1
|
Zhuang M, Cheng D, Lu X, Tan X. Postgraduate psychological stress detection from social media using BERT-Fused model. PLoS One 2024; 19:e0312264. [PMID: 39480765 PMCID: PMC11527284 DOI: 10.1371/journal.pone.0312264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
Postgraduate students face various academic, personal, and social stressors that increase their risk of anxiety, depression, and suicide. Identifying cost-effective methods of detecting and intervening before stress turns into severe problems is crucial. However, existing stress detection methods typically rely on psychological scales or devices, which can be complex and expensive. Therefore, we propose a BERT-fused model for rapidly and automatically detecting postgraduate students' psychological stress via social media. First, we construct an improved BERT-LDA feature extraction algorithm to extract group stress features from large-scale and complex social media data. Then, we integrate the BiLSTM-CRF named entity recognition model to construct a multi-dimensional psychological stress profile and analyze the fine-grained feature representation under the fusion of multi-dimensional features. Experimental results demonstrate that the proposed model outperforms traditional models such as BiLSTM, achieving an accuracy of 92.55%, a recall of 93.47%, and an F1-score of 92.18%, with F1-scores exceeding 89% for all three types of entities. This research provides both theoretical and practical foundations for universities or institutions to conduct fine-grained perception and intervention for postgraduate students' psychological stress.
Collapse
Affiliation(s)
- Muni Zhuang
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, China
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Dongsheng Cheng
- Shenzhen Institute of Information Technology, School of Software Engineering, Shenzhen, Guangdong, China
| | - Xin Lu
- College of Systems Engineering, National University of Defense Technology, Changsha, Hunan, China
| | - Xu Tan
- Shenzhen Institute of Information Technology, Career-Oriented Multidisciplinary Education Center, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Plank L, Zlomuzica A. Reduced speech coherence in psychosis-related social media forum posts. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:60. [PMID: 38965247 PMCID: PMC11224262 DOI: 10.1038/s41537-024-00481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/16/2024] [Indexed: 07/06/2024]
Abstract
The extraction of linguistic markers from social media posts, which are indicative of the onset and course of mental disorders, offers great potential for mental healthcare. In the present study, we extracted over one million posts from the popular social media platform Reddit to analyze speech coherence, which reflects formal thought disorder and is a characteristic feature of schizophrenia and associated psychotic disorders. Natural language processing (NLP) models were used to perform an automated quantification of speech coherence. We could demonstrate that users who are active on forums geared towards disorders with a higher degree of psychotic symptoms tend to show a lower level of coherence. The lowest coherence scores were found in users of forums on dissociative identity disorder, schizophrenia, and bipolar disorder. In contrast, a relatively high level of coherence was detected in users of forums related to obsessive-compulsive disorder, anxiety, and depression. Users of forums on posttraumatic stress disorder, autism, and attention-deficit hyperactivity disorder exhibited medium-level coherence. Our findings provide promising first evidence for the possible utility of NLP-based coherence analyses for the early detection and prevention of psychosis on the basis of posts gathered from publicly available social media data. This opens new avenues for large-scale prevention programs aimed at high-risk populations.
Collapse
Affiliation(s)
- Laurin Plank
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), D-44787, Bochum, Germany
| | - Armin Zlomuzica
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), D-44787, Bochum, Germany.
| |
Collapse
|
3
|
Bari S, Kim BW, Vike NL, Lalvani S, Stefanopoulos L, Maglaveras N, Block M, Strawn J, Katsaggelos AK, Breiter HC. A novel approach to anxiety level prediction using small sets of judgment and survey variables. NPJ MENTAL HEALTH RESEARCH 2024; 3:29. [PMID: 38890545 PMCID: PMC11189415 DOI: 10.1038/s44184-024-00074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 05/16/2024] [Indexed: 06/20/2024]
Abstract
Anxiety, a condition characterized by intense fear and persistent worry, affects millions each year and, when severe, is distressing and functionally impairing. Numerous machine learning frameworks have been developed and tested to predict features of anxiety and anxiety traits. This study extended these approaches by using a small set of interpretable judgment variables (n = 15) and contextual variables (demographics, perceived loneliness, COVID-19 history) to (1) understand the relationships between these variables and (2) develop a framework to predict anxiety levels [derived from the State Trait Anxiety Inventory (STAI)]. This set of 15 judgment variables, including loss aversion and risk aversion, models biases in reward/aversion judgments extracted from an unsupervised, short (2-3 min) picture rating task (using the International Affective Picture System) that can be completed on a smartphone. The study cohort consisted of 3476 de-identified adult participants from across the United States who were recruited using an email survey database. Using a balanced Random Forest approach with these judgment and contextual variables, STAI-derived anxiety levels were predicted with up to 81% accuracy and 0.71 AUC ROC. Normalized Gini scores showed that the most important predictors (age, loneliness, household income, employment status) contributed a total of 29-31% of the cumulative relative importance and up to 61% was contributed by judgment variables. Mediation/moderation statistics revealed that the interactions between judgment and contextual variables appears to be important for accurately predicting anxiety levels. Median shifts in judgment variables described a behavioral profile for individuals with higher anxiety levels that was characterized by less resilience, more avoidance, and more indifference behavior. This study supports the hypothesis that distinct constellations of 15 interpretable judgment variables, along with contextual variables, could yield an efficient and highly scalable system for mental health assessment. These results contribute to our understanding of underlying psychological processes that are necessary to characterize what causes variance in anxiety conditions and its behaviors, which can impact treatment development and efficacy.
Collapse
Affiliation(s)
- Sumra Bari
- Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA
| | - Byoung-Woo Kim
- Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA
| | - Nicole L Vike
- Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA
| | - Shamal Lalvani
- Department of Electrical Engineering, Northwestern University, Evanston, IL, USA
| | - Leandros Stefanopoulos
- Department of Electrical Engineering, Northwestern University, Evanston, IL, USA
- Laboratory of Medical Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nicos Maglaveras
- Laboratory of Medical Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Martin Block
- Integrated Marketing Communications, Medill School of Journalism, Northwestern University, Evanston, IL, USA
| | - Jeffrey Strawn
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Aggelos K Katsaggelos
- Department of Electrical Engineering, Northwestern University, Evanston, IL, USA
- Department of Computer Science, Northwestern University, Evanston, IL, USA
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Hans C Breiter
- Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA.
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
- Department of Psychiatry, Massachusetts General Hospital and Harvard School of Medicine, Boston, MA, USA.
