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yuqi He
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Shijuan Li
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
- College of Plant PathologyGansu Agricultural UniversityLanzhouChina
| | - Yong Chen
- Wuhan Metware Biotechnology Co., Ltd.WuhanChina
| | - Ming He
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Feng He
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Bin Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Di Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yu Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Xuemei Zhu
- College of Environmental SciencesSichuan Agricultural UniversityChengduChina
| | - Mingli Yan
- Crop Research Institute, Hunan Academy of Agricultural SciencesChangshaChina
| | | | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC EA1207), INRA USC1328, Plant Lignans TeamUniversité d'OrléansOrléans Cédex 2France
| | - Alisdair R. Fernie
- Department of Molecular PhysiologyMax‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| | - Milen I. Georgiev
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
- Laboratory of MetabolomicsInstitute of Microbiology, Bulgarian Academy of SciencesPlovdivBulgaria
| | - Dagmar Janovská
- Department of Gene BankCrop Research Institute (CRI)Praha 6Czech Republic
| | | | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
9
|
Majumdar R, Strausbaugh CA, Galewski PJ, Minocha R, Rogers CW. Cell-Wall-Degrading Enzymes-Related Genes Originating from Rhizoctonia solani Increase Sugar Beet Root Damage in the Presence of Leuconostoc mesenteroides. Int J Mol Sci 2022; 23:1366. [PMID: 35163289 PMCID: PMC8835807 DOI: 10.3390/ijms23031366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/04/2022] Open
Abstract
Sugar beet crown and root rot caused by Rhizoctonia solani is a major yield constraint. Root rot is highly increased when R. solani and Leuconostoc mesenteroides co-infect roots. We hypothesized that the absence of plant cell-wall-degrading enzymes in L. mesenteroides and their supply by R. solani during close contact, causes increased damage. In planta root inoculation with or without cell-wall-degrading enzymes showed greater rot when L. mesenteroides was combined with cellulase (22 mm rot), polygalacturonase (47 mm), and pectin lyase (57 mm) versus these enzymes (0-26 mm), R. solani (20 mm), and L. mesenteroides (13 mm) individually. Carbohydrate analysis revealed increased simpler carbohydrates (namely glucose + galactose, and fructose) in the infected roots versus mock control, possibly due to the degradation of complex cell wall carbohydrates. Expression of R. solani cellulase, polygalacturonase, and pectin lyase genes during root infection corroborated well with the enzyme data. Global mRNAseq analysis identified candidate genes and highly co-expressed gene modules in all three organisms that might be critical in host plant defense and pathogenesis. Targeting R. solani cell-wall-degrading enzymes in the future could be an effective strategy to mitigate root damage during its interaction with L. mesenteroides.
Collapse
Affiliation(s)
- Rajtilak Majumdar
- Northwest Irrigation and Soils Research, United States Department of Agriculture, Kimberly, ID 83341, USA; (P.J.G.); (C.W.R.)
| | - Carl A. Strausbaugh
- Northwest Irrigation and Soils Research, United States Department of Agriculture, Kimberly, ID 83341, USA; (P.J.G.); (C.W.R.)
| | - Paul J. Galewski
- Northwest Irrigation and Soils Research, United States Department of Agriculture, Kimberly, ID 83341, USA; (P.J.G.); (C.W.R.)
| | - Rakesh Minocha
- Northern Research Station, USDA Forest Service, Durham, NH 03824, USA;
| | - Christopher W. Rogers
- Northwest Irrigation and Soils Research, United States Department of Agriculture, Kimberly, ID 83341, USA; (P.J.G.); (C.W.R.)
