1
|
Brinza I, Boiangiu RS, Mihasan M, Gorgan DL, Stache AB, Abd-Alkhalek A, El-Nashar H, Ayoub I, Mostafa N, Eldahshan O, Singab AN, Hritcu L. Rhoifolin, baicalein 5,6-dimethyl ether and agathisflavone prevent amnesia induced in scopolamine zebrafish (Danio rerio) model by increasing the mRNA expression of bdnf, npy, egr-1, nfr2α, and creb1 genes. Eur J Pharmacol 2024; 984:177013. [PMID: 39378928 DOI: 10.1016/j.ejphar.2024.177013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
The increasing attention towards age-related diseases has generated significant interest in the concept of cognitive dysfunction associated with Alzheimer's disease (AD). Certain limitations are associated with the current therapies, and flavonoids have been reported to exhibit multiple biological activities and anti-AD effects in several AD models owing to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties. In this study, we performed an initial in silico predictions of the pharmacokinetic properties of three flavonoids (rhoifolin, baicalein 5,6-dimethyl ether and agathisflavone). Subsequently, we evaluated the antiamnesic and antioxidant potential of flavonoids in concentrations of 1, 3, and 5 μg/L in scopolamine (100 μM)-induced amnesic zebrafish (Danio rerio) model. Zebrafish behavior was analyzed by novel tank diving test (NTT), Y-maze, and novel object recognition test (NOR). Acetylcholinesterase (AChE) activity, brain antioxidant status and the expression of bdnf, npy, egr1, nrf2α, creb1 genes, and CREB-1 protein level was measured to elucidate the underlying mechanism of action. Our flavonoids improved memory and decreased anxiety-like behavior of scopolamine-induced amnesia in zebrafish. Also, the studied flavonoids reduced AChE activity and brain oxidative stress and upregulated the gene expression, collectively contributing to neuroprotective properties. The results of our study add new perspectives on the properties of flavonoids to regulate the evolution of neurodegenerative diseases, especially AD, by modulating the expression of genes involved in the regulation of synaptic plasticity, axonal growth, and guidance, sympathetic and vagal transmission, the antioxidant response and cell proliferation and growth.
Collapse
Affiliation(s)
- Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Marius Mihasan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Dragos Lucian Gorgan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Alexandru Bogdan Stache
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; Department of Molecular Genetics, Center for Fundamental Research and Experimental Development in Translation Medicine-TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | | | - Heba El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Iriny Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Nada Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Omayma Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Abdel Nasser Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania.
| |
Collapse
|
2
|
Chen L, Liu L. Adipose thermogenic mechanisms by cold, exercise and intermittent fasting: Similarities, disparities and the application in treatment. Clin Nutr 2024; 43:2043-2056. [PMID: 39088961 DOI: 10.1016/j.clnu.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Given its nonnegligible role in metabolic homeostasis, adipose tissue has been the target for treating metabolic disorders such as obesity, diabetes and cardiovascular diseases. Besides its lipolytic function, adipose thermogenesis has gained increased interest due to the irreplaceable contribution to dissipating energy to restore equilibrium, and its therapeutic effects have been testified in various animal models. In this review, we will brief about the canonical cold-stimulated adipose thermogenic mechanisms, elucidate on the exercise- and intermittent fasting-induced adipose thermogenic mechanisms, with a focus on the similarities and disparities among these signaling pathways, in an effort to uncover the overlapped and specific targets that may yield potent therapeutic efficacy synergistically in improving metabolic health.
Collapse
Affiliation(s)
- Linshan Chen
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Longhua Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China.
| |
Collapse
|
3
|
Chmiel J, Malinowska A, Rybakowski F, Leszek J. The Effectiveness of Mindfulness in the Treatment of Methamphetamine Addiction Symptoms: Does Neuroplasticity Play a Role? Brain Sci 2024; 14:320. [PMID: 38671972 PMCID: PMC11047954 DOI: 10.3390/brainsci14040320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Methamphetamine is a highly stimulating psychoactive drug that causes life-threatening addictions and affects millions of people around the world. Its effects on the brain are complex and include disturbances in the neurotransmitter systems and neurotoxicity. There are several known treatment methods, but their effectiveness is moderate. It must be emphasised that no drugs have been approved for treatment. For this reason, there is an urgent need to develop new, effective, and safe treatments for methamphetamine. One of the potential treatments is mindfulness meditation. In recent years, this technique has been researched extensively in the context of many neurological and psychiatric disorders. METHODS This review explores the use of mindfulness in the treatment of methamphetamine addiction. Searches were conducted in the PubMed/Medline, Research Gate, and Cochrane databases. RESULTS Ten studies were identified that used mindfulness-based interventions in the treatment of methamphetamine addiction. The results show that mindfulness is an effective form of reducing hunger, risk of relapses, stress indicators, depression, and aggression, alone or in combination with transcranial direct current stimulation (tDCS). Mindfulness also improved the cognitive function in addicts. The included studies used only behavioural measures. The potential mechanisms of mindfulness in addiction were explained, and it was proposed that it can induce neuroplasticity, alleviating the symptoms of addiction. CONCLUSIONS Evidence from the studies suggest that mindfulness may be an effective treatment option for methamphetamine addiction, used alone or in combination with tDCS. However, further high-quality research is required to establish the role of this treatment option in this field. The use of neuroimaging and neurophysiological measures is fundamental to understand the mechanisms of mindfulness.
