1
|
Lyu YX, Fu Q, Wilczok D, Ying K, King A, Antebi A, Vojta A, Stolzing A, Moskalev A, Georgievskaya A, Maier AB, Olsen A, Groth A, Simon AK, Brunet A, Jamil A, Kulaga A, Bhatti A, Yaden B, Pedersen BK, Schumacher B, Djordjevic B, Kennedy B, Chen C, Huang CY, Correll CU, Murphy CT, Ewald CY, Chen D, Valenzano DR, Sołdacki D, Erritzoe D, Meyer D, Sinclair DA, Chini EN, Teeling EC, Morgen E, Verdin E, Vernet E, Pinilla E, Fang EF, Bischof E, Mercken EM, Finger F, Kuipers F, Pun FW, Gyülveszi G, Civiletto G, Zmudze G, Blander G, Pincus HA, McClure J, Kirkland JL, Peyer J, Justice JN, Vijg J, Gruhn JR, McLaughlin J, Mannick J, Passos J, Baur JA, Betts-LaCroix J, Sedivy JM, Speakman JR, Shlain J, von Maltzahn J, Andreasson KI, Moody K, Palikaras K, Fortney K, Niedernhofer LJ, Rasmussen LJ, Veenhoff LM, Melton L, Ferrucci L, Quarta M, Koval M, Marinova M, Hamalainen M, Unfried M, Ringel MS, Filipovic M, Topors M, Mitin N, Roy N, Pintar N, Barzilai N, Binetti P, Singh P, Kohlhaas P, Robbins PD, Rubin P, Fedichev PO, Kamya P, Muñoz-Canoves P, de Cabo R, Faragher RGA, Konrad R, Ripa R, Mansukhani R, Büttner S, Wickström SA, Brunemeier S, Jakimov S, Luo S, Rosenzweig-Lipson S, Tsai SY, Dimmeler S, Rando TA, Peterson TR, Woods T, Wyss-Coray T, Finkel T, Strauss T, Gladyshev VN, Longo VD, Dwaraka VB, Gorbunova V, Acosta-Rodríguez VA, Sorrentino V, Sebastiano V, Li W, Suh Y, Zhavoronkov A, Scheibye-Knudsen M, Bakula D. Longevity biotechnology: bridging AI, biomarkers, geroscience and clinical applications for healthy longevity. Aging (Albany NY) 2024; 16:12955-12976. [PMID: 39418098 PMCID: PMC11552646 DOI: 10.18632/aging.206135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 10/19/2024]
Abstract
The recent unprecedented progress in ageing research and drug discovery brings together fundamental research and clinical applications to advance the goal of promoting healthy longevity in the human population. We, from the gathering at the Aging Research and Drug Discovery Meeting in 2023, summarised the latest developments in healthspan biotechnology, with a particular emphasis on artificial intelligence (AI), biomarkers and clocks, geroscience, and clinical trials and interventions for healthy longevity. Moreover, we provide an overview of academic research and the biotech industry focused on targeting ageing as the root of age-related diseases to combat multimorbidity and extend healthspan. We propose that the integration of generative AI, cutting-edge biological technology, and longevity medicine is essential for extending the productive and healthy human lifespan.
Collapse
Affiliation(s)
- Yu-Xuan Lyu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Qiang Fu
- Institute of Aging Medicine, College of Pharmacy, Binzhou Medical University, Yantai, China
- Anti-aging Innovation Center, Subei Research Institute at Shanghai Jiaotong University, China
- Shandong Cellogene Pharmaceutics Co. LTD, Yantai, China
| | - Dominika Wilczok
- Duke Kunshan University, Kunshan, Jiangsu, China
- Duke University, Durham, NC, USA
| | - Kejun Ying
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02108, USA
| | - Aaron King
- Foresight Institute, San Francisco, CA 91125, USA
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Aleksandar Vojta
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Alexandra Stolzing
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Alexey Moskalev
- Institute of Biogerontology, Lobachevsky University, Nizhny Novgorod, Russia
| | | | - Andrea B. Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrea Olsen
- California Institute of Technology, Pasadena, CA 91125, USA
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Katharina Simon
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- The Kennedy Institute of Rheumatology, Oxford, UK
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Aisyah Jamil
- Insilico Medicine AI Limited, Level 6, Masdar City, Abu Dhabi, UAE
| | - Anton Kulaga
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | | | - Benjamin Yaden
- Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University - Purdue University Indianapolis, Indianapolis Indiana 46077, USA
| | | | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, CECAD Research Center, University and University Hospital of Cologne, Cologne 50931, Germany
| | - Boris Djordjevic
- 199 Biotechnologies Ltd., London, UK
- University College London, London, UK
| | - Brian Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chieh Chen
- Molecular, Cellular, And Integrative Physiology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Christoph U. Correll
- Zucker School of Medicine at Hofstra/Northwell, NY 10001, USA
- Charité - University Medicine, Berlin, Germany
| | - Coleen T. Murphy
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Danica Chen
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
- Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
- Endocrinology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dario Riccardo Valenzano
- Leibniz Institute on Aging, Fritz Lipmann Institute, Friedrich Schiller University, Jena, Germany
| | | | - David Erritzoe
- Centre for Psychedelic Research, Dpt Brain Sciences, Imperial College London, UK
| | - David Meyer
- Institute for Genome Stability in Aging and Disease, CECAD Research Center, University and University Hospital of Cologne, Cologne 50931, Germany
| | - David A. Sinclair
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA 02108, USA
| | - Eduardo Nunes Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Emma C. Teeling
- School of Biology and Environmental Science, Belfield, Univeristy College Dublin, Dublin 4, Ireland
| | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Erik Vernet
- Research and Early Development, Maaleov 2760, Denmark
| | | | - Evandro F. Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Evelyne Bischof
- Department of Medical Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Evi M. Mercken
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Fabian Finger
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Folkert Kuipers
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frank W. Pun
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | | | | | | | | | - Harold A. Pincus
- Department of Psychiatry, Columbia University, New York, NY 10012, USA
| | | | - James L. Kirkland
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Jan Vijg
- Department of Genetics Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jennifer R. Gruhn
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Joan Mannick
- Tornado Therapeutics, Cambrian Bio Inc. PipeCo, New York, NY 10012, USA
| | - João Passos
- Department of Physiology and Biomedical Engineering and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19019, USA
| | | | - John M. Sedivy
- Center on the Biology of Aging, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02860, USA
| | - John R. Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | - Julia von Maltzahn
- Faculty of Health Sciences Brandenburg and Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg 01968, Germany
| | - Katrin I. Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kelsey Moody
- Ichor Life Sciences, Inc., LaFayette, NY 13084, USA
| | - Konstantinos Palikaras
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55414, USA
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Liesbeth M. Veenhoff
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lisa Melton
- Nature Biotechnology, Springer Nature, London, UK
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21201, USA
| | - Marco Quarta
- Rubedo Life Sciences, Sunnyvale, CA 94043, USA
- Turn Biotechnologies, Mountain View 94039, CA, USA
- Phaedon Institute, Oakland, CA 94501, USA
| | - Maria Koval
- Institute of Biochemistry of the Romanian Academy, Romania
| | - Maria Marinova
- Fertility and Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark Hamalainen
- Longevity Biotech Fellowship, Longevity Acceleration Fund, Vitalism, SF Bay, CA 94101, USA
| | - Maximilian Unfried
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117608, Singapore
| | | | - Milos Filipovic
- Leibniz-Institut Für Analytische Wissenschaften-ISAS-E.V., Dortmund, Germany
| | - Mourad Topors
- Repair Biotechnologies, Inc., Syracuse, NY 13210, USA
| | | | | | | | - Nir Barzilai
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10452, USA
| | | | | | | | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology, and Biochemistry, University of Minnesota, Minneapolis, MN 55111, USA
| | | | | | - Petrina Kamya
- Insilico Medicine Canada Inc., Montreal, Quebec H3B 4W8 Canada
| | - Pura Muñoz-Canoves
- Altos Labs Inc., San Diego Institute of Science, San Diego, CA 92121, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging (NIH), Baltimore, Maryland 21201, USA
| | | | | | - Roberto Ripa
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 10691, Sweden
| | - Sara A. Wickström
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | | | - Shan Luo
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | | | - Shih-Yin Tsai
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Germany
| | - Thomas A. Rando
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Tina Woods
- Collider Heath, London, UK
- Healthy Longevity Champion, National Innovation Centre for Ageing, UK
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Toren Finkel
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15106, USA
| | - Tzipora Strauss
- Sheba Longevity Center, Sheba Medical Center, Tel Hashomer, Israel
- Tel Aviv Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02108, USA
| | - Valter D. Longo
- Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90001, USA
| | | | - Vera Gorbunova
- Department of Biology and Medicine, University of Rochester, Rochester, NY 14627, USA
| | - Victoria A. Acosta-Rodríguez
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vincenzo Sorrentino
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vittorio Sebastiano
- Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Stanford, CA 94301, USA
| | - Wenbin Li
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York City, NY 10032, USA
| | - Alex Zhavoronkov
- Insilico Medicine AI Limited, Level 6, Masdar City, Abu Dhabi, UAE
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Daniela Bakula
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| |
Collapse
|
2
|
DuPlissis A, Medewar A, Hegarty E, Laing A, Shen A, Gomez S, Mondal S, Ben-Yakar A. vivoBodySeg: Machine learning-based analysis of C. elegans immobilized in vivoChip for automated developmental toxicity testing. RESEARCH SQUARE 2024:rs.3.rs-4796642. [PMID: 39281859 PMCID: PMC11398583 DOI: 10.21203/rs.3.rs-4796642/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Developmental toxicity (DevTox) tests evaluate the adverse effects of chemical exposures on an organism's development. While large animal tests are currently heavily relied on, the development of new approach methodologies (NAMs) is encouraging industries and regulatory agencies to evaluate these novel assays. Several practical advantages have made C. elegansa useful model for rapid toxicity testing and studying developmental biology. Although the potential to study DevTox is promising, current low-resolution and labor-intensive methodologies prohibit the use of C. elegans for sub-lethal DevTox studies at high throughputs. With the recent availability of a large-scale microfluidic device, vivoChip, we can now rapidly collect 3D high-resolution images of ~ 1,000 C. elegans from 24 different populations. In this paper, we demonstrate DevTox studies using a 2.5D U-Net architecture (vivoBodySeg) that can precisely segment C. elegans in images obtained from vivoChip devices, achieving an average Dice score of 97.80. The fully automated platform can analyze 36 GB data from each device to phenotype multiple body parameters within 35 min on a desktop PC at speeds ~ 140x faster than the manual analysis. Highly reproducible DevTox parameters (4-8% CV) and additional autofluorescence-based phenotypes allow us to assess the toxicity of chemicals with high statistical power.