| |
Collapse
|
10
|
Lin R, Xia Y, Liu Y, Zhang D, Xiang X, Niu X, Jiang L, Wang X, Zheng A. Comparative Mitogenomic Analysis and the Evolution of Rhizoctonia solani Anastomosis Groups. Front Microbiol 2021; 12:707281. [PMID: 34616376 PMCID: PMC8488467 DOI: 10.3389/fmicb.2021.707281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are the major energy source for cell functions. However, for the plant fungal pathogens, mitogenome variations and their roles during the host infection processes remain largely unknown. Rhizoctonia solani, an important soil-borne pathogen, forms different anastomosis groups (AGs) and adapts to a broad range of hosts in nature. Here, we reported three complete mitogenomes of AG1-IA RSIA1, AG1-IB RSIB1, and AG1-IC, and performed a comparative analysis with nine published Rhizoctonia mitogenomes (AG1-IA XN, AG1-IB 7/3/14, AG3, AG4, and five Rhizoctonia sp. mitogenomes). These mitogenomes encoded 15 typical proteins (cox1-3, cob, atp6, atp8-9, nad1-6, nad4L, and rps3) and several LAGLIDADG/GIY-YIG endonucleases with sizes ranging from 109,017 bp (Rhizoctonia sp. SM) to 235,849 bp (AG3). We found that their large sizes were mainly contributed by repeat sequences and genes encoding endonucleases. We identified the complete sequence of the rps3 gene in 10 Rhizoctonia mitogenomes, which contained 14 positively selected sites. Moreover, we inferred a robust maximum-likelihood phylogeny of 32 Basidiomycota mitogenomes, representing that seven R. solani and other five Rhizoctonia sp. lineages formed two parallel branches in Agaricomycotina. The comparative analysis showed that mitogenomes of Basidiomycota pathogens had high GC content and mitogenomes of R. solani had high repeat content. Compared to other strains, the AG1-IC strain had low substitution rates, which may affect its mitochondrial phylogenetic placement in the R. solani clade. Additionally, with the published RNA-seq data, we investigated gene expression patterns from different AGs during host infection stages. The expressed genes from AG1-IA (host: rice) and AG3 (host: potato) mainly formed four groups by k-mean partitioning analysis. However, conserved genes represented varied expression patterns, and only the patterns of rps3-nad2 and nad1-m3g18/mag28 (an LAGLIDADG endonuclease) were conserved in AG1-IA and AG3 as shown by the correlation coefficient analysis, suggesting regulation of gene repertoires adapting to infect varied hosts. The results of variations in mitogenome characteristics and the gene substitution rates and expression patterns may provide insights into the evolution of R. solani mitogenomes.
Collapse
Affiliation(s)
- Runmao Lin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Xia
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Yao Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Danhua Zhang
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Xing Xiang
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Xianyu Niu
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Linjia Jiang
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Xiaolin Wang
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Aiping Zheng
- Agriculture College, Sichuan Agricultural University, Chengdu, China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
| |
Collapse
|
11
|
Genome Analyses of the Less Aggressive Rhizoctonia solani AG1-IB Isolates 1/2/21 and O8/2 Compared to the Reference AG1-IB Isolate 7/3/14. J Fungi (Basel) 2021; 7:jof7100832. [PMID: 34682252 PMCID: PMC8537455 DOI: 10.3390/jof7100832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 01/26/2023] Open
Abstract
Rhizoctonia solani AG1-IB of the phylum Basidiomycota is known as phytopathogenic fungus affecting various economically important crops, such as bean, rice, soybean, figs, cabbage and lettuce. The isolates 1/2/21 and O8/2 of the anastomosis group AG1-IB originating from lettuce plants with bottom rot symptoms represent two less aggressive R. solani isolates, as confirmed in a pathogenicity test on lettuce. They were deeply sequenced on the Illumina MiSeq system applying the mate-pair and paired-end mode to establish their genome sequences. Assemblies of obtained sequences resulted in 2092 and 1492 scaffolds, respectively, for isolate 1/2/21 and O8/2, amounting to a size of approximately 43 Mb for each isolate. Gene prediction by applying AUGUSTUS (v. 3.2.1.) yielded 12,827 and 12,973 identified genes, respectively. Based on automatic functional annotation, genes potentially encoding cellulases and enzymes involved in secondary metabolite synthesis were identified in the AG1-IB genomes. The annotated genome sequences of the less aggressive AG1-IB isolates were compared with the isolate 7/3/14, which is highly aggressive on lettuce and other vegetable crops such as bean, cabbage and carrot. This analysis revealed the first insights into core genes of AG1-IB isolates and unique determinants of each genome that may explain the different aggressiveness levels of the strains.
