1
|
Zheng B, Liu D, Qin X, Zhang D, Zhang P. Mucoadhesive-to-Mucopenetrating Nanoparticles for Mucosal Drug Delivery: A Mini Review. Int J Nanomedicine 2025; 20:2241-2252. [PMID: 39995958 PMCID: PMC11849417 DOI: 10.2147/ijn.s505427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/01/2025] [Indexed: 02/26/2025] Open
Abstract
Mucosal tissue acts as a barrier between the human body's internal environment and the external world. The mucosal tissue is shielded from injurious environmental chemicals, toxins, and pathogens by a mucus layer lining above the mucosal tissue, and meanwhile the periodic mucosal clearance accelerates the removal of mucoadhesive components. And therefore, transmucosal drug delivery is limited. Nanocarriers for mucosal drug delivery is recently developed to enhance either long retention of drugs within the mucus layer or rapid translocation of drugs across the mucus layer. Among all these types of drug delivery systems, mucoadhesive-to-mucopenetrating nanocarriers transport drugs most efficiently into targeted mucosal tissues. In this review, recent progress on the mucoadhesive-to-mucopenetrating drug delivery systems and their application are updated.
Collapse
Affiliation(s)
- Bin Zheng
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, People’s Republic of China
| | - Dingyi Liu
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaowen Qin
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, 15008, People’s Republic of China
| | - Dahong Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
2
|
Martinier I, Trichet L, Fernandes FM. Biomimetic tubular materials: from native tissues to a unifying view of new vascular, tracheal, gastrointestinal, oesophageal, and urinary grafts. Chem Soc Rev 2025; 54:790-826. [PMID: 39606835 DOI: 10.1039/d4cs00429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Repairing tubular tissues-the trachea, the esophagus, urinary and gastrointestinal tracts, and the circulatory system-from trauma or severe pathologies that require resection, calls for new, more effective graft materials. Currently, the relatively narrow family of materials available for these applications relies on synthetic polymers that fail to reproduce the biological and physical cues found in native tissues. Mimicking the structure and the composition of native tubular tissues to elaborate functional grafts is expected to outperform the materials currently in use, but remains one of the most challenging goals in the field of biomaterials. Despite their apparent diversity, tubular tissues share extensive compositional and structural features. Here, we assess the current state of the art through a dual layer model, reducing each tissue to an inner epithelial layer and an outer muscular layer. Based on this model, we examine the current strategies developed to mimic each layer and we underline how each fabrication method stands in providing a biomimetic material for future clinical translation. The analysis provided here, addressed to materials chemists, biomaterials engineers and clinical staff alike, sets new guidelines to foster the elaboration of new biomimetic materials for effective tubular tissue repair.
Collapse
Affiliation(s)
- Isabelle Martinier
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, Paris 75005, France.
| | - Léa Trichet
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, Paris 75005, France.
| | - Francisco M Fernandes
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, Paris 75005, France.
| |
Collapse
|
3
|
Faurschou KL, Clasky AJ, Watchorn J, Tram Su J, Li NT, McGuigan AP, Gu FX. Lateral Assessment of Mucomimetic Hydrogels to Evaluate Correlation between Microscopic and Macroscopic Properties. Macromol Biosci 2024; 24:e2400146. [PMID: 39374341 DOI: 10.1002/mabi.202400146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/06/2024] [Indexed: 10/09/2024]
Abstract
A major limitation in the development of mucosal drug delivery systems is the design of in vitro models that accurately reflect in vivo conditions. Traditionally, models seek to mimic characteristics of physiological mucus, often focusing on property-specific trial metrics such as rheological behavior or diffusion of a nanoparticle of interest. Despite the success of these models, translation from in vitro results to in vivo trials is limited. As a result, several authors have called for work to develop standardized testing methodologies and characterize the influence of model properties on drug delivery performance. To this end, a series of trials is performed on 12 mucomimetic hydrogels reproduced from literature. Experiments show that there is no consistent correlation between barrier performance and rheological or microstructural properties of the tested mucomimetic hydrogels. In addition, the permeability of both mucopenetrating and mucoadhesive nanoparticles is assessed, revealing non-obvious variations in barrier properties such as the relative contributions of electrostatic and hydrophobic interactions in different models. These results demonstrate the limitations of predicting mucomimetic behavior with common characterization techniques and highlight the importance of testing barrier performance with multiple nanoparticle formulations.
Collapse
Affiliation(s)
- Kristina L Faurschou
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Aaron J Clasky
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Jeffrey Watchorn
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
- Acceleration Consortium, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| | - Jennifer Tram Su
- Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A 0C5, Canada
| | - Nancy T Li
- Computational Biology, Ontario Institute for Cancer Research, Toronto, Ontario, M5G 0A3, Canada
| | - Alison P McGuigan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | - Frank X Gu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
- Acceleration Consortium, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
4
|
Dulko D, Kłosowska-Chomiczewska IE, Del Castillo-Santaella T, Cabrerizo-Vílchez MA, Łuczak J, Staroń R, Krupa Ł, Maldonado-Valderrama J, Macierzanka A. Interfacial behaviour of human bile and its substitution for in vitro lipolysis studies. Food Res Int 2024; 197:115203. [PMID: 39593288 DOI: 10.1016/j.foodres.2024.115203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/14/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
This study examined the interfacial evolution of individual bile salts (BSs) and their blends with phosphatidylcholine (BS/PC) to simulate the complex behaviour of human bile (HB) during lipolysis at the triglyceride/water interface. Using adsorption and desorption cycles, mimicking exposure to small intestinal fluids, we demonstrate that the interfacial behaviour of real HB can be replicated using simple mixtures of BSs and PC. Interfacial tension (IFT) measurements after lipolysis and desorption showed no significant differences (P > 0.05) between HB samples and BS/PC mixtures across the total BS concentrations analysed (2.23-7.81 mM). However, individual BSs without PC yielded significantly different IFT results (P < 0.01) compared to HB, highlighting the importance of phospholipids. Dilatation rheology further emphasised the need for accurate phospholipid representation in bile models. Our results suggest that phospholipids in HB and in BS/PC systems enhance resistance to desorption, potentially affecting lipolysis. This is important, as current in vitro digestion models often replicate only intestinal BS concentrations to mimic the behaviour of HB in the intestinal lumen. Furthermore, the specific composition of BSs in HB appears less critical than the overall BS and phospholipid contents, suggesting that the kinetics of triglyceride digestion is influenced by the combined luminal concentrations of these components. These findings have significant implications for understanding the role of bile in digestion and offer insights for designing more accurate in vitro models to study the gastrointestinal behaviour of food emulsions and lipid-based delivery systems.
Collapse
Affiliation(s)
- Dorota Dulko
- Department of Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Ilona E Kłosowska-Chomiczewska
- Department of Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | | | | | - Justyna Łuczak
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Robert Staroń
- Department of Gastroenterology and Hepatology with Internal Disease Unit, Specialist University Hospital Frederic Chopin, Rzeszów, Poland; Medical Department, University of Rzeszów, Rzeszów, Poland
| | - Łukasz Krupa
- Department of Gastroenterology and Hepatology with Internal Disease Unit, Specialist University Hospital Frederic Chopin, Rzeszów, Poland; Medical Department, University of Rzeszów, Rzeszów, Poland
| | | | - Adam Macierzanka
- Department of Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
5
|
Klitgaard M, Jacobsen J, Kristensen MN, Berthelsen R, Müllertz A. Characterizing interregional differences in the rheological properties and composition of rat small intestinal mucus. Drug Deliv Transl Res 2024; 14:3309-3320. [PMID: 38526635 PMCID: PMC11445339 DOI: 10.1007/s13346-024-01574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 03/27/2024]
Abstract
The mucus layer in the small intestine is generally regarded as a barrier to drug absorption. However, the mucus layer is a complex system, and presently, only a few studies have been conducted to elucidate its physicochemical properties. The current study hypothesizes that the mucus layer contains solubility-enhancing surfactants and thus might aid the oral absorption of poorly water-soluble drugs. Mucus was sampled from sections of the small intestine of fasted rats to analyze the rheological properties and determine the mucus pH and concentrations of proteins and endogenous surfactants, i.e., bile salts, polar lipids, and neutral lipids. The mucus layer in the two proximal sections of the small intestine exhibited different rheological properties such as higher zero-shear viscosity and lower loss tangent and higher protein concentrations compared to all subsequent sections of the small intestine. The pH of the mucus layer was stable at ~ 6.5 throughout most of the small intestine, but increased to 7.5 in the ileum. The bile salt concentrations increased from the duodenum (16.0 ± 2.2 mM) until the mid jejunum (55.1 ± 9.5 mM), whereas the concentrations of polar lipids and neutral lipids decreased from the duodenum (17.4 ± 2.2 mM and 37.8 ± 1.6 mM, respectively) until the ileum (4.8 ± 0.4 mM and 10.7 ± 1.1 mM, respectively). In conclusion, the mucus layer of the rat small intestine contains endogenous surfactants at levels that might benefit solubilization and absorption of orally administered poorly water-soluble drugs.