| |
Collapse
|
4
|
Yuan Y, Kasson E, Taylor J, Cavazos-Rehg P, De Choudhury M, Aledavood T. Examining the Gateway Hypothesis and Mapping Substance Use Pathways on Social Media: Machine Learning Approach. JMIR Form Res 2024; 8:e54433. [PMID: 38713904 PMCID: PMC11109860 DOI: 10.2196/54433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/15/2024] [Accepted: 04/01/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Substance misuse presents significant global public health challenges. Understanding transitions between substance types and the timing of shifts to polysubstance use is vital to developing effective prevention and recovery strategies. The gateway hypothesis suggests that high-risk substance use is preceded by lower-risk substance use. However, the source of this correlation is hotly contested. While some claim that low-risk substance use causes subsequent, riskier substance use, most people using low-risk substances also do not escalate to higher-risk substances. Social media data hold the potential to shed light on the factors contributing to substance use transitions. OBJECTIVE By leveraging social media data, our study aimed to gain a better understanding of substance use pathways. By identifying and analyzing the transitions of individuals between different risk levels of substance use, our goal was to find specific linguistic cues in individuals' social media posts that could indicate escalating or de-escalating patterns in substance use. METHODS We conducted a large-scale analysis using data from Reddit, collected between 2015 and 2019, consisting of over 2.29 million posts and approximately 29.37 million comments by around 1.4 million users from subreddits. These data, derived from substance use subreddits, facilitated the creation of a risk transition data set reflecting the substance use behaviors of over 1.4 million users. We deployed deep learning and machine learning techniques to predict the escalation or de-escalation transitions in risk levels, based on initial transition phases documented in posts and comments. We conducted a linguistic analysis to analyze the language patterns associated with transitions in substance use, emphasizing the role of n-gram features in predicting future risk trajectories. RESULTS Our results showed promise in predicting the escalation or de-escalation transition in risk levels, based on the historical data of Reddit users created on initial transition phases among drug-related subreddits, with an accuracy of 78.48% and an F1-score of 79.20%. We highlighted the vital predictive features, such as specific substance names and tools indicative of future risk escalations. Our linguistic analysis showed that terms linked with harm reduction strategies were instrumental in signaling de-escalation, whereas descriptors of frequent substance use were characteristic of escalating transitions. CONCLUSIONS This study sheds light on the complexities surrounding the gateway hypothesis of substance use through an examination of web-based behavior on Reddit. While certain findings validate the hypothesis, indicating a progression from lower-risk substances such as marijuana to higher-risk ones, a significant number of individuals did not show this transition. The research underscores the potential of using machine learning with social media analysis to predict substance use transitions. Our results point toward future directions for leveraging social media data in substance use research, underlining the importance of continued exploration before suggesting direct implications for interventions.
Collapse
Affiliation(s)
- Yunhao Yuan
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Erin Kasson
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Jordan Taylor
- Carnegie Mellon University, Pittsburgh, PA, United States
| | - Patricia Cavazos-Rehg
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | | | | |
Collapse
|
5
|
Feng M, Xu J. Electroencephalogram-Based ConvMixer Architecture for Recognizing Attention Deficit Hyperactivity Disorder in Children. Brain Sci 2024; 14:469. [PMID: 38790448 PMCID: PMC11118831 DOI: 10.3390/brainsci14050469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neuro-developmental disorder that affects approximately 5-10% of school-aged children worldwide. Early diagnosis and intervention are essential to improve the quality of life of patients and their families. In this study, we propose ConvMixer-ECA, a novel deep learning architecture that combines ConvMixer with efficient channel attention (ECA) blocks for the accurate diagnosis of ADHD using electroencephalogram (EEG) signals. The model was trained and evaluated using EEG recordings from 60 healthy children and 61 children with ADHD. A series of experiments were conducted to evaluate the performance of the ConvMixer-ECA. The results showed that the ConvMixer-ECA performed well in ADHD recognition with 94.52% accuracy. The incorporation of attentional mechanisms, in particular ECA, improved the performance of ConvMixer; it outperformed other attention-based variants. In addition, ConvMixer-ECA outperformed state-of-the-art deep learning models including EEGNet, CNN, RNN, LSTM, and GRU. t-SNE visualization of the output of this model layer validated the effectiveness of ConvMixer-ECA in capturing the underlying patterns and features that separate ADHD from typically developing individuals through hierarchical feature learning. These outcomes demonstrate the potential of ConvMixer-ECA as a valuable tool to assist clinicians in the early diagnosis and intervention of ADHD in children.
Collapse
Affiliation(s)
- Min Feng
- Nanjing Rehabilitation Medical Center, The Affiliated Brain Hospital, Nanjing Medical University, Nanjing 210029, China
- School of Chinese Language and Literature, Nanjing Normal University, Nanjing 210024, China
| | - Juncai Xu
- School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Ruocco L, Zhuang Y, Ng R, Munthali RJ, Hudec KL, Wang AY, Vereschagin M, Vigo DV. A platform for connecting social media data to domain-specific topics using large language models: an application to student mental health. JAMIA Open 2024; 7:ooae001. [PMID: 38250583 PMCID: PMC10799551 DOI: 10.1093/jamiaopen/ooae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Objectives To design a novel artificial intelligence-based software platform that allows users to analyze text data by identifying various coherent topics and parts of the data related to a specific research theme-of-interest (TOI). Materials and Methods Our platform uses state-of-the-art unsupervised natural language processing methods, building on top of a large language model, to analyze social media text data. At the center of the platform's functionality is BERTopic, which clusters social media posts, forming collections of words representing distinct topics. A key feature of our platform is its ability to identify whole sentences corresponding to topic words, vastly improving the platform's ability to perform downstream similarity operations with respect to a user-defined TOI. Results Two case studies on mental health among university students are performed to demonstrate the utility of the platform, focusing on signals within social media (Reddit) data related to depression and their connection to various emergent themes within the data. Discussion and Conclusion Our platform provides researchers with a readily available and inexpensive tool to parse large quantities of unstructured, noisy data into coherent themes, as well as identifying portions of the data related to the research TOI. While the development process for the platform was focused on mental health themes, we believe it to be generalizable to other domains of research as well.
Collapse
Affiliation(s)
- Leonard Ruocco
- Data Science Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2A1, Canada
| | - Yuqian Zhuang
- Data Science Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2A1, Canada
| | - Raymond Ng
- Data Science Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Computer Science, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Richard J Munthali
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2A1, Canada
| | - Kristen L Hudec
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2A1, Canada
| | - Angel Y Wang
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2A1, Canada
| | - Melissa Vereschagin
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2A1, Canada
| | - Daniel V Vigo
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2A1, Canada
- Department of Global Health and Social Medicine, Harvard University, Boston, MA 02115, United States
| |
Collapse
|
7
|
Sharma D, Singh J, Shah B, Ali F, AlZubi AA, AlZubi MA. Public mental health through social media in the post COVID-19 era. Front Public Health 2023; 11:1323922. [PMID: 38146469 PMCID: PMC10749364 DOI: 10.3389/fpubh.2023.1323922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/22/2023] [Indexed: 12/27/2023] Open
Abstract
Social media is a powerful communication tool and a reflection of our digital environment. Social media acted as an augmenter and influencer during and after COVID-19. Many of the people sharing social media posts were not actually aware of their mental health status. This situation warrants to automate the detection of mental disorders. This paper presents a methodology for the detection of mental disorders using micro facial expressions. Micro-expressions are momentary, involuntary facial expressions that can be indicative of deeper feelings and mental states. Nevertheless, manually detecting and interpreting micro-expressions can be rather challenging. A deep learning HybridMicroNet model, based on convolution neural networks, is proposed for emotion recognition from micro-expressions. Further, a case study for the detection of mental health has been undertaken. The findings demonstrated that the proposed model achieved a high accuracy when attempting to diagnose mental health disorders based on micro-expressions. The attained accuracy on the CASME dataset was 99.08%, whereas the accuracy that was achieved on SAMM dataset was 97.62%. Based on these findings, deep learning may prove to be an effective method for diagnosing mental health conditions by analyzing micro-expressions.
