1
|
Behzadi P, Chandran D, Chakraborty C, Bhattacharya M, Saikumar G, Dhama K, Chakraborty A, Mukherjee S, Sarshar M. The dual role of toll-like receptors in COVID-19: Balancing protective immunity and immunopathogenesis. Int J Biol Macromol 2025; 284:137836. [PMID: 39613064 DOI: 10.1016/j.ijbiomac.2024.137836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/01/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
Toll-like receptors (TLRs) of human are considered as the most critical immunological mediators of inflammatory pathogenesis of COVID-19. These immunoregulatory glycoproteins are located on the surface and/or intracellular compartment act as innate immune sensors. Upon binding with distinct SARS-CoV-2 ligand(s), TLRs signal activation of different transcription factors that induce expression of the proinflammatory mediators that collectively induce 'cytokine storm'. Similarly, TLR activation is also pivotal in conferring protection to infection and invasion as well as upregulating the tissue repair pathways. This dual role of the human TLRs in deciding the fate of SARS-CoV-2 has made these receptor proteins as the critical mediators of immunoprotective and immunopathogenic consequences associated with COVID-19. Herein, pathbreaking discoveries exploring the immunobiological importance of the TLRs in COVID-19 and developing TLR-directed therapeutic intervention have been reviewed by accessing the up-to-date literatures available in the public domain/databases. In accordance with our knowledge in association with the importance of TLRs' role against viruses and identification of viral particles, they have been recognized as suitable candidates with high potential as vaccine adjuvants. In this regard, the agonists of TLR4 and TLR9 have effective potential in vaccine technology while the others need further investigations. This comprehensive review suggests that basal level expression of TLRs can act as friends to keep our body safe from strangers but act as a foe via overexpression. Therefore, selective inhibition of the overexpressed TLRs appears to be a solution to counteract the cytokine storm while TLR-agonists as vaccine adjuvants could lessen the risk of infection in the naïve population.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, 37541-374, Iran.
| | | | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, 700126, West Bengal, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, VyasaVihar, Balasore, 756020, Odisha, India
| | - Guttula Saikumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Izatnagar, Uttar Pradesh, 243122, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Izatnagar, Uttar Pradesh, 243122, India.
| | - Ankita Chakraborty
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, 713340, West Bengal, India
| | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, 713340, West Bengal, India.
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, 00146, Rome, Italy
| |
Collapse
|
2
|
Song ZH, Huang QM, Xu SS, Zhou JB, Zhang C. The Effect of Antihyperglycemic Medications on COVID-19: A Meta-analysis and Systematic Review from Observational Studies. Ther Innov Regul Sci 2024; 58:773-787. [PMID: 38683419 DOI: 10.1007/s43441-024-00633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/09/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Diabetes, a chronic disease worldwide, may be associated with a poorer prognosis in patients with coronavirus disease 2019 (COVID-19). While some antihyperglycemic medications may be beneficial, others may increase the risk of adverse clinical outcomes of COVID-19. We aimed to analyze the effect of antihyperglycemic medications on COVID-19. METHODS We searched the Web of Science, Cochrane Library, EMBASE, PubMed, and Scopus databases from December 2019 to June 2022 to identify literature related to patients with COVID-19 and type 2 diabetes mellitus (T2DM) treated with antihyperglycemic medications. RESULTS 56 studies were included in the analysis. Metformin (OR 0.66; 95% CI 0.58-0.74; p < 0.05), Glucagon-like peptide-1 