1
|
Kots AY, Bian K. Regulation and Pharmacology of the Cyclic GMP and Nitric Oxide Pathway in Embryonic and Adult Stem Cells. Cells 2024; 13:2008. [PMID: 39682756 DOI: 10.3390/cells13232008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
This review summarizes recent advances in understanding the role of the nitric oxide (NO) and cyclic GMP (cGMP) pathway in stem cells. The levels of expression of various components of the pathway are changed during the differentiation of pluripotent embryonic stem cells. In undifferentiated stem cells, NO regulates self-renewal and survival predominantly through cGMP-independent mechanisms. Natriuretic peptides influence the growth of undifferentiated stem cells by activating particulate isoforms of guanylyl cyclases in a cGMP-mediated manner. The differentiation, recruitment, survival, migration, and homing of partially differentiated precursor cells of various types are sensitive to regulation by endogenous levels of NO and natriuretic peptides produced by stem cells, within surrounding tissues, and by the application of various pharmacological agents known to influence the cGMP pathway. Numerous drugs and formulations target various components of the cGMP pathway to influence the therapeutic efficacy of stem cell-based therapies. Thus, pharmacological manipulation of the cGMP pathway in stem cells can be potentially used to develop novel strategies in regenerative medicine.
Collapse
Affiliation(s)
- Alexander Y Kots
- Veteran Affairs Palo Alto Health Care System, US Department of Veteran Affairs, Palo Alto, CA 90304, USA
| | - Ka Bian
- Veteran Affairs Palo Alto Health Care System, US Department of Veteran Affairs, Palo Alto, CA 90304, USA
| |
Collapse
|
2
|
Qi L, Wang C, Deng L, Pan JJ, Suo Q, Wu S, Cai L, Shi X, Sun J, Wang Y, Tang Y, Qiu W, Yang GY, Wang J, Zhang Z. Low-intensity focused ultrasound stimulation promotes stroke recovery via astrocytic HMGB1 and CAMK2N1 in mice. Stroke Vasc Neurol 2024; 9:505-518. [PMID: 38191183 DOI: 10.1136/svn-2023-002614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Low-intensity focused ultrasound stimulation (LIFUS) has been developed to enhance neurological repair and remodelling during the late acute stage of ischaemic stroke in rodents. However, the cellular and molecular mechanisms of neurological repair and remodelling after LIFUS in ischaemic stroke are unclear. METHODS Ultrasound stimulation was treated in adult male mice 7 days after transient middle cerebral artery occlusion. Angiogenesis was measured by laser speckle imaging and histological analyses. Electromyography and fibre photometry records were used for synaptogenesis. Brain atrophy volume and neurobehaviour were assessed 0-14 days after ischaemia. iTRAQ proteomic analysis was performed to explore the differentially expressed protein. scRNA-seq was used for subcluster analysis of astrocytes. Fluorescence in situ hybridisation and Western blot detected the expression of HMGB1 and CAMK2N1. RESULTS Optimal ultrasound stimulation increased cerebral blood flow, and improved neurobehavioural outcomes in ischaemic mice (p<0.05). iTRAQ proteomic analysis revealed that the expression of HMGB1 increased and CAMK2N1 decreased in the ipsilateral hemisphere of the brain at 14 days after focal cerebral ischaemia with ultrasound treatment (p<0.05). scRNA-seq revealed that this expression pattern belonged to a subcluster of astrocytes after LIFUS in the ischaemic brain. LIFUS upregulated HMGB1 expression, accompanied by VEGFA elevation compared with the control group (p<0.05). Inhibition of HMGB1 expression in astrocytes decreased microvessels counts and cerebral blood flow (p<0.05). LIFUS reduced CAMK2N1 expression level, accompanied by increased extracellular calcium ions and glutamatergic synapses (p<0.05). CAMK2N1 overexpression in astrocytes decreased dendritic spines, and aggravated neurobehavioural outcomes (p<0.05). CONCLUSION Our results demonstrated that LIFUS promoted angiogenesis and synaptogenesis after focal cerebral ischaemia by upregulating HMGB1 and downregulating CAMK2N1 in a subcluster of astrocytes, suggesting that LIFUS activated specific astrocyte subcluster could be a key target for ischaemic brain therapy.
Collapse
MESH Headings
- Animals
- Astrocytes/metabolism
- Astrocytes/pathology
- Astrocytes/enzymology
- Male
- Recovery of Function
- Disease Models, Animal
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/therapy
- Infarction, Middle Cerebral Artery/physiopathology
- Infarction, Middle Cerebral Artery/genetics
- Infarction, Middle Cerebral Artery/enzymology
- Mice, Inbred C57BL
- HMGB1 Protein/metabolism
- HMGB1 Protein/genetics
- Neovascularization, Physiologic
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
- Cerebrovascular Circulation
- Ultrasonic Therapy
- Signal Transduction
- Ischemic Stroke/metabolism
- Ischemic Stroke/physiopathology
- Ischemic Stroke/therapy
- Ischemic Stroke/pathology
- Behavior, Animal
- Time Factors
- Mice
- Proteomics
- Neurogenesis
Collapse
Affiliation(s)
- Lin Qi
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, Shanghai, China
| | - Cheng Wang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, Shanghai, China
| | - Lidong Deng
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, Shanghai, China
| | - Jia-Ji Pan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical Collage, Fudan University, Shanghai, China
| | - Qian Suo
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, Shanghai, China
| | - Shengju Wu
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, Shanghai, China
| | - Lin Cai
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Xudong Shi
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Beijing, China
| | - Junfeng Sun
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, Shanghai, China
| | - Yongting Wang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, Shanghai, China
| | - Yaohui Tang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, Shanghai, China
| | - Weibao Qiu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Beijing, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
- Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Jixian Wang
- Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Zhijun Zhang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, Shanghai, China
| |
Collapse
|
3
|
Wang J, Xiong T, Wu Q, Qin X. Integrated Strategies for Targeting Arteriogenesis and Angiogenesis After Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01291-4. [PMID: 39225878 DOI: 10.1007/s12975-024-01291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