Collapse
|
12
|
Zrenner R, Verwaaijen B, Genzel F, Flemer B, Grosch R. Transcriptional Changes in Potato Sprouts upon Interaction with Rhizoctonia solani Indicate Pathogen-Induced Interference in the Defence Pathways of Potato. Int J Mol Sci 2021; 22:ijms22063094. [PMID: 33803511 PMCID: PMC8002989 DOI: 10.3390/ijms22063094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Rhizoctonia solani is the causer of black scurf disease on potatoes and is responsible for high economical losses in global agriculture. In order to increase the limited knowledge of the plants' molecular response to this pathogen, we inoculated potatoes with R. solani AG3-PT isolate Ben3 and carried out RNA sequencing with total RNA extracted from potato sprouts at three and eight days post inoculation (dpi). In this dual RNA-sequencing experiment, the necrotrophic lifestyle of R. solani AG3-PT during early phases of interaction with its host has already been characterised. Here the potato plants' comprehensive transcriptional response to inoculation with R. solani AG3 was evaluated for the first time based on significantly different expressed plant genes extracted with DESeq analysis. Overall, 1640 genes were differentially expressed, comparing control (-Rs) and with R. solani AG3-PT isolate Ben3 inoculated plants (+Rs). Genes involved in the production of anti-fungal proteins and secondary metabolites with antifungal properties were significantly up regulated upon inoculation with R. solani. Gene ontology (GO) terms involved in the regulation of hormone levels (i.e., ethylene (ET) and jasmonic acid (JA) at 3 dpi and salicylic acid (SA) and JA response pathways at 8 dpi) were significantly enriched. Contrastingly, the GO term "response to abiotic stimulus" was down regulated at both time points analysed. These results may support future breeding efforts toward the development of cultivars with higher resistance level to black scurf disease or the development of new control strategies.
Collapse
Affiliation(s)
- Rita Zrenner
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (B.V.); (F.G.); (B.F.); (R.G.)
- Correspondence: ; Tel.: +49-(0)33701-78-216
| | - Bart Verwaaijen
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (B.V.); (F.G.); (B.F.); (R.G.)
- Faculty of Biology/Computational Biology, Bielefeld University, 26 Universitätsstr. 27, 33615 Bielefeld, Germany
| | - Franziska Genzel
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (B.V.); (F.G.); (B.F.); (R.G.)
- Institute of Bio- and Geosciences IBG-2, Plant Sciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Burkhardt Flemer
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (B.V.); (F.G.); (B.F.); (R.G.)
- Institute of Clinical Molecular Biology (IKMB), Kiel University, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
| | - Rita Grosch
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (B.V.); (F.G.); (B.F.); (R.G.)
| |
Collapse
|
13
|
Li W, Zhang H, Shu Y, Cao S, Sun H, Zhang A, Chen H. Genome structure and diversity of novel endornaviruses from wheat sharp eyespot pathogen Rhizoctonia cerealis. Virus Res 2021; 297:198368. [PMID: 33684418 DOI: 10.1016/j.virusres.2021.198368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 10/22/2022]
Abstract
Rhizoctonia cerealis (teleomorph Ceratobasidium cereale) is a soil-borne plant pathogenic fungus that can cause sharp eyespot in wheat or yellow patch in grasses. In this study, 21 new endornavirus genomes were obtained from five R. cerealis strains through the high-throughput sequencing of viral double-stranded RNA. Eighteen viruses were identified as Alphaendornavirus, and three viruses were identified as new species of Betaendornavirus on the basis of the phylogenetic analysis of the deduced amino acid sequences of RNA-dependent RNA polymerase. Notably, 12 of the new alphaendornaviruses could encode two open reading frames (ORFs), which were a rare feature of Endornaviridae. The amino acid sequences encoded by ORF2 from different endornaviruses had very low identity, and their functions and evolution origins remained unclear. Different endornavirus species with remarkably different genome structures could be found in the same R. cerealis strain. This study indicated that endornaviruses are common in R. cerealis and display wide diversity. Betaendornaviruses were found in R. cerealis, and a new species was proposed. This study is the first to report that the endornaviruses from R. cerealis can encode two ORFs and enhances our understanding of the viruses in the Endornaviridae family.
Collapse
Affiliation(s)
- Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu, Nanjing, 210014, China; Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Jiangsu, Yangzhou, 225009, China.
| | - Haotian Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu, Nanjing, 210014, China; Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Hubei, Jingzhou, 434025, China
| | - Yan Shu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu, Nanjing, 210014, China
| | - Shulin Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu, Nanjing, 210014, China
| | - Haiyan Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu, Nanjing, 210014, China
| | - Aixiang Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu, Nanjing, 210014, China
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu, Nanjing, 210014, China; Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Jiangsu, Yangzhou, 225009, China.
| |
Collapse
|