Collapse
Affiliation(s)
- Mette Klitgaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Jette Jacobsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Maja Nørgaard Kristensen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Ragna Berthelsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
6
|
Ng T, Kou D. Evaluation of the impact of mucin on supersaturation and permeation of BCS class 2 basic drugs. J Pharm Sci 2024; 113:3272-3278. [PMID: 39179030 DOI: 10.1016/j.xphs.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
This study evaluated the impact of mucin on supersaturation and permeation of BCS Class 2 basic drugs in a pH-shift, 2-stage model using three model compounds, dipyridamole, ricobendazole, and Compound A. The three compounds showed various degrees of supersaturation (DoS) in Stage 2 and modest to no increases in flux with the presence of mucin in the dissolution media. Mucin's impact on DoS and flux, if any, appeared to be compound specific and possibly related to its pKa and ionization state. Overall, the increases in supersaturation and permeation due to mucin ranged from modest to minimal for the three model compounds under the conditions tested. The pH-shift model using MacroFLUX was able to monitor gastric and intestinal dissolution and simultaneously assess the effect of intestinal mucin on supersaturation and flux.
Collapse
Affiliation(s)
- Tania Ng
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Dawen Kou
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
7
|
Kramer C, Rulff H, Ziegler JF, Mönch PW, Alzain N, Addante A, Kuppe A, Timm S, Schrade P, Bischoff P, Glauben R, Dürr J, Ochs M, Mall MA, Gradzielski M, Siegmund B. Ileal mucus viscoelastic properties differ in Crohn's disease. Mucosal Immunol 2024; 17:713-722. [PMID: 38750968 DOI: 10.1016/j.mucimm.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024]
Abstract
Crohn's disease (CD) is an inflammatory bowel disease that can affect any part of the gastrointestinal tract, frequently involving the terminal ileum. While colonic mucus alterations in CD patients have been described, terminal ileal mucus and its mechanobiological properties have been neglected. Our study is the first of its kind to decipher the viscoelastic and network properties of ileal mucus. With that aim, oscillatory rheological shear measurements based on an airway mucus protocol that was thoroughly validated for ileal mucus were performed. Our pilot study analyzed terminal ileum mucus from controls (n = 14) and CD patients (n = 14). Mucus network structure was visualized by scanning electron microscopy. Interestingly, a statistically significant increase in viscoelasticity as well as a decrease in mesh size was observed in ileal mucus from CD patients compared to controls. Furthermore, rheological data were analyzed in relation to study participants' clinical characteristics, revealing a noteworthy trend between non-smokers and smokers. In conclusion, this study provides the first data on the viscoelastic properties and structure of human ileal mucus in the healthy state and Crohn's disease, demonstrating significant alterations between groups and highlighting the need for further research on mucus and its effect on the underlying epithelial barrier.
Collapse
Affiliation(s)
- Catharina Kramer
- Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hanna Rulff
- Institute of Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Jörn Felix Ziegler
- Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Paul Wilhelm Mönch
- Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nadra Alzain
- Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Annalisa Addante
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Aditi Kuppe
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Sara Timm
- Core Facility Electron Microscopy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Petra Schrade
- Core Facility Electron Microscopy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philip Bischoff
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany; Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer Glauben
- Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Dürr
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Matthias Ochs
- Core Facility Electron Microscopy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Institute of Functional Anatomy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcus A Mall
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | | | - Britta Siegmund
- Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
8
|
Kłosowska K, Del Castillo-Santaella T, Maldonado-Valderrama J, Macierzanka A. The bile salt/phospholipid ratio determines the extent of in vitro intestinal lipolysis of triglycerides: Interfacial and emulsion studies. Food Res Int 2024; 187:114421. [PMID: 38763671 DOI: 10.1016/j.foodres.2024.114421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
This study focused on the protein-stabilised triglyceride (TG)/water interfaces and oil-in-water emulsions, and explored the influence of varying molar ratios of bile salts (BSs) and phospholipids (PLs) on the intestinal lipolysis of TGs. The presence of these two major groups of biosurfactants delivered with human bile to the physiological environment of intestinal digestion was replicated in our experiments by using mixtures of individual BSs and PLs under in vitro small intestinal lipolysis conditions. Conducted initially, retrospective analysis of available scientific literature revealed that an average molar ratio of 9:4 for BSs to PLs (BS/PL) can be considered physiological in the postprandial adult human small intestine. Our experimental data showed that combining BSs and PLs synergistically enhanced interfacial activity, substantially reducing oil-water interfacial tension (IFT) during interfacial lipolysis experiments with pancreatic lipase, especially at the BS/PL-9:4 ratio. Other BS/PL molar proportions (BS/PL-6.5:6.5 and BS/PL-4:9) and an equimolar amount of BSs (BS-13) followed in IFT reduction efficiency, while using PLs alone as biosurfactants was the least efficient. In the following emulsion lipolysis experiments, BS/PL-9:4 outperformed other BS/PL mixtures in terms of enhancing the TG digestion extent. The degree of TG conversion and the desorption efficiency of interfacial material post-lipolysis correlated directly with the BS/PL ratio, decreasing as the PL proportion increased. In conclusion, this study highlights the crucial role of biliary PLs, alongside BSs, in replicating the physiological function of bile in intestinal lipolysis of emulsified TGs. Our results showed different contributions of PLs and BSs to lipolysis, strongly suggesting that any future in vitro studies aiming to simulate the human digestion conditions should take into account the impact of biliary PLs - not just BSs - to accurately mimic the physiological role of bile in intestinal lipolysis. This is particularly crucial given the fact that existing in vitro digestion protocols typically focus solely on applying specific concentrations and/or compositions of BSs to simulate the action of human bile during intestinal digestion, while overlooking the presence and concentration of biliary PLs under physiological gut conditions.
Collapse
Affiliation(s)
- Katarzyna Kłosowska
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Teresa Del Castillo-Santaella
- Department of Physical Chemistry, University of Granada, Faculty of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain.
| | - Julia Maldonado-Valderrama
- Department of Applied Physics, University of Granada, Faculty of Sciences, Campus de Fuentenueva s/n, 18071 Granada, Spain.
| | - Adam Macierzanka
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
9
|
Kawasaki M, Ambrosini YM. Differential Colonization and Mucus Ultrastructure Visualization in Bovine Ileal and Rectal Organoid-Derived Monolayers Exposed to Enterohemorrhagic Escherichia coli. Int J Mol Sci 2024; 25:4914. [PMID: 38732126 PMCID: PMC11084217 DOI: 10.3390/ijms25094914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a critical public health concern due to its role in severe gastrointestinal illnesses in humans, including hemorrhagic colitis and the life-threatening hemolytic uremic syndrome. While highly pathogenic to humans, cattle, the main reservoir for EHEC, often remain asymptomatic carriers, complicating efforts to control its spread. Our study introduces a novel method to investigate EHEC using organoid-derived monolayers from adult bovine ileum and rectum. These polarized epithelial monolayers were exposed to EHEC for four hours, allowing us to perform comparative analyses between the ileal and rectal tissues. Our findings mirrored in vivo observations, showing a higher colonization rate in the rectum compared with the ileum (44.0% vs. 16.5%, p < 0.05). Both tissues exhibited an inflammatory response with increased expression levels of TNF-a (p < 0.05) and a more pronounced increase of IL-8 in the rectum (p < 0.01). Additionally, the impact of EHEC on the mucus barrier varied across these gastrointestinal regions. Innovative visualization techniques helped us study the ultrastructure of mucus, revealing a net-like mucin glycoprotein organization. While further cellular differentiation could enhance model accuracy, our research significantly deepens understanding of EHEC pathogenesis in cattle and informs strategies for the preventative measures and therapeutic interventions.