The interdependence between arteriogenesis and angiogenesis is crucial for enhancing perfusion by synchronously improving leptomeningeal collaterals (LMCs) and microvascular networks after stroke. However, current approaches often focus on promoting arteriogenesis and angiogenesis separately, neglecting the potential synergistic benefits of targeting both processes simultaneously. Therefore, it is imperative to consider both arteriogenesis and angiogenesis as integral and complementary strategies for post-stroke revascularization. To gain a deeper understanding of their relationships after stroke and to facilitate the development of targeted revascularization strategies, we compared them based on their timescale, space, and pathophysiology. The temporal differences in the occurrence of arteriogenesis and angiogenesis allow them to restore blood flow at different stages after stroke. The spatial differences in the effects of arteriogenesis and angiogenesis enable them to specifically target the ischemic penumbra and core infarct region. Additionally, the endothelial cell, as the primary effector cell in their pathophysiological processes, is promising target for enhancing both. Therefore, we provide an overview of key signals that regulate endothelium-mediated arteriogenesis and angiogenesis. Finally, we summarize current therapeutic strategies that involve these signals to promote both processes after stroke, with the aim of inspiring future therapeutic advances in revascularization.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Taoying Xiong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qisi Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Liang W, Liang B, Yan K, Zhang G, Zhuo J, Cai Y. Low-Intensity Pulsed Ultrasound: A Physical Stimulus with Immunomodulatory and Anti-inflammatory Potential. Ann Biomed Eng 2024; 52:1955-1981. [PMID: 38683473 DOI: 10.1007/s10439-024-03523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
Ultrasound has expanded into the therapeutic field as a medical imaging and diagnostic technique. Low-intensity pulsed ultrasound (LIPUS) is a kind of therapeutic ultrasound that plays a vital role in promoting fracture healing, wound repair, immunomodulation, and reducing inflammation. Its anti-inflammatory effects are manifested by decreased pro-inflammatory cytokines and chemokines, accelerated regression of immune cell invasion, and accelerated damage repair. Although the anti-inflammatory mechanism of LIPUS is not very clear, many in vitro and in vivo studies have shown that LIPUS may play its anti-inflammatory role by activating signaling pathways such as integrin/Focal adhesion kinase (FAK)/Phosphatidylinositol 3-kinase (PI3K)/Serine threonine kinase (Akt), Vascular endothelial growth factor (VEGF)/endothelial nitric oxide synthase (eNOS), or inhibiting signaling pathways such as Toll-like receptors (TLRs)/Nuclear factor kappa-B (NF-κB) and p38-Mitogen-activated protein kinase (MAPK). As a non-invasive physical therapy, the anti-inflammatory and immunomodulatory effects of LIPUS deserve further exploration.
Collapse
Affiliation(s)
- Wenxin Liang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Beibei Liang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China
| | - Kaicheng Yan
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China
| | - Guanxuanzi Zhang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China
| | - Jiaju Zhuo
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China.
| |
Collapse
|
5
|
Shindo T, Eguchi K, Monma Y, Kanai H, Yasuda S, Shimokawa H. Optimal treatment conditions for low-intensity pulsed ultrasound therapy for Alzheimer's disease: applications from mice to humans. J Med Ultrason (2001) 2024; 51:419-427. [PMID: 38698287 PMCID: PMC11272751 DOI: 10.1007/s10396-024-01461-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/25/2024] [Indexed: 05/05/2024]
Abstract
PURPOSE We previously developed a novel therapy with low-intensity pulsed ultrasound (LIPUS) that ameliorates cognitive decline through upregulation of endothelial nitric oxide synthase (eNOS) in mouse models of Alzheimer's disease (AD). In a randomized, double-blind, placebo-controlled pilot trial, we demonstrated that whole-brain LIPUS therapy is safe and tends to suppress the cognitive decline in early AD patients. We herein report the findings of our basic experiments that we performed for the pilot trial in order to apply whole-brain LIPUS therapy to humans, as well. METHODS First, we examined the relationship between bone density/thickness and ultrasound transmittance using human temporal bone. Next, based on the results of ultrasound transmittance, we further examined mRNA expression of VEGF, FGF2, and eNOS in response to variable ultrasound frequencies, duty cycles, and sound pressures. RESULTS There was a significant correlation between bone thickness and transmittance (1.0 MHz, P < 0.001), while there was no significant correlation between bone density and transmittance (1.0 MHz, P = 0.421). At a frequency of 0.5 MHz, the optimum duty cycle was considered to be up to 20%. When the tissue amplitude was in the range of 0.05-0.5 MPa, VEGF, FGF2, and eNOS were significantly upregulated by LIPUS. Thus, the conditions necessary for LIPUS therapy for the human brain were identified as sound pressure just below the probe 1.3 MPa (tissue amplitude 0.15 MPa), duty cycle 5%, and frequency 0.5 MHz. CONCLUSION We successfully identified the optimal treatment conditions for LIPUS therapy for patients with AD.
Collapse
Affiliation(s)
- Tomohiko Shindo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machiachiachi, Aoba-Kuuu, Sendai, Miyagi, 980-8574, Japan
| | - Kumiko Eguchi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machiachiachi, Aoba-Kuuu, Sendai, Miyagi, 980-8574, Japan
| | - Yuto Monma
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machiachiachi, Aoba-Kuuu, Sendai, Miyagi, 980-8574, Japan
| | - Hiroshi Kanai
- Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machiachiachi, Aoba-Kuuu, Sendai, Miyagi, 980-8574, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machiachiachi, Aoba-Kuuu, Sendai, Miyagi, 980-8574, Japan.
- Graduate School, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686, Japan.
| |
Collapse
|
6
|
Li F, Gallego J, Tirko NN, Greaser J, Bashe D, Patel R, Shaker E, Van Valkenburg GE, Alsubhi AS, Wellman S, Singh V, Padilla CG, Gheres KW, Broussard JI, Bagwell R, Mulvihill M, Kozai TDY. Low-intensity pulsed ultrasound stimulation (LIPUS) modulates microglial activation following intracortical microelectrode implantation. Nat Commun 2024; 15:5512. [PMID: 38951525 PMCID: PMC11217463 DOI: 10.1038/s41467-024-49709-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Microglia are important players in surveillance and repair of the brain. Implanting an electrode into the cortex activates microglia, produces an inflammatory cascade, triggers the foreign body response, and opens the blood-brain barrier. These changes can impede intracortical brain-computer interfaces performance. Using two-photon imaging of implanted microelectrodes, we test the hypothesis that low-intensity pulsed ultrasound stimulation can reduce microglia-mediated neuroinflammation following the implantation of microelectrodes. In the first week of treatment, we found that low-intensity pulsed ultrasound stimulation increased microglia migration speed by 128%, enhanced microglia expansion area by 109%, and a reduction in microglial activation by 17%, indicating improved tissue healing and surveillance. Microglial coverage of the microelectrode was reduced by 50% and astrocytic scarring by 36% resulting in an increase in recording performance at chronic time. The data indicate that low-intensity pulsed ultrasound stimulation helps reduce the foreign body response around chronic intracortical microelectrodes.