Collapse
Affiliation(s)
- Deepika Sharma
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Jaiteg Singh
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Babar Shah
- College of Technological Innovation, Zayed University, Dubai, United Arab Emirates
| | - Farman Ali
- Department of Computer Science and Engineering, School of Convergence, College of Computing and Informatics, Sungkyunkwan University, Seoul, Republic of Korea
| | - Ahmad Ali AlZubi
- Department of Computer Science, Community College, King Saud University, Riyadh, Saudi Arabia
| | - Mallak Ahmad AlZubi
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
8
|
Kim S, Cha J, Kim D, Park E. Understanding Mental Health Issues in Different Subdomains of Social Networking Services: Computational Analysis of Text-Based Reddit Posts. J Med Internet Res 2023; 25:e49074. [PMID: 38032730 PMCID: PMC10722371 DOI: 10.2196/49074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/10/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Users increasingly use social networking services (SNSs) to share their feelings and emotions. For those with mental disorders, SNSs can also be used to seek advice on mental health issues. One available SNS is Reddit, in which users can freely discuss such matters on relevant health diagnostic subreddits. OBJECTIVE In this study, we analyzed the distinctive linguistic characteristics in users' posts on specific mental disorder subreddits (depression, anxiety, bipolar disorder, borderline personality disorder, schizophrenia, autism, and mental health) and further validated their distinctiveness externally by comparing them with posts of subreddits not related to mental illness. We also confirmed that these differences in linguistic formulations can be learned through a machine learning process. METHODS Reddit posts uploaded by users were collected for our research. We used various statistical analysis methods in Linguistic Inquiry and Word Count (LIWC) software, including 1-way ANOVA and subsequent post hoc tests, to see sentiment differences in various lexical features within mental health-related subreddits and against unrelated ones. We also applied 3 supervised and unsupervised clustering methods for both cases after extracting textual features from posts on each subreddit using bidirectional encoder representations from transformers (BERT) to ensure that our data set is suitable for further machine learning or deep learning tasks. RESULTS We collected 3,133,509 posts of 919,722 Reddit users. The results using the data indicated that there are notable linguistic differences among the subreddits, consistent with the findings of prior research. The findings from LIWC analyses revealed that patients with each mental health issue show significantly different lexical and semantic patterns, such as word count or emotion, throughout their online social networking activities, with P<.001 for all cases. Furthermore, distinctive features of each subreddit group were successfully identified through supervised and unsupervised clustering methods, using the BERT embeddings extracted from textual posts. This distinctiveness was reflected in the Davies-Bouldin scores ranging from 0.222 to 0.397 and the silhouette scores ranging from 0.639 to 0.803 in the former case, with scores of 1.638 and 0.729, respectively, in the latter case. CONCLUSIONS By taking a multifaceted approach, analyzing textual posts related to mental health issues using statistical, natural language processing, and machine learning techniques, our approach provides insights into aspects of recent lexical usage and information about the linguistic characteristics of patients with specific mental health issues, which can inform clinicians about patients' mental health in diagnostic terms to aid online intervention. Our findings can further promote research areas involving linguistic analysis and machine learning approaches for patients with mental health issues by identifying and detecting mentally vulnerable groups of people online.
Collapse
Affiliation(s)
- Seoyun Kim
- Department of Applied Artificial Intelligence, Sungkyunkwan University, Seoul, Republic of Korea
| | - Junyeop Cha
- Department of Applied Artificial Intelligence, Sungkyunkwan University, Seoul, Republic of Korea
| | - Dongjae Kim
- Department of Applied Artificial Intelligence, Sungkyunkwan University, Seoul, Republic of Korea
| | - Eunil Park
- Department of Applied Artificial Intelligence, Sungkyunkwan University, Seoul, Republic of Korea
- Teach Company, Seoul, Republic of Korea
| |
Collapse
|
9
|
Raveau MP, Goñi JI, Rodríguez JF, Paiva-Mack I, Barriga F, Hermosilla MP, Fuentes-Bravo C, Eyheramendy S. Natural language processing analysis of the psychosocial stressors of mental health disorders during the pandemic. NPJ MENTAL HEALTH RESEARCH 2023; 2:17. [PMID: 38609516 PMCID: PMC10955824 DOI: 10.1038/s44184-023-00039-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/21/2023] [Indexed: 04/14/2024]
Abstract
Over the past few years, the COVID-19 pandemic has exerted various impacts on the world, notably concerning mental health. Nevertheless, the precise influence of psychosocial stressors on this mental health crisis remains largely unexplored. In this study, we employ natural language processing to examine chat text from a mental health helpline. The data was obtained from a chat helpline called Safe Hour from the "It Gets Better" project in Chile. This dataset encompass 10,986 conversations between trained professional volunteers from the foundation and platform users from 2018 to 2020. Our analysis shows a significant increase in conversations covering issues of self-image and interpersonal relations, as well as a decrease in performance themes. Also, we observe that conversations involving themes like self-image and emotional crisis played a role in explaining both suicidal behavior and depressive symptoms. However, anxious symptoms can only be explained by emotional crisis themes. These findings shed light on the intricate connections between psychosocial stressors and various mental health aspects in the context of the COVID-19 pandemic.
Collapse
Affiliation(s)
| | - Julián I Goñi
- DILAB, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
- Science, Technology, and Innovation Studies, The University of Edinburgh, Edinburgh, Scotland
| | - José F Rodríguez
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Isidora Paiva-Mack
- Escuela de Psicología, Universidad Adolfo Ibáñez, Santiago, Chile
- GobLab, Escuela de Gobierno, Universidad Adolfo Ibáñez, Santiago, Chile
| | | | | | | | - Susana Eyheramendy
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
| |
Collapse
|
10
|
Alves CL, Toutain TGLDO, Porto JAM, Aguiar PMDC, de Sena EP, Rodrigues FA, Pineda AM, Thielemann C. Analysis of functional connectivity using machine learning and deep learning in different data modalities from individuals with schizophrenia. J Neural Eng 2023; 20:056025. [PMID: 37673060 DOI: 10.1088/1741-2552/acf734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
Objective. Schizophrenia(SCZ) is a severe mental disorder associated with persistent or recurrent psychosis, hallucinations, delusions, and thought disorders that affect approximately 26 million people worldwide, according to the World Health Organization. Several studies encompass machine learning (ML) and deep learning algorithms to automate the diagnosis of this mental disorder. Others study SCZ brain networks to get new insights into the dynamics of information processing in individuals suffering from the condition. In this paper, we offer a rigorous approach with ML and deep learning techniques for evaluating connectivity matrices and measures of complex networks to establish an automated diagnosis and comprehend the topology and dynamics of brain networks in SCZ individuals.Approach.For this purpose, we employed an functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) dataset. In addition, we combined EEG measures, i.e. Hjorth mobility and complexity, with complex network measurements to be analyzed in our model for the first time in the literature.Main results.When comparing the SCZ group to the control group, we found a high positive correlation between the left superior parietal lobe and the left motor cortex and a positive correlation between the left dorsal posterior cingulate cortex and the left primary motor. Regarding complex network measures, the diameter, which corresponds to the longest shortest path length in a network, may be regarded as a biomarker because it is the most crucial measure in different data modalities. Furthermore, the SCZ brain networks exhibit less segregation and a lower distribution of information. As a result, EEG measures outperformed complex networks in capturing the brain alterations associated with SCZ.Significance. Our model achieved an area under receiver operating characteristic curve (AUC) of 100% and an accuracy of 98.5% for the fMRI, an AUC of 95%, and an accuracy of 95.4% for the EEG data set. These are excellent classification results. Furthermore, we investigated the impact of specific brain connections and network measures on these results, which helped us better describe changes in the diseased brain.
