1
|
Hossen MJ, Ramanathan TT, Al Mamun A. An Ensemble Feature Selection Approach-Based Machine Learning Classifiers for Prediction of COVID-19 Disease. Int J Telemed Appl 2024; 2024:8188904. [PMID: 38660584 PMCID: PMC11042903 DOI: 10.1155/2024/8188904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/24/2023] [Accepted: 03/08/2024] [Indexed: 04/26/2024] Open
Abstract
The respiratory disease of coronavirus disease 2019 (COVID-19) has wreaked havoc on the economy of every nation by infecting and killing millions of people. This deadly disease has taken a toll on the life of the entire human race, and an exact cure for it is still not developed. Thus, the control and cure of this disease mainly depend on restricting its transmission rate through early detection. The detection of coronavirus infection facilitates the isolation and exclusive care of infected patients. This research paper proposes a novel data mining system that combines the ensemble feature selection method and machine learning classifier for the effective identification of COVID-19 infection. Different feature selection approaches including chi-square test, recursive feature elimination (RFE), genetic algorithm (GA), particle swarm optimization (PSO), and random forest are evaluated for their effectiveness in enhancing the classification accuracy of the machine learning classifiers. The classifiers that are considered in this research work are decision tree, naïve Bayes, K-nearest neighbor (KNN), multilayer perceptron (MLP), and support vector machine (SVM). Two COVID-19 datasets were used for testing from which the best features supporting the dataset were extracted by the proposed system. The performance of the machine learning classifiers based on the ensemble feature selection methods is analyzed.
Collapse
Affiliation(s)
- Md. Jakir Hossen
- Faculty of Engineering and Technology, Multimedia University, Melaka, Malaysia
| | | | - Abdullah Al Mamun
- School of Information and Communication, Griffith University, Nathan, Australia
| |
Collapse
|
2
|
Viderman D, Kotov A, Popov M, Abdildin Y. Machine and deep learning methods for clinical outcome prediction based on physiological data of COVID-19 patients: a scoping review. Int J Med Inform 2024; 182:105308. [PMID: 38091862 DOI: 10.1016/j.ijmedinf.2023.105308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/20/2023] [Accepted: 12/03/2023] [Indexed: 01/07/2024]
Abstract
INTRODUCTION Since the beginning of the COVID-19 pandemic, numerous machine and deep learning (MDL) methods have been proposed in the literature to analyze patient physiological data. The objective of this review is to summarize various aspects of these methods and assess their practical utility for predicting various clinical outcomes. METHODS We searched PubMed, Scopus, and Cochrane Library, screened and selected the studies matching the inclusion criteria. The clinical analysis focused on the characteristics of the patient cohorts in the studies included in this review, the specific tasks in the context of the COVID-19 pandemic that machine and deep learning methods were used for, and their practical limitations. The technical analysis focused on the details of specific MDL methods and their performance. RESULTS Analysis of the 48 selected studies revealed that the majority (∼54 %) of them examined the application of MDL methods for the prediction of survival/mortality-related patient outcomes, while a smaller fraction (∼13 %) of studies also examined applications to the prediction of patients' physiological outcomes and hospital resource utilization. 21 % of the studies examined the application of MDL methods to multiple clinical tasks. Machine and deep learning methods have been shown to be effective at predicting several outcomes of COVID-19 patients, such as disease severity, complications, intensive care unit (ICU) transfer, and mortality. MDL methods also achieved high accuracy in predicting the required number of ICU beds and ventilators. CONCLUSION Machine and deep learning methods have been shown to be valuable tools for predicting disease severity, organ dysfunction and failure, patient outcomes, and hospital resource utilization during the COVID-19 pandemic. The discovered knowledge and our conclusions and recommendations can also be useful to healthcare professionals and artificial intelligence researchers in managing future pandemics.
Collapse
Affiliation(s)
- Dmitriy Viderman
- Department of Surgery, School of Medicine, Nazarbayev University, Astana, Kazakhstan; Department of Anesthesiology, Intensive Care, and Pain Medicine, National Research Oncology Center, Astana, Kazakhstan.
| | - Alexander Kotov
- Department of Computer Science, College of Engineering, Wayne State University, Detroit, USA.
| | - Maxim Popov
- Department of Computer Science, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan.
| | - Yerkin Abdildin
- Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan.
| |
Collapse
|
3
|
Hussein AM, Sharifai AG, Alia OM, Abualigah L, Almotairi KH, Abujayyab SKM, Gandomi AH. Auto-detection of the coronavirus disease by using deep convolutional neural networks and X-ray photographs. Sci Rep 2024; 14:534. [PMID: 38177156 PMCID: PMC10766625 DOI: 10.1038/s41598-023-47038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024] Open
Abstract
The most widely used method for detecting Coronavirus Disease 2019 (COVID-19) is real-time polymerase chain reaction. However, this method has several drawbacks, including high cost, lengthy turnaround time for results, and the potential for false-negative results due to limited sensitivity. To address these issues, additional technologies such as computed tomography (CT) or X-rays have been employed for diagnosing the disease. Chest X-rays are more commonly used than CT scans due to the widespread availability of X-ray machines, lower ionizing radiation, and lower cost of equipment. COVID-19 presents certain radiological biomarkers that can be observed through chest X-rays, making it necessary for radiologists to manually search for these biomarkers. However, this process is time-consuming and prone to errors. Therefore, there is a critical need to develop an automated system for evaluating chest X-rays. Deep learning techniques can be employed to expedite this process. In this study, a deep learning-based method called Custom Convolutional Neural Network (Custom-CNN) is proposed for identifying COVID-19 infection in chest X-rays. The Custom-CNN model consists of eight weighted layers and utilizes strategies like dropout and batch normalization to enhance performance and reduce overfitting. The proposed approach achieved a classification accuracy of 98.19% and aims to accurately classify COVID-19, normal, and pneumonia samples.
Collapse
Affiliation(s)
- Ahmad MohdAziz Hussein
- Department of Computer Science, Faculty of Information Technology, Middle East University, Amman, Jordan.
| | - Abdulrauf Garba Sharifai
- Department of Computer Sciences, Yusuf Maitama Sule University, Kofar Nassarawa, Kano, 700222, Nigeria
| | - Osama Moh'd Alia
- Department of Computer Science, Faculty of Computes and Information Technology, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Laith Abualigah
- Computer Science Department, Prince Hussein Bin Abdullah Faculty for Information Technology, Al Al-Bayt University, Mafraq, 25113, Jordan
- Department of Electrical and Computer Engineering, Lebanese American University, Byblos, 13-5053, Lebanon
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, 19328, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, 11931, Jordan
- School of Engineering and Technology, Sunway University Malaysia, 27500, Petaling Jaya, Malaysia
- School of Computer Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Khaled H Almotairi
- Computer Engineering Department, Computer and Information Systems College, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | | | - Amir H Gandomi
- Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- University Research and Innovation Center (EKIK), Óbuda University, Budapest, 1034, Hungary.
| |
Collapse
|
4
|
Aoyama T, Shimizu H, Koide Y, Kamezawa H, Fukunaga JI, Kitagawa T, Tachibana H, Suzuki K, Kodaira T. Deep Learning-based Lung dose Prediction Using Chest X-ray Images in Non-small Cell Lung Cancer Radiotherapy. J Med Phys 2024; 49:33-40. [PMID: 38828071 PMCID: PMC11141742 DOI: 10.4103/jmp.jmp_122_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 06/05/2024] Open
Abstract
Purpose This study aimed to develop a deep learning model for the prediction of V20 (the volume of the lung parenchyma that received ≥20 Gy) during intensity-modulated radiation therapy using chest X-ray images. Methods The study utilized 91 chest X-ray images of patients with lung cancer acquired routinely during the admission workup. The prescription dose for the planning target volume was 60 Gy in 30 fractions. A convolutional neural network-based regression model was developed to predict V20. To evaluate model performance, the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE) were calculated with conducting a four-fold cross-validation method. The patient characteristics of the eligible data were treatment period (2018-2022) and V20 (19.3%; 4.9%-30.7%). Results The predictive results of the developed model for V20 were 0.16, 5.4%, and 4.5% for the R2, RMSE, and MAE, respectively. The median error was -1.8% (range, -13.0% to 9.2%). The Pearson correlation coefficient between the calculated and predicted V20 values was 0.40. As a binary classifier with V20 <20%, the model showed a sensitivity of 75.0%, specificity of 82.6%, diagnostic accuracy of 80.6%, and area under the receiver operator characteristic curve of 0.79. Conclusions The proposed deep learning chest X-ray model can predict V20 and play an important role in the early determination of patient treatment strategies.