receptor agonist (GLP-1ra) (OR 0.73; 95% CI 0.59-0.91; p < 0.05), and sodium-dependent glucose transporters 2 inhibitor (SGLT 2i) (OR 0.77; 95% CI 0.69-0.87; p < 0.05) were associated with lower mortality risk, while insulin was associated with increased mortality risk (OR 1.40; 95% CI 1.26-1.55; p < 0.05). Meanwhile, metformin (OR 0.65; 95% CI 0.50-0.85; p < 0.05) and GLP-1ra (OR 0.84; 95% CI 0.76-0.94; p < 0.05) were significantly associated with decreased severe manifestation risk. What's more, metformin (OR 0.77; 95% CI 0.62-0.96; p < 0.05), GLP-1ra (OR 0.86; 95% CI 0.81-0.92; p < 0.05), and SGLT 2i (OR 0.87; 95% CI 0.79-0.97; p < 0.05) were also associated with a decreased risk of hospitalization, but insulin were associated with an increased risk of hospitalization (OR 1.31; 95% CI 1.12-1.52; p < 0.05). Nevertheless, the results of the subgroup analyses showed that the effects of different glucose-lowering agents on COVID-19 may be related to in-hospital use or out-hospital use, elderly or non-elderly patients use, and different geography. CONCLUSION Metformin, GLP-1ra, and SGLT 2i have shown a positive effect on clinical outcomes in COVID-19, particularly in non-elderly individuals. However, insulin use may pose a higher risk, especially in elderly patients, so need with caution. Meanwhile, DPP-4i, TZD, α-GLUi, and sulfonylureas appeared to have a neutral effect. These results need to be validated in future clinical studies.
Collapse
Affiliation(s)
- Zhi-Hui Song
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qiao-Ming Huang
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shan-Shan Xu
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jian-Bo Zhou
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Chao Zhang
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Jang HN, Moon SJ, Jung JH, Han KD, Rhee EJ, Lee WY. Impact of Antidiabetic Drugs on Clinical Outcomes of COVID-19: A Nationwide Population-Based Study. Endocrinol Metab (Seoul) 2024; 39:479-488. [PMID: 38282452 PMCID: PMC11220209 DOI: 10.3803/enm.2023.1857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/07/2023] [Accepted: 01/03/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGRUOUND Inconsistent results have been reported regarding the association between the use of antidiabetic drugs and the clinical outcomes of coronavirus disease 2019 (COVID-19). This study aimed to investigate the effect of antidiabetic drugs on COVID-19 outcomes in patients with diabetes using data from the National Health Insurance Service (NHIS) in South Korea. METHODS We analyzed the NHIS data of patients aged ≥20 years who tested positive for COVID-19 and were taking antidiabetic drugs between December 2019 and June 2020. Multiple logistic regression analysis was performed to analyze the clinical outcomes of COVID-19 based on the use of antidiabetic drugs. RESULTS A total of 556 patients taking antidiabetic drugs tested positive for COVID-19, including 271 male (48.7%), most of whom were in their sixties. Of all patients, 433 (77.9%) were hospitalized, 119 (21.4%) received oxygen treatment, 87 (15.6%) were admitted to the intensive care unit, 31 (5.6%) required mechanical ventilation, and 61 (11.0%) died. Metformin was significantly associated with the lower risks of mechanical ventilation (odds ratio [OR], 0.281; 95% confidence interval [CI], 0.109 to 0.720; P=0.008), and death (OR, 0.395; 95% CI, 0.182 to 0.854; P=0.018). Dipeptidylpeptidase-4 inhibitor (DPP-4i) were significantly associated with the lower risks of oxygen treatment (OR, 0.565; 95% CI, 0.356 to 0.895; P=0.015) and death (OR, 0.454; 95% CI, 0.217 to 0.949; P=0.036). Sulfonylurea was significantly associated with the higher risk of mechanical ventilation (OR, 2.579; 95% CI, 1.004 to 6.626; P=0.049). CONCLUSION In patients with diabetes and COVID-19, metformin exhibited reduced risks of mechanical ventilation and death, DPP- 4i was linked with lower risks of oxygen treatment and death, while sulfonylurea was related to the increased risk of mechanical ventilation.