Collapse
Affiliation(s)
- Caroline L Alves
- University of São Paulo (USP), Institute of Mathematical and Computer Sciences (ICMC), São Paulo, Brazil
- BioMEMS Lab, Aschaffenburg University of Applied Sciences, Aschaffenburg, Germany
| | | | | | - Patrícia Maria de Carvalho Aguiar
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Federal University of São Paulo, Department of Neurology and Neurosurgery, São Paulo, Brazil
| | | | - Francisco A Rodrigues
- University of São Paulo (USP), Institute of Mathematical and Computer Sciences (ICMC), São Paulo, Brazil
| | - Aruane M Pineda
- University of São Paulo (USP), Institute of Mathematical and Computer Sciences (ICMC), São Paulo, Brazil
| | | |
Collapse
|
11
|
Cao Y, Rajendran S, Sundararajan P, Law R, Bacon S, Sumner SA, Masuda N. Web-Based Social Networks of Individuals With Adverse Childhood Experiences: Quantitative Study. J Med Internet Res 2023; 25:e45171. [PMID: 37252791 DOI: 10.2196/45171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/25/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Adverse childhood experiences (ACEs), which include abuse and neglect and various household challenges such as exposure to intimate partner violence and substance use in the home, can have negative impacts on the lifelong health of affected individuals. Among various strategies for mitigating the adverse effects of ACEs is to enhance connectedness and social support for those who have experienced them. However, how the social networks of those who experienced ACEs differ from the social networks of those who did not is poorly understood. OBJECTIVE In this study, we used Reddit and Twitter data to investigate and compare social networks between individuals with and without ACE exposure. METHODS We first used a neural network classifier to identify the presence or absence of public ACE disclosures in social media posts. We then analyzed egocentric social networks comparing individuals with self-reported ACEs with those with no reported history. RESULTS We found that, although individuals reporting ACEs had fewer total followers in web-based social networks, they had higher reciprocity in following behavior (ie, mutual following with other users), a higher tendency to follow and be followed by other individuals with ACEs, and a higher tendency to follow back individuals with ACEs rather than individuals without ACEs. CONCLUSIONS These results imply that individuals with ACEs may try to actively connect with others who have similar previous traumatic experiences as a positive connection and coping strategy. Supportive interpersonal connections on the web for individuals with ACEs appear to be a prevalent behavior and may be a way to enhance social connectedness and resilience in those who have experienced ACEs.
Collapse
Affiliation(s)
- Yiding Cao
- Department of Systems Science and Industrial Engineering, Binghamton University, State University of New York, Binghamton, NY, United States
| | - Suraj Rajendran
- Tri-Institutional Program in Computational Biology and Medicine, New York, NY, United States
| | - Prathic Sundararajan
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Royal Law
- Division of Injury Prevention, National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Sarah Bacon
- Office of Strategy and Innovation, National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Steven A Sumner
- Office of Strategy and Innovation, National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
12
|
Inamdar S, Chapekar R, Gite S, Pradhan B. Machine Learning Driven Mental Stress Detection on Reddit Posts Using Natural Language Processing. HUMAN-CENTRIC INTELLIGENT SYSTEMS 2023. [PMCID: PMC10062685 DOI: 10.1007/s44230-023-00020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
People’s mental conditions are often reflected in their social media activity due to the internet's anonymity. Psychiatric issues are often detected through such activities and can be addressed in their early stages, potentially preventing the consequences of unattended mental disorders like depression and anxiety. In this paper, the authors have implemented machine learning models and used various embedding techniques to classify posts from the famous social media blog site Reddit as stressful and non-stressful. The dataset used contains user posts that can be analyzed to detect patterns in the social media activity of those diagnosed with mental disorders. This paper uses different NLP (Natural Language Processing) tools such as ELMo (Embeddings from Language Models) word embeddings, BERT (Bidirectional Encoder Representations from Transformers) tokenizers, and BoW (Bag of Words) approach to create word/sentence data that can be fed to machine learning models. The results of each method have been discussed. The results achieved a top F1 score of 0.76, a Precision score of 0.71, and a Recall of 0.74 using only the preprocessed texts and machine learning algorithms to classify the posts. The results achieved by this paper are significant and have the potential to be applied in real-world scenarios to analyze mental stress among social media users. Although this paper focuses on data from Reddit, the techniques used can be transferred to similar social media platforms and could help solve the growing mental health crisis.
Collapse
Affiliation(s)
- Shaunak Inamdar
- grid.444681.b0000 0004 0503 4808AIML Department, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, India
| | - Rishikesh Chapekar
- grid.444681.b0000 0004 0503 4808AIML Department, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, India
| | - Shilpa Gite
- grid.444681.b0000 0004 0503 4808AIML Department, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, India
- grid.444681.b0000 0004 0503 4808Symbiosis Center for Applied AI (SCAAI), Symbiosis International (Deemed University), Pune, India
| | - Biswajeet Pradhan
- grid.117476.20000 0004 1936 7611Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007 Australia
| |
Collapse
|
13
|
Adarsh V, Arun Kumar P, Lavanya V, Gangadharan G. Fair and Explainable Depression Detection in Social Media. Inf Process Manag 2023. [DOI: 10.1016/j.ipm.2022.103168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Alves CL, Cury RG, Roster K, Pineda AM, Rodrigues FA, Thielemann C, Ciba M. Application of machine learning and complex network measures to an EEG dataset from ayahuasca experiments. PLoS One 2022; 17:e0277257. [PMID: 36525422 PMCID: PMC9757568 DOI: 10.1371/journal.pone.0277257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/23/2022] [Indexed: 12/23/2022] Open
Abstract
Ayahuasca is a blend of Amazonian plants that has been used for traditional medicine by the inhabitants of this region for hundreds of years. Furthermore, this plant has been demonstrated to be a viable therapy for a variety of neurological and mental diseases. EEG experiments have found specific brain regions that changed significantly due to ayahuasca. Here, we used an EEG dataset to investigate the ability to automatically detect changes in brain activity using machine learning and complex networks. Machine learning was applied at three different levels of data abstraction: (A) the raw EEG time series, (B) the correlation of the EEG time series, and (C) the complex network measures calculated from (B). Further, at the abstraction level of (C), we developed new measures of complex networks relating to community detection. As a result, the machine learning method was able to automatically detect changes in brain activity, with case (B) showing the highest accuracy (92%), followed by (A) (88%) and (C) (83%), indicating that connectivity changes between brain regions are more important for the detection of ayahuasca. The most activated areas were the frontal and temporal lobe, which is consistent with the literature. F3 and PO4 were the most important brain connections, a significant new discovery for psychedelic literature. This connection may point to a cognitive process akin to face recognition in individuals during ayahuasca-mediated visual hallucinations. Furthermore, closeness centrality and assortativity were the most important complex network measures. These two measures are also associated with diseases such as Alzheimer's disease, indicating a possible therapeutic mechanism. Moreover, the new measures were crucial to the predictive model and suggested larger brain communities associated with the use of ayahuasca. This suggests that the dissemination of information in functional brain networks is slower when this drug is present. Overall, our methodology was able to automatically detect changes in brain activity during ayahuasca consumption and interpret how these psychedelics alter brain networks, as well as provide insights into their mechanisms of action.