Collapse
Affiliation(s)
- James Chmiel
- Institute of Neurofeedback and tDCS Poland, 70-393 Szczecin, Poland
| | | | - Filip Rybakowski
- Department and Clinic of Psychiatry, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Jerzy Leszek
- Department and Clinic of Psychiatry, Wrocław Medical University, 54-235 Wrocław, Poland
| |
Collapse
|
4
|
Rodríguez-Gutiérrez E, Torres-Costoso A, Saz-Lara A, Bizzozero-Peroni B, Guzmán-Pavón MJ, Sánchez-López M, Martínez-Vizcaíno V. Effectiveness of high-intensity interval training on peripheral brain-derived neurotrophic factor in adults: A systematic review and network meta-analysis. Scand J Med Sci Sports 2024; 34:e14496. [PMID: 37728896 DOI: 10.1111/sms.14496] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/29/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND High-intensity interval training (HIIT) has emerged as an alternative training method to increase brain-derived neurotrophic factor (BDNF) levels, a crucial molecule involved in plastic brain changes. Its effect compared to moderate-intensity continuous training (MICT) is controversial. We aimed to estimate, and to comparatively evaluate, the acute and chronic effects on peripheral BDNF levels after a HIIT, MICT intervention or a control condition in adults. METHODS The CINAHL, Cochrane, PubMed, PEDro, Scopus, SPORTDiscus, and Web of Science databases were searched for randomized controlled trials (RCTs) from inception to June 30, 2023. A network meta-analysis was performed to assess the acute and chronic effects of HIIT versus control condition, HIIT versus MICT and MICT versus control condition on BDNF levels. Pooled standardized mean differences (SMDs) and their 95% confidence intervals (95% CIs) were calculated for RCTs using a random-effects model. RESULTS A total of 22 RCTs were selected for the systematic review, with 656 participants (aged 20.4-79 years, 34.0% females) and 20 were selected for the network meta-analysis. Network SMD estimates were significant for HIIT versus control condition (1.49, 95% CI: 0.61, 2.38) and MICT versus control condition (1.08, 95% CI: 0.04, 2.12) for acutely BDNF increase. However, pairwise comparisons only resulted in a significant effect for HIIT versus control condition. CONCLUSIONS HIIT is the best training modality for acutely increasing peripheral BDNF levels in adults. HIIT may effectively increase BDNF levels in the long term.
Collapse
Affiliation(s)
| | - Ana Torres-Costoso
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
- Facultad de Fisioterapia y Enfermería, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Alicia Saz-Lara
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
| | - Bruno Bizzozero-Peroni
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
- Instituto Superior de Educación Física, Universidad de la República, Rivera, Uruguay
| | | | - Mairena Sánchez-López
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
- Facultad de Educación, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Vicente Martínez-Vizcaíno
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
5
|
Freeberg KA, Craighead DH, Heinbockel TC, Rossman MJ, Jackman RA, Jankowski LR, Ludwig KR, Chonchol M, Bailey EF, Seals DR. Time-efficient, high-resistance inspiratory muscle strength training increases cerebrovascular reactivity in midlife and older adults. Am J Physiol Heart Circ Physiol 2023; 325:H1059-H1068. [PMID: 37682232 PMCID: PMC10908405 DOI: 10.1152/ajpheart.00351.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/22/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
Aging is associated with increased risk for cognitive decline and dementia due in part to increases in systolic blood pressure (SBP) and cerebrovascular dysfunction. High-resistance inspiratory muscle strength training (IMST) is a time-efficient, intensive respiratory training protocol (30 resisted inspirations/day) that lowers SBP and improves peripheral vascular function in midlife/older adults with above-normal SBP. However, whether, and by what mechanisms, IMST can improve cerebrovascular function is unknown. We hypothesized that IMST would increase cerebrovascular reactivity to hypercapnia (CVR to CO2), which would coincide with changes to the plasma milieu that improve brain endothelial cell function and enhance cognitive performance (NIH Toolbox). We conducted a 6-wk double-blind, randomized, controlled clinical trial investigating high-resistance IMST [75% maximal inspiratory pressure (PImax); 6×/wk; 4 females, 5 males] vs. low-resistance sham training (15% PImax; 6×/wk; 2 females, 5 males) in midlife/older adults (age 50-79 yr) with initial above-normal SBP. Human brain endothelial cells (HBECs) were exposed to participant plasma and assessed for acetylcholine-stimulated nitric oxide (NO) production. CVR to CO2 increased after high-resistance IMST (pre: 1.38 ± 0.66 cm/s/mmHg; post: 2.31 ± 1.02 cm/s/mmHg, P = 0.020). Acetylcholine-stimulated NO production increased in HBECs exposed to plasma from after vs. before the IMST intervention [pre: 1.49 ± 0.33; post: 1.73 ± 0.35 arbitrary units (AU); P < 0.001]. Episodic memory increased modestly after the IMST intervention (pre: 95 ± 13; post: 103 ± 17 AU; P = 0.045). Cerebrovascular and cognitive function were unchanged in the sham control group. High-resistance IMST may be a promising strategy to improve cerebrovascular and cognitive function in midlife/older adults with above-normal SBP, a population at risk for future cognitive decline and dementia.NEW & NOTEWORTHY Midlife/older adults with above-normal blood pressure are at increased risk of developing cognitive decline and dementia. Our findings suggest that high-resistance inspiratory muscle strength training (IMST), a novel, time-efficient (5-10 min/day) form of physical training, may increase cerebrovascular reactivity to CO2 and episodic memory in midlife/older adults with initial above-normal blood pressure.