Collapse
Affiliation(s)
- Fan Li
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
- Computational Modeling and Simulation PhD Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jazlyn Gallego
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Natasha N Tirko
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | | | - Derek Bashe
- Washington University in St. Louis, St. Louis, MO, USA
| | - Rudra Patel
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric Shaker
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | - Vanshika Singh
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Camila Garcia Padilla
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | | | | | | | | | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA.
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Caffaratti H, Slater B, Shaheen N, Rhone A, Calmus R, Kritikos M, Kumar S, Dlouhy B, Oya H, Griffiths T, Boes AD, Trapp N, Kaiser M, Sallet J, Banks MI, Howard MA, Zanaty M, Petkov CI. Neuromodulation with Ultrasound: Hypotheses on the Directionality of Effects and a Community Resource. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.14.24308829. [PMID: 38947047 PMCID: PMC11213082 DOI: 10.1101/2024.06.14.24308829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Low-intensity Transcranial Ultrasound Stimulation (TUS) is a promising non-invasive technique for deep-brain stimulation and focal neuromodulation. Research with animal models and computational modelling has raised the possibility that TUS can be biased towards enhancing or suppressing neural function. Here, we first conduct a systematic review of human TUS studies for perturbing neural function and alleviating brain disorders. We then collate a set of hypotheses on the directionality of TUS effects and conduct an initial meta-analysis on the human TUS study reported outcomes to date (n = 32 studies, 37 experiments). We find that parameters such as the duty cycle show some predictability regarding whether the targeted area's function is likely to be enhanced or suppressed. Given that human TUS sample sizes are exponentially increasing, we recognize that results can stabilize or change as further studies are reported. Therefore, we conclude by establishing an Iowa-Newcastle (inTUS) resource for the systematic reporting of TUS parameters and outcomes to support further hypothesis testing for greater precision in brain stimulation and neuromodulation with TUS.
Collapse
Affiliation(s)
- Hugo Caffaratti
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Ben Slater
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Nour Shaheen
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Ariane Rhone
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Ryan Calmus
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Michael Kritikos
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Sukhbinder Kumar
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Brian Dlouhy
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Hiroyuki Oya
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Tim Griffiths
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Aaron D Boes
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Nicholas Trapp
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Marcus Kaiser
- NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
- Rui Jin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jérôme Sallet
- Stem Cell and Brain Research Institute, INSERM U1208, University of Lyon, Lyon, France
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Matthew I Banks
- Department of Anesthesiology, University of Wisconsin at Madison, WI, USA
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Mario Zanaty
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Christopher I Petkov
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
8
|
Qi L, Wang F, Sun X, Li H, Zhang K, Li J. Recent advances in tissue repair of the blood-brain barrier after stroke. J Tissue Eng 2024; 15:20417314241226551. [PMID: 38304736 PMCID: PMC10832427 DOI: 10.1177/20417314241226551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/31/2023] [Indexed: 02/03/2024] Open
Abstract
The selective permeability of the blood-brain barrier (BBB) enables the necessary exchange of substances between the brain parenchyma and circulating blood and is important for the normal functioning of the central nervous system. Ischemic stroke inflicts damage upon the BBB, triggering adverse stroke outcomes such as cerebral edema, hemorrhagic transformation, and aggravated neuroinflammation. Therefore, effective repair of the damaged BBB after stroke and neovascularization that allows for the unique selective transfer of substances from the BBB after stroke is necessary and important for the recovery of brain function. This review focuses on four important therapies that have effects of BBB tissue repair after stroke in the last seven years. Most of these new therapies show increased expression of BBB tight-junction proteins, and some show beneficial results in terms of enhanced pericyte coverage at the injured vessels. This review also briefly outlines three effective classes of approaches and their mechanisms for promoting neoangiogenesis following a stroke.
Collapse
Affiliation(s)
- Liujie Qi
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| | - Fei Wang
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| | - Xiaojing Sun
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| | - Hang Li
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, PR China
| | - Jingan Li
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
9
|
Li F, Gallego J, Tirko NN, Greaser J, Bashe D, Patel R, Shaker E, Van Valkenburg GE, Alsubhi AS, Wellman S, Singh V, Padill CG, Gheres KW, Bagwell R, Mulvihill M, Kozai TDY. Low-intensity pulsed ultrasound stimulation (LIPUS) modulates microglial activation following intracortical microelectrode implantation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570162. [PMID: 38105969 PMCID: PMC10723293 DOI: 10.1101/2023.12.05.570162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Microglia are important players in surveillance and repair of the brain. Their activation mediates neuroinflammation caused by intracortical microelectrode implantation, which impedes the application of intracortical brain-computer interfaces (BCIs). While low-intensity pulsed ultrasound stimulation (LIPUS) can attenuate microglial activation, its potential to modulate the microglia-mediated neuroinflammation and enhance the bio-integration of microelectrodes remains insufficiently explored. We found that LIPUS increased microglia migration speed from 0.59±0.04 to 1.35±0.07 µm/hr on day 1 and enhanced microglia expansion area from 44.50±6.86 to 93.15±8.77 µm 2 /min on day 7, indicating improved tissue healing and surveillance. Furthermore, LIPUS reduced microglial activation by 17% on day 6, vessel-associated microglia ratio from 70.67±6.15 to 40.43±3.87% on day 7, and vessel diameter by 20% on day 28. Additionally, microglial coverage of the microelectrode was reduced by 50% in week 1, indicating better tissue-microelectrode integration. These data reveal that LIPUS helps resolve neuroinflammation around chronic intracortical microelectrodes.