Collapse
|
3
|
Slade L, Etheridge T, Szewczyk NJ. Consolidating multiple evolutionary theories of ageing suggests a need for new approaches to study genetic contributions to ageing decline. Ageing Res Rev 2024; 100:102456. [PMID: 39153601 DOI: 10.1016/j.arr.2024.102456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Understanding mechanisms of ageing remains a complex challenge for biogerontologists, but recent adaptations of evolutionary ageing theories offer a compelling lens in which to view both age-related molecular and physiological deterioration. Ageing is commonly associated with progressive declines in biochemical and molecular processes resulting from damage accumulation, yet the role of continued developmental gene activation is less appreciated. Natural selection pressures are at their highest in youthful periods to modify gene expression towards maximising reproductive capacity. After sexual maturation, selective pressure diminishes, subjecting individuals to maladaptive pleiotropic gene functions that were once beneficial for developmental growth but become pathogenic later in life. Due to this selective 'shadowing' in ageing, mechanisms to counter such hyper/hypofunctional genes are unlikely to evolve. Interventions aimed at targeting gene hyper/hypofunction during ageing might, therefore, represent an attractive therapeutic strategy. The nematode Caenorhabditis elegans offers a strong model for post-reproductive mechanistic and therapeutic investigations, yet studies examining the mechanisms of, and countermeasures against, ageing decline largely intervene from larval stages onwards. Importantly, however, lifespan extending conditions frequently impair early-life fitness and fail to correspondingly increase healthspan. Here, we consolidate multiple evolutionary theories of ageing and discuss data supporting hyper/hypofunctional changes at a global molecular and functional level in C. elegans, and how classical lifespan-extension mutations alter these dynamics. The relevance of such mutant models for exploring mechanisms of ageing are discussed, highlighting that post-reproductive gene optimisation represents a more translatable approach for C. elegans research that is not constrained by evolutionary trade-offs. Where some genetic mutations in C. elegans that promote late-life health map accordingly with healthy ageing in humans, other widely used genetic mutations that extend worm lifespan are associated with life-limiting pathologies in people. Lifespan has also become the gold standard for quantifying 'ageing', but we argue that gerospan compression (i.e., 'healthier' ageing) is an appropriate goal for anti-ageing research, the mechanisms of which appear distinct from those regulating lifespan alone. There is, therefore, an evident need to re-evaluate experimental approaches to study the role of hyper/hypofunctional genes in ageing in C. elegans.
Collapse
Affiliation(s)
- Luke Slade
- University of Exeter Medical School, Exeter, UK.
| | - Timothy Etheridge
- Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Nathaniel J Szewczyk
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Athens, OH 45701, United States.
| |
Collapse
|
4
|
Yarmey VR, San-Miguel A. Biomarkers for aging in Caenorhabditis elegans high throughput screening. Biochem Soc Trans 2024; 52:1405-1418. [PMID: 38884801 DOI: 10.1042/bst20231303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Aging is characterized by a functional decline in organism fitness over time due to a complex combination of genetic and environmental factors [ 1-4]. With an increasing elderly population at risk of age-associated diseases, there is a pressing need for research dedicated to promoting health and longevity through anti-aging interventions. The roundworm Caenorhabditis elegans is an established model organism for aging studies due to its short life cycle, ease of culture, and conserved aging pathways. These benefits also make the worm well-suited for high-throughput screening (HTS) methods to study biomarkers of the molecular changes, cellular dysfunction, and physiological decline associated with aging. Within this review, we offer a summary of recent advances in HTS techniques to study biomarkers of aging in C. elegans.
Collapse
Affiliation(s)
- Victoria R Yarmey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27603, U.S.A
| | - Adriana San-Miguel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27603, U.S.A
| |
Collapse
|
5
|
Wan J, Ding JL, Lu H. Microfluidic approach to correlate C. elegans neuronal functional aging and underlying changes of gene expression in mechanosensation. LAB ON A CHIP 2024; 24:2811-2824. [PMID: 38700452 PMCID: PMC11091955 DOI: 10.1039/d3lc01080e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
The aging process has broad physiological impacts, including a significant decline in sensory function, which threatens both physical health and quality of life. One ideal model to study aging, neuronal function, and gene expression is the nematode Caenorhabditis elegans, which has a short lifespan and relatively simple, thoroughly mapped nervous system and genome. Previous works have identified that mechanosensory neuronal structure changes with age, but importantly, the actual age-related changes in the function and health of neurons, as well as the underlying genetic mechanisms responsible for these declines, are not fully understood. While advanced techniques such as single-cell RNA-sequencing have been developed to quantify gene expression, it is difficult to relate this information to functional changes in aging due to a lack of tools available. To address these limitations, we present a platform capable of measuring both physiological function and its associated gene expression throughout the aging process in individuals. Using our pipeline, we investigate the age-related changes in function of the mechanosensing ALM neuron in C. elegans, as well as some relevant gene expression patterns (mec-4 and mec-10). Using a series of devices for animals of different ages, we examined subtle changes in neuronal function and found that while the magnitude of neuronal response to a large stimulus declines with age, sensory capability does not significantly decline with age; further, gene expression is well maintained throughout aging. Additionally, we examine PVD, a harsh-touch mechanosensory neuron, and find that it exhibits a similar age-related decline in magnitude of neuronal response. Together, our data demonstrate that our strategy is useful for identifying genetic factors involved in the decline in neuronal health. We envision that this framework could be applied to other systems as a useful tool for discovering new biology.
Collapse
Affiliation(s)
- Jason Wan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Jimmy L Ding
- Petit Institute for Bioengineering and Bioscience, Interdisciplinary BioEngineering Program, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Hang Lu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Petit Institute for Bioengineering and Bioscience, Interdisciplinary BioEngineering Program, Georgia Institute of Technology, Atlanta, GA 30332, USA.
