1
|
Emam BH, Shaban NZ, Zaky A, AbdulKader MA, Shaban SY, Kolaib NM, Habashy NH. Synergistic ameliorating effect of dithiophenolate chitosan nanoparticle and Solanum nigrum combination against lead-induced cardiotoxicity in rats. Food Chem Toxicol 2025; 197:115290. [PMID: 39894383 DOI: 10.1016/j.fct.2025.115290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/25/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Lead (Pb) toxicity is one of the most common causes of human cardiotoxicity. We evaluated the therapeutic role of Solanum nigrum extract (SNE) and dithiophenolate-chitosan nanoparticle (DTP-CSNP) on Pb-induced cardiotoxicity in rats, and the results were compared with the dimercaptosuccinic acid (DMSA, reference drug). Additionally, the combination effect of SNE and DTP-CSNP against Pb-induced cardiotoxicity was assessed. The study focused on the determination of the antioxidant, anti-inflammatory, anti-apoptotic, and cardiotherapeutic functions of SNE (375 mg/kg), DTP-CSNP (20 and 40 mg/kg), and their combination (SNE + DTP40). The characterization of SNE and DTP-CSNP was studied. The results showed that SNE contains phenolics, flavonoids, ascorbic acid, and minerals, which may play an important role in its therapeutic effect. SNE, DTP20, and DTP40 exhibited a therapeutic impact against cardiotoxicity by reducing Pb levels, oxidative stress, inflammation, and cell death. Moreover, they regulated the abnormal levels of cardiac biomarkers induced by Pb toxicity. DTP-CSNP showed a superior therapeutic effect to DMSA, and the SNE + DTP40 combination displayed a synergistic anti-cardiotoxic effect (combination index < 1). These results were in harmony with heart histopathology. Thus, the combination of both SNE and DTP-CSNP has powerful efficacy in the treatment of cardiotoxicity and can be a good alternative to DMSA.
Collapse
Affiliation(s)
- Bahira H Emam
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nadia Z Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Amira Zaky
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohammad A AbdulKader
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Shaban Y Shaban
- Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt
| | - Nourhan M Kolaib
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
2
|
Abdelkader MAE, Mediatrice H, Lin D, Lin Z, Aggag SA. Mitigating Oxidative Stress and Promoting Cellular Longevity with Mushroom Extracts. Foods 2024; 13:4028. [PMID: 39766971 PMCID: PMC11727512 DOI: 10.3390/foods13244028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/28/2024] [Accepted: 12/07/2024] [Indexed: 01/15/2025] Open
Abstract
Oxidative stress can disrupt the body's ability to fight harmful free radicals, leading to premature aging and various health complications. This study investigated the antioxidant and anti-aging properties of four medicinal and edible mushrooms: Ganoderma lucidum, Hericium erinaceus, Pleurotus ostreatus, and Agaricus bisporus. The antioxidant activity of mushroom extracts was evaluated using (DPPH-ABTS-Reducing power). The anti-aging effects were assessed using Human Skin Fibroblasts (HSF) cells subjected to D-galactose-induced aging (30 g/L/72 h) and treated with mushroom extracts (0.03-0.25 mg/mL/72 h). The results demonstrated that all mushrooms have significant antioxidant and anti-aging properties, with low concentrations of extracts (0.03 mg/mL) effectively promoting cell proliferation at an 87% rate in the Agaricus bisporus extract, enhancing cell cycle progression by reducing the arrested cells in the G0/G1 phase to 75%, and promoting DNA synthesis in S phase by more than 16.36% in the Hericium erinaceus extract. Additionally, the extracts reduced DNA damage and Reactive Oxygen Species (ROS) levels, protecting cells from oxidative stress and potentially contributing to anti-aging effects. The mushrooms also exhibited immunomodulatory and anti-inflammatory effects by upregulating the IL-2, IL-4, and downregulating IL-6 expression, indicating their potential to promote general health. These findings suggest the potential of mushroom extracts as natural agents for reducing the negative effects of aging while promoting cellular health. Further research is required to explore the specific bioactive compounds responsible for these beneficial effects and to evaluate their efficacy in vivo.
Collapse
Affiliation(s)
- Menna-Allah E. Abdelkader
- China National Engineering Research Center of Juncao Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-A.E.A.); (H.M.); (Z.L.)
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt;
| | - Hatungimana Mediatrice
- China National Engineering Research Center of Juncao Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-A.E.A.); (H.M.); (Z.L.)
- Rwanda Agriculture and Animal Resources Development Board, P.O. Box 5016 Kigali, Rwanda
| | - Dongmei Lin
- China National Engineering Research Center of Juncao Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-A.E.A.); (H.M.); (Z.L.)
| | - Zhanxi Lin
- China National Engineering Research Center of Juncao Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-A.E.A.); (H.M.); (Z.L.)
| | - Sarah A. Aggag
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt;
| |
Collapse
|
3
|
Abdel-Azeem HH, Mohamed AH, Osman GY, AbdElhafez AR, Sheir SK. The potential ameliorative role of Dimercaptosuccinic acid against the toxicity of Titanium Dioxide Nanoparticles on Caelatura nilotica clams. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:1053-1065. [PMID: 39034478 DOI: 10.1002/jez.2848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024]
Abstract
The prevalent use of nanoparticles has adverse negative effects on biosystems. Subsequently, this study aimed to use Caelatura nilotica to assess the ecotoxicity of TiO2 NPs and how Dimercaptosuccinic acid (DMSA) improves these effects. Two concentrations of TiO2 NPs (25 and 150 µg/L) were used for 28 days. TiO2 NPs bioaccumulation, gonadal weight, gonado-somatic index, and histopathological alterations of gonads were determined. The tissues' accumulation of TiO2 NPs was concentration-time-dependent: it was 78.5 ± 28.93 μg/g dry weight in the exposed clams to 150 µg/L TiO2 NPs after 4 weeks of exposure. The gonadal weight and gonado-somatic index significantly decreased of the exposed group to 150 µg/L TiO2 NPs over the experimental period that they ended with values (1.01 ± 0.57 gm, 19.15 ± 7.75%, respectively). There are some histological alterations in the gonads of C. nilotica such as necrosis, deteriorated connective tissue, increased fibrous tissue, a reduced presence of mature sperms and mature ova, and irregular shapes of testicular/ovarian follicles. When using Dimercaptosuccinic acid (DMSA), this led to a reduction in accumulation of TiO2 NPs by the end of the experiment. So, C. nilotica is a promising model to reflect the adverse nano-toxics. DMSA emerges as a potentially valuable chelating agent that abolishes the negative effects of these nanoparticles.
Collapse
Affiliation(s)
- Hoda H Abdel-Azeem
- Department of Zoology, Faculty of Sciences, Menoufia University, Shebeen El-Koom, Egypt
| | - Azza H Mohamed
- Department of Zoology, Faculty of Sciences, Menoufia University, Shebeen El-Koom, Egypt
| | - Gamalat Y Osman
- Department of Zoology, Faculty of Sciences, Menoufia University, Shebeen El-Koom, Egypt
| | | | - Sherin K Sheir
- Department of Zoology, Faculty of Sciences, Menoufia University, Shebeen El-Koom, Egypt
| |
Collapse
|
4
|
Enogieru AB, Iyoha EN. Role of Nitric Oxide, TNF-α and Caspase-3 in Lead Acetate-Exposed Rats Pretreated with Aqueous Rosmarinus officinalis Leaf Extract. Biol Trace Elem Res 2024; 202:4021-4031. [PMID: 38012512 DOI: 10.1007/s12011-023-03974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
Lead (Pb) toxicity is a worldwide significant public health challenge causing several neurological disorders. Reports indicate that plants rich in antioxidants, such as Rosmarinus officinalis (RO), can counteract Pb accumulation and its toxicity in the brain. Due to a dearth of literature evidence demonstrating the protective activity of RO against Pb toxicity, this study investigated such activity in Wistar rats. Thirty-six Wistar rats were allocated into six groups (n=6), namely I (control), II (lead acetate [Pb]; 100 mg/kg b.w.), III (100 mg/kg of RO and 100 mg/kg of Pb), IV (200 mg/kg of RO and 100 mg/kg of Pb), V (100 mg/kg b.w. of RO) and VI (200 mg/kg b.w. of RO). After 28 days, neurobehavioural, antioxidant, lipid peroxidation, apoptotic and inflammatory activities as well as the histology of the cerebellum were evaluated. Body weight, locomotion and exploration as well as antioxidant enzymes were significantly (p < 0.05) decreased in Pb-exposed rats when compared to control. Conversely, lipid peroxidation, nitric oxide, tumour necrosis factor-alpha and caspase-3 activities were significantly (p < 0.05) upregulated in the Pb-exposed rats when compared to control. These parameters were, however, significantly (p<0.05) attenuated in the RO-pretreated rats when compared to Pb-exposed rats. Cerebellar histology of the Pb-exposed rats showed severe degeneration of the Purkinje cells whereas the RO-pretreated rats showed better cerebellar architecture. These findings demonstrate that the neuroprotective activity of RO is facilitated via its effective antioxidant, anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
- Adaze Bijou Enogieru
- Department of Anatomy, School of Basic Medical Sciences, University of Benin, Benin City, Edo State, Nigeria.