Collapse
Affiliation(s)
| | - Yoko M. Ambrosini
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA;
| |
Collapse
|
10
|
Mortensen JS, Bohr SSR, Krog LS, Bøtker JP, Kapousidou V, Saaby L, Hatzakis NS, Mørck Nielsen H, Nguyen DN, Rønholt S. Neonatal intestinal mucus barrier changes in response to maturity, inflammation, and sodium decanoate supplementation. Sci Rep 2024; 14:7665. [PMID: 38561398 PMCID: PMC10985073 DOI: 10.1038/s41598-024-58356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
The integrity of the intestinal mucus barrier is crucial for human health, as it serves as the body's first line of defense against pathogens. However, postnatal development of the mucus barrier and interactions between maturity and its ability to adapt to external challenges in neonatal infants remain unclear. In this study, we unveil a distinct developmental trajectory of the mucus barrier in preterm piglets, leading to enhanced mucus microstructure and reduced mucus diffusivity compared to term piglets. Notably, we found that necrotizing enterocolitis (NEC) is associated with increased mucus diffusivity of our large pathogen model compound, establishing a direct link between the NEC condition and the mucus barrier. Furthermore, we observed that addition of sodium decanoate had varying effects on mucus diffusivity depending on maturity and health state of the piglets. These findings demonstrate that regulatory mechanisms governing the neonatal mucosal barrier are highly complex and are influenced by age, maturity, and health conditions. Therefore, our results highlight the need for specific therapeutic strategies tailored to each neonatal period to ensure optimal gut health.
Collapse
Affiliation(s)
- Janni Støvring Mortensen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Søren S-R Bohr
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Department of Chemistry and Nanoscience Center, Faculty of Science, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Lasse Skjoldborg Krog
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Johan Peter Bøtker
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Vaya Kapousidou
- Department of Chemistry and Nanoscience Center, Faculty of Science, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Lasse Saaby
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Bioneer A/S, Kogle Allé 2, 2970, Hørsholm, Denmark
| | - Nikos S Hatzakis
- Department of Chemistry and Nanoscience Center, Faculty of Science, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
- NovoNordisk Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Hanne Mørck Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Duc Ninh Nguyen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark.
| | - Stine Rønholt
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
11
|
Wang Z, Shen J. The role of goblet cells in Crohn' s disease. Cell Biosci 2024; 14:43. [PMID: 38561835 PMCID: PMC10985922 DOI: 10.1186/s13578-024-01220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
The prevalence of Crohn's disease (CD), a subtype of inflammatory bowel disease (IBD), is increasing worldwide. The pathogenesis of CD is hypothesized to be related to environmental, genetic, immunological, and bacterial factors. Current studies have indicated that intestinal epithelial cells, including columnar, Paneth, M, tuft, and goblet cells dysfunctions, are strongly associated with these pathogenic factors. In particular, goblet cells dysfunctions have been shown to be related to CD pathogenesis by direct or indirect ways, according to the emerging studies. The mucus barrier was established with the help of mucins secreted by goblet cells. Not only do the mucins mediate the mucus barrier permeability and bacterium selection, but also, they are closely linked with the endothelial reticulum stress during the synthesis process. Goblet cells also play a vital role in immune response. It was indicated that goblet cells take part in the antigen presentation and cytokines secretion process. Disrupted goblet cells related immune process were widely discovered in CD patients. Meanwhile, dysbiosis of commensal and pathogenic microbiota can induce myriad immune responses through mucus and goblet cell-associated antigen passage. Microbiome dysbiosis lead to inflammatory reaction against pathogenic bacteria and abnormal tolerogenic response. All these three pathways, including the loss of mucus barrier function, abnormal immune reaction, and microbiome dysbiosis, may have independent or cooperative effect on the CD pathogenesis. However, many of the specific mechanisms underlying these pathways remain unclear. Based on the current understandings of goblet cell's role in CD pathogenesis, substances including butyrate, PPARγagonist, Farnesoid X receptor agonist, nuclear factor-Kappa B, nitrate, cytokines mediators, dietary and nutrient therapies were all found to have potential therapeutic effects on CD by regulating the goblet cells mediated pathways. Several monoclonal antibodies already in use for the treatment of CD in the clinical settings were also found to have some goblet cells related therapeutic targets. In this review, we introduce the disease-related functions of goblet cells, their relationship with CD, their possible mechanisms, and current CD treatments targeting goblet cells.
Collapse
Affiliation(s)
- Zichen Wang
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Ministry of Health, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, No.160 PuJian Road, Shanghai, 200127, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Ministry of Health, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, No.160 PuJian Road, Shanghai, 200127, China.
| |
Collapse
|
12
|
Müller M, Drexel R, Burkhart M, Dähnhardt-Pfeiffer S, Wien L, Herrmann C, Knoll T, Metzger C, Briesen H, Wagner S, Meier F, Kohl Y. Ex vivo models for intestinal translocation studies of cellulose nanocrystals. IN VITRO MODELS 2023; 2:181-194. [PMID: 39872170 PMCID: PMC11756450 DOI: 10.1007/s44164-023-00056-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 01/29/2025]
Abstract
Purpose Cellulose nanocrystals (CNC) play a promising role in the development of new advanced materials. The growing demand of CNC-containing products in the food industry will lead to an increased human exposure through oral uptake. To date, there is a dearth of studies reporting on the risks which CNC pose to human health following ingestion. In vitro models, which lack physiological accuracy, are often used to justify animal experiments in the field of nanosafety assessment. Nevertheless, ex vivo models of the intestine pose promising alternatives to in vivo experiments. Methods Two ex vivo models, a microfluidic chip based on porcine intestinal mucus and the Ussing chamber apparatus with tissue from abattoirs, which aim to complement in vitro models, are characterized by investigating the transport and toxicity of CNC through them in comparison to an in vitro triple co-culture model. Silver nanoparticles were included in this study as well-known and characterized nanomaterials for comparative purposes. Results Study results show that CNC cross the intestinal mucus layer but do not pass the intestinal tissue barrier ex vivo and in vitro; furthermore, no toxic effects were observed under exposure conditions tested. Conclusion These ex vivo models present complementary methods to the existing standardized in vitro and in silico methods to support data generation under physiologically relevant conditions without the use of animals. This multi-model approach offers an enhanced understanding of the complex interaction between new materials and human tissue and aligns with the flexible approach of IATA (Integrated Approaches to Testing and Assessment) and NAMs (New Approach Methods) for chemical and drug safety assessment. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-023-00056-x.
Collapse
Affiliation(s)
- Michelle Müller
- Department Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Roland Drexel
- Postnova Analytics GmbH, Rankinestr. 1, 86899 Landsberg am Lech, Germany
| | - Marie Burkhart
- Department Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | | | - Lena Wien
- Department Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Christine Herrmann
- Process Systems Engineering, School of Life Sciences, Technical University Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Thorsten Knoll
- Department Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Christoph Metzger
- Process Systems Engineering, School of Life Sciences, Technical University Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Heiko Briesen
- Process Systems Engineering, School of Life Sciences, Technical University Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Sylvia Wagner
- Department Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Florian Meier
- Postnova Analytics GmbH, Rankinestr. 1, 86899 Landsberg am Lech, Germany
| | - Yvonne Kohl
- Department Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| |
Collapse
|
13
|
Donahue R, Sahoo JK, Rudolph S, Chen Y, Kaplan DL. Mucosa-Mimetic Materials for the Study of Intestinal Homeostasis and Disease. Adv Healthc Mater 2023; 12:e2300301. [PMID: 37329337 DOI: 10.1002/adhm.202300301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Mucus is a viscoelastic hydrogel that lines and protects the epithelial surfaces of the body that houses commensal microbiota and functions in host defense against pathogen invasion. As a first-line physical and biochemical barrier, intestinal mucus is involved in immune surveillance and spatial organization of the microbiome, while dysfunction of the gut mucus barrier is implicated in several diseases. Mucus can be collected from a variety of mammalian sources for study, however, established methods are challenging in terms of scale and efficiency, as well as with regard to rheological similarity to native human mucus. Therefore, there is a need for mucus-mimetic hydrogels that more accurately reflect the physical and chemical profile of the in vivo human epithelial environment to enable the investigation of the role of mucus in human disease and interactions with the intestinal microbiome. This review will evaluate the material properties of synthetic mucus mimics to date designed to address the above need, with a focus toward an improved understanding of the biochemical and immunological functions of these biopolymers related to utility for research and therapeutic applications.