Collapse
Affiliation(s)
- Caroline L. Alves
- BioMEMS Lab, Aschaffenburg University of Applied Sciences (UAS), Aschaffenburg, Germany
- Institute of Mathematical and Computer Sciences, University of São Paulo (USP), São Paulo, Brazil
- * E-mail:
| | - Rubens Gisbert Cury
- Department of Neurology, Movement Disorders Center, University of São Paulo (USP), São Paulo, Brazil
| | - Kirstin Roster
- Institute of Mathematical and Computer Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Aruane M. Pineda
- Institute of Mathematical and Computer Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Francisco A. Rodrigues
- Institute of Mathematical and Computer Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Christiane Thielemann
- BioMEMS Lab, Aschaffenburg University of Applied Sciences (UAS), Aschaffenburg, Germany
| | - Manuel Ciba
- BioMEMS Lab, Aschaffenburg University of Applied Sciences (UAS), Aschaffenburg, Germany
| |
Collapse
|
15
|
Chen ZS, Kulkarni P(P, Galatzer-Levy IR, Bigio B, Nasca C, Zhang Y. Modern views of machine learning for precision psychiatry. PATTERNS (NEW YORK, N.Y.) 2022; 3:100602. [PMID: 36419447 PMCID: PMC9676543 DOI: 10.1016/j.patter.2022.100602] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In light of the National Institute of Mental Health (NIMH)'s Research Domain Criteria (RDoC), the advent of functional neuroimaging, novel technologies and methods provide new opportunities to develop precise and personalized prognosis and diagnosis of mental disorders. Machine learning (ML) and artificial intelligence (AI) technologies are playing an increasingly critical role in the new era of precision psychiatry. Combining ML/AI with neuromodulation technologies can potentially provide explainable solutions in clinical practice and effective therapeutic treatment. Advanced wearable and mobile technologies also call for the new role of ML/AI for digital phenotyping in mobile mental health. In this review, we provide a comprehensive review of ML methodologies and applications by combining neuroimaging, neuromodulation, and advanced mobile technologies in psychiatry practice. We further review the role of ML in molecular phenotyping and cross-species biomarker identification in precision psychiatry. We also discuss explainable AI (XAI) and neuromodulation in a closed human-in-the-loop manner and highlight the ML potential in multi-media information extraction and multi-modal data fusion. Finally, we discuss conceptual and practical challenges in precision psychiatry and highlight ML opportunities in future research.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | | | - Isaac R. Galatzer-Levy
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Meta Reality Lab, New York, NY, USA
| | - Benedetta Bigio
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Carla Nasca
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yu Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
16
|
Baghdadi NA, Malki A, Magdy Balaha H, AbdulAzeem Y, Badawy M, Elhosseini M. An optimized deep learning approach for suicide detection through Arabic tweets. PeerJ Comput Sci 2022; 8:e1070. [PMID: 36092010 PMCID: PMC9455273 DOI: 10.7717/peerj-cs.1070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Many people worldwide suffer from mental illnesses such as major depressive disorder (MDD), which affect their thoughts, behavior, and quality of life. Suicide is regarded as the second leading cause of death among teenagers when treatment is not received. Twitter is a platform for expressing their emotions and thoughts about many subjects. Many studies, including this one, suggest using social media data to track depression and other mental illnesses. Even though Arabic is widely spoken and has a complex syntax, depressive detection methods have not been applied to the language. The Arabic tweets dataset should be scraped and annotated first. Then, a complete framework for categorizing tweet inputs into two classes (such as Normal or Suicide) is suggested in this study. The article also proposes an Arabic tweet preprocessing algorithm that contrasts lemmatization, stemming, and various lexical analysis methods. Experiments are conducted using Twitter data scraped from the Internet. Five different annotators have annotated the data. Performance metrics are reported on the suggested dataset using the latest Bidirectional Encoder Representations from Transformers (BERT) and Universal Sentence Encoder (USE) models. The measured performance metrics are balanced accuracy, specificity, F1-score, IoU, ROC, Youden Index, NPV, and weighted sum metric (WSM). Regarding USE models, the best-weighted sum metric (WSM) is 80.2%, and with regards to Arabic BERT models, the best WSM is 95.26%.
Collapse
Affiliation(s)
- Nadiah A. Baghdadi
- Nursing Management and Education Department, College of Nursing, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amer Malki
- College of Computer Science and Engineering, Taibah University, Yanbu, Saudi Arabia
| | - Hossam Magdy Balaha
- Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| | - Yousry AbdulAzeem
- Computer Engineering Department, Misr Higher Institute for Engineering and Technology, Mansoura, Egypt
| | - Mahmoud Badawy
- Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| | - Mostafa Elhosseini
- College of Computer Science and Engineering, Taibah University, Yanbu, Saudi Arabia
- Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| |
Collapse
|
17
|
Huang Y, Zhang J. Exploring Factor Structures Using Variational Autoencoder in Personality Research. Front Psychol 2022; 13:863926. [PMID: 35992414 PMCID: PMC9388855 DOI: 10.3389/fpsyg.2022.863926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
An accurate personality model is crucial to many research fields. Most personality models have been constructed using linear factor analysis (LFA). In this paper, we investigate if an effective deep learning tool for factor extraction, the Variational Autoencoder (VAE), can be applied to explore the factor structure of a set of personality variables. To compare VAE with LFA, we applied VAE to an International Personality Item Pool (IPIP) Big 5 dataset and an IPIP HEXACO (Humility-Honesty, Emotionality, Extroversion, Agreeableness, Conscientiousness, Openness) dataset. We found that LFA tends to break factors into ever smaller, yet still significant fractions, when the number of assumed latent factors increases, leading to the need to organize personality variables at the factor level and then the facet level. On the other hand, the factor structure returned by VAE is very stable and VAE only adds noise-like factors after significant factors are found as the number of assumed latent factors increases. VAE reported more stable factors by elevating some facets in the HEXACO scale to the factor level. Since this is a data-driven process that exhausts all stable and significant factors that can be found, it is not necessary to further conduct facet level analysis and it is anticipated that VAE will have broad applications in exploratory factor analysis in personality research.
Collapse
Affiliation(s)
- Yufei Huang
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, United States
| | - Jianqiu Zhang
- Department of Electrical and Computer Engineering, The University of Texas, San Antonio, TX, United States
- *Correspondence: Jianqiu Zhang
| |
Collapse
|
18
|
Fonseka LN, Woo BKP. Social media and schizophrenia: An update on clinical applications. World J Psychiatry 2022; 12:897-903. [PMID: 36051600 PMCID: PMC9331455 DOI: 10.5498/wjp.v12.i7.897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/18/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Social media has redesigned the landscape of human interaction, and data obtained through these platforms are promising for schizophrenia diagnosis and management. Recent research shows mounting evidence that machine learning analysis of social media content is capable of not only differentiating schizophrenia patients from healthy controls, but also predicting conversion to psychosis and symptom exacerbations. Novel platforms such as Horyzons show promise for improving social functioning and providing timely access to therapeutic resources. Social media is also a considerable means to assess and lessen the stigma surrounding schizophrenia. Herein, the relevant literature pertaining to social media and its clinical applications in schizophrenia over the past five years are summarized, followed by a discussion centered on user feedback to highlight future directions. Social media provides valuable contributions to a multifaceted digital phenotype that may improve schizophrenia care in the near future.