| | - Etinosa Nathan Iyoha
- Department of Anatomy, School of Basic Medical Sciences, University of Benin, Benin City, Edo State, Nigeria
| |
Collapse
|
5
|
Adegbola PI, Adetutu A. Genetic and epigenetic modulations in toxicity: The two-sided roles of heavy metals and polycyclic aromatic hydrocarbons from the environment. Toxicol Rep 2024; 12:502-519. [PMID: 38774476 PMCID: PMC11106787 DOI: 10.1016/j.toxrep.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/24/2024] Open
Abstract
This study emphasizes the importance of considering the metabolic and toxicity mechanisms of environmental concern chemicals in real-life exposure scenarios. Furthermore, environmental chemicals may require metabolic activation to become toxic, and competition for binding sites on receptors can affect the severity of toxicity. The multicomplex process of chemical toxicity is reflected in the activation of multiple pathways during toxicity of which AhR activation is major. Real-life exposure to a mixture of concern chemicals is common, and the composition of these chemicals determines the severity of toxicity. Nutritional essential elements can mitigate the toxicity of toxic heavy metals, while the types and ratio of composition of PAH can either increase or decrease toxicity. The epigenetic mechanisms of heavy metals and PAH toxicity involves either down-regulation or up-regulation of some non-coding RNAs (ncRNAs) whereas specific small RNAs (sRNAs) may have dual role depending on the tissue and circumstance of expression. Similarly, decrease DNA methylation and histone modification are major players in heavy metals and PAH mediated toxicity and FLT1 hypermethylation is a major process in PAH induced carcinogenesis. Overall, this review provides the understanding of the metabolism of environmental concern chemicals, emphasizing the importance of considering mixed compositions and real-life exposure scenarios in assessing their potential effects on human health and diseases development as well as the dual mechanism of toxicity via genetic or epigenetic axis.
Collapse
Affiliation(s)
- Peter Ifeoluwa Adegbola
- Department of Biochemistry and Forensic Science, First Technical University, Ibadan, Nigeria
| | - Adewale Adetutu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
6
|
Shaban NZ, El Swify LA, Abu-Serie MM, Maher AM, Habashy NH. A comparative study on the protective effects of cuminaldehyde, thymoquinone, and gallic acid against carbon tetrachloride-induced pulmonary and renal toxicity in rats by affecting ROS and NF-κB signaling. Biomed Pharmacother 2024; 175:116692. [PMID: 38701569 DOI: 10.1016/j.biopha.2024.116692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
CCl4 toxicity is a fatal condition that can cause numerous organ dysfunctions. We evaluated and compared the protective effects of cuminaldehyde (CuA), thymoquinone (TQ), and gallic acid (GA) on CCl4-induced pulmonary and renal toxicity in rats. The impacts of these compounds on CCl4-induced oxidative stress, inflammation, and morphological alterations were examined. The results showed that the compounds under investigation prevented CCl4 from significantly increasing pulmonary and renal lipid peroxidation and NO levels, as well as massively depleting GSH levels and GPX and SOD activities. Moreover, they suppressed the CCl4-induced increase in mucus secretion in the lung and upregulated the gene expression of pulmonary and renal NF-ҡB, iNOS, TNF-α, and COX-2. The heatmap cluster plots showed that GA and TQ had better protective potencies than CuA. The external organ morphology, histopathological results, and chest X-ray analysis confirmed the toxicity of CCl4 and the protective influences of the tested compounds in both the lungs and kidneys of rats. These compounds displayed predicted competitive inhibitory effects on iNOS activity and may block the IL-13α2 receptor, as revealed by molecular docking analysis. Thus, CuA, TQ, and GA, particularly the latter two, are prospective protective compounds against the pulmonary and renal toxicity caused by CCl4.
Collapse
Affiliation(s)
- Nadia Z Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Lamiaa A El Swify
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering, and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt
| | - Adham M Maher
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
7
|
Pathak A, Singh SP, Tiwari A. Elucidating hepatoprotective potential of Cichorium intybus through multimodal assessment and molecular docking analysis with hepatic protective enzymes. Food Chem Toxicol 2024; 187:114595. [PMID: 38554841 DOI: 10.1016/j.fct.2024.114595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
This study employed a comprehensive approach to validate the hepatoprotective potential of phytoconstituents from Cichorium intybus leaves. In vitro, in vivo and in silico techniques were used to confirm the protective effects on liver enzymes. In vitro antioxidant assessment revealed the highest potential in the hydroethanolic leaf extract compared to aqueous and methanolic extracts. The study further investigated the ameliorative efficacy of the hydro-ethanolic extract (HECL) in male Wistar rats exposed to lead (50 mg/kg b wt.) and nickel (4.0 mg/kg b wt.) individually and in combination for 90 days. HECL at 250 mg/kg b wt. mitigated hepatic injury, oxidative stress, DNA fragmentation, ultrastructural and histopathological alterations induced by lead and nickel. Molecular docking explored the interaction of 28 phytoconstituents from C. intybus with hepatoprotective protein targets. Cyanidin and rutin exhibited the highest affinity for liver corrective enzymes among the screened phytoconstituents. These findings underscore the liver corrective potential of C. intybus leaf phytoconstituents, shedding light on their molecular interactions with hepatoprotective targets. This research contributes valuable insights into the therapeutic applications of C. intybus in liver protection.
Collapse
Affiliation(s)
- Abhishek Pathak
- College of Veterinary & Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar, 263145, US Nagar, Uttarakhand, India.
| | - Satya Pal Singh
- College of Veterinary & Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar, 263145, US Nagar, Uttarakhand, India
| | - Apoorv Tiwari
- College of Basic Science and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, 263145, US Nagar, Uttarakhand, India
| |
Collapse
|
8
|
Habashy NH, Abu-Serie MM. Attenuation of carbon tetrachloride-induced nephrotoxicity by gum Arabic extract via modulating cellular redox state, NF-κB pathway, and KIM-1. Biomed Pharmacother 2024; 173:116340. [PMID: 38428308 DOI: 10.1016/j.biopha.2024.116340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
The current study investigated the ameliorating impact of GA water extract (GAE) on CCl4-induced nephrotoxicity in renal cells and tissue by comparing its effectiveness with the Ketosteril (Ks) drug in restoring oxidative stress and necroinflammation. The cell morphology, necrosis, and redox state were evaluated in Vero cells. The influence of GAE on CCl4-induced oxidative stress, inflammation, and necrosis was examined in rats. The predicted inhibitory mechanism of GAE phenolic constituents against COX-2 and iNOS was also studied. The results revealed that GAE contains crucial types of phenolic acids, which are associated with its antiradical activities. GAE improved CCl4-induced Vero cell damage and restored renal architecture damage, total antioxidant capacity, ROS, TBARS, NO, GSH, GPX, SOD, and MPO in rats. GAE downregulated the gene expression of renal NF-κB, TNF-α, iNOS, and COX-2, as well as kidney injury molecule-1 (KIM-1) in rats. The GAE improved blood urea, creatinine, cholesterol, and reducing power. The computational analysis revealed the competitive inhibitory mechanism of selected phenolic composites of GAE on COX-2 and iNOS activities. The GAE exhibited higher potency than Ks in most of the studied parameters, as observed by the heatmap plots. Thus, GAE is a promising extract for the treatment of kidney toxicity.