Collapse
Affiliation(s)
- Han Na Jang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Joon Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Internal Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jin Hyung Jung
- Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyung-Do Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Internal Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Internal Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
4
|
Gracia-Ramos AE, Cruz-Dominguez MDP, Madrigal-Santillán EO, Rojas-Martínez R, Morales-González JA, Morales-González Á, Hernández-Espinoza M, Vargas-Peñafiel J, Tapia-González MDLÁ. Efficacy and safety of sitagliptin with basal-plus insulin regimen versus insulin alone in non-critically ill hospitalized patients with type 2 diabetes: SITA-PLUS hospital trial. J Diabetes Complications 2024; 38:108742. [PMID: 38581842 DOI: 10.1016/j.jdiacomp.2024.108742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
AIMS To compare the efficacy and safety of basal-plus (BP) insulin regimen with or without sitagliptin in non-critically ill patients with type 2 diabetes (T2D). METHODS This open-label, randomized clinical trial included inpatients with a previous diagnosis of T2D and blood glucose (BG) between 180 and 400 mg/dL. Participants received basal and correctional insulin doses (BP regimen) either with or without sitagliptin. The primary outcome was the difference in the mean daily BG among the groups. RESULTS Seventy-six patients (mean age 60 years, 64 % men) were randomized. Compared with BP insulin therapy alone, the sitagliptin-BP combination led to a lower mean daily BG (158.8 vs 175.0 mg/dL, P = 0.014), a higher percentage of readings within a BG range of 70-180 mg/dL (75.9 % vs 64.7 %, P < 0.001), and a lower number of BG readings >180 mg/dL (P < 0.001). Sitagliptin-BP resulted in fewer basal and supplementary insulin doses (P = 0.024 and P = 0.017, respectively) and lower daily insulin injections (P = 0.023) than those with insulin alone. The proportion of patients with hypoglycemia was similar in the two groups. CONCLUSIONS For inpatients with T2D and hyperglycemia, the sitagliptin and BP regimen combination is safe and more effective than insulin therapy alone. CLINICALTRIALS gov identifier: NCT05579119.
Collapse
Affiliation(s)
- Abraham Edgar Gracia-Ramos
- Departamento de Medicina Interna, Hospital General, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico; Escuela Superior de Medicina, Instituto Politécnico Nacional, "Unidad Casco de Santo Tomas", Mexico City, Mexico.
| | - María Del Pilar Cruz-Dominguez
- División de Investigación en Salud, Hospital de Especialidades, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| | | | - Raúl Rojas-Martínez
- Escuela Superior de Medicina, Instituto Politécnico Nacional, "Unidad Casco de Santo Tomas", Mexico City, Mexico.
| | | | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, "Unidad Profesional A. López Mateos", Mexico City, Mexico.
| | - Mónica Hernández-Espinoza
- Departamento de Dietología y Nutrición, Hospital de Especialidades, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| | - Joaquín Vargas-Peñafiel
- Departamento de Cardiología, Hospital de Especialidades, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - María de Los Ángeles Tapia-González
- Departamento de Endocrinología, Hospital de Especialidades, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| |
Collapse
|
5
|
Klein KR, Abrahamsen TJ, Kahkoska AR, Alexander GC, Chute CG, Haendel M, Hong SS, Mehta H, Moffitt R, Stürmer T, Kvist K, Buse JB. Association of Premorbid GLP-1RA and SGLT-2i Prescription Alone and in Combination with COVID-19 Severity. Diabetes Ther 2024; 15:1169-1186. [PMID: 38536629 PMCID: PMC11043305 DOI: 10.1007/s13300-024-01562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/04/2024] [Indexed: 04/26/2024] Open
Abstract
INTRODUCTION People with type 2 diabetes are at heightened risk for severe outcomes related to COVID-19 infection, including hospitalization, intensive care unit admission, and mortality. This study was designed to examine the impact of premorbid use of glucagon-like peptide-1 receptor agonist (GLP-1RA) monotherapy, sodium-glucose cotransporter-2 inhibitor (SGLT-2i) monotherapy, and concomitant GLP1-RA/SGLT-2i therapy on the severity of outcomes in individuals with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS Utilizing observational data from the National COVID Cohort Collaborative through September 2022, we compared outcomes in 78,806 individuals with a prescription of GLP-1RA and SGLT-2i versus a prescription of dipeptidyl peptidase 