Collapse
Affiliation(s)
- Rebecca Donahue
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - Sara Rudolph
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| |
Collapse
|
14
|
Wang CM, Fernez MT, Woolston BM, Carrier RL. Native gastrointestinal mucus: Critical features and techniques for studying interactions with drugs, drug carriers, and bacteria. Adv Drug Deliv Rev 2023; 200:114966. [PMID: 37329985 PMCID: PMC11184232 DOI: 10.1016/j.addr.2023.114966] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Gastrointestinal mucus plays essential roles in modulating interactions between intestinal lumen contents, including orally delivered drug carriers and the gut microbiome, and underlying epithelial and immune tissues and cells. This review is focused on the properties of and methods for studying native gastrointestinal mucus and its interactions with intestinal lumen contents, including drug delivery systems, drugs, and bacteria. The properties of gastrointestinal mucus important to consider in its analysis are first presented, followed by a discussion of different experimental setups used to study gastrointestinal mucus. Applications of native intestinal mucus are then described, including experimental methods used to study mucus as a barrier to drug delivery and interactions with intestinal lumen contents that impact barrier properties. Given the significance of the microbiota in health and disease, its impact on drug delivery and drug metabolism, and the use of probiotics and microbe-based delivery systems, analysis of interactions of bacteria with native intestinal mucus is then reviewed. Specifically, bacteria adhesion to, motility within, and degradation of mucus is discussed. Literature noted is focused largely on applications of native intestinal mucus models as opposed to isolated mucins or reconstituted mucin gels.
Collapse
Affiliation(s)
- Chia-Ming Wang
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Matthew T Fernez
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Benjamin M Woolston
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Rebecca L Carrier
- Department of Bioengineering, Northeastern University, Boston, MA, USA; Department of Chemical Engineering, Northeastern University, Boston, MA, USA; Department of Biology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
15
|
Zhang M, Zuo Z, Zhang X, Wang L. Food biopolymer behaviors in the digestive tract: implications for nutrient delivery. Crit Rev Food Sci Nutr 2023; 64:8709-8727. [PMID: 37216487 DOI: 10.1080/10408398.2023.2202778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biopolymers are prevalent in both natural and processed foods, serving as thickeners, emulsifiers, and stabilizers. Although specific biopolymers are known to affect digestion, the mechanisms behind their influence on the nutrient absorption and bioavailability in processed foods are not yet fully understood. The aim of this review is to elucidate the complex interplay between biopolymers and their behavior in vivo, and to provide insights into the possible physiological consequences of their consumption. The colloidization process of biopolymer in various phases of digestion was analyzed and its impact on nutrition absorption and gastrointestinal tract was summarized. Furthermore, the review discusses the methodologies used to assess colloidization and emphasizes the need for more realistic models to overcome challenges in practical applications. By controlling macronutrient bioavailability using biopolymers, it is possible to enhance health benefits, such as improving gut health, aiding in weight management, and regulating blood sugar levels. The physiological effect of extracted biopolymers utilized in modern food structuring technology cannot be predicted solely based on their inherent functionality. It is essential to account for factors such as their initial consuming state and interactions with other food components to better understand the potential health benefits of biopolymers.
Collapse
Affiliation(s)
- Ming Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhongyu Zuo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xinxia Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Wang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| |
Collapse
|
16
|
Wright L, Wignall A, Jõemetsa S, Joyce P, Prestidge CA. A membrane-free microfluidic approach to mucus permeation for efficient differentiation of mucoadhesive and mucopermeating nanoparticulate systems. Drug Deliv Transl Res 2023; 13:1088-1101. [PMID: 36520273 DOI: 10.1007/s13346-022-01274-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
The gastrointestinal mucus barrier is a widely overlooked yet essential component of the intestinal epithelium, responsible for the body's protection against harmful pathogens and particulates. This, coupled with the increasing utilisation of biological molecules as therapeutics (e.g. monoclonal antibodies, RNA vaccines and synthetic proteins) and nanoparticle formulations for drug delivery, necessitates that we consider the additional absorption barrier that the mucus layer may pose. It is imperative that in vitro permeability methods can accurately model this barrier in addition to standardised cellular testing. In this study, a mucus-on-a-chip (MOAC) microfluidic device was engineered and developed to quantify the permeation kinetics of nanoparticles through a biorelevant synthetic mucus layer. Three equivalently sized nanoparticle systems, formulated from chitosan (CSNP), mesoporous silica (MSNP) and poly (lactic-co-glycolic) acid (PLGA-NP) were prepared to encompass various surface chemistries and nanostructures and were assessed for their mucopermeation within the MOAC. Utilising this device, the mucoadhesive behaviour of chitosan nanoparticles was clearly visualised, a phenomenon not often observed via standard permeation models. In contrast, MSNP and PLGA-NP displayed mucopermeation, with significant differences in permeation pattern due to specific mucus-nanoparticle binding. Further optimisation of the MOAC to include a more biorelevant mucus mimic resulted in 5.5-fold hindered PLGA-NP permeation compared to a mucin solution. Furthermore, tracking of PLGA-NP at a single nanoparticle resolution revealed rank-order correlations between particle diffusivity and MOAC permeation. This device, including utilisation of biosimilar mucus, provides a unique ability to quantify both mucoadhesion and mucopenetration of nano-formulations and elucidate mucus binding interactions on a microscopic scale.
Collapse
Affiliation(s)
- Leah Wright
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Anthony Wignall
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Silver Jõemetsa
- Department of Physics, Chalmers University of Technology, Göteborg, Sweden
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Paul Joyce
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Clive A Prestidge
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, Australia.
| |
Collapse
|
17
|
Pangeni R, Meng T, Poudel S, Sharma D, Hutsell H, Ma J, Rubin BK, Longest W, Hindle M, Xu Q. Airway mucus in pulmonary diseases: Muco-adhesive and muco-penetrating particles to overcome the airway mucus barriers. Int J Pharm 2023; 634:122661. [PMID: 36736964 PMCID: PMC9975059 DOI: 10.1016/j.ijpharm.2023.122661] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Airway mucus is a complex viscoelastic gel that provides a defensive physical barrier and shields the airway epithelium by trapping inhaled foreign pathogens and facilitating their removal via mucociliary clearance (MCC). In patients with respiratory diseases, such as chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), non-CF bronchiectasis, and asthma, an increase in crosslinking and physical entanglement of mucin polymers as well as mucus dehydration often alters and typically reduces mucus mesh network pore size, which reduces neutrophil migration, decreases pathogen capture, sustains bacterial infection, and accelerates lung function decline. Conventional aerosol particles containing hydrophobic drugs are rapidly captured and removed by MCC. Therefore, it is critical to design aerosol delivery systems with the appropriate size and surface chemistry that can improve drug retention and absorption with the goal of increased efficacy. Biodegradable muco-adhesive particles (MAPs) and muco-penetrating particles (MPPs) have been engineered to achieve effective pulmonary delivery and extend drug residence time in the lungs. MAPs can be used to target mucus as they get trapped in airway mucus by steric obstruction and/or adhesion. MPPs avoid muco-adhesion and are designed to have a particle size smaller than the mucus network, enhancing lung retention of particles as well as transport to the respiratory epithelial layer and drug absorption. In this review, we aim to provide insight into the composition of airway mucus, rheological characteristics of airway mucus in healthy and diseased subjects, the most recent techniques to study the flow dynamics and particle diffusion in airway mucus (in particular, multiple particle tracking, MPT), and the advancements in engineering MPPs that have contributed to improved airway mucus penetration, lung distribution, and retention.
Collapse
Affiliation(s)
- Rudra Pangeni
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Tuo Meng
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Sagun Poudel
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Divya Sharma
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Hallie Hutsell
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Jonathan Ma
- Department of Pediatrics, Children's Hospital of Richmond, Richmond, VA, USA
| | - Bruce K Rubin
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA; Department of Pediatrics, Children's Hospital of Richmond, Richmond, VA, USA
| | - Worth Longest
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA; Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Qingguo Xu
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA; Department of Ophthalmology, Massey Cancer Center, Center for Pharmaceutical Engineering, and Institute for Structural Biology, Drug Discovery & Development (ISB3D), Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
18
|
Arzi RS, Davidovich-Pinhas M, Cohen N, Sosnik A. An experimental and theoretical approach to understand the interaction between particles and mucosal tissues. Acta Biomater 2023; 158:449-462. [PMID: 36596435 DOI: 10.1016/j.actbio.2022.12.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/24/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
Nanonization of poorly water-soluble drugs has shown great potential in improving their oral bioavailability by increasing drug dissolution rate and adhesion to the gastrointestinal mucus. However, the fundamental features that govern the particle-mucus interactions have not been investigated in a systematic way before. In this work, we synthesize mucin hydrogels that mimic those of freshly excised porcine mucin. By using fluorescent pure curcumin particles, we characterize the effect of particle size (200 nm, and 1.2 and 1.3 μm), concentration (18, 35, and 71 μg mL-1), and hydrogel crosslinking density on the diffusion-driven particle penetration in vitro. Next, we derive a phenomenological model that describes the physics behind the diffusion-derived penetration and considers the contributions of the key parameters assessed in vitro. Finally, we challenge our model by assessing the oral pharmacokinetics of an anti-cancer model drug, namely dasatinib, in pristine and nanonized forms and two clinically relevant doses in rats. For a dose of 10 mg kg-1, drug nanonization leads to a significant ∼8- and ∼21-fold increase of the drug oral bioavailability and half-life, respectively, with respect to the unprocessed drug. When the dose of the nanoparticles was increased to 15 mg kg-1, the oral bioavailability increased though not significantly, suggesting the saturation of the mucus penetration sites, as demonstrated by the in vitro model. Our overall results reveal the potential of this approach to pave the way for the development of tools that enable a more rational design of nano-drug delivery systems for mucosal administration. STATEMENT OF SIGNIFICANCE: The development of experimental-theoretical tools to understand and predict the diffusion-driven penetration of particles into mucus is crucial not only to rationalize the design of nanomedicines for mucosal administration but also to anticipate the risks of the exposure of the body to nano-pollutants. However, a systematic study of such tools is still lacking. Here we introduce an experimental-theoretical approach to predict the diffusion-driven penetration of particles into mucus and investigate the effect of three key parameters on this interaction. Then, we challenge the model in a preliminary oral pharmacokinetics study in rats which shows a very good correlation with in vitro results. Overall, this work represents a robust platform for the modelling of the interaction of particles with mucosae under dynamic conditions.