Collapse
|
10
|
Keser Z, Ikramuddin S, Shekhar S, Feng W. Neuromodulation for Post-Stroke Motor Recovery: a Narrative Review of Invasive and Non‑Invasive Tools. Curr Neurol Neurosci Rep 2023; 23:893-906. [PMID: 38015351 DOI: 10.1007/s11910-023-01319-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE OF REVIEW Stroke remains a leading disabling condition, and many survivors have permanent disability despite acute stroke treatment and subsequent standard-of-care rehabilitation therapies. Adjunctive neuromodulation is an emerging frontier in the field of stroke recovery. In this narrative review, we aim to highlight and summarize various neuromodulation techniques currently being investigated to enhance recovery and reduce impairment in patients with stroke. RECENT FINDINGS For motor recovery, repetitive transcranial magnetic simulation (rTMS) and direct current stimulation (tDCS) have shown promising results in many smaller-scale trials. Still, their efficacy has yet to be proven in large-scale pivotal trials. A promising large-scale study investigating higher dose tDCS combined with constraint movement therapy to enhance motor recovery is currently underway. MRI-guided tDCS studies in subacute and chronic post-stroke aphasia showed promising benefits for picture-naming recovery. rTMS, particularly inhibitory stimulation over the contralesional homolog, could represent a pathway forward in post-stroke motor recovery in the setting of a well-designed and adequately powered clinical trial. Recently evidenced-based guideline actually supported Level A (definite efficacy) for the use of low-frequency rTMS of the primary motor cortex for hand motor recovery in the post-acute stage of stroke based on the meta-analysis result. Adjunctive vagal nerve stimulation has recently received FDA approval to enhance upper limb motor recovery in chronic ischemic stroke with moderate impairment, and progress has been made to implement it in real-world practice. Despite a few small and large-scale studies in epidural stimulation (EDS), further research on the utilization of EDS in post-stroke recovery is needed. Deep brain stimulation or stent-based neuromodulation has yet to be further tested regarding safety and efficacy. Adjunctive neuromodulation to rehabilitation therapy is a promising avenue for promoting post-stroke recovery and decreasing the overall burden of disability. The pipeline for neuromodulation technology remains strong as they span from the preclinical stage to the post-market stage. We are optimistic to see that more neuromodulation tools will be available to stroke survivors in the not-to-distant future.
Collapse
Affiliation(s)
- Zafer Keser
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Salman Ikramuddin
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Shashank Shekhar
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
11
|
Liu T, Shi J, Fu Y, Zhang Y, Bai Y, He S, Deng W, Jin Q, Chen Y, Fang L, He L, Li Y, Yang Y, Zhang L, Lv Q, Wang J, Xie M. New trends in non-pharmacological approaches for cardiovascular disease: Therapeutic ultrasound. Trends Cardiovasc Med 2023; 33:431-440. [PMID: 35461990 DOI: 10.1016/j.tcm.2022.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/05/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022]
Abstract
Significant advances in application of therapeutic ultrasound have been reported in the past decades. Therapeutic ultrasound is an emerging non-invasive stimulation technique. This approach has shown high potential for treatment of various disease including cardiovascular disease. In this review, application principle and significance of the basic parameters of therapeutic ultrasound are summarized. The effects of therapeutic ultrasound in myocardial ischemia, heart failure, myocarditis, arrhythmias, and hypertension are explored, with key focus on the underlying mechanism. Further, the limitations and challenges of ultrasound therapy on clinical translation are evaluated to promote application of the novel strategy in cardiovascular diseases.
Collapse
Affiliation(s)
- Tianshu Liu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jiawei Shi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yanan Fu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yichan Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ying Bai
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Shukun He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Wenhui Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yihan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Lingyun Fang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Lin He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yuman Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yali Yang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Qing Lv
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jing Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| |
Collapse
|
12
|
Shindo T, Ito K, Ogata T, Kurosawa R, Eguchi K, Kagaya Y, Hanawa K, Hasebe Y, Nishimiya K, Shiroto T, Takahashi J, Okumura Y, Noguchi T, Ozaki Y, Daida H, Hagiwara N, Masuyama T, Chikamori T, Fukumoto Y, Tsujita K, Kanai H, Yasuda S, Shimokawa H. A randomized, double-blind, placebo-controlled pilot trial of low-intensity pulsed ultrasound therapy for refractory angina pectoris. PLoS One 2023; 18:e0287714. [PMID: 37352324 PMCID: PMC10289346 DOI: 10.1371/journal.pone.0287714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/07/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Despite the advances in the treatment of cardiovascular diseases, effective treatment remains to be established to improve the quality of life and prognosis of patients with chronic coronary syndromes. This study was aimed to evaluate the effectiveness and safety of the low-intensity pulsed ultrasound (LIPUS) therapy, which we have developed as a novel non-invasive angiogenic therapy through upregulation of endothelial nitric oxide synthase (eNOS). METHODS AND FINDINGS We conducted a randomized, double-blind, placebo-controlled (RCT) pilot trial of the LIPUS therapy for patients with refractory angina pectoris. The patients who received optimal medical therapy without indication of PCI or CABG due to the lack of graftability or complexity of coronary lesions were enrolled. They were randomly divided into the LIPUS treatment group (N = 31) and the placebo group (N = 25) in a 1:1 fashion. The LIPUS therapy was performed in a transthoracic manner for 20 min for 3 sections each (mitral, papillary muscle, and apex levels) under the conditions that we identified; frequency 1.875 MHz, intensity 0.25 MPa, and 32 cycles. The primary endpoint was weekly use of nitroglycerin. Secondary endpoints included stress myocardial perfusion imaging and others. The average weekly nitroglycerin use (times/week) was decreased from 5.50 to 2.44 in the LIPUS group and from 5.94 to 2.83 in the placebo group. The changes in the average weekly nitroglycerin use were comparable; -3.06 (95% CI: -4.481 to -1.648) in the LIPUS group (P<0.01) and -3.10 (95% CI: -4.848 to -1.356) in the placebo group (P<0.01). No adverse effects were noted. CONCLUSIONS In the present study, the LIPUS therapy did not further ameliorate chest pain as compared with optimal medications alone in patients with refractory angina pectoris. The present findings need to be confirmed in another trial with a large number of patients. (Registration ID: UMIN000012369).