4 inhibitors (DPP-4i) within 24 months of a positive SARS-CoV-2 PCR test. We also compared concomitant GLP-1RA/SGLT-2i therapy to GLP-1RA and SGLT-2i monotherapy. The primary outcome was 60-day mortality, measured from the positive test date. Secondary outcomes included emergency room (ER) visits, hospitalization, and mechanical ventilation within 14 days. Using a super learner approach and accounting for baseline characteristics, associations were quantified with odds ratios (OR) estimated with targeted maximum likelihood estimation (TMLE). RESULTS Use of GLP-1RA (OR 0.64, 95% confidence interval [CI] 0.56-0.72) and SGLT-2i (OR 0.62, 95% CI 0.57-0.68) were associated with lower odds of 60-day mortality compared to DPP-4i use. Additionally, the OR of ER visits and hospitalizations were similarly reduced with GLP1-RA and SGLT-2i use. Concomitant GLP-1RA/SGLT-2i use showed similar odds of 60-day mortality when compared to GLP-1RA or SGLT-2i use alone (OR 0.92, 95% CI 0.81-1.05 and OR 0.88, 95% CI 0.76-1.01, respectively). However, lower OR of all secondary outcomes were associated with concomitant GLP-1RA/SGLT-2i use when compared to SGLT-2i use alone. CONCLUSION Among adults who tested positive for SARS-CoV-2, premorbid use of either GLP-1RA or SGLT-2i is associated with lower odds of mortality compared to DPP-4i. Furthermore, concomitant use of GLP-1RA and SGLT-2i is linked to lower odds of other severe COVID-19 outcomes, including ER visits, hospitalizations, and mechanical ventilation, compared to SGLT-2i use alone. Graphical abstract available for this article.
Collapse
Affiliation(s)
- Klara R Klein
- Division of Endocrinology and Metabolism, Department of Medicine, University of North Carolina School of Medicine, Campus Box #7172, 8072 Burnett Womack, 160 Dental Circle, Chapel Hill, NC, 27599, USA.
| | | | - Anna R Kahkoska
- Division of Endocrinology and Metabolism, Department of Medicine, University of North Carolina School of Medicine, Campus Box #7172, 8072 Burnett Womack, 160 Dental Circle, Chapel Hill, NC, 27599, USA
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - G Caleb Alexander
- Center for Drug Safety and Effectiveness, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Division of General Internal Medicine, Johns Hopkins Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Christopher G Chute
- Schools of Medicine, Public Health, and Nursing, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Melissa Haendel
- Center for Health AI, University of Colorado School of Medicine, Aurora, CO, USA
| | - Stephanie S Hong
- Division of General Internal Medicine, Johns Hopkins Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hemalkumar Mehta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Richard Moffitt
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA
| | - Til Stürmer
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - John B Buse
- Division of Endocrinology and Metabolism, Department of Medicine, University of North Carolina School of Medicine, Campus Box #7172, 8072 Burnett Womack, 160 Dental Circle, Chapel Hill, NC, 27599, USA
| |
Collapse
|
6
|
Yao Y, Zhang Y, Li Z, Chen Z, Wang X, Li Z, Yu L, Cheng X, Li W, Jiang WJ, Wu HJ, Feng Z, Sun J, Fei T. A deep learning-based drug repurposing screening and validation for anti-SARS-CoV-2 compounds by targeting the cell entry mechanism. Biochem Biophys Res Commun 2023; 675:113-121. [PMID: 37467664 DOI: 10.1016/j.bbrc.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
The recent outbreak of Corona Virus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a severe threat to the global public health and economy, however, effective drugs to treat COVID-19 are still lacking. Here, we employ a deep learning-based drug repositioning strategy to systematically screen potential anti-SARS-CoV-2 drug candidates that target the cell entry mechanism of SARS-CoV-2 virus from 2635 FDA-approved drugs and 1062 active ingredients from Traditional Chinese Medicine herbs. In silico molecular docking analysis validates the interactions between the top compounds and host receptors or viral spike proteins. Using a SARS-CoV-2 pseudovirus system, we further identify several drug candidates including Fostamatinib, Linagliptin, Lysergol and Sophoridine that can effectively block the cell entry of SARS-CoV-2 variants into human lung cells even at a nanomolar scale. These efforts not only illuminate the feasibility of applying deep learning-based drug repositioning for antiviral agents by targeting a specified mechanism, but also provide a valuable resource of promising drug candidates or lead compounds to treat COVID-19.