Collapse
Affiliation(s)
- Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering, and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt.
| |
Collapse
|
9
|
Shaban NZ, El-Faham AA, Abu-Serie MM, Habashy NH. The black Vitis vinifera seed oil saponifiable fraction ameliorates hepatocellular carcinoma in vitro and in vivo via modulating apoptosis and ROS/NF-κB signaling. Biomed Pharmacother 2024; 171:116215. [PMID: 38278024 DOI: 10.1016/j.biopha.2024.116215] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024] Open
Abstract
To date, no total curative therapy for hepatocellular carcinoma (HCC) is available. This study aimed to evaluate the anticancer effect of black Vitis vinifera (VV) seed oil saponifiable (Sap) fraction (BSap) using five different cancer cell lines. The apoptotic and anti-inflammatory impacts of BSap on the cell line with the highest cytotoxic effect were studied. Furthermore, its therapeutic effect on p-dimethylaminoazobenzene (p-DAB)-induced HCC in mice was investigated. The phenolic and vitamin content, as well as the antiradical activities of BSap, were assessed. BSap demonstrated a greater cytotoxic effect on HepG-2 cells (lowest IC50 and highest SI values) than did the other tested cell lines. BSap showed superior anticancer efficacy to 5-FU on all examined cancer cells, particularly HepG-2 cells, by inducing apoptosis and downregulating NF-κB. In HCC-bearing mice, BSap reduced hepatic lipid peroxidation and boosted GSH levels due to its potent antiradical activities and high reducing power. In addition, it had an apoptotic effect by upregulating p53 and BAX and downregulating Bcl-2 fold expression. Moreover, BSap lowered the fold expression of various crucial HCC-related genes: CD133, ALAD1α1, COX-2, ABCG1, AKT1, Gli, Notch1, and HIF1α. Liver function markers and histopathology showed significant improvements in HCC-bearing mice after BSap administration compared to 5-FU. In silico analysis revealed that the most abundant phenolic and fatty acid ingredients of BSap exhibited competitive inhibitory effects on valuable HCC-associated enzymes (NADPH oxidase, histone deacetylase 1, and sepiapterin reductase). Thus, BSap fraction may be a promising treatment of HCC.
Collapse
Affiliation(s)
- Nadia Z Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ashraf A El-Faham
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering, and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt
| | - Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
10
|
Mushtaq M, Arshad N, Rehman A, Javed GA, Munir A, Hameed M, Javed S. Levilactobacillus brevis MZ384011 and Levilactobacillus brevis MW362779 can mitigate lead induced hepato-renal damage by regulating visceral dispersion and fecal excretion. World J Microbiol Biotechnol 2024; 40:74. [PMID: 38246905 DOI: 10.1007/s11274-023-03818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/25/2023] [Indexed: 01/23/2024]
Abstract
Heavy metal pollution is a global issue. Current study provides evidence on Pb toxicity ameliorative potential and safe nature of Levilactobacillus brevis MZ384011 (S1) and Levilactobacillus brevis MW362779 (S2), isolated from carnivore gut and human milk, respectively. In a 60-days experiment, the rats were distributed into six groups. G-I, G-V and G-VI were kept on normal diet, while GII-IV were fed on lead nitrate (500 mg/kg) supplemented food, throughout experiment. After confirmation of Pb toxicity in GII-IV at 15th day, S1 was orally administered to G-III and G-V while S2 was given to G-IV and G-VI at a dose of 1 × 109 CFU/animal/day. On day 60 of experiment, positive control (G-II) displayed significant reduction in body weight, total protein, albumin, globulin, mineral profile, erythrocyte count, hemoglobin, hematocrit and hematological indices and elevation in leukocyte count, alanine aminotransferase, aspartate aminotransferase, bilirubin, uric acid and creatinine along with alterations in hepato-renal architecture. With reference to G-II, the G-III and G-IV displayed significant improvement in all aforementioned parameters, 40-60% reduction in tissue Pb levels (blood, liver, kidney and adipose tissue) and elevation in fecal Pb contents (p = 0.000). The groups V and VI did not show any sign of toxicity. The findings confirm that strains are safe for biological application and can reverse Pb toxicity by facilitating fecal Pb excretion and reducing its systemic dispersal. To best of our information this is the first report on Pb toxicity ameliorative role of Levilactobacillus brevis from human milk, the safest source.
Collapse
Affiliation(s)
- Maria Mushtaq
- Institute of Zoology, University of the Punjab, Lahore, 54590, Pakistan
| | - Najma Arshad
- Institute of Zoology, University of the Punjab, Lahore, 54590, Pakistan.
- Department of Zoology, Institute of Molecular Biology and Biotechnology (IMBB), Centre for Research in Molecular Medicine (CRIMM), The University of Lahore, Lahore, 54792, Pakistan.
| | - Abdul Rehman
- Institute of Microbiology and Molecular Genetics (MMG), University of the Punjab, Lahore, 54590, Pakistan
| | | | - Aneela Munir
- Institute of Zoology, University of the Punjab, Lahore, 54590, Pakistan
| | - Mamoona Hameed
- Institute of Zoology, University of the Punjab, Lahore, 54590, Pakistan
| | - Saman Javed
- Institute of Zoology, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
11
|
Biswas P, More SS. Using Small Molecules for Targeting Heavy Metals in Neurotoxicity and Neuroinflammation. Methods Mol Biol 2024; 2761:135-148. [PMID: 38427235 DOI: 10.1007/978-1-0716-3662-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Pharmaceutical drugs, natural toxins, industrial chemicals, and various environmental toxins negatively impact the nervous system. A significant cause of many neurodegenerative diseases is neurotoxicity. Although trace amounts of heavy metals are required for the proper functioning of several metabolic pathways, their dysregulation can cause many cellular and molecular alterations, which can enhance the risks associated with several neurodegenerative diseases. For example, high levels of heavy metals like manganese (Mn) affect the central nervous system with implications in both higher-order cognitive and motor functions. In addition, the buildup of amyloid aggregates and metal ions in the brain of patients with Alzheimer's disease is associated with disease pathogenesis. Small molecules capable of targeting neuroinflammation and neuroprotection pathways would be valuable to elucidate the pathological pathways associated with metal toxicity in neurogenerative disease. This chapter will summarize the necessary steps involved in (1) culturing of cell lines and maintenance of animal models, (2) design and preparation of samples of small molecules and treatment methodologies, (3) RNA and protein isolation and preparation of tissue and cell culture samples for quantitative studies, and (4) quantitative estimation of cellular products.
Collapse
Affiliation(s)
- Pronama Biswas
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Sunil S More
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| |
Collapse
|
12
|
Hegazy AA, Domouky AM, Akmal F, El-Wafaey DI. Possible role of selenium in ameliorating lead-induced neurotoxicity in the cerebrum of adult male rats: an experimental study. Sci Rep 2023; 13:15715. [PMID: 37735606 PMCID: PMC10514268 DOI: 10.1038/s41598-023-42319-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
Chronic lead (Pb) poisoning is one of the greatest public health risks. The nervous system is the primary and most vulnerable target of Pb poisoning. Selenium (Se) has been shown to be a potential protection against heavy metal toxicity through anti-inflammatory and antioxidant properties. Therefore, the present study aimed to elucidate the possible protective role of Se in ameliorating the effects of Pb on rat cerebral structure by examining oxidative stress and markers of apoptosis. The rats were divided into 6 groups: control group, Se group, low Pb group, high Pb group, low Pb + Se group, high Pb + Se group. After the 4-week experiment period, cerebral samples were examined using biochemical and histological techniques. Pb ingestion especially when administered in high doses resulted in cerebral injury manifested by a significant increase in glial fibrillary acidic protein, malondialdehyde (MDA) marker of brain oxidation and DNA fragmentation. Moreover, Pb produced alteration of the normal cerebral structure and cellular degeneration with a significant reduction in the total number of neurons and thickness of the frontal cortex with separation of meninges from the cerebral surface. There was also a decrease in total antioxidant capacity. All these changes are greatly improved by adding Se especially in the low Pb + Se group. The cerebral structure showed a relatively normal histological appearance with normally attached pia and an improvement in neuronal structure. There was also a decrease in MDA and DNA fragmentation and an increase TAC. Selenium is suggested to reduce Pb-induced neurotoxicity due to its modulation of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Abdelmonem Awad Hegazy
- Human Anatomy and Embryology Department, Faculty of Dentistry, Zarqa University, Zarqa City, 13110, Jordan.