Collapse
Affiliation(s)
- Tomohiko Shindo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenta Ito
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tsuyoshi Ogata
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Kurosawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kumiko Eguchi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuta Kagaya
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenichiro Hanawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuhi Hasebe
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kensuke Nishimiya
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Shiroto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Takahashi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuo Okumura
- Department of Medicine, Nihon University Graduate School of Medicine, Tokyo, Japan
| | - Teruo Noguchi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yukio Ozaki
- Department of Cardiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroyuki Daida
- Department of Cardiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuhisa Hagiwara
- Department of Cardiology, Tokyo Women’s Medical University Graduate School of Medicine, Tokyo, Japan
| | - Tohru Masuyama
- Cardiovascular Division, Department of Internal Medicine, Hyogo Medical University Graduate School of Medicine, Nishinomiya, Japan
| | | | | | - Kenichi Tsujita
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Hiroshi Kanai
- Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, International University of Health and Welfare, Narita, Japan
| |
Collapse
|
13
|
Brinker ST, Yoon K, Benveniste H. Global sonication of the human intracranial space via a jumbo planar transducer. ULTRASONICS 2023; 134:107062. [PMID: 37343366 DOI: 10.1016/j.ultras.2023.107062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023]
Abstract
Contrary to conditioning a Focused Ultrasound (FUS) beam to sonicate a localized region of the human brain, the goal of this investigation was to explore the prospect of distributing homogeneous ultrasound energy over the entire brain space with a large cranium-wide ultrasound beam. Recent ultrasound preclincal studies utilizing large or whole brain stimulation regions create a demand for expanding the treatment envelope of transcranial pulsed-low intensity ultrasound towards Global Brain Sonication (GBS) for potential human investigation. Here, we conduct ultrasound field characterizations when transmitting pulsed ultrasound through human skull specimens using a 1-3 piezocomposite planar transducer operating at 464 kHz with an active single-element surface of 30 × 30 cm. Through computational simulation and hydrophone scanning methodology, ultrasound wave behavior and dose homogeneity in the brain space were evaluated under various trajectories of sonication using the planar transducer. Clinically relevant pulse parameters used for transcranial therapeutic ultrasound applications were used in the experiments. Simulations and empirical testing revealed that dose homogeneity and acoustic intensity over the brain space are influenced by sonication trajectory, skull lens effects, and acoustic wave reflections. The transducer can emit a spatial peak pulse average intensity of 4.03 W/cm2 (0.24 MPa) measured in the free-field at 464 kHz with electrical power of 1 kW. The simulation showed that approximately 99 % of the cranial volume was exposed with <30 % of the maximum external acoustic intensity being transmitted into the skull. The transmission loss across all sonication trajectories is similar to previously reported FUS studies. A marker for GBS dose homogeneity is introduced to score the ultrasound pressure field uniformity in the intracranial space. Results of this study identify the initial challenges of exposing the entire human brain space with ultrasound using a large cranium-wide sonication beam intended for global brain therapeutic modulation.
Collapse
Affiliation(s)
- Spencer T Brinker
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA.
| | - Kyungho Yoon
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, Seoul, South Korea
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
14
|
Nash C, Powell K, Lynch DG, Hartings JA, Li C. Nonpharmacological modulation of cortical spreading depolarization. Life Sci 2023:121833. [PMID: 37302793 DOI: 10.1016/j.lfs.2023.121833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
AIMS Cortical spreading depolarization (CSD) is a wave of pathologic neuronal dysfunction that spreads through cerebral gray matter, causing neurologic disturbance in migraine and promoting lesion development in acute brain injury. Pharmacologic interventions have been found to be effective in migraine with aura, but their efficacy in acutely injured brains may be limited. This necessitates the assessment of possible adjunctive treatments, such as nonpharmacologic methods. This review aims to summarize currently available nonpharmacological techniques for modulating CSDs, present their mechanisms of action, and provide insight and future directions for CSD treatment. MAIN METHODS A systematic literature review was performed, generating 22 articles across 3 decades. Relevant data is broken down according to method of treatment. KEY FINDINGS Both pharmacologic and nonpharmacologic interventions can mitigate the pathological impact of CSDs via shared molecular mechanisms, including modulating K+/Ca2+/Na+/Cl- ion channels and NMDA, GABAA, serotonin, and CGRP ligand-based receptors and decreasing microglial activation. Preclinical evidence suggests that nonpharmacologic interventions, including neuromodulation, physical exercise, therapeutic hypothermia, and lifestyle changes can also target unique mechanisms, such as increasing adrenergic tone and myelination and modulating membrane fluidity, which may lend broader modulatory effects. Collectively, these mechanisms increase the electrical initiation threshold, increase CSD latency, slow CSD velocity, and decrease CSD amplitude and duration. SIGNIFICANCE Given the harmful consequences of CSDs, limitations of current pharmacological interventions to inhibit CSDs in acutely injured brains, and translational potentials of nonpharmacologic interventions to modulate CSDs, further assessment of nonpharmacologic modalities and their mechanisms to mitigate CSD-related neurologic dysfunction is warranted.
Collapse
Affiliation(s)
- Christine Nash
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Barnard College, New York, NY, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Daniel G Lynch
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
15
|
Nishimiya K, Takahashi J, Oyama K, Matsumoto Y, Yasuda S, Shimokawa H. Mechanisms of Coronary Artery Spasm. Eur Cardiol 2023; 18:e39. [PMID: 37456775 PMCID: PMC10345984 DOI: 10.15420/ecr.2022.55] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/22/2023] [Indexed: 07/18/2023] Open
Abstract
Recent clinical trials have highlighted that percutaneous coronary intervention in patients with stable angina provides limited additional benefits on top of optimal medical therapy. This has led to much more attention being paid to coronary vasomotion abnormalities regardless of obstructive or non-obstructive arterial segments. Coronary vasomotion is regulated by multiple mechanisms that include the endothelium, vascular smooth muscle cells (VSMCs), myocardial metabolic demand, autonomic nervous system and inflammation. Over the years, several animal models have been developed to explore the central mechanism of coronary artery spasm. This review summarises the landmark studies on the mechanisms of coronary vasospasm demonstrating the central role of Rho-kinase as a molecular switch of VSMC hypercontraction and the important role of coronary adventitial inflammation for Rho-kinase upregulation in VSMCs.