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
6
|
Pan S, Underhill SAM, Hamm CW, Stover MA, Butler DR, Shults CA, Manjarrez JR, Cabeen MT. Glycerol metabolism impacts biofilm phenotypes and virulence in Pseudomonas aeruginosa via the Entner-Doudoroff pathway. mSphere 2024; 9:e0078623. [PMID: 38501832 PMCID: PMC11036800 DOI: 10.1128/msphere.00786-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous bacterium and a notorious opportunistic pathogen that forms biofilm structures in response to many environmental cues. Biofilm formation includes attachment to surfaces and the production of the exopolysaccharide Pel, which is present in both the PAO1 and PA14 laboratory strains of P. aeruginosa. Biofilms help protect bacterial cells from host defenses and antibiotics and abet infection. The carbon source used by the cells also influences biofilm, but these effects have not been deeply studied. We show here that glycerol, which can be liberated from host surfactants during infection, encourages surface attachment and magnifies colony morphology differences. We find that glycerol kinase is important but not essential for glycerol utilization and relatively unimportant for biofilm behaviors. Among downstream enzymes predicted to take part in glycerol utilization, Edd stood out as being important for glycerol utilization and for enhanced biofilm phenotypes in the presence of glycerol. Thus, gluconeogenesis and catabolism of anabolically produced glucose appear to impact not only the utilization of glycerol but also glycerol-stimulated biofilm phenotypes. Finally, waxworm moth larvae and nematode infection models reveal that interruption of the Entner-Doudoroff pathway, but not abrogation of glycerol phosphorylation, unexpectedly increases P. aeruginosa lethality in both acute and chronic infections, even while stimulating a stronger immune response by Caenorhabditis elegans.IMPORTANCEPseudomonas aeruginosa, the ubiquitous environmental bacterium and human pathogen, forms multicellular communities known as biofilms in response to various stimuli. We find that glycerol, a common carbon source that bacteria can use for energy and biosynthesis, encourages biofilm behaviors such as surface attachment and colony wrinkling by P. aeruginosa. Glycerol can be derived from surfactants that are present in the human lungs, a common infection site. Glycerol-stimulated biofilm phenotypes do not depend on phosphorylation of glycerol but are surprisingly impacted by a glucose breakdown pathway, suggesting that it is glycerol utilization, and not its mere presence or cellular import, that stimulates biofilm phenotypes. Moreover, the same mutations that block glycerol-stimulated biofilm phenotypes also impact P. aeruginosa virulence in both acute and chronic animal models. Notably, a glucose-breakdown mutant (Δedd) counteracts biofilm phenotypes but shows enhanced virulence and stimulates a stronger immune response in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Somalisa Pan
- Department of Microbiology, Oklahoma State University, Stillwater, Oklahoma, USA
| | | | - Christopher W. Hamm
- Department of Microbiology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Mylissa A. Stover
- Department of Biochemistry and Microbiology, OSU Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Daxton R. Butler
- Department of Microbiology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Crystal A. Shults
- Department of Biochemistry and Microbiology, OSU Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Jacob R. Manjarrez
- Department of Biochemistry and Microbiology, OSU Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Matthew T. Cabeen
- Department of Microbiology, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
7
|
Lee SA, Cho Y, Schafer WR, Lu H. Dynamic temperature control in microfluidics for in vivo imaging of cold-sensing in C. elegans. Biophys J 2024; 123:947-956. [PMID: 38449311 PMCID: PMC11052694 DOI: 10.1016/j.bpj.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/26/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
The ability to perceive temperature is crucial for most animals. It enables them to maintain their body temperature and swiftly react to noxiously cold or hot objects. Caenorhabditis elegans is a powerful genetic model for the study of thermosensation as its simple nervous system is well characterized and its transparent body is suited for in vivo functional imaging of neurons. The behavior triggered by experience-dependent thermosensation has been well studied in C. elegans under temperature-gradient environments. However, how C. elegans senses temperature via its nervous system is not well understood due to the limitations of currently available technologies. One major bottleneck is the difficulty in creating fast temperature changes, especially cold stimuli. Here, we developed a microfluidic-based platform that allowed the in vivo functional imaging of C. elegans responding to well-controlled temporally varying temperature stimulation by rapidly switching fluid streams at different temperatures. We used computational models to enable rational design and optimization of experimental conditions. We validated the design and utility of our system with studies of the functional role of thermosensory neurons. We showed that the responses of PVD polymodal nociceptor neurons observed in previous studies can be recapitulated. Further, we highlighted how this platform may be used to dissect neuronal circuits with an example of activity recording in PVC interneurons. Both of these neuron types show sensitization phenotypes. We envision that both the engineered system and the findings in this work will spur further studies of molecular and cellular mechanisms underlying cold-sensing through the nervous system.
Collapse
Affiliation(s)
- Sol Ah Lee
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta Georgia
| | - Yongmin Cho
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta Georgia
| | - William R Schafer
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta Georgia.
| |
Collapse
|
8
|
Zavagno G, Raimundo A, Kirby A, Saunter C, Weinkove D. Rapid measurement of ageing by automated monitoring of movement of C. elegans populations. GeroScience 2024; 46:2281-2293. [PMID: 37940787 PMCID: PMC10828257 DOI: 10.1007/s11357-023-00998-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
Finding new interventions that slow ageing and maintain human health is a huge challenge of our time. The nematode Caenorhabditis elegans offers a rapid in vivo method to determine whether a compound extends its 2 to 3-week lifespan. Measuring lifespan is the standard method to monitor ageing, but a compound that extends lifespan will not necessarily maintain health. Here, we describe the automated monitoring of C. elegans movement from early to mid-adulthood as a faster healthspan-based method to measure ageing. Using the WormGazer™ technology, multiple Petri dishes each containing several C. elegans worms are imaged simultaneously and non-invasively by an array of cameras that can be scaled easily. This approach demonstrates that most functional decline in C. elegans occurs during the first week of adulthood. We find 7 days of imaging is sufficient to measure the dose-dependent efficacy of sulfamethoxazole to slow ageing, compared to 40 days required for a parallel lifespan experiment. Understanding any negative consequences of interventions that slow ageing is important. We show that the long-lived mutant age-1(hx546) stays active for longer than the wild type but it moves slower in early adulthood. Thus, continuous analysis of movement can rapidly identify interventions that slow ageing while simultaneously revealing any negative effects on health.
Collapse
Affiliation(s)
- Giulia Zavagno
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
- Magnitude Biosciences Limited, NETPark Plexus, Thomas Wright Way, Sedgefield, Durham, TS21 3FD, UK
| | - Adelaide Raimundo
- Magnitude Biosciences Limited, NETPark Plexus, Thomas Wright Way, Sedgefield, Durham, TS21 3FD, UK
| | - Andy Kirby
- Magnitude Biosciences Limited, NETPark Plexus, Thomas Wright Way, Sedgefield, Durham, TS21 3FD, UK
| | - Christopher Saunter
- Magnitude Biosciences Limited, NETPark Plexus, Thomas Wright Way, Sedgefield, Durham, TS21 3FD, UK
| | - David Weinkove
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK.
- Magnitude Biosciences Limited, NETPark Plexus, Thomas Wright Way, Sedgefield, Durham, TS21 3FD, UK.
| |
Collapse
|
9
|
Slade L, Bollen SE, Bass JJ, Phillips BE, Smith K, Wilkinson DJ, Szewczyk NJ, Atherton PJ, Etheridge T. Bisphosphonates attenuate age-related muscle decline in Caenorhabditis elegans. J Cachexia Sarcopenia Muscle 2023; 14:2613-2622. [PMID: 37722921 PMCID: PMC10751425 DOI: 10.1002/jcsm.13335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/17/2023] [Accepted: 08/21/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Age-related muscle decline (sarcopenia) associates with numerous health risk factors and poor quality of life. Drugs that counter sarcopenia without harmful side effects are lacking, and repurposing existing pharmaceuticals could expedite realistic clinical options. Recent studies suggest bisphosphonates promote muscle health; however, the efficacy of bisphosphonates as an anti-sarcopenic therapy is currently unclear. METHODS Using Caenorhabditis elegans as a sarcopenia model, we treated animals with 100 nM, 1, 10, 100 and 500 μM zoledronic acid (ZA) and assessed lifespan and healthspan (movement rates) using a microfluidic chip device. The effects of ZA on sarcopenia were examined using GFP-tagged myofibres or mitochondria at days 0, 4 and 6 post-adulthood. Mechanisms of ZA-mediated healthspan extension were determined using combined ZA and targeted RNAi gene knockdown across the life-course. RESULTS We found 100 nM and 1 μM ZA increased lifespan (P < 0.001) and healthspan [954 ± 53 (100 nM) and 963 ± 48 (1 μM) vs. 834 ± 59% (untreated) population activity AUC, P < 0.05]. 10 μM ZA shortened lifespan (P < 0.0001) but not healthspan (758.9 ± 37 vs. 834 ± 59, P > 0.05), whereas 100 and 500 μM ZA were larval lethal. ZA (1 μM) significantly improved myofibrillar structure on days 4 and 6 post-adulthood (83 and 71% well-organized myofibres, respectively, vs. 56 and 34% controls, P < 0.0001) and increased well-networked mitochondria at day 6 (47 vs. 16% in controls, P < 0.01). Genes required for ZA-mediated healthspan extension included fdps-1/FDPS-1 (278 ± 9 vs. 894 ± 17% population activity AUC in knockdown + 1 μM ZA vs. untreated controls, respectively, P < 0.0001), daf-16/FOXO (680 ± 16 vs. 894 ± 17%, P < 0.01) and agxt-2/BAIBA (531 ± 23 vs. 552 ± 8%, P > 0.05). Life/healthspan was extended through knockdown of igdb-1/FNDC5 (635 ± 10 vs. 523 ± 10% population activity AUC in gene knockdown vs. untreated controls, P < 0.01) and sir-2.3/SIRT-4 (586 ± 10 vs. 523 ± 10%, P < 0.05), with no synergistic improvements in ZA co-treatment vs. knockdown alone [651 ± 12 vs. 635 ± 10% (igdb-1/FNDC5) and 583 ± 9 vs. 586 ± 10% (sir-2.3/SIRT-4), both P > 0.05]. Conversely, let-756/FGF21 and sir-2.2/SIRT-4 were dispensable for ZA-induced healthspan [630 ± 6 vs. 523 ± 10% population activity AUC in knockdown + 1 μM ZA vs. untreated controls, P < 0.01 (let-756/FGF21) and 568 ± 9 vs. 523 ± 10%, P < 0.05 (sir-2.2/SIRT-4)]. CONCLUSIONS Despite lacking an endoskeleton, ZA delays Caenorhabditis elegans sarcopenia, which translates to improved neuromuscular function across the life course. Bisphosphonates might, therefore, be an immediately exploitable anti-sarcopenia therapy.