Collapse
Affiliation(s)
- Yingjia Yao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, 110819, China
| | - Yunhan Zhang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, 110819, China
| | - Zexu Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, 110819, China
| | - Zhisong Chen
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, 110819, China
| | - Xiaofeng Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, 110819, China
| | - Zihan Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, 110819, China
| | - Li Yu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Xiaolong Cheng
- Center for Genetic Medicine Research, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA; Department of Genomics and Precision Medicine, George Washington University, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Wei Li
- Center for Genetic Medicine Research, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA; Department of Genomics and Precision Medicine, George Washington University, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Wen-Jie Jiang
- Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Hua-Jun Wu
- Peking University Cancer Hospital and Institute, Beijing, 100142, China; Center for Precision Medicine Multi-Omics Research, School of Basic Medical Sciences, Peking University Health Science Center, Peking University, 100191, Beijing, China
| | - Zezhong Feng
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Jinfu Sun
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Teng Fei
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, 110819, China.
| |
Collapse
|
7
|
Roham PH, Kamath JJ, Sharma S. Dissecting the Interrelationship between COVID-19 and Diabetes Mellitus. Adv Biol (Weinh) 2023; 7:e2300107. [PMID: 37246237 DOI: 10.1002/adbi.202300107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/20/2023] [Indexed: 05/30/2023]
Abstract
COVID-19 disease, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to enormous morbidity and mortality worldwide. After gaining entry into the human host, the virus initially infects the upper and lower respiratory tract, subsequently invading multiple organs, including the pancreas. While on one hand, diabetes mellitus (DM) is a significant risk factor for severe COVID-19 infection and associated death, recent reports have shown the onset of DM in COVID-19-recovered patients. SARS-CoV-2 infiltrates the pancreatic islets and activates stress response and inflammatory signaling pathways, impairs glucose metabolism, and consequently leads to their death. Indeed, the pancreatic autopsy samples of COVID-19 patients reveal the presence of SARS-CoV-2 particles in β-cells. The current review describes how the virus enters the host cells and activates an immunological response. Further, it takes a closer look into the interrelationship between COVID-19 and DM with the aim to provide mechanistic insights into the process by which SARS-CoV-2 infects the pancreas and mediates dysfunction and death of endocrine islets. The effects of known anti-diabetic interventions for COVID-19 management are also discussed. The application of mesenchymal stem cells (MSCs) as a future therapy for pancreatic β-cells damage to reverse COVID-19-induced DM is also emphasized.