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig City, 44519, Egypt.
| | - Ayat M Domouky
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig City, 44519, Egypt
| | - Fatma Akmal
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig City, 44519, Egypt
| | - Dalia Ibrahim El-Wafaey
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig City, 44519, Egypt
| |
Collapse
|
13
|
Shaban NZ, El-Rashidy FH, Adam AH, Beltagy DM, Ali AE, Abde-Alaziz AA, Talaat IM. Anticancer role of mango (Mangifera indica L.) peel and seed kernel extracts against 7,12- dimethylbenz[a]anthracene-induced mammary carcinogenesis in female rats. Sci Rep 2023; 13:7703. [PMID: 37169856 PMCID: PMC10175271 DOI: 10.1038/s41598-023-34626-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
Breast cancer is the second leading cause of cancer death among women. The present study is an effort to reveal the antiproliferative and antioxidant actions of mango seed kernel extract (KE), peel extract (PE), and their combination (KEPE) on mammary tumors induced by 7,12 dimethylbenz[a]anthracene (DMBA). Seven groups of adult female Sprague-Dawley rats were prepared, including C: (control), DMBA: (rats were administered with DMBA), (DMBA-KE), (DMBA-PE), and (DMBA-KEPE): rats were administered with DMBA and then treated with KE, PE, and (both KE and PE), respectively, (KE) and (PE): rats were administered with KE and PE, separately. The study focused on the assessment of markers of endocrine derangement [serum 17-β estradiol (E2)], apoptosis [caspase-3 and deoxyribonucleic acid fragmentation (DNAF)], and oxidative stress [lipid peroxidation and antioxidants (glutathione, glutathione-S-transferase, glutathione reductase, glutathione peroxidase, and superoxide dismutase)]. Histopathological examination and immunohistochemical expression of caspase-3 and estrogen receptor-α (ER-α) in mammary gland tissues (MGTs) were determined, as well as the characterization of mango extracts. The results showed that DMBA administration induced mammary tumors by increasing cell proliferation and evading apoptosis. In addition, DMBA administration caused oxidative stress by the production of reactive oxygen species, which increased lipid peroxidation and decreased cellular antioxidants, allowing cancer to progress. In contrast, treatment with DMBA-KE, DMBA-PE, or DMBA-KEPE diminished mammary tumors induced by DMBA, where they reduced oxidative stress via increased antioxidant parameters including reduced glutathione, superoxide dismutase, total glutathione peroxidase, glutathione reductase, and glutathione S-transferase. Also, different treatments decreased proliferation through the reduction of E2, and ER-α expression levels. However, these treatments increased the apoptosis of unwanted cells as they increased caspase-3 activity and DNAF. All these changes led to the prevention of breast injuries and the reduction of mammary tumors. This demonstrates that the contents of mango extracts, especially phenolics and flavonoids, have an important role in mammary tumor treatment through their potential antioxidant, antiproliferative, proapoptotic, and anti-estrogenic effects. KE and PE administration for 4 weeks had no adverse effects. Conclusion: Each of KE, PE, and KEPE has a therapeutic effect against DMBA-induced mammary tumors via induction of apoptosis and reduction of each of the OS, proliferation, and estrogenic effects. So, they can play an important role in the pharmacological tole.
Collapse
Affiliation(s)
- Nadia Z Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Fatma H El-Rashidy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Amany H Adam
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Doha M Beltagy
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Alaa E Ali
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Ahmed A Abde-Alaziz
- Endocrinology Unit, Department of Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Iman M Talaat
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, UAE
| |
Collapse
|
14
|
Zhang X, Xu L, Ma W, Shi B, Liu Q, Song Y, Fang C, Liu P, Qiao S, Cai J, Zhang Z. N-acetyl-L-cysteine alleviated the oxidative stress-induced inflammation and necroptosis caused by excessive NiCl2 in primary spleen lymphocytes. Front Immunol 2023; 14:1146645. [PMID: 37090713 PMCID: PMC10117970 DOI: 10.3389/fimmu.2023.1146645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
IntroductionNickel (Ni) is widely used in industrial manufacturing and daily life due to its excellent physical and chemical properties. However, Ni has the potential to harm animals' immune system, and spleen is a typical immune organ. Therefore, it is crucial to understand the mechanism of NiCl2 damage to the spleen. The purpose of this study is to investigate the effects of different concentrations of NiCl2 exposure and intervening with strong antioxidants on spleen lymphocytes to better understand the damage mechanism of Ni on spleen lymphocytes.MethodsIn this experiment, mice spleen lymphocytes were used as the research object. We first measured the degree of oxidative stress, inflammation, and necroptosis caused by different NiCl2 concentrations. Subsequently, we added the powerful antioxidant N-acetyl-L-cysteine (NAC) and used hydrogen peroxide (H2O2) as the positive control in subsequent experiments.ResultsOur findings demonstrated that NiCl2 could cause spleen lymphocytes to produce a large number of reactive oxygen species (ROS), which reduced the mRNA level of antioxidant enzyme-related genes, the changes in GSH-PX, SOD, T-AOC, and MDA, the same to the mitochondrial membrane potential. ROS caused the body to produce an inflammatory response, which was manifested by tumor necrosis factor (TNF-α) in an immunofluorescence experiment, and the mRNA level of related inflammatory genes significantly increased. In the case of caspase 8 inhibition, TNF-α could cause the occurrence of necroptosis mediated by RIP1, RIP3, and MLKL. AO/EB revealed that spleen lymphocytes exposed to NiCl2 had significant necroptosis, and the mRNA and protein levels of RIP1, RIP3, and MLKL increased significantly. Moreover, the findings demonstrated that NAC acted as an antioxidant to reduce oxidative stress, inflammation, and necroptosis caused by NiCl2 exposure.DiscussionOur findings showed that NiCl2 could cause oxidative stress, inflammation, and necroptosis in mice spleen lymphocytes, which could be mitigated in part by NAC. The study provides a point of reference for understanding the toxicological effect of NiCl2. The study suggests that NAC may be useful in reducing the toxicological effect of NiCl2 on the immune system. The research may contribute to the development of effective measures to prevent and mitigate the toxicological effects of NiCl2 on the immune system.
Collapse
Affiliation(s)
- Xintong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lihua Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenxue Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Bendong Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qiaohan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yinghao Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Cheng Fang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Pinnan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Senqiu Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- *Correspondence: Ziwei Zhang, ; Jingzeng Cai,
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, China
- *Correspondence: Ziwei Zhang, ; Jingzeng Cai,
| |
Collapse
|
15
|
Ma W, Liu Y, Xu L, Gai X, Sun Y, Qiao S, Liu P, Liu Q, Zhang Z. The role of selenoprotein M in nickel-induced pyroptosis in mice spleen tissue via oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34270-34281. [PMID: 36504304 DOI: 10.1007/s11356-022-24597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Nickel (Ni) is a heavy metal element and a pollutant that threatens the organism's health. Melatonin (Mel) is an antioxidant substance that can be secreted by the organism and has a protective effect against heavy metals. Selenoprotein M (SelM) is a selenoprotein widely distributed of the body, and its role is to protect these tissues from oxidative damage. To study the mechanism of Ni, Mel, and SelM in mouse spleen, 80 SelM+/+ wild-type and 80 SelM-/- homozygous mice were divided into 8 groups with 20 mice in each group. The Ni group was intragastric at a concentration of 10 mg/kg, while the Mel group was intragastric at 2 mg/kg. Mice were injected with 0.1 mL/10 g body weight for 21 days. Histopathological and ultrastructural observations showed the changes in Ni, such as the destruction of white and red pulp and the appearance of pyroptosomes. SelM knockout showed more severe injury, while Mel could effectively interfere with Ni-induced spleen toxicity. The results of antioxidant capacity determination showed that Ni could cause oxidative stress in the spleen, and Mel could also effectively reduce oxidative stress. Finally, Ni exposure increased the expression levels of the pyroptotic genes, including apoptosis-associated speck protein (ASC), absent in melanoma-2 (AIM2), NOD-like receptor thermal protein domain-associated protein 3 (NLRP3), Caspase-1, interleukin- (IL-) 18, and IL-1β (p < 0.05). Loss of SelM significantly increased these (p < 0.05), while Mel decreased the alleviated impact of Ni. In conclusion, the loss of SelM aggravated Ni-induced pyroptosis of the spleen via activating oxidative stress, which was alleviated by Mel, but the effect of Mel was not obvious in the absence of SelM, which reflected the important role of SelM in Ni-induced pyroptosis.