Collapse
Affiliation(s)
- Luke Slade
- University of Exeter Medical SchoolExeterUK
- Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Shelby E. Bollen
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), Unit of Injury, Recovery and Inflammation Sciences (IRIS), School of MedicineUniversity of NottinghamDerbyUK
| | - Joseph J. Bass
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), Unit of Injury, Recovery and Inflammation Sciences (IRIS), School of MedicineUniversity of NottinghamDerbyUK
| | - Bethan E. Phillips
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), Unit of Injury, Recovery and Inflammation Sciences (IRIS), School of MedicineUniversity of NottinghamDerbyUK
| | - Kenneth Smith
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), Unit of Injury, Recovery and Inflammation Sciences (IRIS), School of MedicineUniversity of NottinghamDerbyUK
| | - Daniel J. Wilkinson
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), Unit of Injury, Recovery and Inflammation Sciences (IRIS), School of MedicineUniversity of NottinghamDerbyUK
| | - Nathaniel J. Szewczyk
- Ohio Musculoskeletal and Neurological InstituteHeritage College of Osteopathic MedicineAthensOHUSA
| | - Philip J. Atherton
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), Unit of Injury, Recovery and Inflammation Sciences (IRIS), School of MedicineUniversity of NottinghamDerbyUK
| | | |
Collapse
|
10
|
Sohrabi S, Cota V, Murphy CT. CeLab, a microfluidic platform for the study of life history traits, reveals metformin and SGK-1 regulation of longevity and reproductive span. LAB ON A CHIP 2023; 23:2738-2757. [PMID: 37221962 PMCID: PMC11067863 DOI: 10.1039/d3lc00028a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The potential to carry out high-throughput assays in a whole organism in a small space is one of the benefits of C. elegans, but worm assays often require a large sample size with frequent physical manipulations, rendering them highly labor-intensive. Microfluidic assays have been designed with specific questions in mind, such as analysis of behavior, embryonic development, lifespan, and motility. While these devices have many advantages, current technologies to automate worm experiments have several limitations that prevent widespread adoption, and most do not allow analyses of reproduction-linked traits. We developed a miniature C. elegans lab-on-a-chip device, CeLab, a reusable, multi-layer device with 200 separate incubation arenas that allows progeny removal, to automate a variety of worm assays on both individual and population levels. CeLab enables high-throughput simultaneous analysis of lifespan, reproductive span, and progeny production, refuting assumptions about the disposable soma hypothesis. Because CeLab chambers require small volumes, the chip is ideal for drug screens; we found that drugs previously shown to increase lifespan also increase reproductive span, and we discovered that low-dose metformin increases both. CeLab reduces the limitations of escaping and matricide that typically limit plate assays, revealing that feeding with heat-killed bacteria greatly extends lifespan and reproductive span of mated animals. CeLab allows tracking of life history traits of individuals, which revealed that the nutrient-sensing mTOR pathway mutant, sgk-1, reproduces nearly until its death. These findings would not have been possible to make in standard plate assays, in low-throughput assays, or in normal population assays.
Collapse
Affiliation(s)
- Salman Sohrabi
- Department of Molecular Biology &, LSI Genomics, Princeton University, Princeton, NJ 08544, USA.
- LSI Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Vanessa Cota
- Department of Molecular Biology &, LSI Genomics, Princeton University, Princeton, NJ 08544, USA.
- LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Coleen T Murphy
- Department of Molecular Biology &, LSI Genomics, Princeton University, Princeton, NJ 08544, USA.
- LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
11
|
Anilkumar A, Batra A, Talukder S, Sharma R. Microfluidics based bioimaging with cost-efficient fabrication of multi-level micrometer-sized trenches. BIOMICROFLUIDICS 2023; 17:034103. [PMID: 37334275 PMCID: PMC10275646 DOI: 10.1063/5.0151868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023]
Abstract
Microfluidic devices, through their vast applicability as tools for miniaturized experimental setups, have become indispensable for cutting edge research and diagnostics. However, the high operational cost and the requirement of sophisticated equipment and clean room facility for the fabrication of these devices make their use unfeasible for many research laboratories in resource limited settings. Therefore, with the aim of increasing accessibility, in this article, we report a novel, cost-effective micro-fabrication technique for fabricating multi-layer microfluidic devices using only common wet-lab facilities, thereby significantly lowering the cost. Our proposed process-flow-design eliminates the need for a mastermold, does not require any sophisticated lithography tools, and can be executed successfully outside a clean room. In this work, we also optimized the critical steps (such as spin coating and wet etching) of our fabrication process and validated the process flow and the device by trapping and imaging Caenorhabditis elegans. The fabricated devices are effective in conducting lifetime assays and flushing out larvae, which are, in general, manually picked from Petri dishes or separated using sieves. Our technique is not only cost effective but also scalable, as it can be used to fabricate devices with multiple layers of confinements ranging from 0.6 to more than 50 μ m, thus enabling the study of unicellular and multicellular organisms. This technique, therefore, has the potential to be adopted widely by many research laboratories for a variety of applications.
Collapse
Affiliation(s)
- Anand Anilkumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal 462066, Madhya Pradesh, India
| | - Abhilasha Batra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal 462066, Madhya Pradesh, India
| | - Santanu Talukder
- Department of Electrical Engineering and Computer Science, Indian Institute of Science Education and Research (IISER), Bhopal 462066, Madhya Pradesh, India
| | - Rati Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
12
|
Wahl D, Smith ME, McEntee CM, Cavalier AN, Osburn SC, Burke SD, Grant RA, Nerguizian D, Lark DS, Link CD, LaRocca TJ. The reverse transcriptase inhibitor 3TC protects against age-related cognitive dysfunction. Aging Cell 2023; 22:e13798. [PMID: 36949552 PMCID: PMC10186603 DOI: 10.1111/acel.13798] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 03/24/2023] Open
Abstract
Aging is the primary risk factor for most neurodegenerative diseases, including Alzheimer's disease. Major hallmarks of brain aging include neuroinflammation/immune activation and reduced neuronal health/function. These processes contribute to cognitive dysfunction (a key risk factor for Alzheimer's disease), but their upstream causes are incompletely understood. Age-related increases in transposable element (TE) transcripts might contribute to reduced cognitive function with brain aging, as the reverse transcriptase inhibitor 3TC reduces inflammation in peripheral tissues and TE transcripts have been linked with tau pathology in Alzheimer's disease. However, the effects of 3TC on cognitive function with aging have not been investigated. Here, in support of a role for TE transcripts in brain aging/cognitive decline, we show that 3TC: (a) improves cognitive function and reduces neuroinflammation in old wild-type mice; (b) preserves neuronal health with aging in mice and Caenorhabditis elegans; and (c) enhances cognitive function in a mouse model of tauopathy. We also provide insight on potential underlying mechanisms, as well as evidence of translational relevance for these observations by showing that TE transcripts accumulate with brain aging in humans, and that these age-related increases intersect with those observed in Alzheimer's disease. Collectively, our results suggest that TE transcript accumulation during aging may contribute to cognitive decline and neurodegeneration, and that targeting these events with reverse transcriptase inhibitors like 3TC could be a viable therapeutic strategy.
Collapse
Affiliation(s)
- Devin Wahl
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - Meghan E. Smith
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - Cali M. McEntee
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - Alyssa N. Cavalier
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - Shelby C. Osburn
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - Samuel D. Burke
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - Randy A. Grant
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - David Nerguizian
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Daniel S. Lark
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
| | - Christopher D. Link
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Thomas J. LaRocca
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
13
|
Dey P, Bradley TM, Boymelgreen A. The impact of selected abiotic factors on Artemia hatching process through real-time observation of oxygen changes in a microfluidic platform. Sci Rep 2023; 13:6370. [PMID: 37076493 PMCID: PMC10115827 DOI: 10.1038/s41598-023-32873-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
Current studies on abiotic impacts on Artemia, a crustacean which is widely used in aquaculture, and ecotoxicology, often focus on endpoint analysis (e.g., hatching rates, survival). Here, we demonstrate that a mechanistic understanding can be obtained through measurement of oxygen consumption in real-time over an extended time period in a microfluidic platform. The platform enables high level control of the microenvironment and direct observation of morphological changes. As a demonstration, temperature and salinity are chosen to represent critical abiotic parameters that are also threatened by climate change. The hatching process of Artemia consists of four different stages: hydration, differentiation, emergence, and hatching. Different temperatures (20, 35, and 30 °C) and salinities (0, 25, 50, and 75 ppt) are shown to significantly alter the duration of hatching stages, metabolic rates, and hatchability. Specifically, the metabolic resumption of dormant Artemia cysts was significantly enhanced at higher temperatures and moderate salinity, however, the time needed for this resumption was only dependent on higher temperatures. Hatchability was inversely related to the duration of the differentiation stage of hatching, which persisted longer at lower temperatures and salinities. The current approach of investigation of metabolism and corresponding physical changes can be employed to study hatching processes of other aquatic species, even those with low metabolic rate.