Collapse
Affiliation(s)
- Kensuke Nishimiya
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Jun Takahashi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Kazuma Oyama
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Yasuharu Matsumoto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| |
Collapse
|
16
|
Davis CM, Ammi AY, Zhu W, Methner C, Cao Z, Giraud D, Alkayed NJ, Woltjer RL, Kaul S. Low-Intensity Ultrasound Reduces Brain Infarct Size by Upregulating Phosphorylated Endothelial Nitric Oxide in Mouse Model of Middle Cerebral Artery Occlusion. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1091-1101. [PMID: 36739244 PMCID: PMC10050145 DOI: 10.1016/j.ultrasmedbio.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 05/11/2023]
Abstract
OBJECTIVE There have been attempts to use therapeutic ultrasound (US) for the treatment of both experimental and clinical stroke. We hypothesized that low-intensity US has direct beneficial effects on the brain independent of cerebral blood flow (CBF) during middle cerebral artery occlusion (MCAO). METHODS Three groups of mice were studied. Group I included 84 mice with MCAO undergoing US treatment/no treatment at two US frequencies (0.25 and 1.05 MHz) with three different acoustic pressures at each frequency in which infarct size (IS) was measured 24 h later. Group II included 11 mice undergoing treatment based on best US results from group I animals in which the IS/risk area (RA) ratio was measured 24 h later. Group III included 38 normal mice undergoing US treatment/no treatment for assessment of CBF, tissue metabolite and protein expression and histopathology. DISCUSSION Ultrasound at both frequencies and most acoustic pressures resulted in reduction in IS in group I animals, with the best results obtained with 0.25 MHz at 2.0 MPa: IS was reduced 4-fold in the cerebral cortex, 1.5-fold in the caudate putamen and 3.5-fold in the cerebral hemisphere compared with control. US application in group III animals elicited only a marginal increase in CBF despite a 2.6-fold increase in phosphorylated endothelial nitric oxide synthase (p-eNOS)-S1177 and a corresponding decrease in p-eNOS-T494. Histopathology revealed no evidence of hemorrhage, inflammation or necrosis. CONCLUSION Low-intensity US at specific frequencies and acoustic pressures results in marked neuroprotection in a mouse model of stroke by modulation of p-eNOS independent of its effect on CBF.
Collapse
Affiliation(s)
- Catherine M Davis
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA; Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Azzdine Y Ammi
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Wenbin Zhu
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Carmen Methner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Zhiping Cao
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA; Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - David Giraud
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Nabil J Alkayed
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA; Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Randy L Woltjer
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Sanjiv Kaul
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
17
|
Yüksel MM, Sun S, Latchoumane C, Bloch J, Courtine G, Raffin EE, Hummel FC. Low-Intensity Focused Ultrasound Neuromodulation for Stroke Recovery: A Novel Deep Brain Stimulation Approach for Neurorehabilitation? IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2023; 4:300-318. [PMID: 38196977 PMCID: PMC10776095 DOI: 10.1109/ojemb.2023.3263690] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 01/11/2024] Open
Abstract
Stroke as the leading cause of adult long-term disability and has a significant impact on patients, society and socio-economics. Non-invasive brain stimulation (NIBS) approaches such as transcranial magnetic stimulation (TMS) or transcranial electrical stimulation (tES) are considered as potential therapeutic options to enhance functional reorganization and augment the effects of neurorehabilitation. However, non-invasive electrical and magnetic stimulation paradigms are limited by their depth focality trade-off function that does not allow to target deep key brain structures critically important for recovery processes. Transcranial ultrasound stimulation (TUS) is an emerging approach for non-invasive deep brain neuromodulation. Using non-ionizing, ultrasonic waves with millimeter-accuracy spatial resolution, excellent steering capacity and long penetration depth, TUS has the potential to serve as a novel non-invasive deep brain stimulation method to establish unprecedented neuromodulation and novel neurorehabilitation protocols. The purpose of the present review is to provide an overview on the current knowledge about the neuromodulatory effects of TUS while discussing the potential of TUS in the field of stroke recovery, with respect to existing NIBS methods. We will address and discuss critically crucial open questions and remaining challenges that need to be addressed before establishing TUS as a new clinical neurorehabilitation approach for motor stroke recovery.
Collapse
Affiliation(s)
- Mahmut Martin Yüksel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de LausanneGeneva1201Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de Lausanne Valais, Clinique Romande de Réadaptation Sion1951Switzerland
| | - Shiqi Sun
- Neuro-X Institute and Brain Mind Institute, School of Life SciencesSwiss Federal Institute of Technology (EPFL)Lausanne1015Switzerland
- Department of Clinical NeuroscienceLausanne University Hospital (CHUV) and the University of Lausanne (UNIL)Lausanne1011Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)EPFL/CHUV/UNILLausanne1011Switzerland
| | - Charles Latchoumane
- Neuro-X Institute and Brain Mind Institute, School of Life SciencesSwiss Federal Institute of Technology (EPFL)Lausanne1015Switzerland
- Department of Clinical NeuroscienceLausanne University Hospital (CHUV) and the University of Lausanne (UNIL)Lausanne1011Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)EPFL/CHUV/UNILLausanne1011Switzerland
| | - Jocelyne Bloch
- Neuro-X Institute and Brain Mind Institute, School of Life SciencesSwiss Federal Institute of Technology (EPFL)Lausanne1015Switzerland
- Department of Clinical NeuroscienceLausanne University Hospital (CHUV) and the University of Lausanne (UNIL)Lausanne1015Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)EPFL/CHUV/UNILLausanne1015Switzerland
- Department of NeurosurgeryLausanne University HospitalLausanne1011Switzerland
| | - Gregoire Courtine
- Department of Clinical NeuroscienceLausanne University Hospital (CHUV) and the University of Lausanne (UNIL)Lausanne1015Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)EPFL/CHUV/UNILLausanne1015Switzerland
- Department of NeurosurgeryLausanne University HospitalLausanne1011Switzerland
| | - Estelle Emeline Raffin
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de LausanneGeneva1201Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de Lausanne Valais, Clinique Romande de Réadaptation Sion1951Switzerland
| | - Friedhelm Christoph Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de LausanneGeneva1202Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de Lausanne Valais, Clinique Romande de Réadaptation Sion1951Switzerland
- Clinical NeuroscienceUniversity of Geneva Medical SchoolGeneva1211Switzerland
| |
Collapse
|
18
|
Blackmore DG, Razansky D, Götz J. Ultrasound as a versatile tool for short- and long-term improvement and monitoring of brain function. Neuron 2023; 111:1174-1190. [PMID: 36917978 DOI: 10.1016/j.neuron.2023.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 03/15/2023]
Abstract
Treating the brain with focused ultrasound (FUS) at low intensities elicits diverse responses in neurons, astroglia, and the extracellular matrix. In combination with intravenously injected microbubbles, FUS also opens the blood-brain barrier (BBB) and facilitates focal drug delivery. However, an incompletely understood cellular specificity and a wide parameter space currently limit the optimal application of FUS in preclinical and human studies. In this perspective, we discuss how different FUS modalities can be utilized to achieve short- and long-term improvements, thereby potentially treating brain disorders. We review the ongoing efforts to determine which parameters induce neuronal inhibition versus activation and how mechanoreceptors and signaling cascades are activated to induce long-term changes, including memory improvements. We suggest that optimal FUS treatments may require different FUS modalities and devices, depending on the targeted brain area or local pathology, and will be greatly enhanced by new techniques for monitoring FUS efficacy.