Collapse
Affiliation(s)
- Takahiro Aoyama
- Department of Radiation Oncology, Aichi Cancer Center, Nagoya, Japan
| | - Hidetoshi Shimizu
- Department of Radiation Oncology, Aichi Cancer Center, Nagoya, Japan
| | - Yutaro Koide
- Department of Radiation Oncology, Aichi Cancer Center, Nagoya, Japan
| | - Hidemi Kamezawa
- Division of Radiological Sciences, Graduate School of Health Sciences, Teikyo University, Fukuoka, Japan
| | - Jun-Ichi Fukunaga
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Tomoki Kitagawa
- Department of Radiation Oncology, Aichi Cancer Center, Nagoya, Japan
| | | | - Kojiro Suzuki
- Department of Radiology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Takeshi Kodaira
- Department of Radiation Oncology, Aichi Cancer Center, Nagoya, Japan
| |
Collapse
|
5
|
Antar S, Abd El-Sattar HKH, Abdel-Rahman MH, F M Ghaleb F. COVID-19 infection segmentation using hybrid deep learning and image processing techniques. Sci Rep 2023; 13:22737. [PMID: 38123587 PMCID: PMC10733411 DOI: 10.1038/s41598-023-49337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) epidemic has become a worldwide problem that continues to affect people's lives daily, and the early diagnosis of COVID-19 has a critical importance on the treatment of infected patients for medical and healthcare organizations. To detect COVID-19 infections, medical imaging techniques, including computed tomography (CT) scan images and X-ray images, are considered some of the helpful medical tests that healthcare providers carry out. However, in addition to the difficulty of segmenting contaminated areas from CT scan images, these approaches also offer limited accuracy for identifying the virus. Accordingly, this paper addresses the effectiveness of using deep learning (DL) and image processing techniques, which serve to expand the dataset without the need for any augmentation strategies, and it also presents a novel approach for detecting COVID-19 virus infections in lung images, particularly the infection prediction issue. In our proposed method, to reveal the infection, the input images are first preprocessed using a threshold then resized to 128 × 128. After that, a density heat map tool is used for coloring the resized lung images. The three channels (red, green, and blue) are then separated from the colored image and are further preprocessed through image inverse and histogram equalization, and are subsequently fed, in independent directions, into three separate U-Nets with the same architecture for segmentation. Finally, the segmentation results are combined and run through a convolution layer one by one to get the detection. Several evaluation metrics using the CT scan dataset were used to measure the performance of the proposed approach in comparison with other state-of-the-art techniques in terms of accuracy, sensitivity, precision, and the dice coefficient. The experimental results of the proposed approach reached 99.71%, 0.83, 0.87, and 0.85, respectively. These results show that coloring the CT scan images dataset and then dividing each image into its RGB image channels can enhance the COVID-19 detection, and it also increases the U-Net power in the segmentation when merging the channel segmentation results. In comparison to other existing segmentation techniques employing bigger 512 × 512 images, this study is one of the few that can rapidly and correctly detect the COVID-19 virus with high accuracy on smaller 128 × 128 images using the metrics of accuracy, sensitivity, precision, and dice coefficient.
Collapse
Affiliation(s)
- Samar Antar
- Computer Science Division, Department of Mathematics, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | | | - Mohammad H Abdel-Rahman
- Computer Science Division, Department of Mathematics, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Fayed F M Ghaleb
- Computer Science Division, Department of Mathematics, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| |
Collapse
|
6
|
Phumkuea T, Wongsirichot T, Damkliang K, Navasakulpong A, Andritsch J. MSTAC: A Multi-Stage Automated Classification of COVID-19 Chest X-ray Images Using Stacked CNN Models. Tomography 2023; 9:2233-2246. [PMID: 38133077 PMCID: PMC10747997 DOI: 10.3390/tomography9060173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
This study introduces a Multi-Stage Automated Classification (MSTAC) system for COVID-19 chest X-ray (CXR) images, utilizing stacked Convolutional Neural Network (CNN) models. Suspected COVID-19 patients often undergo CXR imaging, making it valuable for disease classification. The study collected CXR images from public datasets and aimed to differentiate between COVID-19, non-COVID-19, and healthy cases. MSTAC employs two classification stages: the first distinguishes healthy from unhealthy cases, and the second further classifies COVID-19 and non-COVID-19 cases. Compared to a single CNN-Multiclass model, MSTAC demonstrated superior classification performance, achieving 97.30% accuracy and sensitivity. In contrast, the CNN-Multiclass model showed 94.76% accuracy and sensitivity. MSTAC's effectiveness is highlighted in its promising results over the CNN-Multiclass model, suggesting its potential to assist healthcare professionals in efficiently diagnosing COVID-19 cases. The system outperformed similar techniques, emphasizing its accuracy and efficiency in COVID-19 diagnosis. This research underscores MSTAC as a valuable tool in medical image analysis for enhanced disease classification.
Collapse
Affiliation(s)
- Thanakorn Phumkuea
- College of Digital Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Thakerng Wongsirichot
- Division of Computational Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Kasikrit Damkliang
- Division of Computational Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Asma Navasakulpong
- Division of Respiratory and Respiratory Critical Care Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Jarutas Andritsch
- Faculty of Business, Law and Digital Technologies, Solent University, Southampton SO14 0YN, UK;
| |
Collapse
|
7
|
Gopatoti A, Vijayalakshmi P. MTMC-AUR2CNet: Multi-textural multi-class attention recurrent residual convolutional neural network for COVID-19 classification using chest X-ray images. Biomed Signal Process Control 2023; 85:104857. [PMID: 36968651 PMCID: PMC10027978 DOI: 10.1016/j.bspc.2023.104857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/13/2023] [Accepted: 03/11/2023] [Indexed: 03/24/2023]
Abstract
Coronavirus disease (COVID-19) has infected over 603 million confirmed cases as of September 2022, and its rapid spread has raised concerns worldwide. More than 6.4 million fatalities in confirmed patients have been reported. According to reports, the COVID-19 virus causes lung damage and rapidly mutates before the patient receives any diagnosis-specific medicine. Daily increasing COVID-19 cases and the limited number of diagnosis tool kits encourage the use of deep learning (DL) models to assist health care practitioners using chest X-ray (CXR) images. The CXR is a low radiation radiography tool available in hospitals to diagnose COVID-19 and combat this spread. We propose a Multi-Textural Multi-Class (MTMC) UNet-based Recurrent Residual Convolutional Neural Network (MTMC-UR2CNet) and MTMC-UR2CNet with attention mechanism (MTMC-AUR2CNet) for multi-class lung lobe segmentation of CXR images. The lung lobe segmentation output of MTMC-UR2CNet and MTMC-AUR2CNet are mapped individually with their input CXRs to generate the region of interest (ROI). The multi-textural features are extracted from the ROI of each proposed MTMC network. The extracted multi-textural features from ROI are fused and are trained to the Whale optimization algorithm (WOA) based DeepCNN classifier on classifying the CXR images into normal (healthy), COVID-19, viral pneumonia, and lung opacity. The experimental result shows that the MTMC-AUR2CNet has superior performance in multi-class lung lobe segmentation of CXR images with an accuracy of 99.47%, followed by MTMC-UR2CNet with an accuracy of 98.39%. Also, MTMC-AUR2CNet improves the multi-textural multi-class classification accuracy of the WOA-based DeepCNN classifier to 97.60% compared to MTMC-UR2CNet.
Collapse
Affiliation(s)
- Anandbabu Gopatoti
- Department of Electronics and Communication Engineering, Hindusthan College of Engineering and Technology, Coimbatore, Tamil Nadu, India
- Centre for Research, Anna University, Chennai, Tamil Nadu, India
| | - P Vijayalakshmi
- Department of Electronics and Communication Engineering, Hindusthan College of Engineering and Technology, Coimbatore, Tamil Nadu, India
| |
Collapse
|
8
|
Mehrdad S, Shamout FE, Wang Y, Atashzar SF. Deep learning for deterioration prediction of COVID-19 patients based on time-series of three vital signs. Sci Rep 2023; 13:9968. [PMID: 37339986 PMCID: PMC10282033 DOI: 10.1038/s41598-023-37013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 06/14/2023] [Indexed: 06/22/2023] Open
Abstract
Unrecognized deterioration of COVID-19 patients can lead to high morbidity and mortality. Most existing deterioration prediction models require a large number of clinical information, typically collected in hospital settings, such as medical images or comprehensive laboratory tests. This is infeasible for telehealth solutions and highlights a gap in deterioration prediction models based on minimal data, which can be recorded at a large scale in any clinic, nursing home, or even at the patient's home. In this study, we develop and compare two prognostic models that predict if a patient will experience deterioration in the forthcoming 3 to 24 h. The models sequentially process routine triadic vital signs: (a) oxygen saturation, (b) heart rate, and (c) temperature. These models are also provided with basic patient information, including sex, age, vaccination status, vaccination date, and status of obesity, hypertension, or diabetes. The difference between the two models is the way that the temporal dynamics of the vital signs are processed. Model #1 utilizes a temporally-dilated version of the Long-Short Term Memory model (LSTM) for temporal processes, and Model #2 utilizes a residual temporal convolutional network (TCN) for this purpose. We train and evaluate the models using data collected from 37,006 COVID-19 patients at NYU Langone Health in New York, USA. The convolution-based model outperforms the LSTM based model, achieving a high AUROC of 0.8844-0.9336 for 3 to 24 h deterioration prediction on a held-out test set. We also conduct occlusion experiments to evaluate the importance of each input feature, which reveals the significance of continuously monitoring the variation of the vital signs. Our results show the prospect for accurate deterioration forecast using a minimum feature set that can be relatively easily obtained using wearable devices and self-reported patient information.