Collapse
Affiliation(s)
- Roni Sverdlov Arzi
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Maya Davidovich-Pinhas
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Noy Cohen
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | - Alejandro Sosnik
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
19
|
Applications of polydopaminic nanomaterials in mucosal drug delivery. J Control Release 2023; 353:842-849. [PMID: 36529384 DOI: 10.1016/j.jconrel.2022.12.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Polydopamine (PDA) is a biopolymer with unique physicochemical properties, including free-radical scavenging, high photothermal conversion efficiency, biocompatibility, biodegradability, excellent fluorescent and theranostic capacity due to their abundant surface chemistry. Thus, PDA is used for a myriad of applications including drug delivery, biosensing, imaging and cancer therapy. Recent reports present a new functionality of PDA as a coating nanomaterial, with major implications in mucosal drug delivery applications, particularly muco-adhesion and muco-penetration. However, this application has received minimal traction in the literature. In this review, we present the physicochemical and functional properties of PDA and highlight its key biomedical applications, especially in cancer therapy. A detailed presentation of the role of PDA as a promising coating material for nanoparticulate carriers intended for mucosal delivery forms the core aspect of the review. Finally, a reflection on key considerations and challenges in the utilizing PDA for mucosal drug delivery, along with the possibilities of translation to clinical studies is expounded.
Collapse
|
20
|
Raev S, Amimo J, Saif L, Vlasova A. Intestinal mucin-type O-glycans: the major players in the host-bacteria-rotavirus interactions. Gut Microbes 2023; 15:2197833. [PMID: 37020288 PMCID: PMC10078158 DOI: 10.1080/19490976.2023.2197833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Rotavirus (RV) causes severe diarrhea in young children and animals worldwide. Several glycans terminating in sialic acids (SAs) and histo-blood group antigens (HBGAs) on intestinal epithelial cell (IEC) surface have been recognized to act as attachment sites for RV. IECs are protected by the double layer of mucus of which O-glycans (including HBGAs and SAs) are a major organic component. Luminal mucins, as well as bacterial glycans, can act as decoy molecules removing RV particles from the gut. The composition of the intestinal mucus is regulated by complex O-glycan-specific interactions among the gut microbiota, RV and the host. In this review, we highlight O-glycan-mediated interactions within the intestinal lumen prior to RV attachment to IECs. A better understanding of the role of mucus is essential for the development of alternative therapeutic tools including the use of pre- and probiotics to control RV infection.
Collapse
Affiliation(s)
- S.A. Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - J.O. Amimo
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - L.J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - A.N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
21
|
Mortensen JS, Bohr SSR, Harloff-Helleberg S, Hatzakis NS, Saaby L, Nielsen HM. Physical and barrier changes in gastrointestinal mucus induced by the permeation enhancer sodium 8-[(2-hydroxybenzoyl)amino]octanoate (SNAC). J Control Release 2022; 352:163-178. [PMID: 36314534 DOI: 10.1016/j.jconrel.2022.09.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022]
Abstract
Drug delivery systems (DDS) for oral delivery of peptide drugs contain excipients that facilitate and enhance absorption. However, little knowledge exists on how DDS excipients such as permeation enhancers interact with the gastrointestinal mucus barrier. This study aimed to investigate interactions of the permeation enhancer sodium 8-[(2-hydroxybenzoyl)amino]octanoate (SNAC) with ex vivo porcine intestinal mucus (PIM), ex vivo porcine gastric mucus (PGM), as well as with in vitro biosimilar mucus (BM) by profiling their physical and barrier properties upon exposure to SNAC. Bulk mucus permeability studies using the peptides cyclosporine A and vancomycin, ovalbumin as a model protein, as well as fluorescein-isothiocyanate dextrans (FDs) of different molecular weights and different surface charges were conducted in parallel to mucus retention force studies using a texture analyzer, rheological studies, cryo-scanning electron microscopy (cryo-SEM), and single particle tracking of fluorescence-labelled nanoparticles to investigate the effects of the SNAC-mucus interaction. The exposure of SNAC to PIM increased the mucus retention force, storage modulus, viscosity, increased nanoparticle confinement within PIM as well as decreased the permeation of cyclosporine A and ovalbumin through PIM. Surprisingly, the viscosity of PGM and the permeation of cyclosporine A and ovalbumin through PGM was unaffected by the presence of SNAC, thus the effect of SNAC depended on the regional site that mucus was collected from. In the absence of SNAC, the permeation of different molecular weight and differently charged FDs through PIM was comparable to that through BM. However, while bulk permeation of neither of the FDs through PIM was affected by SNAC, the presence of SNAC decreased the permeation of FD4 and increased the permeation of FD150 kDa through BM. Additionally, and in contrast to observations in PIM, nanoparticle confinement within BM remained unaffected by the presence of SNAC. In conclusion, the present study showed that SNAC altered the physical and barrier properties of PIM, but not of PGM. The effects of SNAC in PIM were not observed in the BM in vitro model. Altogether, the study highlights the need for further understanding how permeation enhancers influence the mucus barrier and illustrates that the selected mucus model for such studies should be chosen with care.
Collapse
Affiliation(s)
- J S Mortensen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - S S-R Bohr
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Department of Chemistry, Nano-Science Center, Faculty of Science, University of Copenhagen, Bülowsvej 17, DK-1870 Frederiksberg, Denmark
| | - S Harloff-Helleberg
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - N S Hatzakis
- Department of Chemistry, Nano-Science Center, Faculty of Science, University of Copenhagen, Bülowsvej 17, DK-1870 Frederiksberg, Denmark; Novo Nordisk Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - L Saaby
- CNS Drug Delivery and Barrier Modelling, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Bioneer A/S, Kogle Alle 2, DK-2970 Hørsholm, Denmark
| | - H M Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
22
|
Gustafsson JK, Johansson MEV. The role of goblet cells and mucus in intestinal homeostasis. Nat Rev Gastroenterol Hepatol 2022; 19:785-803. [PMID: 36097076 DOI: 10.1038/s41575-022-00675-x] [Citation(s) in RCA: 230] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 12/08/2022]
Abstract
The intestinal tract faces numerous challenges that require several layers of defence. The tight epithelium forms a physical barrier that is further protected by a mucus layer, which provides various site-specific protective functions. Mucus is produced by goblet cells, and as a result of single-cell RNA sequencing identifying novel goblet cell subpopulations, our understanding of their various contributions to intestinal homeostasis has improved. Goblet cells not only produce mucus but also are intimately linked to the immune system. Mucus and goblet cell development is tightly regulated during early life and synchronized with microbial colonization. Dysregulation of the developing mucus systems and goblet cells has been associated with infectious and inflammatory conditions and predisposition to chronic disease later in life. Dysfunctional mucus and altered goblet cell profiles are associated with inflammatory conditions in which some mucus system impairments precede inflammation, indicating a role in pathogenesis. In this Review, we present an overview of the current understanding of the role of goblet cells and the mucus layer in maintaining intestinal health during steady-state and how alterations to these systems contribute to inflammatory and infectious disease.