Collapse
Affiliation(s)
- Wenxue Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yue Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Lihua Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaoxue Gai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Senqiu Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Pinnan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qiaohan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China.
| |
Collapse
|
16
|
Abadi DRV, Tahmasbizadeh M, Arfaeinia H, Masjedi MR, Ramavandi B, Poureshgh Y. Biomonitoring of unmetabolized polycyclic aromatic hydrocarbons (PAHs) in urine of waterpipe/cigarette café workers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22728-22742. [PMID: 36306072 DOI: 10.1007/s11356-022-23822-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Fresh tobacco or the smoke resulting from waterpipe and cigarette contains large amounts of polycyclic aromatic hydrocarbons (PAHs), which consumption can cause releasing of these contaminants into the indoor air of cigarette and waterpipe cafés. This study was conducted to investigate the urinary concentrations of unmetabolized PAH compounds among the employed workers as well as the customers in waterpipe and cigarette cafés along with its association with oxidative stress factors plus kidney injury biomarkers. For this, 35 staffs and 35 customers in these cafés (as an exposed group (EG)), 20 staffs in non-smoking cafés (as 1st control group (CG-1)), and 20 of the public population (as 2nd control group 2 (CG-2)) were chosen and their urine specimens were collected. The results indicated that there is a significant difference between urinary concentration of ƩPAHs in the exposed and control groups (P value < 0.05). Also, "type of tobacco" can be considered as an influential and determining factor for the urinary levels of PAHs among the subjects. Considering the contribution of PAHs to the total toxic equivalents, benzo[a]pyrene (BaP), dibenzo[a,h]anthracene (DahA), and fluoranthene (Flrt) with 32.76%, 27.62%, and 18.65% claimed the largest share in waterpipe/cigarette cafés. The results also indicated a positive and significant relationship between some PAHs and oxidative stress biomarkers as well as uKIM-1 (biomarker for assessing and diagnosing glomerular damage) and TIMP-1 (biomarker of stress in primary steps of injury in tubular cell). Thus, it can be expressed that the workers of these smoking cafés are prone to the detrimental health impacts. Accordingly, proper policies and decisions should be taken to limit the activity of these cafés or proper protective strategies should be adopted to protect the health of exposed individuals.
Collapse
Affiliation(s)
- Dariush Ranjbar Vakil Abadi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Masoumeh Tahmasbizadeh
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Arfaeinia
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Mohammad Reza Masjedi
- Tobacco Control Research Center (TCRC), Iranian Anti-Tobacco Association, Tehran, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Yousef Poureshgh
- Department of Environmental Health Engineering, Faculty of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
17
|
Shaban NZ, Awad OM, Fouad GM, Hafez AM, Abdul-Aziz AA, El-Kot SM. Prophylactic and curative effects of Carica papaya Linn. pulp extract against carbon tetrachloride-induced hepatotoxicity in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27815-27832. [PMID: 36396758 PMCID: PMC9995559 DOI: 10.1007/s11356-022-24083-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/03/2022] [Indexed: 05/26/2023]
Abstract
Several chemicals and medications induce cellular damage in various organs of the body by activating reactive substances' metabolism leading to various pathological conditions including liver disease. In this study, we evaluated the prophylactic and curative effects of Carica papaya Linn. pulp water extract (PE) against CCl4-induced rat hepatotoxicity. Five groups of rats were created, control, PE, CCl4, (PE-CCl4): The rats were administered with PE pre and during CCl4 injection, and (PE-CCl4-PE): The rats were administered with PE pre, during, and after CCl4. The markers of oxidative stress ("OS": oxidant and antioxidants), inflammation [nuclear factor-κB, tumor necrosis factor-α, and interleukin-6], fibrosis [transforming growth factor-β], and apoptosis [tumor suppressor gene (p53)] were evaluated. Additionally, liver functions, liver histology, and kidney functions were measured. Also, PE characterization was studied. The results showed that PE, in vitro, has a high antioxidant capacity because of the existence of phenolics, flavonoids, tannins, terpenoids, and minerals. Otherwise, the PE administration [groups (PE-CCl4) and (PE-CCl4-PE)] exhibited its prophylactic and therapeutic role versus the hepatotoxicity induced by CCl4 where PE treatment improved liver functions, liver histopathology, and renal functions by decreasing oxidative stress, inflammation, fibrosis, and apoptosis induced by CCl4. Our study elucidated that PE contains high amounts of phenolics, flavonoids, tannins, terpenoids, and ascorbic acid. So, PE exerted significant prophylactic and curative effects against hepatotoxicity induced by CCl4. These were done by enhancing the markers of antioxidants and drug-metabolizing enzymes with reductions in lipid peroxidation, inflammation, fibrosis, and apoptosis. PE administration for healthful rats for 12 weeks had no negative impacts. Consequently, PE is a promising agent for the prohibition and therapy of the toxicity caused by xenobiotics.
Collapse
Affiliation(s)
- Nadia Zaki Shaban
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21568, Egypt.
| | - Olfat M Awad
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21568, Egypt
| | - Ghada M Fouad
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, 21563, Egypt
| | - Afaf M Hafez
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Ahmed Alaa Abdul-Aziz
- Endocrinology Unit, Department of Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria, 21563, Egypt
| | - Sarah M El-Kot
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21568, Egypt
| |
Collapse
|
18
|
El-Elimat T, Al-Khawlani AR, Al-Sawalha NA, Sa'ed MM, Al-Qiam R, Sharie AHA, Qinna NA. The effect of beetroot juice on airway inflammation in a murine model of asthma. J Food Biochem 2022; 46:e14381. [PMID: 35976974 DOI: 10.1111/jfbc.14381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/10/2022] [Accepted: 08/02/2022] [Indexed: 01/13/2023]
Abstract
The effects of beetroot juice on airways inflammation, cytokine levels, and oxidative stress biomarkers were evaluated using an allergen-induced murine model of asthma. Ovalbumin (OVA)-sensitized and challenged BALB/c mice were used as an asthma model. BALB/c mice were randomly assigned into four groups: control (Ova sensitization and normal saline challenge), control and beetroot (Ova sensitization and normal saline challenge plus beetroot juice), Ova S/C [Ova sensitization and challenge (Ova S/C)], Ova S/C and beetroot juice (Ova S/C plus beetroot juice). The bronchoalveolar lavage fluid (BALF) was analyzed for total and differential inflammatory cells count. The levels of cytokines [interleukin (IL)-10, IL-13, and IL-18], and oxidative stress biomarkers [glutathione peroxidase (GPx), catalase, and thiobarbituric acid reactive substances (TBARS)] were analyzed in the lung tissue. Simultaneous administration of beetroot juice and Ova S/C significantly increased the total inflammatory cells compared to the control (p = .0001) and Ova S/C (p = .013) groups and significantly increased the number of eosinophils (p ˂ .0001) and macrophages (p ˂ .0001) compared to the control. Moreover, the simultaneous administration of beetroot juice and Ova S/C did not affect the level of IL-10, IL-13, IL-18, GPx, or TBARS compared to the control (p > .05), but it significantly increased the level of catalase (p = .002). Results suggest that beetroot juice aggravates asthma by enhancing airway inflammation. However, it does not affect airway inflammation in healthy mice. PRACTICAL APPLICATIONS: Asthma is a chronic airway inflammatory disease that is characterized by variable degrees of airways inflammation and obstruction. Paradox data are reported in the literature regarding beetroot and asthma. The present study revealed that beetroot juice exacerbates asthma by enhancing airway inflammation. However, it is safe and has no effects on airway inflammation in healthy mice. Patients having asthma or a history of asthma are advised to avoid the consumption of beetroot.
Collapse
Affiliation(s)
- Tamam El-Elimat
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Nour A Al-Sawalha
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Marwan M Sa'ed
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Reema Al-Qiam
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmed H Al Sharie
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Nidal A Qinna
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| |
Collapse
|
19
|
Othman MS, Obeidat ST, Aleid GM, Abdel-Daim MM, Habotta OA, Schwartz L, Al-Bagawi AH, Hussein MM, Bakkar A. Pergularia tomentosa coupled with selenium nanoparticles salvaged lead acetate-induced redox imbalance, inflammation, apoptosis, and disruption of neurotransmission in rats’ brain. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Abstract
In this study, the neuroprotective potential of either Pergularia tomentosa leaf methanolic extract (PtE) alone or in combination with selenium nanoparticles (SeNPs-PtE) was investigated against lead acetate (PbAc)-induced neurotoxicity. Experimental rats were pretreated with PtE (100 mg/kg) or SeNPs-PtE (0.5 mg/kg) and injected intraperitoneally with PbAc (20 mg/kg) for 2 weeks. Notably, SeNPs-PtE decreased brain Pb accumulation and enhanced the level of dopamine and the activity of AChE compared to the control rats. In addition, elevated neural levels of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione along with decreased lipid peroxidation levels were noticed in pretreated groups with SeNPs-PtE. Moreover, SeNPs-PtE significantly suppressed neural inflammation, as indicated by lower levels of interleukin-1 beta, interleukin-6, tumor necrosis factor-alpha, nuclear factor-kappa B p65, and nitric oxide in the examined brain tissue. The molecular results also unveiled significant down-regulation in iNOS gene expression in the brains of SeNPs-PtE-treated rats. In addition, SeNPs-PtE administration counteracted the neural loss by increasing B-cell lymphoma 2 (Bcl-2) and brain-derived neurotrophic factor levels as well as decreasing BCL2-associated X protein and caspase-3 levels. To sum up, our data suggest that P. tomentosa extract alone or in combination with SeNPs has great potential in reversing the neural tissue impairment induced by PbAc via its antioxidant, anti-inflammatory, and anti-apoptotic activities. This study might have therapeutic implications in preventing and treating several lead-induced neurological disorders.