Collapse
Affiliation(s)
- Sarmad Mehrdad
- Department of Electrical and Computer Engineering, New York University (NYU), New York, USA
| | - Farah E Shamout
- Department of Biomedical Engineering, New York University (NYU), New York, USA
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi, UAE
- Computer Science and Engineering, New York University (NYU), New York, USA
| | - Yao Wang
- Department of Electrical and Computer Engineering, New York University (NYU), New York, USA
- Department of Biomedical Engineering, New York University (NYU), New York, USA
| | - S Farokh Atashzar
- Department of Electrical and Computer Engineering, New York University (NYU), New York, USA.
- Department of Biomedical Engineering, New York University (NYU), New York, USA.
- Department of Mechanical and Aerospace Engineering, New York University (NYU), New York, USA.
| |
Collapse
|
9
|
Cabrera Alvargonzález J, Larrañaga Janeiro A, Pérez Castro S, Martínez Torres J, Martínez Lamas L, Daviña Nuñez C, Del Campo-Pérez V, Suarez Luque S, Regueiro García B, Porteiro Fresco J. Proof of concept of the potential of a machine learning algorithm to extract new information from conventional SARS-CoV-2 rRT-PCR results. Sci Rep 2023; 13:7786. [PMID: 37179356 PMCID: PMC10182547 DOI: 10.1038/s41598-023-34882-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been and remains one of the major challenges modern society has faced thus far. Over the past few months, large amounts of information have been collected that are only now beginning to be assimilated. In the present work, the existence of residual information in the massive numbers of rRT-PCRs that tested positive out of the almost half a million tests that were performed during the pandemic is investigated. This residual information is believed to be highly related to a pattern in the number of cycles that are necessary to detect positive samples as such. Thus, a database of more than 20,000 positive samples was collected, and two supervised classification algorithms (a support vector machine and a neural network) were trained to temporally locate each sample based solely and exclusively on the number of cycles determined in the rRT-PCR of each individual. Overall, this study suggests that there is valuable residual information in the rRT-PCR positive samples that can be used to identify patterns in the development of the SARS-CoV-2 pandemic. The successful application of supervised classification algorithms to detect these patterns demonstrates the potential of machine learning techniques to aid in understanding the spread of the virus and its variants.
Collapse
Affiliation(s)
- Jorge Cabrera Alvargonzález
- Microbiology and Infectology Research Group, Galicia sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), Sergas, Vigo, Spain
- Universidade de Vigo, Vigo, Spain
| | | | - Sonia Pérez Castro
- Microbiology and Infectology Research Group, Galicia sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), Sergas, Vigo, Spain
- Universidade de Vigo, Vigo, Spain
| | - Javier Martínez Torres
- Applied Mathematics I, Telecommunications Engineering School, Universidad de Vigo, 36310, Vigo, Spain
| | - Lucía Martínez Lamas
- Microbiology and Infectology Research Group, Galicia sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), Sergas, Vigo, Spain
| | - Carlos Daviña Nuñez
- Microbiology and Infectology Research Group, Galicia sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Víctor Del Campo-Pérez
- Department of Preventive Medicine and Public Health, Álvaro Cunqueiro Hospital, Vigo, Pontevedra, Spain
| | - Silvia Suarez Luque
- Dirección Xeral de Saúde Pública, Consellería de Sanidade, Xunta de Galicia, Santiago de Compostela, A Coruña, Spain
| | - Benito Regueiro García
- Microbiology and Infectology Research Group, Galicia sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), Sergas, Vigo, Spain
- Microbiology and Parasitology Department, Medicine and Odontology, Universidade de Santiago, Santiago de Compostela, Spain
| | | |
Collapse
|
10
|
Lee MH, Shomanov A, Kudaibergenova M, Viderman D. Deep Learning Methods for Interpretation of Pulmonary CT and X-ray Images in Patients with COVID-19-Related Lung Involvement: A Systematic Review. J Clin Med 2023; 12:jcm12103446. [PMID: 37240552 DOI: 10.3390/jcm12103446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
SARS-CoV-2 is a novel virus that has been affecting the global population by spreading rapidly and causing severe complications, which require prompt and elaborate emergency treatment. Automatic tools to diagnose COVID-19 could potentially be an important and useful aid. Radiologists and clinicians could potentially rely on interpretable AI technologies to address the diagnosis and monitoring of COVID-19 patients. This paper aims to provide a comprehensive analysis of the state-of-the-art deep learning techniques for COVID-19 classification. The previous studies are methodically evaluated, and a summary of the proposed convolutional neural network (CNN)-based classification approaches is presented. The reviewed papers have presented a variety of CNN models and architectures that were developed to provide an accurate and quick automatic tool to diagnose the COVID-19 virus based on presented CT scan or X-ray images. In this systematic review, we focused on the critical components of the deep learning approach, such as network architecture, model complexity, parameter optimization, explainability, and dataset/code availability. The literature search yielded a large number of studies over the past period of the virus spread, and we summarized their past efforts. State-of-the-art CNN architectures, with their strengths and weaknesses, are discussed with respect to diverse technical and clinical evaluation metrics to safely implement current AI studies in medical practice.
Collapse
Affiliation(s)
- Min-Ho Lee
- School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Adai Shomanov
- School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Madina Kudaibergenova
- School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Dmitriy Viderman
- School of Medicine, Nazarbayev University, 5/1 Kerey and Zhanibek Khandar Str., Astana 010000, Kazakhstan
| |
Collapse
|
11
|
Rahman T, Chowdhury MEH, Khandakar A, Mahbub ZB, Hossain MSA, Alhatou A, Abdalla E, Muthiyal S, Islam KF, Kashem SBA, Khan MS, Zughaier SM, Hossain M. BIO-CXRNET: a robust multimodal stacking machine learning technique for mortality risk prediction of COVID-19 patients using chest X-ray images and clinical data. Neural Comput Appl 2023; 35:1-23. [PMID: 37362565 PMCID: PMC10157130 DOI: 10.1007/s00521-023-08606-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 04/11/2023] [Indexed: 06/28/2023]
Abstract
Nowadays, quick, and accurate diagnosis of COVID-19 is a pressing need. This study presents a multimodal system to meet this need. The presented system employs a machine learning module that learns the required knowledge from the datasets collected from 930 COVID-19 patients hospitalized in Italy during the first wave of COVID-19 (March-June 2020). The dataset consists of twenty-five biomarkers from electronic health record and Chest X-ray (CXR) images. It is found that the system can diagnose low- or high-risk patients with an accuracy, sensitivity, and F1-score of 89.03%, 90.44%, and 89.03%, respectively. The system exhibits 6% higher accuracy than the systems that employ either CXR images or biomarker data. In addition, the system can calculate the mortality risk of high-risk patients using multivariate logistic regression-based nomogram scoring technique. Interested physicians can use the presented system to predict the early mortality risks of COVID-19 patients using the web-link: Covid-severity-grading-AI. In this case, a physician needs to input the following information: CXR image file, Lactate Dehydrogenase (LDH), Oxygen Saturation (O2%), White Blood Cells Count, C-reactive protein, and Age. This way, this study contributes to the management of COVID-19 patients by predicting early mortality risk. Supplementary Information The online version contains supplementary material available at 10.1007/s00521-023-08606-w.