Collapse
Affiliation(s)
- Lakshan N Fonseka
- Harvard South Shore–Psychiatry Residency Program, Veteran Affairs Boston Healthcare System, Brockton, MA 02301, United States
| | - Benjamin K P Woo
- Chinese American Health Promotion Program, Department of Psychiatry and Biobehavioral Sciences, Olive View-University of California, Los Angeles Medical Center, Sylmar, CA 91104, United States
| |
Collapse
|
19
|
Deep Learning-Based Mental Health Model on Primary and Secondary School Students’ Quality Cultivation. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7842304. [PMID: 35845877 PMCID: PMC9279049 DOI: 10.1155/2022/7842304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 12/04/2022]
Abstract
The purpose was to timely identify the mental disorders (MDs) of students receiving primary and secondary education (PSE) (PSE students) and improve their mental quality. Firstly, this work analyzes the research status of the mental health model (MHM) and the main contents of PSE student-oriented mental health quality cultivation under deep learning (DL). Secondly, an MHM is implemented based on big data technology (BDT) and the convolutional neural network (CNN). Simultaneously, the long short-term memory (LSTM) is introduced to optimize the proposed MHM. Finally, the performance of the MHM before and after optimization is evaluated, and the PSE student-oriented mental health quality training strategy based on the proposed MHM is offered. The results show that the accuracy curve is higher than the recall curve in all classification algorithms. The maximum recall rate is 0.58, and the minimum accuracy rate is 0.62. The decision tree (DT) algorithm has the best comprehensive performance among the five different classification algorithms, with accuracy of 0.68, recall rate of 0.58, and F1-measure of 0.69. Thus, the DT algorithm is selected as the classifier. The proposed MHM can identify 56% of students with MDs before optimization. After optimization, the accuracy is improved by 0.03. The recall rate is improved by 0.19, the F1-measure is improved by 0.05, and 75% of students with MDs can be identified. Diverse behavior data can improve the recognition effect of students' MDs. Meanwhile, from the 60th iteration, the mode accuracy and loss tend to be stable. By comparison, batch_size has little influence on the experimental results. The number of convolution kernels of the first convolution layer has little influence. The proposed MHM based on DL and CNN will indirectly improve the mental health quality of PSE students. The research provides a reference for cultivating the mental health quality of PSE students.
Collapse
|
20
|
Allesøe RL, Nudel R, Thompson WK, Wang Y, Nordentoft M, Børglum AD, Hougaard DM, Werge T, Rasmussen S, Benros ME. Deep learning-based integration of genetics with registry data for stratification of schizophrenia and depression. SCIENCE ADVANCES 2022; 8:eabi7293. [PMID: 35767618 PMCID: PMC9242585 DOI: 10.1126/sciadv.abi7293] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Currently, psychiatric diagnoses are, in contrast to most other medical fields, based on subjective symptoms and observable signs and call for new and improved diagnostics to provide the most optimal care. On the basis of a deep learning approach, we performed unsupervised patient stratification of 19,636 patients with depression [major depressive disorder (MDD)] and/or schizophrenia (SCZ) and 22,467 population controls from the iPSYCH2012 case cohort. We integrated data of disorder severity, history of mental disorders and disease comorbidities, genetics, and medical birth data. From this, we stratified the individuals in six and seven unique clusters for MDD and SCZ, respectively. When censoring data until diagnosis, we could predict MDD clusters with areas under the curve (AUCs) of 0.54 to 0.80 and SCZ clusters with AUCs of 0.71 to 0.86. Overall cases and controls could be predicted with an AUC of 0.81, illustrating the utility of data-driven subgrouping in psychiatry.
Collapse
Affiliation(s)
- Rosa Lundbye Allesøe
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ron Nudel
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Wesley K. Thompson
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, San Diego, CA, USA
| | - Yunpeng Wang
- Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Forskningsveien 3A, 0317 Oslo, Norway
| | - Merete Nordentoft
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders D. Børglum
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Biomedicine, Aarhus University and Centre for Integrative Sequencing, iSEQ, Aarhus, Denmark
- Aarhus Genome Center, Aarhus, Denmark
| | - David M. Hougaard
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Thomas Werge
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Eriksen Benros
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Harvey D, Lobban F, Rayson P, Warner A, Jones S. Natural Language Processing Methods and Bipolar Disorder: Scoping Review. JMIR Ment Health 2022; 9:e35928. [PMID: 35451984 PMCID: PMC9077496 DOI: 10.2196/35928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Health researchers are increasingly using natural language processing (NLP) to study various mental health conditions using both social media and electronic health records (EHRs). There is currently no published synthesis that relates specifically to the use of NLP methods for bipolar disorder, and this scoping review was conducted to synthesize valuable insights that have been presented in the literature. OBJECTIVE This scoping review explored how NLP methods have been used in research to better understand bipolar disorder and identify opportunities for further use of these methods. METHODS A systematic, computerized search of index and free-text terms related to bipolar disorder and NLP was conducted using 5 databases and 1 anthology: MEDLINE, PsycINFO, Academic Search Ultimate, Scopus, Web of Science Core Collection, and the ACL Anthology. RESULTS Of 507 identified studies, a total of 35 (6.9%) studies met the inclusion criteria. A narrative synthesis was used to describe the data, and the studies were grouped into four objectives: prediction and classification (n=25), characterization of the language of bipolar disorder (n=13), use of EHRs to measure health outcomes (n=3), and use of EHRs for phenotyping (n=2). Ethical considerations were reported in 60% (21/35) of the studies. CONCLUSIONS The current literature demonstrates how language analysis can be used to assist in and improve the provision of care for people living with bipolar disorder. Individuals with bipolar disorder and the medical community could benefit from research that uses NLP to investigate risk-taking, web-based services, social and occupational functioning, and the representation of gender in bipolar disorder populations on the web. Future research that implements NLP methods to study bipolar disorder should be governed by ethical principles, and any decisions regarding the collection and sharing of data sets should ultimately be made on a case-by-case basis, considering the risk to the data participants and whether their privacy can be ensured.
Collapse
Affiliation(s)
- Daisy Harvey
- Spectrum Centre for Mental Health Research, Division of Health Research, School of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Fiona Lobban
- Spectrum Centre for Mental Health Research, Division of Health Research, School of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Paul Rayson
- Department of Computing and Communications, Lancaster University, Lancaster, United Kingdom
| | - Aaron Warner
- Spectrum Centre for Mental Health Research, Division of Health Research, School of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Steven Jones
- Spectrum Centre for Mental Health Research, Division of Health Research, School of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
22
|
Huang YJ, Lin YT, Liu CC, Lee LE, Hung SH, Lo JK, Fu LC. Assessing Schizophrenia Patients through Linguistic and Acoustic Features using Deep Learning Techniques. IEEE Trans Neural Syst Rehabil Eng 2022; 30:947-956. [PMID: 35358049 DOI: 10.1109/tnsre.2022.3163777] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Thought, language, and communication disorders are among the salient characteristics of schizophrenia. Such impairments are often exhibited in patients' conversations. Researches have shown that assessments of thought disorder are crucial for tracking the clinical patients' conditions and early detection of clinical high-risks. Detecting such symptoms require a trained clinician's expertise, which is prohibitive due to cost and the high patient-to-clinician ratio. In this paper, we propose a machine learning method using Transformer-based model to help automate the assessment of the severity of the thought disorder of schizophrenia. The proposed model uses both textual and acoustic speech between occupational therapists or psychiatric nurses and schizophrenia patients to predict the level of their thought disorder. Experimental results show that the proposed model has the ability to closely predict the results of assessments for Schizophrenia patients base on the extracted semantic, syntactic and acoustic features. Thus, we believe our model can be a helpful tool to doctors when they are assessing schizophrenia patients.
Collapse
|
23
|
Nasrullah S, Jalali A. Detection of Types of Mental Illness through the Social Network Using Ensembled Deep Learning Model. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:9404242. [PMID: 35378814 PMCID: PMC8976617 DOI: 10.1155/2022/9404242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022]
Abstract
In today's era, social networking platforms are widely used to share emotions. These types of emotions are often analyzed to predict the user's behavior. In this paper, these types of sentiments are classified to predict the mental illness of the user using the ensembled deep learning model. The Reddit social networking platform is used for the analysis, and the ensembling deep learning model is implemented through convolutional neural network and the recurrent neural network. In this work, multiclass classification is performed for predicting mental illness such as anxiety vs. nonanxiety, bipolar vs. nonbipolar, dementia vs. nondementia, and psychotic vs. nonpsychotic. The performance parameters used for evaluating the models are accuracy, precision, recall, and F1 score. The proposed ensemble model used for performing the multiclass classification has performed better than the other models, with an accuracy greater than 92% in predicting the class.