Collapse
Affiliation(s)
- Jenny K Gustafsson
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemisty and Cell biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
23
|
Wright L, Barnes TJ, Joyce P, Prestidge CA. Optimisation of a High-Throughput Model for Mucus Permeation and Nanoparticle Discrimination Using Biosimilar Mucus. Pharmaceutics 2022; 14:2659. [PMID: 36559151 PMCID: PMC9782027 DOI: 10.3390/pharmaceutics14122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
High-throughput permeation models are essential in drug development for timely screening of new drug and formulation candidates. Nevertheless, many current permeability assays fail to account for the presence of the gastrointestinal mucus layer. In this study, an optimised high-throughput mucus permeation model was developed employing a highly biorelevant mucus mimic. While mucus permeation is primarily conducted in a simple mucin solution, the complex chemistry, nanostructure and rheology of mucus is more accurately modelled by a synthetic biosimilar mucus (BSM) employing additional protein, lipid and rheology-modifying polymer components. Utilising BSM, equivalent permeation of various molecular weight fluorescein isothiocyanate-dextrans were observed, compared with native porcine jejunal mucus, confirming replication of the natural mucus permeation barrier. Furthermore, utilising synthetic BSM facilitated the analysis of free protein permeation which could not be quantified in native mucus due to concurrent proteolytic degradation. Additionally, BSM could differentiate between the permeation of poly (lactic-co-glycolic) acid nanoparticles (PLGA-NP) with varying surface chemistries (cationic, anionic and PEGylated), PEG coating density and size, which could not be achieved by a 5% mucin solution. This work confirms the importance of utilising highly biorelevant mucus mimics in permeation studies, and further development will provide an optimal method for high-throughput mucus permeation analysis.
Collapse
Affiliation(s)
| | | | | | - Clive A. Prestidge
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| |
Collapse
|
24
|
McCright J, Sinha A, Maisel K. Generating an In Vitro Gut Model with Physiologically Relevant Biophysical Mucus Properties. Cell Mol Bioeng 2022; 15:479-491. [PMID: 36444342 PMCID: PMC9700528 DOI: 10.1007/s12195-022-00740-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022] Open
Abstract
Introduction Gastrointestinal (GI) in vitro models have received lasting attention as an effective tool to model drug and nutrient absorption, study GI diseases, and design new drug delivery vehicles. A complete model of the GI epithelium should at a minimum include the two key functional components of the GI tract: mucus and the underlying epithelium. Mucus plays a key role in protecting and lubricating the GI tract, poses a barrier to orally administered therapies and pathogens, and serves as the microenvironment for the GI microbiome. These functions are reliant on the biophysical material properties of the mucus produced, including viscosity and pore size. Methods In this study, we generated in vitro models containing Caco-2 enterocyte-like cells and HT29-MTX goblet-like cells and determined the effects of coculture and mucus layer on epithelial permeability and biophysical properties of mucus using multiple particle tracking (MPT). Results We found that mucus height increased as the amount of HT29-MTX goblet-like cells increased. Additionally, we found that increasing the amount of HT29-MTX goblet-like cells within culture corresponded to an increase in mucus pore size and mucus microviscosity, measured using MPT. When compared to ex vivo mucus samples from mice and pigs, we found that a 90:10 ratio of Caco-2:HT29-MTX coculture displayed similar mucus pore size to porcine jejunum and that the mucus produced from 90:10 and 80:20 ratios of cells shared mechanical properties to porcine jejunum and ileum mucus. Conclusions GI coculture models are valuable tools in simulating the mucus barrier and can be utilized for a variety of applications including the study of GI diseases, food absorption, or therapeutic development.
Collapse
Affiliation(s)
- Jacob McCright
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Arnav Sinha
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Katharina Maisel
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
25
|
Sabra R, Narula A, Taylor LS, Li N. Comparisons of in Vitro Models to Evaluate the Membrane Permeability of Amorphous Drug Nanoparticles. Mol Pharm 2022; 19:3412-3428. [PMID: 35972995 DOI: 10.1021/acs.molpharmaceut.2c00565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The spontaneous formation of amorphous drug nanoparticles following the release of a drug from a supersaturating formulation is gaining increasing attention due to their potential contribution to increased oral bioavailability. The formation of nanosized drug particles also has considerable implications for the interpretation of in vitro and in vivo data. However, the membrane transport properties of these drug particles remain less well understood. Herein, the membrane permeation of nanosized amorphous drug particles of a model drug atazanavir was evaluated using different artificial membrane-based, cell-based, and animal tissue-based models. Results showed that flux enhancement by particles was different for the various systems used. Generally, good agreement was obtained among experiments performed using the same apparatus with different model membranes, with the exception of the Madin-Darby canine kidney cell monolayer and the Long-Evans rat intestine tissue, which showed lower flux enhancements. Franz cell-based models showed slightly higher flux enhancements by particles compared to Transwell and intestinal tissue sac models. Mass transport analysis suggested that the extent of flux enhancement by particles is dependent on the geometry of the apparatus as well as the properties of the membrane and buffer used, whereas the flux plateau concentration is dependent on the unstirred water later (UWL) asymmetry. These results highlight the complexity in characterizing the permeability advantage of these nonmembrane permeable drug particles and suggest that caution should be used in selecting the appropriate in vitro model to evaluate the overall permeability of colloidal drug particles.
Collapse
Affiliation(s)
- Rayan Sabra
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269, United States
| | - Akshay Narula
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Na Li
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269, United States.,Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, Connecticut 06269, United States
| |
Collapse
|
26
|
Antonello G, Marucco A, Gazzano E, Kainourgios P, Ravagli C, Gonzalez-Paredes A, Sprio S, Padín-González E, Soliman MG, Beal D, Barbero F, Gasco P, Baldi G, Carriere M, Monopoli MP, Charitidis CA, Bergamaschi E, Fenoglio I, Riganti C. Changes of physico-chemical properties of nano-biomaterials by digestion fluids affect the physiological properties of epithelial intestinal cells and barrier models. Part Fibre Toxicol 2022; 19:49. [PMID: 35854319 PMCID: PMC9297619 DOI: 10.1186/s12989-022-00491-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022] Open
Abstract
Background The widespread use of nano-biomaterials (NBMs) has increased the chance of human exposure. Although ingestion is one of the major routes of exposure to NBMs, it is not thoroughly studied to date. NBMs are expected to be dramatically modified following the transit into the oral-gastric-intestinal (OGI) tract. How these transformations affect their interaction with intestinal cells is still poorly understood. NBMs of different chemical nature—lipid-surfactant nanoparticles (LSNPs), carbon nanoparticles (CNPs), surface modified Fe3O4 nanoparticles (FNPs) and hydroxyapatite nanoparticles (HNPs)—were treated in a simulated human digestive system (SHDS) and then characterised. The biological effects of SHDS-treated and untreated NBMs were evaluated on primary (HCoEpiC) and immortalised (Caco-2, HCT116) epithelial intestinal cells and on an intestinal barrier model. Results The application of the in vitro SDHS modified the biocompatibility of NBMs on gastrointestinal cells. The differences between SHDS-treated and untreated NBMs could be attributed to the irreversible modification of the NBMs in the SHDS. Aggregation was detected for all NBMs regardless of their chemical nature, while pH- or enzyme-mediated partial degradation was detected for hydroxyapatite or polymer-coated iron oxide nanoparticles and lipid nanoparticles, respectively. The formation of a bio-corona, which contains proteases, was also demonstrated on all the analysed NBMs. In viability assays, undifferentiated primary cells were more sensitive than immortalised cells to digested NBMs, but neither pristine nor treated NBMs affected the intestinal barrier viability and permeability. SHDS-treated NBMs up-regulated the tight junction genes (claudin 3 and 5, occludin, zonula occludens 1) in intestinal barrier, with different patterns between each NBM, and increase the expression of both pro- and anti-inflammatory cytokines (IL-1β, TNF-α, IL-22, IL-10). Notably, none of these NBMs showed any significant genotoxic effect. Conclusions Overall, the results add a piece of evidence on the importance of applying validated in vitro SHDS models for the assessment of NBM intestinal toxicity/biocompatibility. We propose the association of chemical and microscopic characterization, SHDS and in vitro tests on both immortalised and primary cells as a robust screening pipeline useful to monitor the changes in the physico-chemical properties of ingested NBMs and their effects on intestinal cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00491-w.