Collapse
Affiliation(s)
- Tawsifur Rahman
- Department of Electrical Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | | | - Amith Khandakar
- Department of Electrical Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Zaid Bin Mahbub
- Department of Physics and Mathematics, North South University, Dhaka, 1229 Bangladesh
| | | | - Abraham Alhatou
- Department of Biology, University of South Carolina (USC), Columbia, SC 29208 USA
| | - Eynas Abdalla
- Anesthesia Department, Hamad General Hospital, P.O. Box 3050, Doha, Qatar
| | - Sreekumar Muthiyal
- Department of Radiology, Hamad General Hospital, P.O. Box 3050, Doha, Qatar
| | | | - Saad Bin Abul Kashem
- Department of Computer Science, AFG College with the University of Aberdeen, Doha, Qatar
| | - Muhammad Salman Khan
- Department of Electrical Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Susu M. Zughaier
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Maqsud Hossain
- NSU Genome Research Institute (NGRI), North South University, Dhaka, 1229 Bangladesh
| |
Collapse
|
12
|
Dabbagh R, Jamal A, Bhuiyan Masud JH, Titi MA, Amer YS, Khayat A, Alhazmi TS, Hneiny L, Baothman FA, Alkubeyyer M, Khan SA, Temsah MH. Harnessing Machine Learning in Early COVID-19 Detection and Prognosis: A Comprehensive Systematic Review. Cureus 2023; 15:e38373. [PMID: 37265897 PMCID: PMC10230599 DOI: 10.7759/cureus.38373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 06/03/2023] Open
Abstract
During the early phase of the COVID-19 pandemic, reverse transcriptase-polymerase chain reaction (RT-PCR) testing faced limitations, prompting the exploration of machine learning (ML) alternatives for diagnosis and prognosis. Providing a comprehensive appraisal of such decision support systems and their use in COVID-19 management can aid the medical community in making informed decisions during the risk assessment of their patients, especially in low-resource settings. Therefore, the objective of this study was to systematically review the studies that predicted the diagnosis of COVID-19 or the severity of the disease using ML. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA), we conducted a literature search of MEDLINE (OVID), Scopus, EMBASE, and IEEE Xplore from January 1 to June 31, 2020. The outcomes were COVID-19 diagnosis or prognostic measures such as death, need for mechanical ventilation, admission, and acute respiratory distress syndrome. We included peer-reviewed observational studies, clinical trials, research letters, case series, and reports. We extracted data about the study's country, setting, sample size, data source, dataset, diagnostic or prognostic outcomes, prediction measures, type of ML model, and measures of diagnostic accuracy. Bias was assessed using the Prediction model Risk Of Bias ASsessment Tool (PROBAST). This study was registered in the International Prospective Register of Systematic Reviews (PROSPERO), with the number CRD42020197109. The final records included for data extraction were 66. Forty-three (64%) studies used secondary data. The majority of studies were from Chinese authors (30%). Most of the literature (79%) relied on chest imaging for prediction, while the remainder used various laboratory indicators, including hematological, biochemical, and immunological markers. Thirteen studies explored predicting COVID-19 severity, while the rest predicted diagnosis. Seventy percent of the articles used deep learning models, while 30% used traditional ML algorithms. Most studies reported high sensitivity, specificity, and accuracy for the ML models (exceeding 90%). The overall concern about the risk of bias was "unclear" in 56% of the studies. This was mainly due to concerns about selection bias. ML may help identify COVID-19 patients in the early phase of the pandemic, particularly in the context of chest imaging. Although these studies reflect that these ML models exhibit high accuracy, the novelty of these models and the biases in dataset selection make using them as a replacement for the clinicians' cognitive decision-making questionable. Continued research is needed to enhance the robustness and reliability of ML systems in COVID-19 diagnosis and prognosis.
Collapse
Affiliation(s)
- Rufaidah Dabbagh
- Family & Community Medicine Department, College of Medicine, King Saud University, Riyadh, SAU
| | - Amr Jamal
- Family & Community Medicine Department, College of Medicine, King Saud University, Riyadh, SAU
- Research Chair for Evidence-Based Health Care and Knowledge Translation, Family and Community Medicine Department, College of Medicine, King Saud University, Riyadh, SAU
| | | | - Maher A Titi
- Quality Management Department, King Saud University Medical City, Riyadh, SAU
- Research Chair for Evidence-Based Health Care and Knowledge Translation, Family and Community Medicine Department, College of Medicine, King Saud University, Riyadh, SAU
| | - Yasser S Amer
- Pediatrics, Quality Management Department, King Saud University Medical City, Riyadh, SAU
- Research Chair for Evidence-Based Health Care and Knowledge Translation, Family and Community Medicine Department, College of Medicine, King Saud University, Riyadh, SAU
| | - Afnan Khayat
- Health Information Management Department, Prince Sultan Military College of Health Sciences, Al Dhahran, SAU
| | - Taha S Alhazmi
- Family & Community Medicine Department, College of Medicine, King Saud University, Riyadh, SAU
| | - Layal Hneiny
- Medicine, Wegner Health Sciences Library, University of South Dakota, Vermillion, USA
| | - Fatmah A Baothman
- Department of Information Systems, King Abdulaziz University, Jeddah, SAU
| | | | - Samina A Khan
- School of Computer Sciences, Universiti Sains Malaysia, Penang, MYS
| | - Mohamad-Hani Temsah
- Pediatric Intensive Care Unit, Department of Pediatrics, King Saud University, Riyadh, SAU
| |
Collapse
|
13
|
Liu Y, Xing W, Zhao M, Lin M. A new classification method for diagnosing COVID-19 pneumonia based on joint CNN features of chest X-ray images and parallel pyramid MLP-mixer module. Neural Comput Appl 2023; 35:1-13. [PMID: 37362575 PMCID: PMC10147369 DOI: 10.1007/s00521-023-08604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/11/2023] [Indexed: 06/28/2023]
Abstract
During the past three years, the coronavirus disease 2019 (COVID-19) has swept the world. The rapid and accurate recognition of covid-19 pneumonia are ,therefore, of great importance. To handle this problem, we propose a new pipeline of deep learning framework for diagnosing COVID-19 pneumonia via chest X-ray images from normal, COVID-19, and other pneumonia patients. In detail, the self-trained YOLO-v4 network was first used to locate and segment the thoracic region, and the output images were scaled to the same size. Subsequently, the pre-trained convolutional neural network was adopted to extract the features of X-ray images from 13 convolutional layers, which were fused with the original image to form a 14-dimensional image matrix. It was then put into three parallel pyramid multi-layer perceptron (MLP)-Mixer modules for comprehensive feature extraction through spatial fusion and channel fusion based on different scales so as to grasp more extensive feature correlation. Finally, by combining all image features from the 14-channel output, the classification task was achieved using two fully connected layers as well as Softmax classifier for classification. Extensive simulations based on a total of 4099 chest X-ray images were conducted to verify the effectiveness of the proposed method. Experimental results indicated that our proposed method can achieve the best performance in almost all cases, which is good for auxiliary diagnosis of COVID-19 and has great clinical application potential.
Collapse
Affiliation(s)
- Yiwen Liu
- College of Information Science and Technology, Donghua University, Shanghai, People’s Republic of China
| | - Wenyu Xing
- School of Information Science and Technology, Fudan University, Shanghai, People’s Republic of China
| | - Mingbo Zhao
- College of Information Science and Technology, Donghua University, Shanghai, People’s Republic of China
- Department of Electrical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong People’s Republic of China
| | - Mingquan Lin
- Department of Electrical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong People’s Republic of China
| |
Collapse
|
14
|
Ullah Z, Usman M, Gwak J. MTSS-AAE: Multi-task semi-supervised adversarial autoencoding for COVID-19 detection based on chest X-ray images. EXPERT SYSTEMS WITH APPLICATIONS 2023; 216:119475. [PMID: 36619348 PMCID: PMC9810379 DOI: 10.1016/j.eswa.2022.119475] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/28/2022] [Accepted: 12/22/2022] [Indexed: 06/12/2023]
Abstract
Efficient diagnosis of COVID-19 plays an important role in preventing the spread of the disease. There are three major modalities to diagnose COVID-19 which include polymerase chain reaction tests, computed tomography scans, and chest X-rays (CXRs). Among these, diagnosis using CXRs is the most economical approach; however, it requires extensive human expertise to diagnose COVID-19 in CXRs, which may deprive it of cost-effectiveness. The computer-aided diagnosis with deep learning has the potential to perform accurate detection of COVID-19 in CXRs without human intervention while preserving its cost-effectiveness. Many efforts have been made to develop a highly accurate and robust solution. However, due to the limited amount of labeled data, existing solutions are evaluated on a small set of test dataset. In this work, we proposed a solution to this problem by using a multi-task semi-supervised learning (MTSSL) framework that utilized auxiliary tasks for which adequate data is publicly available. Specifically, we utilized Pneumonia, Lung Opacity, and Pleural Effusion as additional tasks using the ChesXpert dataset. We illustrated that the primary task of COVID-19 detection, for which only limited labeled data is available, can be improved by using this additional data. We further employed an adversarial autoencoder (AAE), which has a strong capability to learn powerful and discriminative features, within our MTSSL framework to maximize the benefit of multi-task learning. In addition, the supervised classification networks in combination with the unsupervised AAE empower semi-supervised learning, which includes a discriminative part in the unsupervised AAE training pipeline. The generalization of our framework is improved due to this semi-supervised learning and thus it leads to enhancement in COVID-19 detection performance. The proposed model is rigorously evaluated on the largest publicly available COVID-19 dataset and experimental results show that the proposed model attained state-of-the-art performance.