Collapse
Affiliation(s)
- Syed Nasrullah
- Department of Information Systems, College of Computer Engineering & Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Asadullah Jalali
- American University of Afghanistan, STM (Science Technology Mathematics), Kabul, Afghanistan
| |
Collapse
|
24
|
Zeberga K, Attique M, Shah B, Ali F, Jembre YZ, Chung TS. A Novel Text Mining Approach for Mental Health Prediction Using Bi-LSTM and BERT Model. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7893775. [PMID: 35281185 PMCID: PMC8913054 DOI: 10.1155/2022/7893775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/30/2021] [Indexed: 11/18/2022]
Abstract
With the current advancement in the Internet, there has been a growing demand for building intelligent and smart systems that can efficiently address the detection of health-related problems on social media, such as the detection of depression and anxiety. These types of systems, which are mainly dependent on machine learning techniques, must be able to deal with obtaining the semantic and syntactic meaning of texts posted by users on social media. The data generated by users on social media contains unstructured and unpredictable content. Several systems based on machine learning and social media platforms have recently been introduced to identify health-related problems. However, the text representation and deep learning techniques employed provide only limited information and knowledge about the different texts posted by users. This is owing to a lack of long-term dependencies between each word in the entire text and a lack of proper exploitation of recent deep learning schemes. In this paper, we propose a novel framework to efficiently and effectively identify depression and anxiety-related posts while maintaining the contextual and semantic meaning of the words used in the whole corpus when applying bidirectional encoder representations from transformers (BERT). In addition, we propose a knowledge distillation technique, which is a recent technique for transferring knowledge from a large pretrained model (BERT) to a smaller model to boost performance and accuracy. We also devised our own data collection framework from Reddit and Twitter, which are the most common social media sites. Finally, we employed word2vec and BERT with Bi-LSTM to effectively analyze and detect depression and anxiety signs from social media posts. Our system surpasses other state-of-the-art methods and achieves an accuracy of 98% using the knowledge distillation technique.
Collapse
Affiliation(s)
- Kamil Zeberga
- Department of Artificial Intelligence, Ajou University, Suwon, Republic of Korea
| | | | - Babar Shah
- College of Technological Innovation, Zayed University, Abu Dhabi, UAE
| | - Farman Ali
- Department of Software, Sejong University, Republic of Korea
| | - Yalew Zelalem Jembre
- Department of Electronic Engineering, Keimyung University, Daegu, Republic of Korea
| | - Tae-Sun Chung
- Department of Artificial Intelligence, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
25
|
Abstract
Depression is a prevalent sickness, spreading worldwide with potentially serious implications. Timely recognition of emotional responses plays a pivotal function at present, with the profound expansion of social media and users of the internet. Mental illnesses are highly hazardous, stirring more than three hundred million people. Moreover, that is why research is focused on this subject. With the advancements of machine learning and the availability of sample data relevant to depression, there is the possibility of developing an early depression diagnostic system, which is key to lessening the number of afflicted individuals. This paper proposes a productive model by implementing the Long-Short Term Memory (LSTM) model, consisting of two hidden layers and large bias with Recurrent Neural Network (RNN) with two dense layers, to predict depression from text, which can be beneficial in protecting individuals from mental disorders and suicidal affairs. We train RNN on textual data to identify depression from text, semantics, and written content. The proposed framework achieves 99.0% accuracy, higher than its counterpart, frequency-based deep learning models, whereas the false positive rate is reduced. We also compare the proposed model with other models regarding its mean accuracy. The proposed approach indicates the feasibility of RNN and LSTM by achieving exceptional results for early recognition of depression in the emotions of numerous social media subscribers.
Collapse
|
26
|
Lejeune A, Robaglia BM, Walter M, Berrouiguet S, Lemey C. Use of social media data to diagnose and monitor psychotic disorders: systematic review and perspectives (Preprint). J Med Internet Res 2022; 24:e36986. [PMID: 36066938 PMCID: PMC9490531 DOI: 10.2196/36986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 01/10/2023] Open
Abstract
Background Schizophrenia is a disease associated with high burden, and improvement in care is necessary. Artificial intelligence (AI) has been used to diagnose several medical conditions as well as psychiatric disorders. However, this technology requires large amounts of data to be efficient. Social media data could be used to improve diagnostic capabilities. Objective The objective of our study is to analyze the current capabilities of AI to use social media data as a diagnostic tool for psychotic disorders. Methods A systematic review of the literature was conducted using several databases (PubMed, Embase, Cochrane, PsycInfo, and IEEE Xplore) using relevant keywords to search for articles published as of November 12, 2021. We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) criteria to identify, select, and critically assess the quality of the relevant studies while minimizing bias. We critically analyzed the methodology of the studies to detect any bias and presented the results. Results Among the 93 studies identified, 7 studies were included for analyses. The included studies presented encouraging results. Social media data could be used in several ways to care for patients with schizophrenia, including the monitoring of patients after the first episode of psychosis. We identified several limitations in the included studies, mainly lack of access to clinical diagnostic data, small sample size, and heterogeneity in study quality. We recommend using state-of-the-art natural language processing neural networks, called language models, to model social media activity. Combined with the synthetic minority oversampling technique, language models can tackle the imbalanced data set limitation, which is a necessary constraint to train unbiased classifiers. Furthermore, language models can be easily adapted to the classification task with a procedure called “fine-tuning.” Conclusions The use of social media data for the diagnosis of psychotic disorders is promising. However, most of the included studies had significant biases; we therefore could not draw conclusions about accuracy in clinical situations. Future studies need to use more accurate methodologies to obtain unbiased results.
Collapse
Affiliation(s)
- Alban Lejeune
- Unité de Recherche Clinique Intersectorielle, Hôpital de Bohars, Centre Hospitalier Régional Universitaire de Brest, Bohars, France
| | | | - Michel Walter
- Unité de Recherche Clinique Intersectorielle, Hôpital de Bohars, Centre Hospitalier Régional Universitaire de Brest, Bohars, France
- Faculté de Médecine et Sciences de la Santé, Université de Bretagne Occidentale, Brest, France
| | - Sofian Berrouiguet
- Unité de Recherche Clinique Intersectorielle, Hôpital de Bohars, Centre Hospitalier Régional Universitaire de Brest, Bohars, France
- Laboratoire de Traitement de l'Information Médicale, Unité Mixte de Recherche 1101, Institut National de la Santé et de la Recherche Médicale, Brest, France
| | - Christophe Lemey
- Unité de Recherche Clinique Intersectorielle, Hôpital de Bohars, Centre Hospitalier Régional Universitaire de Brest, Bohars, France
- Faculté de Médecine et Sciences de la Santé, Université de Bretagne Occidentale, Brest, France
- Lab-STICC, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6285, F-29238, École Nationale Supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, Brest, France
| |
Collapse
|
27
|
Liu J, Shi M. A Hybrid Feature Selection and Ensemble Approach to Identify Depressed Users in Online Social Media. Front Psychol 2022; 12:802821. [PMID: 35115990 PMCID: PMC8803736 DOI: 10.3389/fpsyg.2021.802821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Depression has become one of the most common mental illnesses, and the widespread use of social media provides new ideas for detecting various mental illnesses. The purpose of this study is to use machine learning technology to detect users of depressive patients based on user-shared content and posting behaviors in social media. At present, the existing research mostly uses a single detection method, and the unbalanced class distribution often leads to a low recognition rate. In addition, a large number of irrelevant or redundant features in high-dimensional data sets interfere with the accuracy of recognition. To solve this problem, this paper proposes a hybrid feature selection and stacking ensemble strategy for depression user detection. First, recursive elimination method and extremely randomized trees method are used to calculate feature importance and mutual information value, calculate feature weight vector, and select the optimal feature subset according to the feature weight. Second, naive bayes, k-nearest neighbor, regularized logistic regression and support vector machine are used as base learners, and a simple logistic regression algorithm is used as a combination strategy to build a stacking model. Experimental results show that compared with other machine learning algorithms, the proposed hybrid method, which integrates feature selection and ensemble, has a higher accuracy of 90.27% in identifying online patients. We believe this study will help develop new methods to identify depressed people in social networks, providing guidance for future research.