Collapse
Affiliation(s)
- Kaitlin A Freeberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Daniel H Craighead
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Thomas C Heinbockel
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Rachel A Jackman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Lindsey R Jankowski
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Katelyn R Ludwig
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Michel Chonchol
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - E Fiona Bailey
- Department of Physiology, University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| |
Collapse
|
6
|
Correia AS, Cardoso A, Vale N. BDNF Unveiled: Exploring Its Role in Major Depression Disorder Serotonergic Imbalance and Associated Stress Conditions. Pharmaceutics 2023; 15:2081. [PMID: 37631295 PMCID: PMC10457827 DOI: 10.3390/pharmaceutics15082081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays a significant role in the survival and development of neurons, being involved in several diseases such as Alzheimer's disease and major depression disorder. The association between BDNF and major depressive disorder is the subject of extensive research. Indeed, numerous studies indicate that decreased levels of BDNF are linked to an increased occurrence of depressive symptoms, neuronal loss, and cortical atrophy. Moreover, it has been observed that antidepressive therapy can help restore BDNF levels. In this review, we will focus on the role of BDNF in major depression disorder serotonergic imbalance and associated stress conditions, particularly hypothalamic-pituitary-adrenal (HPA) axis dysregulation and oxidative stress. All of these features are highly connected to BDNF signaling pathways in the context of this disease, and exploring this topic will aim to advance our understanding of the disorder, improve diagnostic and treatment approaches, and potentially identify new therapeutic targets to alleviate the heavy burden of depression on society.
Collapse
Affiliation(s)
- Ana Salomé Correia
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal;
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Armando Cardoso
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal;
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal;
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
7
|
Ceylan Hİ, Öztürk ME, Öztürk D, Silva AF, Albayrak M, Saygın Ö, Eken Ö, Clemente FM, Nobari H. Acute effect of moderate and high-intensity interval exercises on asprosin and BDNF levels in inactive normal weight and obese individuals. Sci Rep 2023; 13:7040. [PMID: 37120612 PMCID: PMC10148865 DOI: 10.1038/s41598-023-34278-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/27/2023] [Indexed: 05/01/2023] Open
Abstract
This study aimed to examine the acute effects of moderate-intensity aerobic and high-intensity interval exercise protocols on Asprosin and Brain-Derived Neurotrophic Factor (BDNF) levels in inactive normal weight and obese individuals. A total of 20 male individuals aged 18-65 years, ten normal weight (NW) (Body Mass Index (BMI): 18.5-24.99 kg/m2) and 10 obese (Ob) (BMI: 24.99-35.00 kg/m2) participated in this study, voluntarily. Moderate aerobic exercise (AE) (main circuit 30 min, between 40 and 59% of Heart Rate Reserve: HRR) and High-Intensity Interval exercise (HIIE) running protocols (main circuit 20 min, between 75 and 90% of the HRR for 1 min*10 times, and 1-min active rest at 30% of the HRR) was applied to the volunteer participants in the morning hours (08.00-10.00 a.m.), following the night fasting (at least 8-10 h) for at least 3 days between each other. Blood samples were collected from the participants before and immediately after each exercise protocol, and serum asprosin and BDNF hormone levels were determined by Enzyme-Linked Immunosorbent Assay" method. Basal serum asprosin was found to be significantly higher in the Ob group compared to the NW group (p < .001), while the basal serum BDNF hormone was found to be lower (p < 0.05). It was observed that the serum asprosin level of both groups decreased significantly after both AE and HIIE protocols (p < 0.05). In addition, there was a significantly higher decrease in serum asprosin level in the Ob group compared to the NW group after HIIE protocol. For the Ob group, serum BDNF level increased considerably after HIIE protocol compared to AE protocol (p < 0.05). Serum asprosin was found to be higher in the Ob group, while the serum BDNF was found to be lower. In addition, the acute exercises of different intensity significantly affected hormones that regulate appetite metabolism. In particular, it was observed that the HIIE protocol had a greater effect on the regulation of appetite (hunger-satiety) in the Ob group. This result can be taken into account when planning training programs for these individuals.