Collapse
Affiliation(s)
- Mohamed S. Othman
- Basic Sciences Department, University of Ha’il , 2240 , Hail , Saudi Arabia
| | - Sofian T. Obeidat
- Basic Sciences Department, University of Ha’il , 2240 , Hail , Saudi Arabia
| | - Ghada M. Aleid
- Basic Sciences Department, University of Ha’il , 2240 , Hail , Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Phamacy Program, Batterjee Medical College , 6231 Jeddah , Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University , 41522 Ismailia , Egypt
| | - Ola A. Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University , 35516 , Mansoura , Egypt
| | - Laurent Schwartz
- Oncology Department, Assistance Publique des Hopitaux de Paris , 71150 Paris , France
| | - Amal H. Al-Bagawi
- Chemistry Department, Faculty of Science, University of Ha’il , 2240 , Hail , Saudi Arabia
| | - Manal M. Hussein
- Zoology and Entomology Department, Faculty of Science, Helwan University , 11795 , Cairo , Egypt
| | - Ashraf Bakkar
- Biochemistry Department, Faculty of Biotechnology, October University for Modern Science and Arts (MSA) , 12585 Giza , Egypt
| |
Collapse
|
20
|
Afsheen N, Rafique S, Rafeeq H, Irshad K, Hussain A, Huma Z, Kumar V, Bilal M, Aleya L, Iqbal HMN. Neurotoxic effects of environmental contaminants-measurements, mechanistic insight, and environmental relevance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70808-70821. [PMID: 36059010 DOI: 10.1007/s11356-022-22779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Pollution is a significant and growing concern for any population regardless of age because these environmental contaminants exhibit different neurodegenerative effects on persons of different ages. These environmental contaminants are the products of human welfare projects like industry, automobile exhaust, clinical and research laboratory extrudes, and agricultural chemicals. These contaminants are found in various forms in environmental matrices like nanoparticles, particulate matter, lipophilic vaporized toxicants, and ultrafine particulate matter. Because of their small size, they can easily cross blood-brain barriers or use different cellular mechanisms for assistance. Other than this, these contaminants cause an innate immune response in different cells of the central nervous system and cause neurotoxicity. Considering the above critiques and current needs, this review summarizes different protective strategies based on bioactive compounds present in plants. Various bioactive compounds from medicinal plants with neuroprotective capacities are discussed with relevant examples. Many in vitro studies on clinical trials have shown promising outcomes using plant-based bioactive compounds against neurological disorders.
Collapse
Affiliation(s)
- Nadia Afsheen
- Department of Biochemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Sadia Rafique
- Department of Pharmacy, Riphah International University, Faisalabad, 38000, Pakistan
| | - Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Kanwal Irshad
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Asim Hussain
- Department of Biochemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Zille Huma
- Department of Chemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Vineet Kumar
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Sohna Road, Gurugram, Haryana, 122103, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
| |
Collapse
|
21
|
Shaban NZ, Mohammed AS, Abu-Serie MM, Maher AM, Habashy NH. Inhibition of oxidative stress, IL-13, and WNT/β-catenin in ovalbumin-sensitized rats by a novel organogel of Punica granatum seed oil saponifiable fraction. Biomed Pharmacother 2022; 154:113667. [PMID: 36942603 DOI: 10.1016/j.biopha.2022.113667] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/19/2022] Open
Abstract
Bronchial asthma is a chronic inflammatory disease marked by inflammation, oxidative stress, and structural remodeling. Here, we prepared two pomegranate fractions from the seed oil, saponifiable (Sap) and unsaponifiable (UnSap). Two organogels (Orgs) were also formulated with the Sap (Org1) or the UnSap (Org2) fraction and beeswax (BW). All preparations were evaluated in vitro for their antioxidant and anti-inflammatory impacts. The transdermal delivery of the most efficient one was evaluated against ovalbumin (OV)-induced bronchial asthma in rats compared to dexamethasone (DEX). The results showed that the prepared pomegranate fractions and BW had considerable amounts of phenolics (flavonoids and tannins) and triterpenoids. Org1 was shown to be the most effective antioxidant and anti-inflammatory fraction with synergistic activities (combination index, 1), as well as having protective and therapeutic influences on OV-sensitized rats. Org1 inhibited the multiple OV-induced signaling pathways, comprising ROS, WNT/β-catenin, and AKT, with an efficiency superior to DEX. Subsequently, the pro-inflammatory (COX-2, NO, and IL-13), and pro-fibrotic (COL1A1) mediators, oxidative stress, and mucin secretion, were all down-regulated. These outcomes were verified by the histopathological results of lung tissue. Collectively, these outcomes suggest that the transdermal delivery of Org1 to OV-sensitized rats shows promise in the protection and treatment of the pathological hallmarks of asthma.
Collapse
Affiliation(s)
- Nadia Z Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Alaa S Mohammed
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering, and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab 21934, Alexandria, Egypt
| | - Adham M Maher
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
22
|
Shaban NZ, Sleem AA, Abu-Serie MM, Maher AM, Habashy NH. Regulation of the NF-κB signaling pathway and IL-13 in asthmatic rats by aerosol inhalation of the combined active constituents of Punica granatum juice and peel. Biomed Pharmacother 2022; 155:113721. [PMID: 36152413 DOI: 10.1016/j.biopha.2022.113721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 12/22/2022] Open
Abstract
Bronchial asthma is a chronic inflammatory airway illness. For the first time, we evaluated the proposed anti-asthmatic protective and therapeutic potency of inhaling Punica granatum juice (PJE) and peel (PPE) extract mixture (PM). Rats were challenged with ovalbumin (OVA) for 23 days and aerosolized with PM before each OVA challenge (protected group) or following the final OVA challenge for 3 days (therapeutic group). Considerable concentrations of phenolics were detected in PJE and PPE. Therefore, PM demonstrated synergistic scavenging abilities of NO and DPPH radicals. It also showed synergistic anti-inflammatory activities against lipopolysaccharide (LPS)-induced inflammation in the white blood cells by lowering the gene expression of CXCR1, CXCR2, IL-6, and IL-8. In addition, PM increased IL-10 gene expression while decreasing NO and TNF-α levels in LPS-exposed cells. Regarding the rats that were protected with PM, they exerted pulmonary pro-oxidant effects but prevented the OVA-induced upregulation of NF-κB, IKK, TNF-α, COX-2, iNOS, IL-13, and COL1A1, as well as MUC5AC and mucin over-secretion. While PM in the therapeutic group improved reactive oxygen species levels and normalized most of the investigated inflammatory and fibrotic mediators and mucin formation, but slightly improved the antioxidant indices. In addition, OVA-induced morphological alterations were massively improved after PM inhalation for short or long periods. Thus, PM inhalation prevented and treated OVA-induced pulmonary inflammation and fibrosis, while the inhalation period between 3 and 23 days needs to be optimized to acquire a better impact on the antioxidant indices.
Collapse
Affiliation(s)
- Nadia Z Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Alyaa A Sleem
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering, and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt
| | - Adham M Maher
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| |
Collapse
|
23
|
Matysek M, Kowalczuk-Vasilev E, Szalak R, Baranowska-Wójcik E, Arciszewski MB, Szwajgier D. Can Bioactive Compounds in Beetroot/Carrot Juice Have a Neuroprotective Effect? Morphological Studies of Neurons Immunoreactive to Calretinin of the Rat Hippocampus after Exposure to Cadmium. Foods 2022; 11:foods11182794. [PMID: 36140922 PMCID: PMC9498112 DOI: 10.3390/foods11182794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cadmium ions (Cd2+) penetrate the blood-brain barrier and can, among other effects, influence intracellular calcium metabolism, leading to neurodegeneration. In the presented work, we estimated the effect of Cd2+ on the expression of calretinin in the neurons of the rat hippocampus and analyzed the reverse effect of freshly pressed beetroot/carrot juice in this context. In the 12-week lasting experiment, 32 8-week-old male Wistar rats were divided into four experimental groups (n = 8): the control group (C) received pure tap water; the Cd group (Cd)-received Cd2+ dissolved in tap water (5 mg Cd2+/kg b.w.); and two groups received beetroot/carrot juice: the BCJ group was administered only juice, and the Cd + BCJ group received juice with the addition of Cd2+ (5 mg Cd2+/kg b.w.). The exposition to low doses of Cd2+ caused a significant decrease in calretinin-immunoreactive (Cr-IR) neurons compared to the non-exposed groups. Moreover, the addition of Cd2+ to tap water reduced the numbers and length of Cr-IR nerve fibers. The negative effect of Cd2+ was significantly attenuated by the simultaneous supplementation of beetroot/carrot juice (Cd + BCJ). The study showed that the bioactive compounds in the beetroot/carrot juice can modulate Ca2+ levels in neurons, and thus, potentially act as a neuroprotective factor against neuronal damage.