Collapse
Affiliation(s)
- Preyojon Dey
- Department of Mechanical and Materials Engineering, Florida International University, 10555 W Flagler St, Miami, FL, 33174, USA
| | - Terence M Bradley
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, Kingston, RI, 02881, USA
| | - Alicia Boymelgreen
- Department of Mechanical and Materials Engineering, Florida International University, 10555 W Flagler St, Miami, FL, 33174, USA.
| |
Collapse
|
14
|
Jushaj A, Churgin M, De La Torre M, Kieswetter A, Driesschaert B, Dhondt I, Braeckman BP, Fang-Yen C, Temmerman L. Adult-restricted gene knock-down reveals candidates that affect locomotive healthspan in C. elegans. Biogerontology 2023; 24:225-233. [PMID: 36662373 DOI: 10.1007/s10522-022-10009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/25/2022] [Indexed: 01/21/2023]
Abstract
Understanding how we can age healthily is a challenge at the heart of biogerontological interest. Whereas myriad genes are known to affect the lifespan of model organisms, effects of such interventions on healthspan-the period of life where an animal is considered healthy, rather than merely alive-are less clear. To understand relationships between life- and healthspan, in recent years several platforms were developed with the purpose of assessing both readouts simultaneously. We here relied on one such platform, the WorMotel, to study effects of adulthood-restricted knock-down of 130 Caenorhabditis elegans genes on the locomotive health of the animals along their lifespans. We found that knock-down of six genes affected healthspan while lifespan remained unchanged. For two of these, F26A3.4 and chn-1, knock-down resulted in an improvement of healthspan. In follow-up experiments we showed that knockdown of F26A3.4 indeed improves locomotive health and muscle structure at old age.
Collapse
Affiliation(s)
- Areta Jushaj
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Matthew Churgin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA
| | - Miguel De La Torre
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA
| | - Amanda Kieswetter
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Brecht Driesschaert
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ineke Dhondt
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| | - Bart P Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| | | | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
15
|
Manni E, Jeffery N, Chambers D, Slade L, Etheridge T, Harries LW. An evaluation of the role of miR-361-5p in senescence and systemic ageing. Exp Gerontol 2023; 174:112127. [PMID: 36804517 DOI: 10.1016/j.exger.2023.112127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Senescent cells are key regulators of ageing and age-associated disease. MicroRNAs (miRs) are a key component of the molecular machinery governing cellular senescence, with several known to regulate important genes associated with this process. We sought to identify miRs associated with both senescence and reversal by pinpointing those showing opposing directionality of effect in senescence and in response to senotherapy. Cellular senescence phenotypes were assessed in primary human endothelial cells following targeted manipulation of emergent miRNAs. Finally, the effect of conserved target gene knockdown on lifespan and healthspan was assessed in a C. elegans system in vivo. Three miRNAs (miR-5787, miR-3665 and miR-361-5p) demonstrated associations with both senescence and rejuvenation, but miR-361-5p alone demonstrated opposing effects in senescence and rescue. Treatment of late passage human endothelial cells with a miR-361-5p mimic caused a 14 % decrease in the senescent load of the culture. RNAi gene knockdown of conserved miR-361-5p target genes in a C. elegans model however resulted in adverse effects on healthspan and/or lifespan. Although miR-361-5p may attenuate aspects of the senescence phenotype in human primary endothelial cells, many of its validated target genes also play essential roles in the regulation or formation of the cytoskeletal network, or its interaction with the extracellular matrix. These processes are essential for cell survival and cell function. Targeting miR-361-5p alone may not represent a promising target for future senotherapy; more sophisticated approaches to attenuate its interaction with specific targets without roles in essential cell processes would be required.
Collapse
Affiliation(s)
- Emad Manni
- University of Exeter Medical School, Faculty of Health and Life Sciences, Barrack Road, Exeter EX2 5DW, UK
| | - Nicola Jeffery
- University of Exeter Medical School, Faculty of Health and Life Sciences, Barrack Road, Exeter EX2 5DW, UK
| | - David Chambers
- Wolfson Centre for Age-Related Diseases, King's College London, London WC2R 2LS, UK
| | - Luke Slade
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Timothy Etheridge
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Lorna W Harries
- University of Exeter Medical School, Faculty of Health and Life Sciences, Barrack Road, Exeter EX2 5DW, UK.
| |
Collapse
|
16
|
Aubry G, Lee HJ, Lu H. Advances in Microfluidics: Technical Innovations and Applications in Diagnostics and Therapeutics. Anal Chem 2023; 95:444-467. [PMID: 36625114 DOI: 10.1021/acs.analchem.2c04562] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Guillaume Aubry
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hyun Jee Lee
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
17
|
Anupom T, Vanapalli SA. A Compact Imaging Platform for Conducting C. elegans Phenotypic Assays on Earth and in Spaceflight. Life (Basel) 2023; 13:200. [PMID: 36676149 PMCID: PMC9862956 DOI: 10.3390/life13010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/11/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
The model organism Caenorhabditis elegans is used in a variety of applications ranging from fundamental biological studies, to drug screening, to disease modeling, and to space-biology investigations. These applications rely on conducting whole-organism phenotypic assays involving animal behavior and locomotion. In this study, we report a 3D printed compact imaging platform (CIP) that is integrated with a smart-device camera for the whole-organism phenotyping of C. elegans. The CIP has no external optical elements and does not require mechanical focusing, simplifying the optical configuration. The small footprint of the system powered with a standard USB provides capabilities ranging from plug-and-play, to parallel operation, and to housing it in incubators for temperature control. We demonstrate on Earth the compatibility of the CIP with different C. elegans substrates, including agar plates, liquid droplets on glass slides and microfluidic chips. We validate the system with behavioral and thrashing assays and show that the phenotypic readouts are in good agreement with the literature data. We conduct a pilot study with mutants and show that the phenotypic data collected from the CIP distinguishes these mutants. Finally, we discuss how the simplicity and versatility offered by CIP makes it amenable to future C. elegans investigations on the International Space Station, where science experiments are constrained by system size, payload weight and crew time. Overall, the compactness, portability and ease-of-use makes the CIP desirable for research and educational outreach applications on Earth and in space.
Collapse
Affiliation(s)
- Taslim Anupom
- Electrical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | | |
Collapse
|
18
|
Espejo L, Hull B, Chang LM, DeNicola D, Freitas S, Silbar V, Haskins A, Turner EA, Sutphin GL. Long-Term Culture of Individual Caenorhabditis elegans on Solid Media for Longitudinal Fluorescence Monitoring and Aversive Interventions. J Vis Exp 2022:10.3791/64682. [PMID: 36533827 PMCID: PMC10368144 DOI: 10.3791/64682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
Caenorhabditis elegans are widely used to study aging biology. The standard practice in C. elegans aging studies is to culture groups of worms on solid nematode growth media (NGM), allowing the efficient collection of population-level data for survival and other physiological phenotypes, and periodic sampling of subpopulations for fluorescent biomarker quantification. Limitations to this approach are the inability to (1) follow individual worms over time to develop age trajectories for phenotypes of interest and (2) monitor fluorescent biomarkers directly in the context of the culture environment. Alternative culture approaches use liquid culture or microfluidics to monitor individual animals over time, in some cases including fluorescence quantification, with the tradeoff that the culture environment is contextually distinct from solid NGM. The WorMotel is a previously described microfabricated multi-well device for culturing isolated worms on solid NGM. Each worm is maintained in a well containing solid NGM surrounded by a moat filled with copper sulfate, a contact repellent for C. elegans, allowing longitudinal monitoring of individual animals. We find copper sulfate insufficient to prevent worms from fleeing when subjected to aversive interventions common in aging research, including dietary restriction, pathogenic bacteria, and chemical agents that induce cellular stress. The multi-well devices are also molded from polydimethylsiloxane, which produces high background artifacts in fluorescence imaging. This protocol describes a new approach for culturing isolated roundworms on solid NGM using commercially available polystyrene microtrays, originally designed for human leukocyte antigen (HLA) typing, allowing the measurement of survival, physiological phenotypes, and fluorescence across the lifespan. A palmitic acid barrier prevents worms from fleeing, even in the presence of aversive conditions. Each plate can culture up to 96 animals and easily adapts to a variety of conditions, including dietary restriction, RNAi, and chemical additives, and is compatible with automated systems for collecting lifespan and activity data.