Collapse
Affiliation(s)
- Halil İbrahim Ceylan
- Physical Education and Sports Teaching Department, Kazim Karabekir Faculty of Education, Ataturk University, Erzurum, Turkey
| | - Mehmet Ertuğrul Öztürk
- Physical Education and Sports Teaching Department, Kazim Karabekir Faculty of Education, Ataturk University, Erzurum, Turkey
| | - Deniz Öztürk
- Vocational School of Health Services, Ataturk University, Erzurum, Turkey
| | - Ana Filipa Silva
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Álvares, 4900-347, Viana do Castelo, Portugal
- The Research Centre in Sports Sciences, Health Sciences and Human Development (CIDESD), 5001-801, Vila Real, Portugal
- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), 4960-320, Melgaço, Portugal
| | - Mevlüt Albayrak
- Vocational School of Health Services, Ataturk University, Erzurum, Turkey
| | - Özcan Saygın
- Coaching Science, Faculty of Sports Sciences, Mugla Sitki Kocman University, Muğla, Turkey
| | - Özgür Eken
- Department of Physical Education and Sport Teaching, Faculty of Sports Sciences, Inonu University, Malatya, Turkey
| | - Filipe Manuel Clemente
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Álvares, 4900-347, Viana do Castelo, Portugal
- Instituto de Telecomunicações, Delegação da Covilhã, 1049-001, Lisbon, Portugal
| | - Hadi Nobari
- Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran.
- Faculty of Sport Sciences, University of Extremadura, 10003, Cáceres, Spain.
| |
Collapse
|
8
|
Caldwell JZ, Isenberg N. The aging brain: risk factors and interventions for long term brain health in women. Curr Opin Obstet Gynecol 2023; 35:169-175. [PMID: 36912325 PMCID: PMC10023345 DOI: 10.1097/gco.0000000000000849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
PURPOSE OF REVIEW Poor cognitive aging and dementia pose a significant public health burden, and women face unique risks compared to men. Recent research highlights the role of genetics, menopause, chronic disease, and lifestyle in risk and resilience in women's cognitive aging. This work suggests avenues for clinical action at midlife that may change the course of brain health in aging. RECENT FINDINGS Studies indicate women's risk for poor cognitive aging relates in part to hormone changes at menopause, a time when memory, brain structure and function, and Alzheimer's pathology may be observed in women and not men. Medical and lifestyle risks including diabetes, hypertension, and low physical activity also contribute to women's unique risks. At the same time, literature on resilience suggests women may benefit from lifestyle and chronic disease intervention, possibly more than men. Current studies emphasize the importance of interacting genetic and lifestyle risks, and effects of social determinants of health. SUMMARY Women have greater risk than men for poor cognitive aging; however, by treating the whole person, including genetics, lifestyle, and social environment, clinicians have an opportunity to support healthy cognitive aging in women and reduce the future public health burden of dementia.
Collapse
Affiliation(s)
- Jessica Z.K. Caldwell
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave., Las Vegas, NV 89106
| | - Nancy Isenberg
- Providence Swedish Center for Healthy Aging, Swedish Neuroscience Institute, 1600 E. Jefferson St. A Level, Seattle, WA 98122
| |
Collapse
|
9
|
Wang YR, Lefebvre G, Picard M, Lamoureux-Andrichuk A, Ferland MC, Therrien-Blanchet JM, Boré A, Tremblay J, Descoteaux M, Champoux F, Théoret H. Physiological, Anatomical and Metabolic Correlates of Aerobic Fitness in Human Primary Motor Cortex: A Multimodal Study. Neuroscience 2023; 517:70-83. [PMID: 36921757 DOI: 10.1016/j.neuroscience.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/29/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Physical activity (PA) has been shown to benefit various cognitive functions and promote neuroplasticity. Whereas the effects of PA on brain anatomy and function have been well documented in older individuals, data are scarce in young adults. Whether high levels of cardiorespiratory fitness (CRF) achieved through regular PA are associated with significant structural and functional changes in this age group remains largely unknown. In the present study, twenty young adults that engaged in at least 8 hours per week of aerobic exercise during the last 5 years were compared to twenty sedentary controls on measures of cortical excitability, white matter microstructure, cortical thickness and metabolite concentration. All measures were taken in the left primary motor cortex and CRF was assessed with VO2max. Transcranial magnetic stimulation (TMS) revealed higher corticospinal excitability in high- compared to low-fit individuals reflected by greater input/output curve amplitude and slope. No group differences were found for other TMS (short-interval intracortical inhibition and intracortical facilitation), diffusion MRI (fractional anisotropy and apparent fiber density), structural MRI (cortical thickness) and magnetic resonance spectroscopy (NAA, GABA, Glx) measures. Taken together, the present data suggest that brain changes associated with increased CRF are relatively limited, at least in primary motor cortex, in contrast to what has been observed in older adults.