Collapse
|
28
|
Schneider H. Artificial Intelligence in Schizophrenia. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Boettcher N. Studies of Depression and Anxiety Using Reddit as a Data Source: Scoping Review. JMIR Ment Health 2021; 8:e29487. [PMID: 34842560 PMCID: PMC8663609 DOI: 10.2196/29487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/20/2021] [Accepted: 08/15/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The study of depression and anxiety using publicly available social media data is a research activity that has grown considerably over the past decade. The discussion platform Reddit has become a popular social media data source in this nascent area of study, in part because of the unique ways in which the platform is facilitative of research. To date, no work has been done to synthesize existing studies on depression and anxiety using Reddit. OBJECTIVE The objective of this review is to understand the scope and nature of research using Reddit as a primary data source for studying depression and anxiety. METHODS A scoping review was conducted using the Arksey and O'Malley framework. MEDLINE, Embase, CINAHL, PsycINFO, PsycARTICLES, Scopus, ScienceDirect, IEEE Xplore, and ACM academic databases were searched. Inclusion criteria were developed using the participants, concept, and context framework outlined by the Joanna Briggs Institute Scoping Review Methodology Group. Eligible studies featured an analytic focus on depression or anxiety and used naturalistic written expressions from Reddit users as a primary data source. RESULTS A total of 54 studies were included in the review. Tables and corresponding analyses delineate the key methodological features, including a comparatively larger focus on depression versus anxiety, an even split of original and premade data sets, a widespread analytic focus on classifying the mental health states of Reddit users, and practical implications that often recommend new methods of professionally delivered monitoring and outreach for Reddit users. CONCLUSIONS Studies of depression and anxiety using Reddit data are currently driven by a prevailing methodology that favors a technical, solution-based orientation. Researchers interested in advancing this research area will benefit from further consideration of conceptual issues surrounding the interpretation of Reddit data with the medical model of mental health. Further efforts are also needed to locate accountability and autonomy within practice implications, suggesting new forms of engagement with Reddit users.
Collapse
Affiliation(s)
- Nick Boettcher
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
30
|
Safa R, Bayat P, Moghtader L. Automatic detection of depression symptoms in twitter using multimodal analysis. THE JOURNAL OF SUPERCOMPUTING 2021; 78:4709-4744. [PMID: 34518741 PMCID: PMC8426595 DOI: 10.1007/s11227-021-04040-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 05/03/2023]
Abstract
Depression is the most prevalent mental disorder that can lead to suicide. Due to the tendency of people to share their thoughts on social platforms, social data contain valuable information that can be used to identify user's psychological states. In this paper, we provide an automated approach to collect and evaluate tweets based on self-reported statements and present a novel multimodal framework to predict depression symptoms from user profiles. We used n-gram language models, LIWC dictionaries, automatic image tagging, and bag-of-visual-words. We consider the correlation-based feature selection and nine different classifiers with standard evaluation metrics to assess the effectiveness of the method. Based on the analysis, the tweets and bio-text alone showed 91% and 83% accuracy in predicting depressive symptoms, respectively, which seems to be an acceptable result. We also believe performance improvements can be achieved by limiting the user domain or presence of clinical information.
Collapse
Affiliation(s)
- Ramin Safa
- Department of Computer Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Peyman Bayat
- Department of Computer Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Leila Moghtader
- Department of Psychology, Rasht Branch, Islamic Azad University, Rasht, Iran
| |
Collapse
|
31
|
A textual-based featuring approach for depression detection using machine learning classifiers and social media texts. Comput Biol Med 2021; 135:104499. [PMID: 34174760 DOI: 10.1016/j.compbiomed.2021.104499] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
Depression is one of the leading causes of suicide worldwide. However, a large percentage of cases of depression go undiagnosed and, thus, untreated. Previous studies have found that messages posted by individuals with major depressive disorder on social media platforms can be analysed to predict if they are suffering, or likely to suffer, from depression. This study aims to determine whether machine learning could be effectively used to detect signs of depression in social media users by analysing their social media posts-especially when those messages do not explicitly contain specific keywords such as 'depression' or 'diagnosis'. To this end, we investigate several text preprocessing and textual-based featuring methods along with machine learning classifiers, including single and ensemble models, to propose a generalised approach for depression detection using social media texts. We first use two public, labelled Twitter datasets to train and test the machine learning models, and then another three non-Twitter depression-class-only datasets (sourced from Facebook, Reddit, and an electronic diary) to test the performance of our trained models against other social media sources. Experimental results indicate that the proposed approach is able to effectively detect depression via social media texts even when the training datasets do not contain specific keywords (such as 'depression' and 'diagnose'), as well as when unrelated datasets are used for testing.
Collapse
|
32
|
Kim J, Lee D, Park E. Machine Learning for Mental Health in Social Media: Bibliometric Study. J Med Internet Res 2021; 23:e24870. [PMID: 33683209 PMCID: PMC7985801 DOI: 10.2196/24870] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
Background Social media platforms provide an easily accessible and time-saving communication approach for individuals with mental disorders compared to face-to-face meetings with medical providers. Recently, machine learning (ML)-based mental health exploration using large-scale social media data has attracted significant attention. Objective We aimed to provide a bibliometric analysis and discussion on research trends of ML for mental health in social media. Methods Publications addressing social media and ML in the field of mental health were retrieved from the Scopus and Web of Science databases. We analyzed the publication distribution to measure productivity on sources, countries, institutions, authors, and research subjects, and visualized the trends in this field using a keyword co-occurrence network. The research methodologies of previous studies with high citations are also thoroughly described. Results We obtained a total of 565 relevant papers published from 2015 to 2020. In the last 5 years, the number of publications has demonstrated continuous growth with Lecture Notes in Computer Science and Journal of Medical Internet Research as the two most productive sources based on Scopus and Web of Science records. In addition, notable methodological approaches with data resources presented in high-ranking publications were investigated. Conclusions The results of this study highlight continuous growth in this research area. Moreover, we retrieved three main discussion points from a comprehensive overview of highly cited publications that provide new in-depth directions for both researchers and practitioners.
Collapse
Affiliation(s)
- Jina Kim
- Department of Applied Artificial Intelligence, Sungkyunkwan University, Seoul, Republic of Korea
| | - Daeun Lee
- Department of Applied Artificial Intelligence, Sungkyunkwan University, Seoul, Republic of Korea
| | - Eunil Park
- Department of Applied Artificial Intelligence, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
33
|
Aguilera J, Farías DIH, Ortega-Mendoza RM, Montes-y-Gómez M. Depression and anorexia detection in social media as a one-class classification problem. APPL INTELL 2021. [DOI: 10.1007/s10489-020-02131-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Artificial Intelligence in Schizophrenia. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|