Collapse
Affiliation(s)
- Daniel G Blackmore
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel Razansky
- Institute for Biomedical Engineering, Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, 8093 Zurich, Switzerland
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
19
|
Aimaijiang M, Liu Y, Zhang Z, Qin Q, Liu M, Abulikemu P, Liu L, Zhou Y. LIPUS as a potential strategy for periodontitis treatment: A review of the mechanisms. Front Bioeng Biotechnol 2023; 11:1018012. [PMID: 36911184 PMCID: PMC9992218 DOI: 10.3389/fbioe.2023.1018012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Periodontitis is a chronic inflammatory condition triggered by oral bacteria. A sustained inflammatory state in periodontitis could eventually destroy the alveolar bone. The key objective of periodontal therapy is to terminate the inflammatory process and reconstruct the periodontal tissues. The traditional Guided tissue regeneration (GTR) procedure has unstable results due to multiple factors such as the inflammatory environment, the immune response caused by the implant, and the operator's technique. Low-intensity pulsed ultrasound (LIPUS), as acoustic energy, transmits the mechanical signals to the target tissue to provide non-invasive physical stimulation. LIPUS has positive effects in promoting bone regeneration, soft-tissue regeneration, inflammation inhibition, and neuromodulation. LIPUS can maintain and regenerate alveolar bone during an inflammatory state by suppressing the expression of inflammatory factors. LIPUS also affects the cellular behavior of periodontal ligament cells (PDLCs), thereby protecting the regenerative potential of bone tissue in an inflammatory state. However, the underlying mechanisms of the LIPUS therapy are still yet to be summarized. The goal of this review is to outline the potential cellular and molecular mechanisms of periodontitis-related LIPUS therapy, as well as to explain how LIPUS manages to transmit mechanical stimulation into the signaling pathway to achieve inflammatory control and periodontal bone regeneration.
Collapse
Affiliation(s)
- Maierhaba Aimaijiang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yiping Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhiying Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Qiuyue Qin
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Manxuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Palizi Abulikemu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Lijun Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
20
|
Nakata T, Shindo T, Ito K, Eguchi K, Monma Y, Ichijo S, Ryoke R, Satoh W, Kumasaka K, Sato H, Kurosawa R, Satoh K, Kawashima R, Miura M, Kanai H, Yasuda S, Shimokawa H. Beneficial Effects of Low-Intensity Pulsed Ultrasound Therapy on Right Ventricular Dysfunction in Animal Models. JACC Basic Transl Sci 2022; 8:283-297. [PMID: 37034290 PMCID: PMC10077125 DOI: 10.1016/j.jacbts.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/05/2022]
Abstract
Right ventricular failure (RVF) is a leading cause of death in patients with pulmonary hypertension; however, effective treatment remains to be developed. We have developed low-intensity pulsed ultrasound therapy for cardiovascular diseases. In this study, we demonstrated that the expression of endothelial nitric oxide synthase (eNOS) in RVF patients was downregulated and that eNOS expression and its downstream pathway were ameliorated through eNOS activation in 2 animal models of RVF. These results indicate that eNOS is an important therapeutic target of RVF, for which low-intensity pulsed ultrasound therapy is a promising therapy for patients with RVF.
Collapse
Affiliation(s)
- Takashi Nakata
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiko Shindo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenta Ito
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kumiko Eguchi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuto Monma
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sadamitsu Ichijo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rie Ryoke
- Institute of Development, Aging and Cancer, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Wakako Satoh
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazunori Kumasaka
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Haruka Sato
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Kurosawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kimio Satoh
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryuta Kawashima
- Institute of Development, Aging and Cancer, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahito Miura
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Kanai
- Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
- Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- International University of Health and Welfare, Narita, Japan
- Address for correspondence: Dr Hiroaki Shimokawa, International University of Health and Welfare, Narita 286-8686, Japan.
| |
Collapse
|
21
|
Paro MR, Chakraborty AR, Angelo S, Nambiar S, Bulsara KR, Verma R. Molecular mediators of angiogenesis and neurogenesis after ischemic stroke. Rev Neurosci 2022; 34:425-442. [PMID: 36073599 DOI: 10.1515/revneuro-2022-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022]
Abstract
The mechanisms governing neurological and functional recovery after ischemic stroke are incompletely understood. Recent advances in knowledge of intrinsic repair processes of the CNS have so far translated into minimal improvement in outcomes for stroke victims. Better understanding of the processes underlying neurological recovery after stroke is necessary for development of novel therapeutic approaches. Angiogenesis and neurogenesis have emerged as central mechanisms of post-stroke recovery and potential targets for therapeutics. Frameworks have been developed for conceptualizing cerebral angiogenesis and neurogenesis at the tissue and cellular levels. These models highlight that angiogenesis and neurogenesis are linked to each other and to functional recovery. However, knowledge of the molecular framework linking angiogenesis and neurogenesis after stroke is limited. Studies of potential therapeutics typically focus on one mediator or pathway with minimal discussion of its role within these multifaceted biochemical processes. In this article, we briefly review the current understanding of the coupled processes of angiogenesis and neurogenesis after stroke. We then identify the molecular mediators and signaling pathways found in pre-clinical studies to upregulate both processes after stroke and contextualizes them within the current framework. This report thus contributes to a more-unified understanding of the molecular mediators governing angiogenesis and neurogenesis after stroke, which we hope will help guide the development of novel therapeutic approaches for stroke survivors.