Collapse
Affiliation(s)
- Zahid Ullah
- Department of Software, Korea National University of Transportation, Chungju 27469, South Korea
| | - Muhammad Usman
- Department of Computer Science and Engineering, Seoul National University, Seoul 08826, South Korea
| | - Jeonghwan Gwak
- Department of Software, Korea National University of Transportation, Chungju 27469, South Korea
- Department of Biomedical Engineering, Korea National University of Transportation, Chungju 27469, South Korea
- Department of AI Robotics Engineering, Korea National University of Transportation, Chungju 27469, South Korea
- Department of IT Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, South Korea
| |
Collapse
|
15
|
D 3SENet: A hybrid deep feature extraction network for Covid-19 classification using chest X-ray images. Biomed Signal Process Control 2023; 82:104559. [PMID: 36618337 PMCID: PMC9805894 DOI: 10.1016/j.bspc.2022.104559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/01/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023]
Abstract
Covid-19 is one of the biggest global epidemics seen in the world in recent years. Because of this, people's daily lifestyles, the economic conditions of countries and individuals, and most importantly, their health status has been adversely affected all over the world. Millions of people around the world have died from this disease. For this reason, rapid and accurate detection of the disease is of great importance in terms of treatment and precautions. In addition, it is especially important to correctly distinguish between Covid-19 and non-Covid-19 pneumonia diseases for correct diagnosis and treatment. These two diseases cause similar symptoms, and the symptoms and the effects of the disease on the body should be carefully examined for their differentiation. Chest X-ray images, chest computerized tomography, and swab tests are commonly used to detect patients infected with COVID-19. This disease affects the lungs the most in the body and causes fatal side effects such as shortness of breath. Therefore, medical images taken from the chest play an important role in the diagnosis of the disease. The fact that X-rays are faster and cheaper than computerized tomography has led to an increase in studies on the detection of disease with X-rays. In recent years, the impressive results of deep learning in the field of computer vision have attracted researchers to this field when working with image data. This study aims to detect these diseases on chest X-ray images collected from Covid-19 patients, pneumonia patients, and healthy individuals. We proposed a hybrid feature extraction network namely D3SENET which consists of DarkNet53, DarkNet19, DenseNet201, SqueezeNet, and EfficientNetb0. After a balanced data set was prepared, feature vectors were obtained from images using deep learning-based CNN models and the size of feature vectors was reduced by feature selection algorithms. Obtained features were classified by traditional machine learning methods such as SVMs. The number of features to be selected was tested by the iterative increment method and the parameters with the highest accuracy rate were obtained. As a result, it was seen that healthy and infected individuals were detected in 3 classes with an accuracy rate of 98.78%. In addition, the confusion matrix, precision, recall values, and F1 score of the obtained model are also given.
Collapse
|
16
|
Manav M, Goyal M, Kumar A. Role of Optimal Features Selection with Machine Learning Algorithms for Chest X-ray Image Analysis. J Med Phys 2023; 48:195-203. [PMID: 37576090 PMCID: PMC10419742 DOI: 10.4103/jmp.jmp_104_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/26/2023] [Accepted: 05/06/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction The objective of the present study is to classify chest X-ray (CXR) images into COVID-positive and normal categories with the optimal number of features extracted from the images. The successful optimal feature selection algorithm that can represent images and the classification algorithm with good classification ability has been determined as the result of experiments. Materials and Methods This study presented a framework for the automatic detection of COVID-19 from the CXR images. To enhance small details, textures, and contrast of the images, contrast limited adaptive histogram equalization was used. Features were extracted from the first-order statistics, Gray-Level Co-occurrence Matrix, Gray-Level Run Length Matrix, local binary pattern, Law's Texture Energy Measures, Discrete Wavelet Transform, and Zernikes' Moments using an image feature extraction tool "pyFeats. For the feature selection, three nature-inspired optimization algorithms, Grey Wolf Optimization, Particle Swarm Optimization (PSO), and Genetic Algorithm, were used. For classification, Random Forest classifier, K-Nearest Neighbour classifier, support vector machine (SVM) classifier, and light gradient boosting model classifier were used. Results and Discussion For all the feature selection methods, the SVM classifier gives the most accurate and precise result compared to other classification models. Furthermore, in feature selection methods, PSO gives the best result as compared to other methods for feature selection. Using the combination of the SVM classifier with the PSO method, it was observed that the accuracy, precision, recall, and F1-score were 100%. Conclusion The result of the study indicates that with optimal features with the best choice of the classifier algorithm, the most accurate computer-aided diagnosis of CXR can be achieved. The approach presented in this study with optimal features may be utilized as a complementary tool to assist the radiologist in the early diagnosis of disease and making a more accurate decision.
Collapse
Affiliation(s)
- Mohini Manav
- Department of Physics, GLA University, Mathura, Uttar Pradesh, India
- Department of Radiotherapy, S N Medical College, Agra, Uttar Pradesh, India
| | - Monika Goyal
- Department of Physics, GLA University, Mathura, Uttar Pradesh, India
| | - Anuj Kumar
- Department of Radiotherapy, S N Medical College, Agra, Uttar Pradesh, India
| |
Collapse
|
17
|
Hammad MS, Ghoneim VF, Mabrouk MS, Al-Atabany WI. A hybrid deep learning approach for COVID-19 detection based on genomic image processing techniques. Sci Rep 2023; 13:4003. [PMID: 36899035 PMCID: PMC9999081 DOI: 10.1038/s41598-023-30941-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has been spreading quickly, threatening the public health system. Consequently, positive COVID-19 cases must be rapidly detected and treated. Automatic detection systems are essential for controlling the COVID-19 pandemic. Molecular techniques and medical imaging scans are among the most effective approaches for detecting COVID-19. Although these approaches are crucial for controlling the COVID-19 pandemic, they have certain limitations. This study proposes an effective hybrid approach based on genomic image processing (GIP) techniques to rapidly detect COVID-19 while avoiding the limitations of traditional detection techniques, using whole and partial genome sequences of human coronavirus (HCoV) diseases. In this work, the GIP techniques convert the genome sequences of HCoVs into genomic grayscale images using a genomic image mapping technique known as the frequency chaos game representation. Then, the pre-trained convolution neural network, AlexNet, is used to extract deep features from these images using the last convolution (conv5) and second fully-connected (fc7) layers. The most significant features were obtained by removing the redundant ones using the ReliefF and least absolute shrinkage and selection operator (LASSO) algorithms. These features are then passed to two classifiers: decision trees and k-nearest neighbors (KNN). Results showed that extracting deep features from the fc7 layer, selecting the most significant features using the LASSO algorithm, and executing the classification process using the KNN classifier is the best hybrid approach. The proposed hybrid deep learning approach detected COVID-19, among other HCoV diseases, with 99.71% accuracy, 99.78% specificity, and 99.62% sensitivity.
Collapse
Affiliation(s)
- Muhammed S Hammad
- Biomedical Engineering Department, Helwan University, Helwan, Egypt.
| | - Vidan F Ghoneim
- Biomedical Engineering Department, Helwan University, Helwan, Egypt
| | - Mai S Mabrouk
- Biomedical Engineering Department, Misr University for Science and Technology (MUST), 6th of October City, Egypt
| | - Walid I Al-Atabany
- Biomedical Engineering Department, Helwan University, Helwan, Egypt.,Center for Informatics Science, Nile University, Sheikh Zayed City, Egypt
| |
Collapse
|
18
|
Classification of COVID-19 Patients into Clinically Relevant Subsets by a Novel Machine Learning Pipeline Using Transcriptomic Features. Int J Mol Sci 2023; 24:ijms24054905. [PMID: 36902333 PMCID: PMC10002748 DOI: 10.3390/ijms24054905] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The persistent impact of the COVID-19 pandemic and heterogeneity in disease manifestations point to a need for innovative approaches to identify drivers of immune pathology and predict whether infected patients will present with mild/moderate or severe disease. We have developed a novel iterative machine learning pipeline that utilizes gene enrichment profiles from blood transcriptome data to stratify COVID-19 patients based on disease severity and differentiate severe COVID cases from other patients with acute hypoxic respiratory failure. The pattern of gene module enrichment in COVID-19 patients overall reflected broad cellular expansion and metabolic dysfunction, whereas increased neutrophils, activated B cells, T-cell lymphopenia, and proinflammatory cytokine production were specific to severe COVID patients. Using this pipeline, we also identified small blood gene signatures indicative of COVID-19 diagnosis and severity that could be used as biomarker panels in the clinical setting.