Collapse
Affiliation(s)
- Pratiksha H Roham
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | - Jayesh J Kamath
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | - Shilpy Sharma
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| |
Collapse
|
8
|
Pauly I, Kumar Singh A, Kumar A, Singh Y, Thareja S, Kamal MA, Verma A, Kumar P. Current Insights and Molecular Docking Studies of the Drugs under Clinical Trial as RdRp Inhibitors in COVID-19 Treatment. Curr Pharm Des 2023; 28:3677-3705. [PMID: 36345244 DOI: 10.2174/1381612829666221107123841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022]
Abstract
Study Background & Objective: After the influenza pandemic (1918), COVID-19 was declared a Vth pandemic by the WHO in 2020. SARS-CoV-2 is an RNA-enveloped single-stranded virus. Based on the structure and life cycle, Protease (3CLpro), RdRp, ACE2, IL-6, and TMPRSS2 are the major targets for drug development against COVID-19. Pre-existing several drugs (FDA-approved) are used to inhibit the above targets in different diseases. In coronavirus treatment, these drugs are also in different clinical trial stages. Remdesivir (RdRp inhibitor) is the only FDA-approved medicine for coronavirus treatment. In the present study, by using the drug repurposing strategy, 70 preexisting clinical or under clinical trial molecules were used in scrutiny for RdRp inhibitor potent molecules in coronavirus treatment being surveyed via docking studies. Molecular simulation studies further confirmed the binding mechanism and stability of the most potent compounds. MATERIAL AND METHODS Docking studies were performed using the Maestro 12.9 module of Schrodinger software over 70 molecules with RdRp as the target and remdesivir as the standard drug and further confirmed by simulation studies. RESULTS The docking studies showed that many HIV protease inhibitors demonstrated remarkable binding interactions with the target RdRp. Protease inhibitors such as lopinavir and ritonavir are effective. Along with these, AT-527, ledipasvir, bicalutamide, and cobicistat showed improved docking scores. RMSD and RMSF were further analyzed for potent ledipasvir and ritonavir by simulation studies and were identified as potential candidates for corona disease. CONCLUSION The drug repurposing approach provides a new avenue in COVID-19 treatment.
Collapse
Affiliation(s)
- Irine Pauly
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Yogesh Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jaddah, Saudi Arabia.,Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia.,Novel Global Community Educational Foundation, Australia Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, Australia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| |
Collapse
|
9
|
Zhu Z, Zeng Q, Liu Q, Wen J, Chen G. Association of Glucose-Lowering Drugs With Outcomes in Patients With Diabetes Before Hospitalization for COVID-19: A Systematic Review and Network Meta-analysis. JAMA Netw Open 2022; 5:e2244652. [PMID: 36472874 PMCID: PMC9856231 DOI: 10.1001/jamanetworkopen.2022.44652] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPORTANCE Patients with COVID-19 have a high prevalence of diabetes, and diabetes and blood glucose control are determinants of intensive care unit admission and mortality. OBJECTIVE To evaluate the association between COVID-19-related adverse outcomes and 8 antihyperglycemic drugs in patients with diabetes who were subsequently diagnosed and hospitalized with COVID-19. DATA SOURCES Data were retrieved and collected in PubMed, Embase, Cochrane Central Register, Web of Science, and ClinicalTrials.gov from database inception to September 5, 2022. STUDY SELECTION For this systematic review and network meta-analysis, randomized clinical trials and observational studies conducted among patients with diabetes while receiving glucose-lowering therapies for at least 14 days before the confirmation of COVID-19 infection were included after blinded review by 2 independent reviewers and consultations of disagreement by a third independent reviewer. Of 1802 studies initially identified, 31 observational studies met the criteria for further analysis. DATA EXTRACTION AND SYNTHESIS This study follows the Preferred Reporting Items for Systematic Reviews and Meta-analyses reporting guideline. Bayesian network meta-analyses were performed with random effects. MAIN OUTCOMES AND MEASURES A composite adverse outcome, including the need for intensive care unit admission, invasive and noninvasive mechanical ventilation, or in-hospital death. RESULTS Thirty-one distinct observational studies (3 689 010 patients with diabetes hospitalized for COVID-19) were included. The sodium-glucose cotransporter-2 inhibitors (SGLT-2is) were associated with relatively lower risks of adverse outcomes compared with insulin (log of odds ratio [logOR], 0.91; 95% credible interval [CrI], 0.57-1.26), dipeptidyl peptidase-4 inhibitors (logOR, 0.61; 95% CrI, 0.28-0.93), secretagogues (logOR, 0.37; 95% CrI, 0.02-0.72), and glucosidase inhibitors (logOR, 0.50; 95% CrI, 0.00-1.01). Based on the surface under the cumulative ranking curves value, SGLT-2is were associated with the lowest probability for adverse outcomes (6%), followed by glucagon-like peptide-1 receptor agonists (25%) and metformin (28%). A sensitivity analysis revealed that the study was reliable. CONCLUSIONS AND RELEVANCE These findings suggest that the use of an SGLT-2i before COVID-19 infection is associated with lower COVID-19-related adverse outcomes. In addition to SGLT-2is, glucagon-like peptide-1 receptor agonists and metformin were also associated with relatively low risk of adverse outcomes.