Collapse
Affiliation(s)
- Luis Espejo
- Department of Molecular & Cellular Biology, University of Arizona, Tucson
| | - Bradford Hull
- Department of Molecular & Cellular Biology, University of Arizona, Tucson
| | - Leah M Chang
- Department of Molecular & Cellular Biology, University of Arizona, Tucson
| | - Destiny DeNicola
- Department of Molecular & Cellular Biology, University of Arizona, Tucson
| | - Samuel Freitas
- Department of Molecular & Cellular Biology, University of Arizona, Tucson
| | - Vanessa Silbar
- Department of Molecular & Cellular Biology, University of Arizona, Tucson
| | - Anne Haskins
- Department of Molecular & Cellular Biology, University of Arizona, Tucson
| | - Emily A Turner
- Department of Molecular & Cellular Biology, University of Arizona, Tucson
| | - George L Sutphin
- Department of Molecular & Cellular Biology, University of Arizona, Tucson;
| |
Collapse
|
19
|
Kerr RA, Roux AE, Goudeau J, Kenyon C. The C. elegans Observatory: High-throughput exploration of behavioral aging. FRONTIERS IN AGING 2022; 3:932656. [PMID: 36105851 PMCID: PMC9466599 DOI: 10.3389/fragi.2022.932656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022]
Abstract
Organisms undergo a variety of characteristic changes as they age, suggesting a substantial commonality in the mechanistic basis of aging. Experiments in model organisms have revealed a variety of cellular systems that impact lifespan, but technical challenges have prevented a comprehensive evaluation of how these components impact the trajectory of aging, and many components likely remain undiscovered. To facilitate the deeper exploration of aging trajectories at a sufficient scale to enable primary screening, we have created the Caenorhabditis elegans Observatory, an automated system for monitoring the behavior of group-housed C. elegans throughout their lifespans. One Observatory consists of a set of computers running custom software to control an incubator containing custom imaging and motion-control hardware. In its standard configuration, the Observatory cycles through trays of standard 6 cm plates, running four assays per day on up to 576 plates per incubator. High-speed image processing captures a range of behavioral metrics, including movement speed and stimulus-induced turning, and a data processing pipeline continuously computes summary statistics. The Observatory software includes a web interface that allows the user to input metadata and view graphs of the trajectory of behavioral aging as the experiment unfolds. Compared to the manual use of a plate-based C. elegans tracker, the Observatory reduces the effort required by close to two orders of magnitude. Within the Observatory, reducing the function of known lifespan genes with RNA interference (RNAi) gives the expected phenotypic changes, including extended motility in daf-2(RNAi) and progeria in hsf-1(RNAi). Lifespans scored manually from worms raised in conventional conditions match those scored from images captured by the Observatory. We have used the Observatory for a small candidate-gene screen and identified an extended youthful vigor phenotype for tank-1(RNAi) and a progeric phenotype for cdc-42(RNAi). By utilizing the Observatory, it is now feasible to conduct whole-genome screens for an aging-trajectory phenotype, thus greatly increasing our ability to discover and analyze new components of the aging program.
Collapse
Affiliation(s)
- Rex A. Kerr
- Calico Life Sciences LLC, South San Francisco, CA, United States
| | | | | | | |
Collapse
|
20
|
Weinkove D, Zavagno G. Applying C. elegans to the Industrial Drug Discovery Process to Slow Aging. FRONTIERS IN AGING 2022; 2:740582. [PMID: 35821999 PMCID: PMC9261450 DOI: 10.3389/fragi.2021.740582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/29/2021] [Indexed: 01/29/2023]
Abstract
The increase in our molecular understanding of the biology of aging, coupled with a recent surge in investment, has led to the formation of several companies developing pharmaceuticals to slow aging. Research using the tiny nematode worm Caenorhabditis elegans was the first to show that mutations in single genes can extend lifespan, and subsequent research has shown that this model organism is uniquely suited to testing interventions to slow aging. Yet, with a few notable exceptions, C. elegans is not in the standard toolkit of longevity companies. Here we discuss the paths to overcome the barriers to using C. elegans in industrial drug discovery. We address the predictive power of C. elegans for human aging, how C. elegans research can be applied to specific challenges in the typical drug discovery pipeline, and how standardised and quantitative assays will help C. elegans fulfil its potential in the biotech and pharmaceutical industry. We argue that correct application of this model and its knowledge base will significantly accelerate progress to slow human aging.
Collapse
Affiliation(s)
- David Weinkove
- Department of Biosciences, Durham University, Durham, United Kingdom.,Magnitude Biosciences Ltd., NETpark Plexus, Sedgefield, United Kingdom
| | - Giulia Zavagno
- Department of Biosciences, Durham University, Durham, United Kingdom.,Magnitude Biosciences Ltd., NETpark Plexus, Sedgefield, United Kingdom
| |
Collapse
|
21
|
McIntyre RL, Rahman M, Vanapalli SA, Houtkooper RH, Janssens GE. Biological Age Prediction From Wearable Device Movement Data Identifies Nutritional and Pharmacological Interventions for Healthy Aging. FRONTIERS IN AGING 2022; 2:708680. [PMID: 35822021 PMCID: PMC9261299 DOI: 10.3389/fragi.2021.708680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022]
Abstract
Intervening in aging processes is hypothesized to extend healthy years of life and treat age-related disease, thereby providing great benefit to society. However, the ability to measure the biological aging process in individuals, which is necessary to test for efficacy of these interventions, remains largely inaccessible to the general public. Here we used NHANES physical activity accelerometer data from a wearable device and machine-learning algorithms to derive biological age predictions for individuals based on their movement patterns. We found that accelerated biological aging from our “MoveAge” predictor is associated with higher all-cause mortality. We further searched for nutritional or pharmacological compounds that associate with decelerated aging according to our model. A number of nutritional components peak in their association to decelerated aging later in life, including fiber, magnesium, and vitamin E. We additionally identified one FDA-approved drug associated with decelerated biological aging: the alpha-blocker doxazosin. We show that doxazosin extends healthspan and lifespan in C. elegans. Our work demonstrates how a biological aging score based on relative mobility can be accessible to the wider public and can potentially be used to identify and determine efficacy of geroprotective interventions.
Collapse
Affiliation(s)
- Rebecca L McIntyre
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mizanur Rahman
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States.,NemaLife Inc., Lubbock, TX, United States
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
22
|
Deane AR, Ward RD. The instrumental role of operant paradigms in translational psychiatric research: Insights from a maternal immune activation model of schizophrenia risk. J Exp Anal Behav 2022; 117:560-575. [PMID: 35319781 PMCID: PMC9314699 DOI: 10.1002/jeab.753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/01/2022] [Accepted: 02/18/2022] [Indexed: 11/18/2022]
Abstract
Rigorous behavioral analysis is essential to the translation of research conducted using animal models of neuropsychiatric disease. Here we discuss the use of operant paradigms within our lab as a powerful approach for exploring the biobehavioral bases of disease in the maternal immune activation rat model of schizophrenia. We have investigated a range of disease features in schizophrenia including abnormal perception of time, cognition, learning, motivation, and internal state (psychosis), providing complex insights into brain and behavior. Beyond simple phenotyping, implementing sophisticated operant procedures has been effective in delineating aspects of pathological behavior, identifying interacting pathologies, and isolating contributing mechanisms of disease. We provide comment on the strengths of operant techniques to support high-quality behavioral investigations in fundamental neuropsychiatric research.
Collapse
Affiliation(s)
- Ashley R. Deane
- New Zealand Brain Research InstituteChristchurchNew Zealand
- Department of MedicineUniversity of OtagoChristchurchNew Zealand
| | - Ryan D. Ward
- Department of PsychologyUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
23
|
The evolving role of the Caenorhabditis elegans model as a tool to advance studies in nutrition and health. Nutr Res 2022; 106:47-59. [DOI: 10.1016/j.nutres.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/29/2022]
|
24
|
Cornwell A, Llop JR, Salzman P, Rasmussen N, Thakar J, Samuelson AV. The Replica Set Method is a Robust, Accurate, and High-Throughput Approach for Assessing and Comparing Lifespan in C. elegans Experiments. FRONTIERS IN AGING 2022; 3:861701. [PMID: 35821830 PMCID: PMC9261357 DOI: 10.3389/fragi.2022.861701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
Abstract
The advent of feeding based RNAi in Caenorhabditis elegans led to an era of gene discovery in aging research. Hundreds of gerogenes were discovered, and many are evolutionarily conserved, raising the exciting possibility that the underlying genetic basis for healthy aging in higher vertebrates could be quickly deciphered. Yet, the majority of putative gerogenes have still only been cursorily characterized, highlighting the need for high-throughput, quantitative assessments of changes in aging. A widely used surrogate measure of aging is lifespan. The traditional way to measure mortality in C. elegans tracks the deaths of individual animals over time within a relatively small population. This traditional method provides straightforward, direct measurements of median and maximum lifespan for the sampled population. However, this method is time consuming, often underpowered, and involves repeated handling of a set of animals over time, which in turn can introduce contamination or possibly damage increasingly fragile, aged animals. We have previously developed an alternative "Replica Set" methodology, which minimizes handling and increases throughput by at least an order of magnitude. The Replica Set method allows changes in lifespan to be measured for over one hundred feeding-based RNAi clones by one investigator in a single experiment- facilitating the generation of large quantitative phenotypic datasets, a prerequisite for development of biological models at a systems level. Here, we demonstrate through analysis of lifespan experiments simulated in silico that the Replica Set method is at least as precise and accurate as the traditional method in evaluating and estimating lifespan, and requires many fewer total animal observations across the course of an experiment. Furthermore, we show that the traditional approach to lifespan experiments is more vulnerable than the Replica Set method to experimental and measurement error. We find no compromise in statistical power for Replica Set experiments, even for moderate effect sizes, or when simulated experimental errors are introduced. We compare and contrast the statistical analysis of data generated by the two approaches, and highlight pitfalls common with the traditional methodology. Collectively, our analysis provides a standard of measure for each method across comparable parameters, which will be invaluable in both experimental design and evaluation of published data for lifespan studies.