Collapse
Affiliation(s)
- Yi Ran Wang
- Département de psychologie, Université de Montréal, Montréal, Québec, Canada; Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Geneviève Lefebvre
- Département de psychologie, Université de Montréal, Montréal, Québec, Canada
| | - Maude Picard
- Département de psychologie, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | - Arnaud Boré
- Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, Canada
| | - Jonathan Tremblay
- École de kinésiologie et des sciences de l'activité physique, Université de Montréal, Montréal, Québec, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, Canada
| | - François Champoux
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada
| | - Hugo Théoret
- Département de psychologie, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
10
|
Staszkiewicz R, Gładysz D, Gralewski M, Bryś K, Garczarek M, Gadzieliński M, Marcol W, Sobański D, Grabarek BO. Usefulness of Detecting Brain-Derived Neurotrophic Factor in Intervertebral Disc Degeneration of the Lumbosacral Spine. Med Sci Monit 2023; 29:e938663. [PMID: 36642939 PMCID: PMC9854178 DOI: 10.12659/msm.938663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND In determining the etiology of pain of discogenic origin, attention is paid to the role of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF). Considering the potential role of BDNF in the etiology of pain during intervertebral disc degeneration (IVDD), this study aimed to assess changes in the number of BDNF-positive nerve fibers and levels of BDNF in IVDD of the lumbosacral spine in comparison to intervertebral discs (IVDs) of the control group (cadavers). MATERIAL AND METHODS The study group comprised 113 patients with IVDD of the lumbosacral spine. The control group consisted of 81 people (cadavers). We performed hematoxylin-eosin staining to assess IVD structures (degeneration), immunohistochemistry to determine the number of BDNF-positive nerve fibers, and an enzyme-linked immunosorbent assay and western blot to quantify BDNF levels in IVDs. RESULTS Levels of BDNF in the study group were significantly higher than in the control group (17.91±19.58 pg/mg; P<0.05). Furthermore, BDNF levels were significantly higher in the annulus fibrosus compared to the nucleus pulposus of the intervertebral disc (5.50±6.40 pg/mg; P<0.05). Neither the number of BDNF-positive nerves (P=0.359) nor BDNF concentration (P=0.706) were significantly correlated with the degree of perceived pain. The number of BDNF-positive fibers per 1 mm2 was not found to differ significantly according to the radiological degree of degeneration of the lumbosacral spine based on the Pfirrmann scale (P=0.735). CONCLUSIONS The level of BDNF expression may be indicative of IVD degeneration, although it does not predict the degree of this degeneration.
Collapse
Affiliation(s)
- Rafał Staszkiewicz
- Department of Neurosurgery, 5 Military Clinical Hospital with the SP ZOZ Polyclinic in Cracow, Cracow, Poland,Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia, Zabrze, Poland
| | - Dorian Gładysz
- Department of Neurosurgery, 5 Military Clinical Hospital with the SP ZOZ Polyclinic in Cracow, Cracow, Poland,Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia, Zabrze, Poland
| | - Marcin Gralewski
- Department of Neurosurgery, 5 Military Clinical Hospital with the SP ZOZ Polyclinic in Cracow, Cracow, Poland,Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia, Zabrze, Poland
| | - Kamil Bryś
- Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia, Zabrze, Poland
| | - Michał Garczarek
- Department of Neurosurgery, 5 Military Clinical Hospital with the SP ZOZ Polyclinic in Cracow, Cracow, Poland
| | - Marcin Gadzieliński
- Department of Neurosurgery, 5 Military Clinical Hospital with the SP ZOZ Polyclinic in Cracow, Cracow, Poland
| | - Wiesław Marcol
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland,Department of Neurosurgery, Provincial Specialist Hospital No. 2 in Jastrzębie-Zdrój, Jastrzębie-Zdrój, Poland
| | - Dawid Sobański
- Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia, Zabrze, Poland,Department of Neurosurgery, Szpital św. Rafała, Cracow, Poland
| | - Beniamin Oskar Grabarek
- Department of Neurosurgery, 5 Military Clinical Hospital with the SP ZOZ Polyclinic in Cracow, Cracow, Poland,Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia, Zabrze, Poland
| |
Collapse
|
11
|