Collapse
Affiliation(s)
- Zheng Zhu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujia, China
| | - Qingya Zeng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujia, China
| | - Qinyu Liu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujia, China
| | - Junping Wen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujia, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Gang Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujia, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, Fujian, China
| |
Collapse
|
10
|
Narayanan N, Naik D, Sahoo J, Kamalanathan S. Dipeptidyl peptidase 4 inhibitors in COVID-19: Beyond glycemic control. World J Virol 2022; 11:399-410. [PMID: 36483108 PMCID: PMC9724202 DOI: 10.5501/wjv.v11.i6.399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/30/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is associated with a high risk of mortality and complications in patients with diabetes mellitus. Achieving good glycemic control is very important in diabetic patients to reduce complications and mortality due to COVID-19. Recent studies have shown the mortality benefit and anti-inflammatory effects of Dipeptidyl-peptidase-4 inhibitors (DPP-4i) in diabetic patients with COVID-19. DPP-4i may have a beneficial role in halting the severity of infection primarily by three routes, namely viral entry inhibition, anti-inflammatory and anti-fibrotic effects and glycemic control. This has raised the pro-mising hypothesis that DPP-4i might be an optimal strategy for treating COVID-19 in patients with diabetes. This review aims to summarise the possible therapeutic non-glycemic effects of DPP-4i in diabetic patients diagnosed with COVID-19 in the light of available evidence.
Collapse
Affiliation(s)
- Niya Narayanan
- Department of Endocrinology, Baby Memorial Hospital, Kozhikode 673005, Kerala, India
| | - Dukhabandhu Naik
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Jayaprakash Sahoo
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Sadishkumar Kamalanathan
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| |
Collapse
|
11
|
Role of Dipeptidyl Peptidase-4 (DPP4) on COVID-19 Physiopathology. Biomedicines 2022; 10:biomedicines10082026. [PMID: 36009573 PMCID: PMC9406088 DOI: 10.3390/biomedicines10082026] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
DPP4/CD26 is a single-pass transmembrane protein with multiple functions on glycemic control, cell migration and proliferation, and the immune system, among others. It has recently acquired an especial relevance due to the possibility to act as a receptor or co-receptor for SARS-CoV-2, as it has been already demonstrated for other coronaviruses. In this review, we analyze the evidence for the role of DPP4 on COVID-19 risk and clinical outcome, and its contribution to COVID-19 physiopathology. Due to the pathogenetic links between COVID-19 and diabetes mellitus and the hyperinflammatory response, with the hallmark cytokine storm developed very often during the disease, we dive deep into the functions of DPP4 on carbohydrate metabolism and immune system regulation. We show that the broad spectrum of functions regulated by DPP4 is performed both as a protease enzyme, as well as an interacting partner of other molecules on the cell surface. In addition, we provide an update of the DPP4 inhibitors approved by the EMA and/or the FDA, together with the newfangled approval of generic drugs (in 2021 and 2022). This review will also cover the effects of DPP4 inhibitors (i.e., gliptins) on the progression of SARS-CoV-2 infection, showing the role of DPP4 in this disturbing disease.
Collapse
|