Collapse
Affiliation(s)
- Adam Cornwell
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Jesse R. Llop
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Peter Salzman
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, United States
| | - Niels Rasmussen
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Juilee Thakar
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Andrew V. Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
25
|
Multiview motion tracking based on a cartesian robot to monitor Caenorhabditis elegans in standard Petri dishes. Sci Rep 2022; 12:1767. [PMID: 35110654 PMCID: PMC8810772 DOI: 10.1038/s41598-022-05823-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/17/2022] [Indexed: 12/02/2022] Open
Abstract
Data from manual healthspan assays of the nematode Caenorhabditis elegans (C. elegans) can be complex to quantify. The first attempts to quantify motor performance were done manually, using the so-called thrashing or body bends assay. Some laboratories have automated these approaches using methods that help substantially to quantify these characteristic movements in small well plates. Even so, it is sometimes difficult to find differences in motor behaviour between strains, and/or between treated vs untreated worms. For this reason, we present here a new automated method that increases the resolution flexibility, in order to capture more movement details in large standard Petri dishes, in such way that those movements are less restricted. This method is based on a Cartesian robot, which enables high-resolution images capture in standard Petri dishes. Several cameras mounted strategically on the robot and working with different fields of view, capture the required C. elegans visual information. We have performed a locomotion-based healthspan experiment with several mutant strains, and we have been able to detect statistically significant differences between two strains that show very similar movement patterns.
Collapse
|
26
|
Land MH, Toth ML, MacNair L, Vanapalli SA, Lefever TW, Peters EN, Bonn-Miller MO. Effect of Cannabidiol on the Long-Term Toxicity and Lifespan in the Preclinical Model Caenorhabditis elegans. Cannabis Cannabinoid Res 2021; 6:522-527. [PMID: 33998871 PMCID: PMC8713279 DOI: 10.1089/can.2020.0103] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction: Despite widespread use of cannabidiol (CBD), no lifelong toxicity study has been published to date. Caenorhabditis elegans is often used in preclinical lifelong toxicity studies, due to an estimated 60-80% of their genes having a human ortholog, and their short lifespan of ∼2-3 weeks. In this study, we examined both acute and long-term exposure studies of CBD at physiologically relevant concentrations. Materials and Methods: Acute toxicity was determined by treating day 1 adults with a wide range of CBD concentrations (0.4 μM to 4 mM) and assessing mortality and motility compared to control animals. Thermotolerance was examined by treating adult animals with CBD (0.4 μM to 4 mM) and exposing them to 37°C for 4 h, and then scoring for the number of alive animals treated with CBD compared to controls. Long-term toxicity was assessed by exposing day 1 adults to 10, 40, and 100 μM CBD until all animals perished. Control animals had no active drug exposure. Results: We report both acute and long-term exposure studies of CBD to adult C. elegans at physiologically relevant concentrations. Acute toxicity results showed that no animal died when exposed to 0.4-4000 μM CBD. The thermotolerance study showed that 40 μM CBD, but not other treatment levels, significantly increased resistance to heat stress by 141% compared to the untreated controls. Notably, whole-life exposure of C. elegans to 10-100 μM CBD revealed a maximum life extension of 18% observed at 40 μM CBD. In addition, motility analysis of the same groups revealed an increase in late-stage life activity by up to 206% compared to controls. Conclusion: These results serve as the only CBD lifelong exposure data in an in vivo model to date. While further research into the lifelong use of CBD should be carried out in mammalian models, the C. elegans model indicates a lack of long-term toxicity at physiologically relevant concentrations.
Collapse
Affiliation(s)
- M. Hunter Land
- Canopy Growth Corporation, Smiths Falls, Ontario, Canada
| | | | - Laura MacNair
- Canopy Growth Corporation, Smiths Falls, Ontario, Canada
| | - Siva A. Vanapalli
- NemaLife, Inc., Lubbock, Texas, USA
- Texas Tech University, Lubbock, Texas, USA
| | | | | | | |
Collapse
|
27
|
McIntyre RL, Denis SW, Kamble R, Molenaars M, Petr M, Schomakers BV, Rahman M, Gupta S, Toth ML, Vanapalli SA, Jongejan A, Scheibye‐Knudsen M, Houtkooper RH, Janssens GE. Inhibition of the neuromuscular acetylcholine receptor with atracurium activates FOXO/DAF-16-induced longevity. Aging Cell 2021; 20:e13381. [PMID: 34227219 PMCID: PMC8373276 DOI: 10.1111/acel.13381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/02/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Transcriptome‐based drug screening is emerging as a powerful tool to identify geroprotective compounds to intervene in age‐related disease. We hypothesized that, by mimicking the transcriptional signature of the highly conserved longevity intervention of FOXO3 (daf‐16 in worms) overexpression, we could identify and repurpose compounds with similar downstream effects to increase longevity. Our in silico screen, utilizing the LINCS transcriptome database of genetic and compound interventions, identified several FDA‐approved compounds that activate FOXO downstream targets in mammalian cells. These included the neuromuscular blocker atracurium, which also robustly extends both lifespan and healthspan in Caenorhabditis elegans. This longevity is dependent on both daf‐16 signaling and inhibition of the neuromuscular acetylcholine receptor subunit unc‐38. We found unc‐38 RNAi to improve healthspan, lifespan, and stimulate DAF‐16 nuclear localization, similar to atracurium treatment. Finally, using RNA‐seq transcriptomics, we identify atracurium activation of DAF‐16 downstream effectors. Together, these data demonstrate the capacity to mimic genetic lifespan interventions with drugs, and in doing so, reveal that the neuromuscular acetylcholine receptor regulates the highly conserved FOXO/DAF‐16 longevity pathway.
Collapse
Affiliation(s)
- Rebecca L. McIntyre
- Laboratory Genetic Metabolic Diseases Amsterdam Gastroenterology, Endocrinology, and Metabolism Amsterdam Cardiovascular Sciences Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Simone W. Denis
- Laboratory Genetic Metabolic Diseases Amsterdam Gastroenterology, Endocrinology, and Metabolism Amsterdam Cardiovascular Sciences Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Rashmi Kamble
- Laboratory Genetic Metabolic Diseases Amsterdam Gastroenterology, Endocrinology, and Metabolism Amsterdam Cardiovascular Sciences Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Marte Molenaars
- Laboratory Genetic Metabolic Diseases Amsterdam Gastroenterology, Endocrinology, and Metabolism Amsterdam Cardiovascular Sciences Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Michael Petr
- Center for Healthy Aging Department of Cellular and Molecular Medicine University of Copenhagen Copenhagen Denmark
| | - Bauke V. Schomakers
- Laboratory Genetic Metabolic Diseases Amsterdam Gastroenterology, Endocrinology, and Metabolism Amsterdam Cardiovascular Sciences Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
- Core Facility Metabolomics Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Mizanur Rahman
- Dept. of Chemical Engineering Texas Tech University Lubbock TX USA
| | | | | | - Siva A. Vanapalli
- Dept. of Chemical Engineering Texas Tech University Lubbock TX USA
- NemaLife Inc Lubbock TX USA
| | - Aldo Jongejan
- Bioinformatics Laboratory Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Morten Scheibye‐Knudsen
- Center for Healthy Aging Department of Cellular and Molecular Medicine University of Copenhagen Copenhagen Denmark
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases Amsterdam Gastroenterology, Endocrinology, and Metabolism Amsterdam Cardiovascular Sciences Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Georges E. Janssens
- Laboratory Genetic Metabolic Diseases Amsterdam Gastroenterology, Endocrinology, and Metabolism Amsterdam Cardiovascular Sciences Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
28
|
Small flexible automated system for monitoring Caenorhabditis elegans lifespan based on active vision and image processing techniques. Sci Rep 2021; 11:12289. [PMID: 34112931 PMCID: PMC8192789 DOI: 10.1038/s41598-021-91898-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/02/2021] [Indexed: 11/29/2022] Open
Abstract
Traditionally Caenorhabditis elegans lifespan assays are performed by manually inspecting nematodes with a dissection microscope, which involves daily counting of live/dead worms cultured in Petri plates for 21–25 days. This manual inspection requires the screening of hundreds of worms to ensure statistical robustness, and is therefore a time-consuming approach. In recent years, various automated artificial vision systems have been reported to increase the throughput, however they usually provide less accurate results than manual assays. The main problems identified when using these vision systems are the false positives and false negatives, which occur due to culture media changes, occluded zones, dirtiness or condensation of the Petri plates. In this work, we developed and described a new C. elegans monitoring machine, SiViS, which consists of a flexible and compact platform design to analyse C. elegans cultures using the standard Petri plates seeded with E. coli. Our system uses an active vision illumination technique and different image-processing pipelines for motion detection, both previously reported, providing a fully automated image processing pipeline. In addition, this study validated both these methods and the feasibility of the SiViS machine for lifespan experiments by comparing them with manual lifespan assays. Results demonstrated that the automated system yields consistent replicates (p-value log rank test 0.699), and there are no significant differences between automated system assays and traditionally manual assays (p-value 0.637). Finally, although we have focused on the use of SiViS in longevity assays, the system configuration is flexible and can, thus, be adapted to other C. elegans studies such as toxicity, mobility and behaviour.