Collapse
Affiliation(s)
- Małgorzata Matysek
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka St., 20-950 Lublin, Poland
| | - Edyta Kowalczuk-Vasilev
- Institute of Animal Nutrition and Bromatology, Faculty of Animal Science and Bioeconomy, University of Life Sciences, 13 Akademicka St., 20-950 Lublin, Poland
- Correspondence: (E.K.-V.); (D.S.)
| | - Radosław Szalak
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka St., 20-950 Lublin, Poland
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences, 8 Skromna St., 20-704 Lublin, Poland
| | - Marcin B. Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka St., 20-950 Lublin, Poland
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences, 8 Skromna St., 20-704 Lublin, Poland
- Correspondence: (E.K.-V.); (D.S.)
| |
Collapse
|
24
|
Shaban NZ, Zaki MM, Koutb F, Abdul-Aziz AA, Elshehawy AAH, Mehany H. Protective and therapeutic role of mango pulp and eprosartan drug and their anti-synergistic effects against thioacetamide-induced hepatotoxicity in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51427-51441. [PMID: 35244847 PMCID: PMC9288381 DOI: 10.1007/s11356-022-19383-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/20/2022] [Indexed: 04/15/2023]
Abstract
The present study was done to evaluate the protective and therapeutic role of mango pulp (M), eprosartan drug (E), and their co-administration (EM) against hepatotoxicity induced by thioacetamide (T). Seven groups of rats were prepared as follows: the control (C) group (normal rats), T group (the rats were injected with T), T-M group (the rats were injected with T, and then treated with M), T-E group (the rats were injected with T, and then treated with E), T-EM group (the rats were injected with T, and then treated with E and M), M-TM-M group (the rats were administered with M before, during, and after T injection), and M group (the healthy rats were administered with M only). Firstly, the characterizations of M were determined. Also, the markers of hepatic oxidative stress [malondialdehyde (MDA) and glutathione (GSH) levels and the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GSR)], inflammation and fibrosis [(tumor necrosis factor-α (TNF-α) and platelet-derived growth factor-BB (PDGF-BB) levels and gene expression of transforming growth factor-beta1(TGF-β1)], and liver functions and microscopic examination were evaluated. The present results revealed that M contains 419 ± 1.04 μg total phenolics as gallic acid equivalent and 6.8 ± 0.05 μg total flavonoids as quercetin equivalent. The analysis of phenolics and flavonoids showed the presence of chlorogenic, caffeic, 2,5-dihydroxy benzoic, 3,5-dicaffeoylquinic, 4,5-dicaffeoylquinic, tannic, cinnamic acidS, and catechin, phloridzin, and quercetin with different concentrations. Also, M contains various minerals with different concentrations involving potassium, calcium, magnesium, sodium, iron, copper, zinc, and manganese. The current results showed that the total antioxidant capacity of 1 g of M was 117.2 ± 1.16 as μg ascorbic acid equivalent. Our biochemical studies showed that all treatments significantly reduced T-induced hepatotoxicity and liver injuries, as the oxidative stress and inflammatory and fibrotic markers were diminished where MDA level and the activities of GST, GSSG, and GR were decreased when compared with T group. In contrast, GSH level and the activities of SOD and GPx and GSH/GSSG ratio were increased. In addition, TNF-α and PDGF-BB levels were reduced, and the gene expression of TGF-β1 was down-regulated. Consequently, the liver functions were significantly improved. In conclusion, each E, M, and EM has a therapeutic effect against T-induced hepatotoxicity via the reduction of the OS, inflammation, and fibrosis. Unfortunately, treatment with M and E simultaneously revealed the less effectiveness than the treatment with M or E demonstrates the presence of anti-synergistic effect between them. Additionally, M-TM-M treatment showed a better effect than T-M treatment against T-induced hepatotoxicity revealing the prophylactic role of M. The administration of healthy rats with M for 12 weeks has no side effect.
Collapse
Affiliation(s)
- Nadia Zaki Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Mohammad Mohammad Zaki
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Fayed Koutb
- Nucleic Acid Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Ahmed Alaa Abdul-Aziz
- Endocrinology Unit, Department of Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Hany Mehany
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
25
|
Long X, Wu H, Zhou Y, Wan Y, Kan X, Gong J, Zhao X. Preventive Effect of Limosilactobacillus fermentum SCHY34 on Lead Acetate-Induced Neurological Damage in SD Rats. Front Nutr 2022; 9:852012. [PMID: 35571929 PMCID: PMC9094495 DOI: 10.3389/fnut.2022.852012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/04/2022] [Indexed: 02/03/2023] Open
Abstract
Lead poisoning caused by lead pollution seriously affects people's health. Lactic acid bacteria has been shown to be useful for biological scavenging of lead. In this experiment, Sprague-Dawley (SD) rats were treated with 200 mg/L of lead acetate solution daily to induce chronic lead poisoning, and oral Limosilactobacillus fermentum (L. fermentum) SCHY34 to study its mitigation effects and mechanisms on rat neurotoxicity. The L. fermentum SCHY34 showed competent results on in vitro survival rate and the lead ion adsorption rate. Animal experiments showed that L. fermentum SCHY34 maintained the morphology of rat liver, kidney, and hippocampi, reduced the accumulation of lead in the blood, liver, kidney, and brain tissue. Further, L. fermentum SCHY34 alleviated the lead-induced decline in spatial memory and response capacity of SD rats, and also regulated the secretion of neurotransmitters and related enzyme activities in the brain tissue of rats, such as glutamate (Glu), monoamine oxidase (MAO), acetylcholinesterase (AchE), cyclic adenosine monophosphate (cAMP), and adenylate cyclase (AC). In addition, the expression of genes related to cognitive capacity, antioxidation, and anti-apoptotic in rat brain tissues were increased L. fermentum SCHY34 treatment, such as brain-derived neurotrophic factor (BDNF), c-fos, c-jun, superoxide dismutase (SOD)1/2, Nuclear factor erythroid 2-related factor 2 (Nrf2), and B-cell lymphoma 2 (Bcl-2), and so on. L. fermentum SCHY34 showed a great biological scavenging and potential effect on alleviating the toxicity of lead ions.
Collapse
Affiliation(s)
- Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Haibo Wu
- Department of Neurosurgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Yujing Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Yunxiao Wan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xuemei Kan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Jianjun Gong
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
26
|
Neamatallah WA, Sadek KM, El-Sayed YS, Saleh EA, Khafaga AF. 2, 3-Dimethylsuccinic acid and fulvic acid attenuate lead-induced oxidative misbalance in brain tissues of Nile tilapia Oreochromis niloticus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21998-22011. [PMID: 34775563 DOI: 10.1007/s11356-021-16359-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Lead has long been known as neurotoxic and immunotoxic heavy metal in human and animals including fish, whereas, 2, 3-dimethylsuccinic acid (DMSA) and fulvic acid (FA) are well-known biological chelators. The present investigation was carried out to assess the potential chelating and antioxidant effects of dietary supplementation with DMSA and FA against lead acetate (Pb)-induced oxidative stress in Nile tilapia, O. niloticus. One-hundred and eighty apparently healthy O. niloticus fish (30 ± 2.5 g) were allocated into six equal groups. The first group was fed on basal diet and served as control, while the second group was fed on DMSA-supplemented basal diets at levels of 30 mg/kg diet; the third group was fed on FA-supplemented basal diet at level of 0.3 mg/kg diet; the forth, fifths, and sixth groups were exposed to 14.4 mg Pb /L water (1/10 LC50) and feed on basal diet only, basal diet supplemented with DMSA (0.3 mg/kg diet), or basal diet supplemented with FA (0.3 mg/kg diet), respectively. Antioxidant and lipid peroxidative status, activity of glucose 6-phosphate dehydrogenase (G6PD), and lactate dehydrogenase (LDH) as well as the histopathologic findings were evaluated in brain tissues, while the Pb residues were evaluated in liver, muscles, and brain tissues. The results of the present study showed that DMSA and FA decreased malondialdehyde (MDA) and Pb residue in tissues of Pb-exposed fish and improved the histologic picture and brain contents of glutathione (GSH), glutathione-s-transferase (GST), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), G6PD, LDH, and total antioxidant capacity (TAC). It could be concluded that DMSA and FA supplementation exhibited potential neuroprotective effect against Pb-induced oxidative brain damages in O. niloticus through improvement of antioxidant status of the brain tissue.