Collapse
Affiliation(s)
- Mitch R Paro
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA.,Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06032, USA
| | - Arijit R Chakraborty
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA
| | - Sophia Angelo
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA
| | - Shyam Nambiar
- University of Connecticut, 75 North Eagleville Rd, Storrs, CT 06269, USA
| | - Ketan R Bulsara
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA.,Division of Neurosurgery, University of Connecticut Health, 135 Dowling Way, Farmington, CT 06030, USA
| | - Rajkumar Verma
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA.,Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06032, USA
| |
Collapse
|
22
|
Zhang MF, Chen WZ, Huang FB, Peng ZY, Quan YC, Tang ZM. Low-intensity transcranial ultrasound stimulation facilitates hand motor function and cortical excitability: A crossover, randomized, double blind study. Front Neurol 2022; 13:926027. [PMID: 36147048 PMCID: PMC9486841 DOI: 10.3389/fneur.2022.926027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Transcranial ultrasound stimulation (TUS) is a new form of non-invasive brain stimulation. Low-intensity TUS is considered highly safe. We aimed to investigate the effect of low-intensity TUS on hand reaction responses and cortical excitability in healthy adults. Methods This study used a crossover, randomized, and double-blind design. A total of 20 healthy participants were recruited for the study. All the participants received TUS and sham stimulation on separate days in random order. The finger tapping test (tapping score by using a tablet) and motor evoked potential (MEP) were assessed before and after stimulation, and discomfort levels were assessed using a visual analog scale (VAS) score. Results No significant differences in tapping score or MEP amplitude between the two experimental conditions were registered before stimulation. After stimulation, tapping scores were increased regardless of the specific treatment, and the real stimulation condition receiving TUS (90.4 ± 11.0 points) outperformed the sham stimulation condition (86.1 ± 8.4 points) (p = 0.002). The MEP latency of real TUS (21.85 ± 1.33 ms) was shorter than that of sham TUS (22.42 ± 1.43 ms) (p < 0.001). MEP amplitude of real TUS (132.18 ± 23.28 μV) was higher than that of sham TUS (114.74 ± 25.5 μV, p = 0.005). There was no significant difference in the discomfort score between the two conditions (p = 0.163). Conclusion Transcranial ultrasound stimulation (TUS) can decrease the hand reaction response time and latency of the MEP, enhance the excitability of the motor cortex, and improve hand motor function in healthy individuals without obvious discomfort.
Collapse
Affiliation(s)
- Meng-Fei Zhang
- Department of Rehabilitation Medicine, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
| | - Wei-Zhou Chen
- Department of Rehabilitation Medicine, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
| | - Fub-Biao Huang
- Department of Occupational Therapy, China Rehabilitation Research Center, Beijing, China
| | - Zhi-Yong Peng
- Department of Rehabilitation Medicine, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
| | - Ying-Chan Quan
- Department of Rehabilitation Medicine, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
| | - Zhi-Ming Tang
- Department of Rehabilitation Medicine, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Zhi-Ming Tang
| |
Collapse
|
23
|
Guo J, Lo WLA, Hu H, Yan L, Li L. Transcranial ultrasound stimulation applied in ischemic stroke rehabilitation: A review. Front Neurosci 2022; 16:964060. [PMID: 35937889 PMCID: PMC9355469 DOI: 10.3389/fnins.2022.964060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Ischemic stroke is a serious medical condition that is caused by cerebral vascular occlusion and leads to neurological dysfunction. After stroke, patients suffer from long-term sensory, motor and cognitive impairment. Non-invasive neuromodulation technology has been widely studied in the field of stroke rehabilitation. Transcranial ultrasound stimulation (TUS), as a safe and non-invasive technique with deep penetration ability and a tiny focus, is an emerging technology. It can produce mechanical and thermal effects by delivering sound waves to brain tissue that can induce the production of neurotrophic factors (NFs) in the brain, and reduce cell apoptosis and the inflammatory response. TUS, which involves application of an acoustic wave, can also dissolve blood clots and be used to deliver therapeutic drugs to the ischemic region. TUS has great potential in the treatment of ischemic stroke. Future advancements in imaging and parameter optimization will improve the safety and efficacy of this technology in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jiecheng Guo
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huijing Hu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Li Yan
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- *Correspondence: Li Yan,
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- Le Li,
| |
Collapse
|
24
|
Perrucini PDDO, Oliveira RFD, Medeiros FBPD, Bertin LD, Pires-Oliveira DADA, Frederico RCP. Ultrasonic therapy modulates the expression of genes related to neovascularization and inflammation in fibroblasts. FISIOTERAPIA EM MOVIMENTO 2021. [DOI: 10.1590/fm.2021.34112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract Introduction: In the rehabilitation of musculoskeletal injuries, ultrasound is widely used in clinical practice. Objective: To evaluate the effects of pulsed ultrasonic therapy on the viability and modulation of genes involved in inflammation (IL-6) and neovascularization (VEGF) processes of L929 fibroblast cells. Methods: For irradiation with ultrasound the cells were subdivided into groups: G1 (without irradiation), G2 (0.3 W/cm2-20%) and G3 (0.6 W/cm2-20%), with periods of treatment at 24, 48 and 72 hours. The cell viability assay was analyzed by the MTT method and gene modulation was analyzed by RT-qPCR method. Results: After the comparative analysis between groups, only G2 and G3 (48-hour) presented statistically significant differences in relation to the control. In relation to the gene expression, the selection of the groups analyzed was delimited according to the comparative analysis of the values obtained by the MTT test. After the achievement of RT-qPCR, it could be observed that in G2 the amount of VEGF gene transcripts increased by 1.125-fold compared to endogenous controls, and increased 1.388-fold in G3. The IL-6 gene, on the other hand, had its transcripts reduced in both G2 (5.64x10-9) and G3 (1.91x10-6). Conclusion: Pulsed ultrasound in L929 fibroblasts showed a significant biostimulatory effect in the 48-hour period, with increased cell viability, and the same effect in the modulation of gene expression related the neovascularization and inflammation, mediating the acceleration of the tissue repair cascade.
Collapse
|