Collapse
Affiliation(s)
- Giulia Antonello
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy.,Department of Public Health and Pediatrics, University of Turin, Piazza Polonia, 94, 10126, Turin, Italy.,Department of Oncology, University of Turin, Via Santena 5 bis, 10126, Turin, Italy
| | - Arianna Marucco
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Elena Gazzano
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Panagiotis Kainourgios
- Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., 15780, Zographos, Athens, Greece
| | - Costanza Ravagli
- Colorobbia Consulting Srl, Headwork, Via Pietramarina, 53, 50059, Sovigliana, Vinci, FI, Italy
| | | | - Simone Sprio
- National Research Council, Institute of Science and Technology for Ceramics ISTEC-CNR, Via Granarolo 64, 48018, Faenza, RA, Italy
| | - Esperanza Padín-González
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Mahmoud G Soliman
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - David Beal
- CEA, CNRS, IRIG, SyMMES-CIBEST, Université Grenoble Alpes, 38000, Grenoble, France
| | - Francesco Barbero
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy
| | - Paolo Gasco
- Nanovector Srl, Headwork, Via Livorno 60, 10144, Turin, Italy
| | - Giovanni Baldi
- Colorobbia Consulting Srl, Headwork, Via Pietramarina, 53, 50059, Sovigliana, Vinci, FI, Italy
| | - Marie Carriere
- CEA, CNRS, IRIG, SyMMES-CIBEST, Université Grenoble Alpes, 38000, Grenoble, France
| | - Marco P Monopoli
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Costas A Charitidis
- Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., 15780, Zographos, Athens, Greece
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Turin, Piazza Polonia, 94, 10126, Turin, Italy
| | - Ivana Fenoglio
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy.
| | - Chiara Riganti
- Department of Oncology, University of Turin, Via Santena 5 bis, 10126, Turin, Italy.
| |
Collapse
|
27
|
Takagi J, Aoki K, Turner BS, Lamont S, Lehoux S, Kavanaugh N, Gulati M, Valle Arevalo A, Lawrence TJ, Kim CY, Bakshi B, Ishihara M, Nobile CJ, Cummings RD, Wozniak DJ, Tiemeyer M, Hevey R, Ribbeck K. Mucin O-glycans are natural inhibitors of Candida albicans pathogenicity. Nat Chem Biol 2022; 18:762-773. [PMID: 35668191 PMCID: PMC7613833 DOI: 10.1038/s41589-022-01035-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/11/2022] [Indexed: 12/13/2022]
Abstract
Mucins are large gel-forming polymers inside the mucus barrier that inhibit the yeast-to-hyphal transition of Candida albicans, a key virulence trait of this important human fungal pathogen. However, the molecular motifs in mucins that inhibit filamentation remain unclear despite their potential for therapeutic interventions. Here, we determined that mucins display an abundance of virulence-attenuating molecules in the form of mucin O-glycans. We isolated and cataloged >100 mucin O-glycans from three major mucosal surfaces and established that they suppress filamentation and related phenotypes relevant to infection, including surface adhesion, biofilm formation and cross-kingdom competition between C. albicans and the bacterium Pseudomonas aeruginosa. Using synthetic O-glycans, we identified three structures (core 1, core 1 + fucose and core 2 + galactose) that are sufficient to inhibit filamentation with potency comparable to the complex O-glycan pool. Overall, this work identifies mucin O-glycans as host molecules with untapped therapeutic potential to manage fungal pathogens.
Collapse
Affiliation(s)
- Julie Takagi
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Bradley S Turner
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sabrina Lamont
- Departments of Microbial Infection and Immunity, Microbiology, The Ohio State University, Columbus, OH, USA
| | - Sylvain Lehoux
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, Boston, MA, USA
| | - Nicole Kavanaugh
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Megha Gulati
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, USA
- Molecular Cell, Cell Press, Cambridge, MA, USA
| | - Ashley Valle Arevalo
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, USA
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA, USA
| | - Travis J Lawrence
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, USA
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA, USA
- Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Colin Y Kim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bhavya Bakshi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, USA
- Health Sciences Research Institute, University of California Merced, Merced, CA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, Boston, MA, USA
| | - Daniel J Wozniak
- Departments of Microbial Infection and Immunity, Microbiology, The Ohio State University, Columbus, OH, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Rachel Hevey
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
28
|
Pednekar DD, Liguori MA, Marques CNH, Zhang T, Zhang N, Zhou Z, Amoako K, Gu H. From Static to Dynamic: A Review on the Role of Mucus Heterogeneity in Particle and Microbial Transport. ACS Biomater Sci Eng 2022; 8:2825-2848. [PMID: 35696291 DOI: 10.1021/acsbiomaterials.2c00182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mucus layers (McLs) are on the front line of the human defense system that protect us from foreign abiotic/biotic particles (e.g., airborne virus SARS-CoV-2) and lubricates our organs. Recently, the impact of McLs on human health (e.g., nutrient absorption and drug delivery) and diseases (e.g., infections and cancers) has been studied extensively, yet their mechanisms are still not fully understood due to their high variety among organs and individuals. We characterize these variances as the heterogeneity of McLs, which lies in the thickness, composition, and physiology, making the systematic research on the roles of McLs in human health and diseases very challenging. To advance mucosal organoids and develop effective drug delivery systems, a comprehensive understanding of McLs' heterogeneity and how it impacts mucus physiology is urgently needed. When the role of airway mucus in the penetration and transmission of coronavirus (CoV) is considered, this understanding may also enable a better explanation and prediction of the CoV's behavior. Hence, in this Review, we summarize the variances of McLs among organs, health conditions, and experimental settings as well as recent advances in experimental measurements, data analysis, and model development for simulations.
Collapse
Affiliation(s)
- Dipesh Dinanath Pednekar
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Madison A Liguori
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | | | - Teng Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States.,BioInspired Syracuse, Syracuse University, Syracuse, New York 13244, United States
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zejian Zhou
- Department of Electrical and Computer Engineering and Computer Science, University of New Haven, West Haven, Connecticut 06516, United States
| | - Kagya Amoako
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Huan Gu
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| |
Collapse
|
29
|
Delon L, Gibson R, Prestidge C, Thierry B. Mechanisms of uptake and transport of particulate formulations in the small intestine. J Control Release 2022; 343:584-599. [PMID: 35149142 DOI: 10.1016/j.jconrel.2022.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
Micro- and nano-scale particulate formulations are widely investigated towards improving the oral bioavailability of both biologics and drugs with low solubility and/or low intestinal permeability. Particulate formulations harnessing physiological intestinal transport pathways have recently yielded remarkably high oral bioavailabilities, illustrating the need for better understanding the specific pathways underpinning particle small intestinal absorption and the relative role of intestinal cells. Mechanistic knowledge has been hampered by the well acknowledged limitations of current in vitro, in vivo and ex vivo models relevant to the human intestinal physiology and the lack of standardization in studies reporting absorption data. Here we review the relevant literature and critically discusses absorption pathways with a focus on the role of specific intestinal epithelial and immune cells. We conclude that while Microfold (M) cells are a valid target for oral vaccines, enterocytes play a greater role in the systemic bioavailability of orally administrated particulate formulations, particularly within the sub-micron size range. We also comment on less-reported mechanisms such as paracellular permeability of particles, persorption due to cell damage and uptake by migratory immune cells.
Collapse
Affiliation(s)
- Ludivine Delon
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia 5095, Australia; Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Rachel Gibson
- Australia School of Allied Health Science and Practice, University of Adelaide, South Australia 5005, Australia
| | - Clive Prestidge
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia 5095, Australia.
| |
Collapse
|
30
|
Dubbelboer IR, Barmpatsalou V, Rodler A, Karlsson E, Filipe Nunes S, Holmberg J, Häggström J, A. S. Bergström C. Gastrointestinal mucus in dog: physiological characteristics, composition, and structural properties. Eur J Pharm Biopharm 2022; 173:92-102. [DOI: 10.1016/j.ejpb.2022.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/17/2021] [Accepted: 02/23/2022] [Indexed: 11/27/2022]
|
31
|
Barmpatsalou V, Dubbelboer IR, Rodler A, Jacobson M, Karlsson E, Pedersen BL, Bergström CAS. Physiological properties, composition and structural profiling of porcine gastrointestinal mucus. Eur J Pharm Biopharm 2021; 169:156-167. [PMID: 34687897 DOI: 10.1016/j.ejpb.2021.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022]
Abstract
The gastrointestinal mucus is a hydrogel that lines the luminal side of the gastrointestinal epithelium, offering barrier protection from pathogens and lubrication of the intraluminal contents. These barrier properties likewise affect nutrients and drugs that need to penetrate the mucus to reach the epithelium prior to absorption. In order to assess the potential impact of the mucus on drug absorption, we need information about the nature of the gastrointestinal mucus. Today, most of the relevant available literature is mainly derived from rodent studies. In this work, we used a larger animal species, the pig model, to characterize the mucus throughout the length of the gastrointestinal tract. This is the first report of the physiological properties (physical appearance, pH and water content), composition (protein, lipid and metabolite content) and structural profiling (rheology and gel network) of the porcine gastrointestinal mucus. These findings allow for direct comparisons between the characteristics of mucus from various segments and can be further utilized to improve our understanding of the role of the mucus on region dependent drug absorption. Additionally, the present work is expected to contribute to the assessment of the porcine model as a preclinical species in the drug development process.