Collapse
Affiliation(s)
- Wesam A Neamatallah
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Yasser S El-Sayed
- Department of Forensic Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Ebeed A Saleh
- Department of Food Hygiene, Faculty of Veterinary Medicine, Damanhour University, Damahour, 22511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt.
| |
Collapse
|
27
|
Martínez-Rodríguez P, Guerrero-Rubio MA, Henarejos-Escudero P, García-Carmona F, Gandía-Herrero F. Health-promoting potential of betalains in vivo and their relevance as functional ingredients: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Rizvi SFA, Ahmad M, Munib F, Zhang H. Preclinical assessment of Alzheimer's disease using novel designed
99m
Tc‐labeled RGD‐based pro‐apoptotic cyclic peptide as a promising SPECT agent. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Syed Faheem Askari Rizvi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
| | - Munir Ahmad
- Department of Nuclear Medicine Institute of Nuclear Medicine and Oncology (INMOL) Lahore Pakistan
| | - Farzana Munib
- Department of Nuclear Medicine Institute of Nuclear Medicine and Oncology (INMOL) Lahore Pakistan
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
| |
Collapse
|
29
|
Shaban NZ, El-Kot SM, Awad OM, Hafez AM, Fouad GM. The antioxidant and anti-inflammatory effects of Carica Papaya Linn. seeds extract on CCl 4-induced liver injury in male rats. BMC Complement Med Ther 2021; 21:302. [PMID: 34969385 PMCID: PMC8719404 DOI: 10.1186/s12906-021-03479-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022] Open
Abstract
Background Oxidative stress (OS) and inflammation are the central pathogenic events in liver diseases. In this study, the protective and therapeutic role of Carica Papaya Linn. seeds extract (SE) was evaluated against the hepatotoxicity induced by carbon tetrachloride (CCl4) in rats. Methods The air-dried papaya seeds were powdered and extracted with distilled water. The phytochemical ingredients, minerals, and antioxidant potentials were studied. For determination of the biological role of SE against hepatotoxicity induced by CCl4, five groups of adult male Sprague-Dawley rats were prepared (8 rats per each): C: control; SE: rats were administered with SE alone; CCl4: rats were injected subcutaneously with CCl4; SE-CCl4 group: rats were administered with SE orally for 2 weeks before and 8 weeks during CCl4 injection; SE-CCl4-SE group: Rats were administered with SE and CCl4 as mentioned in SE-CCl4 group with a prolonged administration with SE for 4 weeks after the stopping of CCl4 injection. Then, the markers of OS [lipid peroxidation (LP) and antioxidant parameters; glutathione (GSH), superoxide dismutase (SOD), glutathione-S-transferase (GST), glutathione peroxidase (GPx)], inflammation [nuclear factor (NF)-κB, tumor necrosis factor (TNF)-α, interleukin (IL)-6], fibrosis [transforming growth factor (TGF)-β], apoptosis [tumor suppressor gene (p53)], liver and kidney functions beside liver histopathology were determined. Results The phytochemical analyses revealed that SE contains different concentrations of phenolics, flavonoids, terpenoids, and minerals so it has potent antioxidant activities. Therefore, the treatment with SE pre, during, and/or after CCl4 administration attenuated the OS induced by CCl4 where the LP was reduced, but the antioxidants (GSH, SOD, GST, and GPx) were increased. Additionally, these treatments reduced the inflammation, fibrosis, and apoptosis induced by CCl4, since the levels of NF-κB, TNF-α, IL-6, TGF-β, and p53 were declined. Accordingly, liver and kidney functions were improved. These results were confirmed by the histopathological results. Conclusions SE has protective and treatment roles against hepatotoxicity caused by CCl4 administration through the reduction of OS, inflammation, fibrosis, and apoptosis induced by CCl4 and its metabolites in the liver tissues. Administration of SE for healthy rats for 12 weeks had no adverse effects. Thus, SE can be utilized in pharmacological tools as anti-hepatotoxicity.
Collapse
Affiliation(s)
- Nadia Z Shaban
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Sarah M El-Kot
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Olfat M Awad
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Afaf M Hafez
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Ghada M Fouad
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
30
|
Muhammad Z, Ramzan R, Zhang R, Zhao D, Gul M, Dong L, Zhang M. Assessment of In Vitro and In Vivo Bioremediation Potentials of Orally Supplemented Free and Microencapsulated Lactobacillus acidophilus KLDS Strains to Mitigate the Chronic Lead Toxicity. Front Bioeng Biotechnol 2021; 9:698349. [PMID: 34796165 PMCID: PMC8592972 DOI: 10.3389/fbioe.2021.698349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022] Open
Abstract
Lead (Pb) is a pestilent and relatively nonbiodegradable heavy metal, which causes severe health effects by inducing inflammation and oxidative stress in animal and human tissues. This is because of its significant tolerance and capability to bind Pb (430 mg/L) and thermodynamic fitness to sequester Pb in the Freundlich model (R2 = 0.98421) in vitro. Lactobacillus acidophilus KLDS1.1003 was selected for further in vivo study both in free and maize resistant starch (MRS)–based microencapsulated forms to assess its bioremediation aptitude against chronic Pb lethality using adult female BALB/c mice as a model animal. Orally administered free and microencapsulated KLDS 1.1003 provided significant protection by reducing Pb levels in the blood (127.92 ± 5.220 and 101.47 ± 4.142 µg/L), kidneys (19.86 ± 0.810 and 18.02 ± 0.735 µg/g), and liver (7.27 ± 0.296 and 6.42 ± 0.262 µg/g). MRS-microencapsulated KLDS 1.0344 improved the antioxidant index and inhibited changes in blood and serum enzyme concentrations and relieved the Pb-induced renal and hepatic pathological damages. SEM and EDS microscopy showed that the Pb covered the surfaces of cells and was chiefly bound due to the involvement of the carbon and oxygen elements. Similarly, FTIR showed that the amino, amide, phosphoryl, carboxyl, and hydroxyl functional groups of bacteria and MRS were mainly involved in Pb biosorption. Based on these findings, free and microencapsulated L. acidophilus KLDS 1.0344 could be considered a potential dietetic stratagem in alleviating chronic Pb toxicity.
Collapse
Affiliation(s)
- Zafarullah Muhammad
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Rabia Ramzan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ruifen Zhang
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dong Zhao
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Mehak Gul
- Shaikh Khalifa Bin Zayed Al-Nahyan Medical & Dental College, Lahore, Pakistan
| | - Lihong Dong
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Mingwei Zhang
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
31
|
Ochoa-Martínez ÁC, Varela-Silva JA, Orta-García ST, Carrizales-Yáñez L, Pérez-Maldonado IN. Lead (Pb) exposure is associated with changes in the expression levels of circulating miRNAS (miR-155, miR-126) in Mexican women. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 83:103598. [PMID: 33516900 DOI: 10.1016/j.etap.2021.103598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
The environmental contamination with lead (Pb) is considered a critical issue worldwide. Therefore, this study aimed to evaluate the expression levels of circulating miRNAs (miR-155, miR-126, and miR-145) in Mexican women exposed to Pb. Blood lead levels (BLL) were assessed in enrolled women (n = 190) using an atomic absorption method. Also, serum miRNAs expression levels were quantified through a real-time PCR assay. A mean BLL of 10.5 ± 4.50 μg/dL was detected. Overexpression of miR-155 was detected in highly exposed women. Besides, a significant simple positive relationship (p < 0.05) was found between BLL and serum miR-155 expression levels. Additionally, a significant inverse correlation (p < 0.05) was determined between BLL and serum miR-126 expression levels, as downregulation of miR-126 expression levels was observed in highly exposed women. The findings in this study are the concern, as epigenetic changes detected may represent a connection between health illnesses and Pb exposure.
Collapse
Affiliation(s)
- Ángeles C Ochoa-Martínez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - José A Varela-Silva
- Facultad de Enfermería, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | - Sandra Teresa Orta-García
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Enfermería, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | - Leticia Carrizales-Yáñez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Iván N Pérez-Maldonado
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| |
Collapse
|