Aktitiz S, Atakan MM, Turnagöl HH, Koşar ŞN. Interleukin-6, undercarboxylated osteocalcin, and brain-derived neurotrophic factor responses to single and repeated sessions of high-intensity interval exercise. Peptides 2022; 157:170864. [PMID: 36028073 DOI: 10.1016/j.peptides.2022.170864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The purpose of this study was to compare the effects of a single session of high-intensity interval exercise (HIIE) with 2 consecutive HIIEs, separated by 3 h of recovery, on plasma interleukin-6 (IL-6), undercarboxylated osteocalcin (ucOC), and brain-derived neurotrophic factor (BDNF) responses. METHODS Twenty male recreational endurance athletes completed two HIIE trials in a randomized crossover design: a single session of HIIE on the single exercise day (HIIE-S) and two sessions of HIIE 3 h apart on the double exercise day (HIIE-D). The HIIE protocol consisted of 10 × 1 min cycling at 100 % of peak oxygen uptake, with 75 s of low-intensity cycling at 60 W. Blood samples were collected to analyze IL-6, ucOC, and BDNF levels before and immediately after HIIE on the HIIE-S and before and immediately after the second HIIE on the HIIE-D. RESULTS Both HIIE interventions significantly increased (p < 0.001) plasma IL-6 (HIIE-S 33.90 % vs HIIE-D 31.04 %; p = 0.64), ucOC (HIIE-S 37.18 % vs HIIE-D 39.54 %; p = 0.85), and BDNF levels (HIIE-S 236.01 % vs HIIE-D 216.68 %; p = 0.69), with no group effect. CONCLUSIONS Our results demonstrate that performing two consecutive HIIEs on the same day with a 3-h rest results in similar changes in plasma levels of IL-6, BDNF, and ucOC compared with a single session of HIIE.
Collapse
Affiliation(s)
- Selin Aktitiz
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara 06800, Turkey.
| | - Muhammed M Atakan
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara 06800, Turkey.
| | - Hüseyin H Turnagöl
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara 06800, Turkey.
| | - Şükran N Koşar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara 06800, Turkey.
| |
Collapse
|
12
|
Babiarz M, Laskowski R, Grzywacz T. Effects of Strength Training on BDNF in Healthy Young Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192113795. [PMID: 36360677 PMCID: PMC9658702 DOI: 10.3390/ijerph192113795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 05/27/2023]
Abstract
The physical improvements from strength and resistance training have been known for decades, but the cognitive benefits of this type of activity are not as well-known. The aim of this review article is to provide a summary of studies presenting the effects of strength and resistance training on BDNF in healthy young adults. A systematic search of various electronic databases (PubMed, Web of Science, Science Direct and Google Scholar) was conducted in September 2022. Studies that examined associations between strength training and BDNF in healthy young adults aged 18-30 years were included. The final sample included 10 studies published between 2009 and 2020. The results of this literature review are inconclusive. Based on the results of the 10 studies, there is no clear answer as to whether strength training has positive effects on BDNF in healthy young adults.
Collapse
Affiliation(s)
- Miroslaw Babiarz
- Department of Physiology, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| | - Radoslaw Laskowski
- Department of Physiology, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| | - Tomasz Grzywacz
- Department of Sport, Institute of Physical Education, Kazimierz Wielki University in Bydgoszcz, 85-604 Bydgoszcz, Poland
| |
Collapse
|
13
|
Kujach S, Chroboczek M, Jaworska J, Sawicka A, Smaruj M, Winklewski P, Laskowski R. Judo training program improves brain and muscle function and elevates the peripheral BDNF concentration among the elderly. Sci Rep 2022; 12:13900. [PMID: 35974038 PMCID: PMC9381784 DOI: 10.1038/s41598-022-17719-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/29/2022] [Indexed: 11/20/2022] Open
Abstract
Programmed exercise interventions modulating both physical fitness and cognitive functions have become a promising tool to support healthy aging. The aim of this experiment was to determine the effect of a 12-week judo training (JEX) on cognitive processing and muscle function among the elderly. Forty participants were divided into two groups: the JEX group and the control group (CTL). Before and after 12-week of JEX, participants performed a battery of physiological and psychological tests. The peripheral level of brain-derived neurotrophic factor (BDNF) was analyzed. A 12-week JEX intervention led to improved Stroop performance reflected by a shortening of the response time related to Stroop “naming” interference. In addition, the peripheral concentration of BDNF was significantly increased following the JEX compared with the CTL group. In response to JEX, balance and lower limb strength significantly increased. The current results suggest that JEX could have beneficial effects on cognitive functions, denoted by elevated peripheral BDNF, as well as on balance and strength abilities. A combination of positive effects with respect to movement and cognition makes JEX an ideal preventive lifestyle modification for the aging population.