Collapse
|
29
|
Lavorato M, Mathew ND, Shah N, Nakamaru-Ogiso E, Falk MJ. Comparative Analysis of Experimental Methods to Quantify Animal Activity in Caenorhabditis elegans Models of Mitochondrial Disease. J Vis Exp 2021:10.3791/62244. [PMID: 33871460 PMCID: PMC8572545 DOI: 10.3791/62244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Caenorhabditis elegans is widely recognized for its central utility as a translational animal model to efficiently interrogate mechanisms and therapies of diverse human diseases. Worms are particularly well-suited for high-throughput genetic and drug screens to gain deeper insight into therapeutic targets and therapies by exploiting their fast development cycle, large brood size, short lifespan, microscopic transparency, low maintenance costs, robust suite of genomic tools, mutant repositories, and experimental methodologies to interrogate both in vivo and ex vivo physiology. Worm locomotor activity represents a particularly relevant phenotype that is frequently impaired in mitochondrial disease, which is highly heterogeneous in causes and manifestations but collectively shares an impaired capacity to produce cellular energy. While a suite of different methodologies may be used to interrogate worm behavior, these vary greatly in experimental costs, complexity, and utility for genomic or drug high-throughput screens. Here, the relative throughput, advantages, and limitations of 16 different activity analysis methodologies were compared that quantify nematode locomotion, thrashing, pharyngeal pumping, and/or chemotaxis in single worms or worm populations of C. elegans at different stages, ages, and experimental durations. Detailed protocols were demonstrated for two semi-automated methods to quantify nematode locomotor activity that represent novel applications of available software tools, namely, ZebraLab (a medium-throughput approach) and WormScan (a high-throughput approach). Data from applying these methods demonstrated similar degrees of reduced animal activity occurred at the L4 larval stage, and progressed in day 1 adults, in mitochondrial complex I disease (gas-1(fc21)) mutant worms relative to wild-type (N2 Bristol) C. elegans. This data validates the utility for these novel applications of using the ZebraLab or WormScan software tools to quantify worm locomotor activity efficiently and objectively, with variable capacity to support high-throughput drug screening on worm behavior in preclinical animal models of mitochondrial disease.
Collapse
Affiliation(s)
- Manuela Lavorato
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia
| | - Neal D Mathew
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia
| | - Nina Shah
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia
| | - Eiko Nakamaru-Ogiso
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine
| | - Marni J Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine;
| |
Collapse
|
30
|
Ellwood RA, Hewitt JE, Torregrossa R, Philp AM, Hardee JP, Hughes S, van de Klashorst D, Gharahdaghi N, Anupom T, Slade L, Deane CS, Cooke M, Etheridge T, Piasecki M, Antebi A, Lynch GS, Philp A, Vanapalli SA, Whiteman M, Szewczyk NJ. Mitochondrial hydrogen sulfide supplementation improves health in the C. elegans Duchenne muscular dystrophy model. Proc Natl Acad Sci U S A 2021; 118:e2018342118. [PMID: 33627403 PMCID: PMC7936346 DOI: 10.1073/pnas.2018342118] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle degeneration and weakness due to mutations in the dystrophin gene. The symptoms of DMD share similarities with those of accelerated aging. Recently, hydrogen sulfide (H2S) supplementation has been suggested to modulate the effects of age-related decline in muscle function, and metabolic H2S deficiencies have been implicated in affecting muscle mass in conditions such as phenylketonuria. We therefore evaluated the use of sodium GYY4137 (NaGYY), a H2S-releasing molecule, as a possible approach for DMD treatment. Using the dys-1(eg33) Caenorhabditis elegans DMD model, we found that NaGYY treatment (100 µM) improved movement, strength, gait, and muscle mitochondrial structure, similar to the gold-standard therapeutic treatment, prednisone (370 µM). The health improvements of either treatment required the action of the kinase JNK-1, the transcription factor SKN-1, and the NAD-dependent deacetylase SIR-2.1. The transcription factor DAF-16 was required for the health benefits of NaGYY treatment, but not prednisone treatment. AP39 (100 pM), a mitochondria-targeted H2S compound, also improved movement and strength in the dys-1(eg33) model, further implying that these improvements are mitochondria-based. Additionally, we found a decline in total sulfide and H2S-producing enzymes in dystrophin/utrophin knockout mice. Overall, our results suggest that H2S deficit may contribute to DMD pathology, and rectifying/overcoming the deficit with H2S delivery compounds has potential as a therapeutic approach to DMD treatment.
Collapse
MESH Headings
- Animals
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/metabolism
- Caenorhabditis elegans Proteins/genetics
- Caenorhabditis elegans Proteins/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dystrophin/deficiency
- Dystrophin/genetics
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression Regulation
- Humans
- Hydrogen Sulfide/metabolism
- Hydrogen Sulfide/pharmacology
- Locomotion/drug effects
- Locomotion/genetics
- Male
- Mice
- Mice, Inbred mdx
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/pathology
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Morpholines/metabolism
- Morpholines/pharmacology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Animal/drug therapy
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Organophosphorus Compounds/metabolism
- Organophosphorus Compounds/pharmacology
- Organothiophosphorus Compounds/metabolism
- Organothiophosphorus Compounds/pharmacology
- Prednisone/pharmacology
- Sirtuins/genetics
- Sirtuins/metabolism
- Thiones/metabolism
- Thiones/pharmacology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Utrophin/deficiency
- Utrophin/genetics
Collapse
Affiliation(s)
- Rebecca A Ellwood
- Medical Research Council (MRC) Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom
- Musculoskeletal Conditions, National Institute for Health Research Nottingham Biomedical Research Centre, Derby DE22 3DT, United Kingdom
| | - Jennifer E Hewitt
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409
- Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Roberta Torregrossa
- University of Exeter Medical School, University of Exeter, EX1 2LU Exeter, United Kingdom
| | - Ashleigh M Philp
- Mitochondrial Metabolism and Ageing, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St. Vincent's Clinical School, University of New South Wales (UNSW) Medicine, University of New South Wales Sydney, Sydney, NSW 2052, Australia
| | - Justin P Hardee
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Samantha Hughes
- HAN BioCentre, HAN University of Applied Sciences, Nijmegen 6525EM, The Netherlands
| | | | - Nima Gharahdaghi
- Medical Research Council (MRC) Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom
- Musculoskeletal Conditions, National Institute for Health Research Nottingham Biomedical Research Centre, Derby DE22 3DT, United Kingdom
| | - Taslim Anupom
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409
| | - Luke Slade
- University of Exeter Medical School, University of Exeter, EX1 2LU Exeter, United Kingdom
- Sport and Health Sciences, University of Exeter, EX1 2LU Exeter, United Kingdom
| | - Colleen S Deane
- Sport and Health Sciences, University of Exeter, EX1 2LU Exeter, United Kingdom
- Living System Institute, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Michael Cooke
- Medical Research Council (MRC) Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom
- Musculoskeletal Conditions, National Institute for Health Research Nottingham Biomedical Research Centre, Derby DE22 3DT, United Kingdom
- Sport and Health Sciences, University of Exeter, EX1 2LU Exeter, United Kingdom
| | - Timothy Etheridge
- Sport and Health Sciences, University of Exeter, EX1 2LU Exeter, United Kingdom
| | - Mathew Piasecki
- Medical Research Council (MRC) Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom
- Musculoskeletal Conditions, National Institute for Health Research Nottingham Biomedical Research Centre, Derby DE22 3DT, United Kingdom
| | - Adam Antebi
- Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Andrew Philp
- Mitochondrial Metabolism and Ageing, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St. Vincent's Clinical School, University of New South Wales (UNSW) Medicine, University of New South Wales Sydney, Sydney, NSW 2052, Australia
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409
| | - Matthew Whiteman
- University of Exeter Medical School, University of Exeter, EX1 2LU Exeter, United Kingdom;
| | - Nathaniel J Szewczyk
- Medical Research Council (MRC) Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom;
- Musculoskeletal Conditions, National Institute for Health Research Nottingham Biomedical Research Centre, Derby DE22 3DT, United Kingdom
- Ohio Musculoskeletal and Neurologic Institute, Ohio University, Athens, OH 45701
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701
| |
Collapse
|
31
|
Zhang X, Sun J, Yuan X, Lu X, Sun X. Advances in C. elegans behavior research with microfluidic devices and its future prospects in the evaluation of exogenous pollutants. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|