Collapse
|
19
|
Paul SG, Saha A, Biswas AA, Zulfiker MS, Arefin MS, Rahman MM, Reza AW. Combating Covid-19 using machine learning and deep learning: Applications, challenges, and future perspectives. ARRAY 2023; 17:100271. [PMID: 36530931 PMCID: PMC9737520 DOI: 10.1016/j.array.2022.100271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
COVID-19, a worldwide pandemic that has affected many people and thousands of individuals have died due to COVID-19, during the last two years. Due to the benefits of Artificial Intelligence (AI) in X-ray image interpretation, sound analysis, diagnosis, patient monitoring, and CT image identification, it has been further researched in the area of medical science during the period of COVID-19. This study has assessed the performance and investigated different machine learning (ML), deep learning (DL), and combinations of various ML, DL, and AI approaches that have been employed in recent studies with diverse data formats to combat the problems that have arisen due to the COVID-19 pandemic. Finally, this study shows the comparison among the stand-alone ML and DL-based research works regarding the COVID-19 issues with the combinations of ML, DL, and AI-based research works. After in-depth analysis and comparison, this study responds to the proposed research questions and presents the future research directions in this context. This review work will guide different research groups to develop viable applications based on ML, DL, and AI models, and will also guide healthcare institutes, researchers, and governments by showing them how these techniques can ease the process of tackling the COVID-19.
Collapse
Affiliation(s)
- Showmick Guha Paul
- Department of Computer Science and Engineering, Daffodil International University, Dhaka, Bangladesh
| | - Arpa Saha
- Department of Computer Science and Engineering, Daffodil International University, Dhaka, Bangladesh
| | - Al Amin Biswas
- Department of Computer Science and Engineering, Daffodil International University, Dhaka, Bangladesh,Corresponding author
| | - Md. Sabab Zulfiker
- Department of Computer Science and Engineering, Daffodil International University, Dhaka, Bangladesh
| | - Mohammad Shamsul Arefin
- Department of Computer Science and Engineering, Daffodil International University, Dhaka, Bangladesh,Department of Computer Science and Engineering, Chittagong University of Engineering and Technology, Chittagong, Bangladesh
| | - Md. Mahfujur Rahman
- Department of Computer Science and Engineering, Daffodil International University, Dhaka, Bangladesh
| | - Ahmed Wasif Reza
- Department of Computer Science and Engineering, East West University, Dhaka, Bangladesh
| |
Collapse
|
20
|
Gazeau S, Deng X, Ooi HK, Mostefai F, Hussin J, Heffernan J, Jenner AL, Craig M. The race to understand immunopathology in COVID-19: Perspectives on the impact of quantitative approaches to understand within-host interactions. IMMUNOINFORMATICS (AMSTERDAM, NETHERLANDS) 2023; 9:100021. [PMID: 36643886 PMCID: PMC9826539 DOI: 10.1016/j.immuno.2023.100021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/16/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
The COVID-19 pandemic has revealed the need for the increased integration of modelling and data analysis to public health, experimental, and clinical studies. Throughout the first two years of the pandemic, there has been a concerted effort to improve our understanding of the within-host immune response to the SARS-CoV-2 virus to provide better predictions of COVID-19 severity, treatment and vaccine development questions, and insights into viral evolution and the impacts of variants on immunopathology. Here we provide perspectives on what has been accomplished using quantitative methods, including predictive modelling, population genetics, machine learning, and dimensionality reduction techniques, in the first 26 months of the COVID-19 pandemic approaches, and where we go from here to improve our responses to this and future pandemics.
Collapse
Affiliation(s)
- Sonia Gazeau
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, Canada
| | - Xiaoyan Deng
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, Canada
| | - Hsu Kiang Ooi
- Digital Technologies Research Centre, National Research Council Canada, Toronto, Canada
| | - Fatima Mostefai
- Montréal Heart Institute Research Centre, Montréal, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Julie Hussin
- Montréal Heart Institute Research Centre, Montréal, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Jane Heffernan
- Modelling Infection and Immunity Lab, Mathematics Statistics, York University, Toronto, Canada
- Centre for Disease Modelling (CDM), Mathematics Statistics, York University, Toronto, Canada
| | - Adrianne L Jenner
- School of Mathematical Sciences, Queensland University of Technology, Brisbane Australia
| | - Morgan Craig
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, Canada
| |
Collapse
|
21
|
Comparison of the Diagnostic Performance of Deep Learning Algorithms for Reducing the Time Required for COVID-19 RT-PCR Testing. Viruses 2023; 15:v15020304. [PMID: 36851519 PMCID: PMC9966023 DOI: 10.3390/v15020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
(1) Background: Rapid and accurate negative discrimination enables efficient management of scarce isolated bed resources and adequate patient accommodation in the majority of areas experiencing an explosion of confirmed cases due to Omicron mutations. Until now, methods for artificial intelligence or deep learning to replace time-consuming RT-PCR have relied on CXR, chest CT, blood test results, or clinical information. (2) Methods: We proposed and compared five different types of deep learning algorithms (RNN, LSTM, Bi-LSTM, GRU, and transformer) for reducing the time required for RT-PCR diagnosis by learning the change in fluorescence value derived over time during the RT-PCR process. (3) Results: Among the five deep learning algorithms capable of training time series data, Bi-LSTM and GRU were shown to be able to decrease the time required for RT-PCR diagnosis by half or by 25% without significantly impairing the diagnostic performance of the COVID-19 RT-PCR test. (4) Conclusions: The diagnostic performance of the model developed in this study when 40 cycles of RT-PCR are used for diagnosis shows the possibility of nearly halving the time required for RT-PCR diagnosis.
Collapse
|
22
|
Lasker A, Obaidullah SM, Chakraborty C, Roy K. Application of Machine Learning and Deep Learning Techniques for COVID-19 Screening Using Radiological Imaging: A Comprehensive Review. SN COMPUTER SCIENCE 2022; 4:65. [PMID: 36467853 PMCID: PMC9702883 DOI: 10.1007/s42979-022-01464-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022]
Abstract
Lung, being one of the most important organs in human body, is often affected by various SARS diseases, among which COVID-19 has been found to be the most fatal disease in recent times. In fact, SARS-COVID 19 led to pandemic that spreads fast among the community causing respiratory problems. Under such situation, radiological imaging-based screening [mostly chest X-ray and computer tomography (CT) modalities] has been performed for rapid screening of the disease as it is a non-invasive approach. Due to scarcity of physician/chest specialist/expert doctors, technology-enabled disease screening techniques have been developed by several researchers with the help of artificial intelligence and machine learning (AI/ML). It can be remarkably observed that the researchers have introduced several AI/ML/DL (deep learning) algorithms for computer-assisted detection of COVID-19 using chest X-ray and CT images. In this paper, a comprehensive review has been conducted to summarize the works related to applications of AI/ML/DL for diagnostic prediction of COVID-19, mainly using X-ray and CT images. Following the PRISMA guidelines, total 265 articles have been selected out of 1715 published articles till the third quarter of 2021. Furthermore, this review summarizes and compares varieties of ML/DL techniques, various datasets, and their results using X-ray and CT imaging. A detailed discussion has been made on the novelty of the published works, along with advantages and limitations.
Collapse
Affiliation(s)
- Asifuzzaman Lasker
- Department of Computer Science & Engineering, Aliah University, Kolkata, India
| | - Sk Md Obaidullah
- Department of Computer Science & Engineering, Aliah University, Kolkata, India
| | - Chandan Chakraborty
- Department of Computer Science & Engineering, National Institute of Technical Teachers’ Training & Research Kolkata, Kolkata, India
| | - Kaushik Roy
- Department of Computer Science, West Bengal State University, Barasat, India
| |
Collapse
|
23
|
Jalali Moghaddam M, Ghavipour M. Towards smart diagnostic methods for COVID-19: Review of deep learning for medical imaging. IPEM-TRANSLATION 2022; 3:100008. [PMID: 36312890 PMCID: PMC9597575 DOI: 10.1016/j.ipemt.2022.100008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/08/2022]
Abstract
The infectious disease known as COVID-19 has spread dramatically all over the world since December 2019. The fast diagnosis and isolation of infected patients are key factors in slowing down the spread of this virus and better management of the pandemic. Although the CT and X-ray modalities are commonly used for the diagnosis of COVID-19, identifying COVID-19 patients from medical images is a time-consuming and error-prone task. Artificial intelligence has shown to have great potential to speed up and optimize the prognosis and diagnosis process of COVID-19. Herein, we review publications on the application of deep learning (DL) techniques for diagnostics of patients with COVID-19 using CT and X-ray chest images for a period from January 2020 to October 2021. Our review focuses solely on peer-reviewed, well-documented articles. It provides a comprehensive summary of the technical details of models developed in these articles and discusses the challenges in the smart diagnosis of COVID-19 using DL techniques. Based on these challenges, it seems that the effectiveness of the developed models in clinical use needs to be further investigated. This review provides some recommendations to help researchers develop more accurate prediction models.