Collapse
Affiliation(s)
- Vicky Barmpatsalou
- The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, BMC P.O. Box 580, SE-751 23, Uppsala, Sweden
| | - Ilse R Dubbelboer
- The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, BMC P.O. Box 580, SE-751 23, Uppsala, Sweden
| | - Agnes Rodler
- The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, BMC P.O. Box 580, SE-751 23, Uppsala, Sweden; The Swedish Drug Delivery Center, Department of Medicinal Chemistry, Uppsala University, BMC P.O. Box 574, SE-751 23, Uppsala, Sweden
| | - Magdalena Jacobson
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, P.O. Box 7054, SE-750 07, Uppsala, Sweden
| | - Eva Karlsson
- Oral Product Development, Pharmaceutical Technology & Development Operations, AstraZeneca, Gothenburg, Sweden
| | - Betty Lomstein Pedersen
- Product Development & Drug Delivery, Global Pharmaceutical R&D, Ferring Pharmaceuticals A/S, Kay Fiskers Plads 11, DK-2300, Copenhagen, Denmark
| | - Christel A S Bergström
- The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, BMC P.O. Box 580, SE-751 23, Uppsala, Sweden.
| |
Collapse
|
32
|
Advancedoral vaccine delivery strategies for improving the immunity. Adv Drug Deliv Rev 2021; 177:113928. [PMID: 34411689 DOI: 10.1016/j.addr.2021.113928] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/15/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022]
Abstract
Infectious diseases continue to inflict a high global disease burden. The consensus is that vaccination is the most effective option against infectious diseases. Oral vaccines have unique advantages in the prevention of global pandemics due to their ease of use, high compliance, low cost, and the ability to induce both systemic and mucosal immune responses. However, challenges of adapting vaccines for oral administration remain significant. Foremost among these are enzymatic and pH-dependent degradation of antigens in the stomach and intestines, the low permeability of mucus barrier, the nonspecific uptake of antigens at the intestinal mucosal site, and the immune suppression result from the elusive immune tolerance mechanisms. Innovative delivery techniques promise great potential for improving the flexibility and efficiency of oral vaccines. A better understanding of the delivery approaches and the immunological mechanisms of oral vaccine delivery systems may provide new scientific insight and tools for developing the next-generation oral vaccine. Here, an overview of the advanced technologies in the field of oral vaccination is proposed, including mucus-penetrating nanoparticle (NP), mucoadhesive delivery vehicles, targeting antigen-presenting cell (APC) nanocarriers and enhanced paracellular delivery strategies and so on. Meanwhile, the mechanisms of delivery vectors interact with mucosal barriers are discussed.
Collapse
|
33
|
Luo Z, Paunović N, Leroux JC. Physical methods for enhancing drug absorption from the gastrointestinal tract. Adv Drug Deliv Rev 2021; 175:113814. [PMID: 34052229 DOI: 10.1016/j.addr.2021.05.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023]
Abstract
Overcoming the gastrointestinal (GI) barriers is a formidable challenge in the oral delivery of active macromolecules such as peptide- and protein- based drugs. In the past four decades, a plethora of formulation strategies ranging from permeation enhancers, nanosized carriers, and chemical modifications of the drug's structure has been investigated to increase the oral absorption of these macromolecular compounds. However, only limited successes have been achieved so far, with the bioavailability of marketed oral peptide drugs remaining generally very low. Recently, a few approaches that are based on physical interactions, such as magnetic, acoustic, and mechanical forces, have been explored in order to control and improve the drug permeability across the GI mucosa. Although in the early stages, some of these methods have shown great potential both in terms of improved bioavailability and spatiotemporal delivery of drugs. Here, we offer a concise, yet critical overview of these rather unconventional technologies with a particular focus on their potential and possible challenges for further clinical translation.
Collapse
|
34
|
Peng K, Gao Y, Angsantikul P, LaBarbiera A, Goetz M, Curreri AM, Rodrigues D, Tanner EEL, Mitragotri S. Modulation of Gastrointestinal Mucus Properties with Ionic Liquids for Drug Delivery. Adv Healthc Mater 2021; 10:e2002192. [PMID: 34050617 DOI: 10.1002/adhm.202002192] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/08/2021] [Indexed: 12/24/2022]
Abstract
The mucus barrier lining the gastrointestinal tract poses a significant barrier to the oral delivery of macromolecular drugs. Successful approaches to overcoming this barrier have primarily focused on reducing drug and carrier interactions with mucus or disrupting the mucus layer directly. Choline-based ionic liquids (ILs) such as choline geranate and choline glycolate (CGLY) have recently been shown to be effective in enhancing the intestinal absorption of macromolecules such as insulin and immunoglobulin (IgG), respectively. Herein, the use of choline-based ILs as mucus-modulating agents for safely improving drug penetration through mucus is described. Choline-based ILs significantly increase the diffusion rates of cationic dextrans through mucin solution. Choline-maleic acid (CMLC 2:1) enhances the diffusion of 4 kDa cationic dextran in mucin solution by more than fourfold when compared to phosphate-buffered saline control. Choline-based ILs also reduce mucus viscosity without significantly impacting the native mucus gel structure. In vitro studies in a mucus-secreting coculture model with Caco-2 and HT29MTX-E12 cells further demonstrate the effectiveness of ILs in improving transport of cationic molecules in the presence of secreted mucus. This work demonstrates the potential for choline-based ionic liquids to be used as nondestructive mucus-modulating agents for enabling enhanced oral delivery of macromolecular drugs.
Collapse
Affiliation(s)
- Kevin Peng
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Yongsheng Gao
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Pavimol Angsantikul
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
| | - Anthony LaBarbiera
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
| | - Morgan Goetz
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Alexander M. Curreri
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Danika Rodrigues
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Eden E. L. Tanner
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| |
Collapse
|
35
|
Dulko D, Staroń R, Krupa L, Rigby NM, Mackie AR, Gutkowski K, Wasik A, Macierzanka A. The bile salt content of human bile impacts on simulated intestinal proteolysis of β-lactoglobulin. Food Res Int 2021; 145:110413. [PMID: 34112416 DOI: 10.1016/j.foodres.2021.110413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/27/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022]
Abstract
The gastrointestinal hydrolysis of food proteins has been portrayed in scientific literature to predominantly depend on the activity and specificity of proteolytic enzymes. Human bile has not been considered to facilitate proteolysis in the small intestine, but rather to assist in intestinal lipolysis. However, human bile can potentially influence proteins that are largely resistant to gastric digestion, and which are mainly hydrolysed after they have been transferred to the small intestine. We used purified and food-grade bovine milk β-lactoglobulin (βLg) to assess the impact of bile salts (BS) on the in vitro gastrointestinal digestion of this protein. Quantitative analysis showed that the proteolysis rate increased significantly with increasing BS concentration. The effect was consistent regardless of whether individual BS or real human bile samples, varying in BS concentrations, were used. The total BS content of bile was more important than its BS composition in facilitating the proteolysis of βlg. We also show that the impact of human bile observed during the digestion of purified βLg and βLg-rich whey protein isolate can be closely replicated by the use of individual BS mixed with phosphatidylcholine. This could validate simple BS/phosphatidylcholine mixtures as human-relevant substitutes of difficult-to-obtain human bile for in vitro proteolysis studies.
Collapse
Affiliation(s)
- Dorota Dulko
- Gdańsk University of Technology, Faculty of Chemistry, Department of Colloid and Lipid Science, Gabriela Narutowicza 11/12, 80-322 Gdańsk, Poland
| | - Robert Staroń
- Department of Gastroenterology and Hepatology with Internal Disease Unit, Teaching Hospital No 1, Chopina 2, 35-055 Rzeszów, Poland
| | - Lukasz Krupa
- Department of Gastroenterology and Hepatology with Internal Disease Unit, Teaching Hospital No 1, Chopina 2, 35-055 Rzeszów, Poland
| | - Neil M Rigby
- University of Leeds, School of Food Science and Nutrition, Leeds LS2 9JT, United Kingdom
| | - Alan R Mackie
- University of Leeds, School of Food Science and Nutrition, Leeds LS2 9JT, United Kingdom
| | - Krzysztof Gutkowski
- Department of Gastroenterology and Hepatology with Internal Disease Unit, Teaching Hospital No 1, Chopina 2, 35-055 Rzeszów, Poland
| | - Andrzej Wasik
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, Gabriela Narutowicza 11/12, 80-322 Gdańsk, Poland
| | - Adam Macierzanka
- Gdańsk University of Technology, Faculty of Chemistry, Department of Colloid and Lipid Science, Gabriela Narutowicza 11/12, 80-322 Gdańsk, Poland.
| |
Collapse
|