Collapse
Affiliation(s)
- Sylwester Kujach
- Department of Human Physiology, Medical University of Gdańsk, Gdańsk, Poland. .,Department of Physiology, Gdansk University of Physical Education and Sport, Gdańsk, Poland.
| | - Maciej Chroboczek
- Department of Physiology, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - Joanna Jaworska
- Department of Physiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Angelika Sawicka
- Applied Cognitive Neuroscience Lab, Department of Human Physiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Miroslaw Smaruj
- Department of Theory of Sport and Human Motorics, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - Pawel Winklewski
- Department of Human Physiology, Medical University of Gdańsk, Gdańsk, Poland.,2nd Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Radoslaw Laskowski
- Department of Physiology, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| |
Collapse
|
14
|
Rentería I, García-Suárez PC, Fry AC, Moncada-Jiménez J, Machado-Parra JP, Antunes BM, Jiménez-Maldonado A. The Molecular Effects of BDNF Synthesis on Skeletal Muscle: A Mini-Review. Front Physiol 2022; 13:934714. [PMID: 35874524 PMCID: PMC9306488 DOI: 10.3389/fphys.2022.934714] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
The brain-derived neurotrophic factor (BDNF) is a member of the nerve growth factor family which is generated mainly by the brain. Its main role involve synaptic modulation, neurogenesis, neuron survival, immune regulation, myocardial contraction, and angiogenesis in the brain. Together with the encephalon, some peripheral tissues synthesize BDNF like skeletal muscle. On this tissue, this neurotrophin participates on cellular mechanisms related to muscle function maintenance and plasticity as reported on recent scientific works. Moreover, during exercise stimuli the BDNF contributes directly to strengthening neuromuscular junctions, muscle regeneration, insulin-regulated glucose uptake and β-oxidation processes in muscle tissue. Given its vital relevance on many physiological mechanisms, the current mini-review focuses on discussing up-to-date knowledge about BDNF production in skeletal muscle and how this neurotrophin impacts skeletal muscle biology.
Collapse
Affiliation(s)
- I Rentería
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - P C García-Suárez
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico.,Department of Health, Sports and Exercise Sciences, University of Kansas, Lawrence, KS, United States
| | - A C Fry
- Department of Health, Sports and Exercise Sciences, University of Kansas, Lawrence, KS, United States
| | - J Moncada-Jiménez
- Human Movement Sciences Research Center (CIMOHU), University of Costa Rica, San José, Costa Rica
| | - J P Machado-Parra
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - B M Antunes
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - A Jiménez-Maldonado
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
| |
Collapse
|
15
|
Alizadeh M, Dehghanizade J. The effect of functional training on level of brain-derived neurotrophic factor and functional performance in women with obesity. Physiol Behav 2022; 251:113798. [PMID: 35378105 DOI: 10.1016/j.physbeh.2022.113798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
Abstract
Obesity is the underlying cause of various health conditions such as hypertension, diabetes, and respiratory diseases. It is associated with low self-confidence, emotional disorder, anxiety, depression, social isolation, and suicide. In the present study, we investigated the effect of functional training on obese women's brain-derived neurotrophic factor (BDNF) and executive functioning. To this end, 25 obese women were randomly assigned to 3 different groups labelled as active obese women-functional training, inactive obese women-functional training, and control group. The subjects performed 24 one-hour-long sessions of functional training three times a week. The intensity of activity for the research groups was moderate, which was equivalent to a level of 6-7 on the Borg scale. The analysis of intragroup results indicated that functional training increased serum BDNF significantly in both active and inactive obese women. It was also observed to improve executive functioning in both groups of the obese women via decreasing the number of errors, increasing the number of true responses, and reducing reaction time. The analysis of intergroup results, on the other hand, revealed that there were no significant differences between active and inactive obese women in terms of serum BDNF and executive functioning after functional training. Training promotes cognitive health, and this study adds that functional training may be important for improvement and maintenance of brain health and functional performance. Therefore, by increasing BDNF level through functional exercises, it is possible to help improve the cognitive functions of obese women.
Collapse
Affiliation(s)
- Maryam Alizadeh
- M.A Student in Motor Behavior, Faculty of Sport Sciences, Department of Motor Behavior and Sport Management, Urmia University, Urmia, Iran.
| | - Jalal Dehghanizade
- Assistant Professor in Motor Behavior, Faculty of Sport Sciences, Department of Motor Behavior and Sport Management, Urmia University, Urmia, Iran.