Collapse
Affiliation(s)
- Marjan Jalali Moghaddam
- Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran
| | - Mina Ghavipour
- Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
24
|
Kistenev YV, Vrazhnov DA, Shnaider EE, Zuhayri H. Predictive models for COVID-19 detection using routine blood tests and machine learning. Heliyon 2022; 8:e11185. [PMID: 36311357 PMCID: PMC9595489 DOI: 10.1016/j.heliyon.2022.e11185] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022] Open
Abstract
The problem of accurate, fast, and inexpensive COVID-19 tests has been urgent till now. Standard COVID-19 tests need high-cost reagents and specialized laboratories with high safety requirements, are time-consuming. Data of routine blood tests as a base of SARS-CoV-2 invasion detection allows using the most practical medicine facilities. But blood tests give general information about a patient's state, which is not directly associated with COVID-19. COVID-19-specific features should be selected from the list of standard blood characteristics, and decision-making software based on appropriate clinical data should be created. This review describes the abilities to develop predictive models for COVID-19 detection using routine blood tests and machine learning.
Collapse
Affiliation(s)
- Yury V. Kistenev
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin Av., 634050 Tomsk, Russia
| | - Denis A. Vrazhnov
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin Av., 634050 Tomsk, Russia
| | - Ekaterina E. Shnaider
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin Av., 634050 Tomsk, Russia
| | - Hala Zuhayri
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin Av., 634050 Tomsk, Russia
| |
Collapse
|
25
|
Costa YMG, Silva SA, Teixeira LO, Pereira RM, Bertolini D, Britto AS, Oliveira LS, Cavalcanti GDC. COVID-19 Detection on Chest X-ray and CT Scan: A Review of the Top-100 Most Cited Papers. SENSORS (BASEL, SWITZERLAND) 2022; 22:7303. [PMID: 36236402 PMCID: PMC9570662 DOI: 10.3390/s22197303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Since the beginning of the COVID-19 pandemic, many works have been published proposing solutions to the problems that arose in this scenario. In this vein, one of the topics that attracted the most attention is the development of computer-based strategies to detect COVID-19 from thoracic medical imaging, such as chest X-ray (CXR) and computerized tomography scan (CT scan). By searching for works already published on this theme, we can easily find thousands of them. This is partly explained by the fact that the most severe worldwide pandemic emerged amid the technological advances recently achieved, and also considering the technical facilities to deal with the large amount of data produced in this context. Even though several of these works describe important advances, we cannot overlook the fact that others only use well-known methods and techniques without a more relevant and critical contribution. Hence, differentiating the works with the most relevant contributions is not a trivial task. The number of citations obtained by a paper is probably the most straightforward and intuitive way to verify its impact on the research community. Aiming to help researchers in this scenario, we present a review of the top-100 most cited papers in this field of investigation according to the Google Scholar search engine. We evaluate the distribution of the top-100 papers taking into account some important aspects, such as the type of medical imaging explored, learning settings, segmentation strategy, explainable artificial intelligence (XAI), and finally, the dataset and code availability.
Collapse
Affiliation(s)
- Yandre M. G. Costa
- Departamento de Informática, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | - Sergio A. Silva
- Departamento de Informática, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | - Lucas O. Teixeira
- Departamento de Informática, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | | | - Diego Bertolini
- Departamento Acadêmico de Ciência da Computação, Universidade Tecnológica Federal do Paraná, Campo Mourão 87301-899, Brazil
| | - Alceu S. Britto
- Departmento de Ciência da Computação, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Luiz S. Oliveira
- Departamento de Informática, Universidade Federal do Paraná, Curitiba 81531-980, Brazil
| | | |
Collapse
|
26
|
Pramanik R, Dey S, Malakar S, Mirjalili S, Sarkar R. TOPSIS aided ensemble of CNN models for screening COVID-19 in chest X-ray images. Sci Rep 2022; 12:15409. [PMID: 36104401 PMCID: PMC9471038 DOI: 10.1038/s41598-022-18463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
The novel coronavirus (COVID-19), has undoubtedly imprinted our lives with its deadly impact. Early testing with isolation of the individual is the best possible way to curb the spread of this deadly virus. Computer aided diagnosis (CAD) provides an alternative and cheap option for screening of the said virus. In this paper, we propose a convolution neural network (CNN)-based CAD method for COVID-19 and pneumonia detection from chest X-ray images. We consider three input types for three identical base classifiers. To capture maximum possible complementary features, we consider the original RGB image, Red channel image and the original image stacked with Robert's edge information. After that we develop an ensemble strategy based on the technique for order preference by similarity to an ideal solution (TOPSIS) to aggregate the outcomes of base classifiers. The overall framework, called TOPCONet, is very light in comparison with standard CNN models in terms of the number of trainable parameters required. TOPCONet achieves state-of-the-art results when evaluated on the three publicly available datasets: (1) IEEE COVID-19 dataset + Kaggle Pneumonia Dataset, (2) Kaggle Radiography dataset and (3) COVIDx.
Collapse
|
27
|
Development of deep learning chest X-ray model for cardiac dose prediction in left-sided breast cancer radiotherapy. Sci Rep 2022; 12:13706. [PMID: 35961992 PMCID: PMC9372519 DOI: 10.1038/s41598-022-16583-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/12/2022] [Indexed: 11/08/2022] Open
Abstract
Deep inspiration breath-hold (DIBH) is widely used to reduce the cardiac dose in left-sided breast cancer radiotherapy. This study aimed to develop a deep learning chest X-ray model for cardiac dose prediction to select patients with a potentially high risk of cardiac irradiation and need for DIBH radiotherapy. We used 103 pairs of anteroposterior and lateral chest X-ray data of left-sided breast cancer patients (training cohort: n = 59, validation cohort: n = 19, test cohort: n = 25). All patients underwent breast-conserving surgery followed by DIBH radiotherapy: the treatment plan consisted of three-dimensional, two opposing tangential radiation fields. The prescription dose of the planning target volume was 42.56 Gy in 16 fractions. A convolutional neural network-based regression model was developed to predict the mean heart dose (∆MHD) reduction between free-breathing (MHDFB) and DIBH. The model performance is evaluated as a binary classifier by setting the cutoff value of ∆MHD > 1 Gy. The patient characteristics were as follows: the median (IQR) age was 52 (47–61) years, MHDFB was 1.75 (1.14–2.47) Gy, and ∆MHD was 1.00 (0.52–1.64) Gy. The classification performance of the developed model showed a sensitivity of 85.7%, specificity of 90.9%, a positive predictive value of 92.3%, a negative predictive value of 83.3%, and a diagnostic accuracy of 88.0%. The AUC value of the ROC curve was 0.864. The proposed model could predict ∆MHD in breast radiotherapy, suggesting the potential of a classifier in which patients are more desirable for DIBH.
Collapse
|
28
|
Gopatoti A, Vijayalakshmi P. CXGNet: A tri-phase chest X-ray image classification for COVID-19 diagnosis using deep CNN with enhanced grey-wolf optimizer. Biomed Signal Process Control 2022; 77:103860. [PMID: 35692695 PMCID: PMC9167923 DOI: 10.1016/j.bspc.2022.103860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/17/2022] [Accepted: 06/04/2022] [Indexed: 11/15/2022]
Abstract
The coronavirus disease 2019 (COVID-19) epidemic had a significant impact on daily life in many nations and global public health. COVID's quick spread has become one of the biggest disruptive calamities in the world. In the fight against COVID-19, it's critical to keep a close eye on the initial stage of infection in patients. Furthermore, early COVID-19 discovery by precise diagnosis, especially in patients with no evident symptoms, may reduce the patient's death rate and can stop the spread of COVID-19. When compared to CT images, chest X-ray (CXR) images are now widely employed for COVID-19 diagnosis since CXR images contain more robust features of the lung. Furthermore, radiologists can easily diagnose CXR images because of its operating speed and low cost, and it is promising for emergency situations and therapy. This work proposes a tri-stage CXR image based COVID-19 classification model using deep learning convolutional neural networks (DLCNN) with an optimal feature selection technique named as enhanced grey-wolf optimizer with genetic algorithm (EGWO-GA), which is denoted as CXGNet. The proposed CXGNet is implemented as multiple classes, such as 4-class, 3-class, and 2-class models based on the diseases. Extensive simulation outcome discloses the superiority of the proposed CXGNet model with enhanced classification accuracy of 94.00% for the 4-class model, 97.05% of accuracy for the 3-class model, and 100% accuracy for the 2-class model as compared to conventional methods.