| |
Collapse
|
16
|
Gu I, Gregory E, Atwood C, Lee SO, Song YH. Exploring the Role of Metabolites in Cancer and the Associated Nerve Crosstalk. Nutrients 2022; 14:nu14091722. [PMID: 35565690 PMCID: PMC9103817 DOI: 10.3390/nu14091722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
Since Otto Warburg's first report on the increased uptake of glucose and lactate release by cancer cells, dysregulated metabolism has been acknowledged as a hallmark of cancer that promotes proliferation and metastasis. Over the last century, studies have shown that cancer metabolism is complex, and by-products of glucose and glutamine catabolism induce a cascade of both pro- and antitumorigenic processes. Some vitamins, which have traditionally been praised for preventing and inhibiting the proliferation of cancer cells, have also been proven to cause cancer progression in a dose-dependent manner. Importantly, recent findings have shown that the nervous system is a key player in tumor growth and metastasis via perineural invasion and tumor innervation. However, the link between cancer-nerve crosstalk and tumor metabolism remains unclear. Here, we discuss the roles of relatively underappreciated metabolites in cancer-nerve crosstalk, including lactate, vitamins, and amino acids, and propose the investigation of nutrients in cancer-nerve crosstalk based on their tumorigenicity and neuroregulatory capabilities. Continued research into the metabolic regulation of cancer-nerve crosstalk will provide a more comprehensive understanding of tumor mechanisms and may lead to the identification of potential targets for future cancer therapies.
Collapse
Affiliation(s)
- Inah Gu
- Department of Food Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72704, USA
| | - Emory Gregory
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Casey Atwood
- Department of Food Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72704, USA
| | - Sun-Ok Lee
- Department of Food Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72704, USA
| | - Young Hye Song
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
17
|
Kuhn T, Heisz J. Cardiorespiratory Fitness May Protect Memory for Poorer Sleepers. Front Psychol 2022; 13:793875. [PMID: 35250729 PMCID: PMC8892568 DOI: 10.3389/fpsyg.2022.793875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Physical activity has been shown to protect executive functions against the deleterious effects of poorer sleep among older adults (OA); however, it is unknown whether memory is protected too, and if this relationship differs by age. The present study investigated the relationship between cardiorespiratory fitness, sleep, and memory in both older and young adults (YA). METHODS This observational study recruited 26 OA (70.7 ± 2.8 years) and 35 YA (21.0 ± 3.1 years). Participants completed the Rockport 1-mile walk test to evaluate cardiorespiratory fitness. Participants wore an actigraph for 1 week to measure habitual sleep and returned for a second visit to perform the memory tests. The interaction between cardiorespiratory fitness and sleep to predict memory was assessed separately in OA and YA. RESULTS In OA, cardiorespiratory fitness significantly moderated the relationship between memory and sleep quality, specifically number of nighttime awakenings, sleep efficiency, and wake after sleep onset. Further analyses reveal that a high number of nighttime awakenings and low sleep efficiency significantly predicted worse memory performance in the low fit OA, but high fit OA. Notably, every nighttime awakening was associated with a nearly 4% decrease in memory in low fit OA, but not high fit OA. Wake after sleep onset did not significantly predict memory in either fitness group. No interaction was found when looking at sleep duration or self-report sleep quality in OA and no significant interactions were observed between fitness, sleep, and memory in YA. CONCLUSION Overall, the results suggest that cardiorespiratory fitness may act as a protective buffer for memory in OA with poor sleep quality. These same was not true for YA suggesting that the protective effects of cardiorespiratory fitness on sleep-related memory impairments may be age specific.
Collapse
Affiliation(s)
- Tara Kuhn
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Jennifer Heisz
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
18
|
BDNF Impact on Biological Markers of Depression-Role of Physical Exercise and Training. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147553. [PMID: 34300001 PMCID: PMC8307197 DOI: 10.3390/ijerph18147553] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 12/20/2022]
Abstract
Depression is the most common and devastating psychiatric disorder in the world. Its symptoms, especially during the pandemic, are observed in all age groups. Exercise training (ET) is well known as a non-pharmacological strategy to alleviate clinical depression. The brain-derived neurotrophic factor (BDNF) is one of the biological factors whose expression and secretion are intensified in response to ET. BDNF is also secreted by contracted skeletal muscle that likely exerts para-, auto- and endocrine effects, supporting the crosstalk between skeletal muscle and other distant organs/tissues, such as the nervous system. This finding suggests that they communicate and work together to induce improvements on mood, cognition, and learning processes as BDNF is the main player in the neurogenesis, growth, and survival of neurons. Therefore, BDNF has been recognized as a therapeutic factor in clinical depression, especially in response to ET. The underlying mechanisms through which ET impacts depression are varied. The aim of this review was to provide information of the biological markers of depression such as monoamines, tryptophan, endocannabinoids, markers of inflammatory processes (oxidative stress and cytokines) stress and sex hormones and their relationship to BDNF. In addition, we reviewed the effects of ET on BNDF expression and how it impacts depression as well as the potential mechanisms mediating this process, providing a better understanding of underlying ET-related mechanisms in depression.
Collapse
|