Collapse
Affiliation(s)
- Anandbabu Gopatoti
- Department of Electronics and Communication Engineering, Hindusthan College of Engineering and Technology, Coimbatore, Tamil Nadu, India
- Anna University, Chennai, Tamil Nadu, India
| | - P Vijayalakshmi
- Department of Electronics and Communication Engineering, Hindusthan College of Engineering and Technology, Coimbatore, Tamil Nadu, India
| |
Collapse
|
29
|
Rajeswari R, Gampala V, Maram B, Cristin R. FWLICM-Deep Learning: Fuzzy Weighted Local Information C-Means Clustering-Based Lung Lobe Segmentation with Deep Learning for COVID-19 Detection. J Digit Imaging 2022; 35:1463-1478. [PMID: 35790588 PMCID: PMC9255540 DOI: 10.1007/s10278-022-00667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/26/2022] [Accepted: 06/06/2022] [Indexed: 10/25/2022] Open
Abstract
Coronavirus (COVID-19) creates an extensive range of respiratory contagions, and it is a kind of ribonucleic acid (RNA) virus, which affects both animals and humans. Moreover, COVID-19 is a new disease, which produces contamination in upper respiration alterritory and lungs. The new COVID is a rapidly spreading pathogen globally, and it threatens billions of humans' lives. However, it is significant to identify positive cases in order to avoid the spread of plague and to speedily treat infected patients. Hence, in this paper, the WSCA-based RMDL approach is devised for COVID-19 prediction by means of chest X-ray images. Moreover, Fuzzy Weighted Local Information C-Means (FWLICM) approach is devised in order to segment lung lobes. The developed FWLICM method is designed by modifying the Fuzzy Local Information C-Means (FLICM) technique. Additionally, random multimodel deep learning (RMDL) classifier is utilized for the COVID-19 prediction process. The new optimization approach, named water sine cosine algorithm (WSCA), is devised in order to obtain an effective prediction. The developed WSCA is newly designed by incorporating sine cosine algorithm (SCA) and water cycle algorithm (WCA). The developed WSCA-driven RMDL approach outperforms other COVID-19 prediction techniques with regard to accuracy, specificity, sensitivity, and dice score of 92.41%, 93.55%, 92.14%, and 90.02%.
Collapse
Affiliation(s)
- R Rajeswari
- Department of Electronics and Communication Engineering, Rajalakshmi Institute of Technology, Chennai, India.
| | - Veerraju Gampala
- Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522502, Andhra Pradesh, India
| | - Balajee Maram
- Department of Computer Science and Engineering, Chitkara University Institute of Engineering and Technology, Chitkara University, Baddi, Himachal Pradesh, India
| | - R Cristin
- Department of Computer Science and Engineering, GMR Institute of Technology, Rajam, Andhra Pradesh, India
| |
Collapse
|
30
|
Development and Validation of a Multimodal-Based Prognosis and Intervention Prediction Model for COVID-19 Patients in a Multicenter Cohort. SENSORS 2022; 22:s22135007. [PMID: 35808502 PMCID: PMC9269794 DOI: 10.3390/s22135007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023]
Abstract
The ability to accurately predict the prognosis and intervention requirements for treating highly infectious diseases, such as COVID-19, can greatly support the effective management of patients, especially in resource-limited settings. The aim of the study is to develop and validate a multimodal artificial intelligence (AI) system using clinical findings, laboratory data and AI-interpreted features of chest X-rays (CXRs), and to predict the prognosis and the required interventions for patients diagnosed with COVID-19, using multi-center data. In total, 2282 real-time reverse transcriptase polymerase chain reaction-confirmed COVID-19 patients’ initial clinical findings, laboratory data and CXRs were retrospectively collected from 13 medical centers in South Korea, between January 2020 and June 2021. The prognostic outcomes collected included intensive care unit (ICU) admission and in-hospital mortality. Intervention outcomes included the use of oxygen (O2) supplementation, mechanical ventilation and extracorporeal membrane oxygenation (ECMO). A deep learning algorithm detecting 10 common CXR abnormalities (DLAD-10) was used to infer the initial CXR taken. A random forest model with a quantile classifier was used to predict the prognostic and intervention outcomes, using multimodal data. The area under the receiver operating curve (AUROC) values for the single-modal model, using clinical findings, laboratory data and the outputs from DLAD-10, were 0.742 (95% confidence interval [CI], 0.696−0.788), 0.794 (0.745−0.843) and 0.770 (0.724−0.815), respectively. The AUROC of the combined model, using clinical findings, laboratory data and DLAD-10 outputs, was significantly higher at 0.854 (0.820−0.889) than that of all other models (p < 0.001, using DeLong’s test). In the order of importance, age, dyspnea, consolidation and fever were significant clinical variables for prediction. The most predictive DLAD-10 output was consolidation. We have shown that a multimodal AI model can improve the performance of predicting both the prognosis and intervention in COVID-19 patients, and this could assist in effective treatment and subsequent resource management. Further, image feature extraction using an established AI engine with well-defined clinical outputs, and combining them with different modes of clinical data, could be a useful way of creating an understandable multimodal prediction model.
Collapse
|
31
|
Majumder D. Development of a Fast Fourier Transform-based Analytical Method for COVID-19 Diagnosis from Chest X-Ray Images Using GNU Octave. J Med Phys 2022; 47:279-286. [PMID: 36684704 PMCID: PMC9846998 DOI: 10.4103/jmp.jmp_26_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/13/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
Purpose Many artificial intelligence-based computational procedures are developed to diagnose COVID-19 infection from chest X-ray (CXR) images, as diagnosis by CXR imaging is less time consuming and economically cheap compared to other detection procedures. Due to unavailability of skilled computer professionals and high computer architectural resource, majority of the employed methods are difficult to implement in rural and poor economic settings. Majority of such reports are devoid of codes and ignores related diseases (pneumonia). The absence of codes makes limitation in applying them widely. Hence, validation testing followed by evidence-based medical practice is difficult. The present work was aimed to develop a simple method that requires a less computational expertise and minimal level of computer resource, but with statistical inference. Materials and Methods A Fast Fourier Transform-based (FFT) method was developed with GNU Octave, a free and open-source platform. This was employed to the images of CXR for further analysis. For statistical inference, two variables, i.e., the highest peak and number of peaks in the FFT distribution plot were considered. Results The comparison of mean values among different groups (normal, COVID-19, viral, and bacterial pneumonia [BP]) showed statistical significance, especially when compared to normal, except between viral and BP groups. Conclusion Parametric statistical inference from our result showed high level of significance (P < 0.001). This is comparable to the available artificial intelligence-based methods (where accuracy is about 94%). Developed method is easy, availability with codes, and requires a minimal level of computer resource and can be tested with a small sample size in different demography, and hence, be implemented in a poor socioeconomic setting.
Collapse
Affiliation(s)
- Durjoy Majumder
- Department of Physiology, West Bengal State University, Kolkata, West Bengal, India
| |
Collapse
|
32
|
Automated Screening of COVID-19-Based Tongue Image on Chinese Medicine. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6825576. [PMID: 35782081 PMCID: PMC9246631 DOI: 10.1155/2022/6825576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 05/01/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022]
Abstract
Objective Artificial intelligence-powered screening systems of coronavirus disease 2019 (COVID-19) are urgently demanding since the ongoing outbreak of SARS-CoV-2 worldwide. Chest CT or X-ray is not sufficient to support the large-scale screening of COVID-19 because mildly-infected patients do not have imaging features on these images. Therefore, it is imperative to exploit supplementary medical imaging strategies. Traditional Chinese medicine has played an essential role in the fight against COVID-19. Methods In this paper, we conduct two kinds of verification experiments based on a newly-collected multi-modality dataset, which consists of three types of modalities: tongue images, chest CT scans, and X-ray images. First, we study a binary classification experiment on tongue images to verify the discriminative ability between COVID-19 and non-COVID-19. Second, we design extensive multimodality experiments to validate whether introducing tongue image can improve the screening accuracy of COVID-19 based on chest CT or X-ray images. Results Tongue image screening of COVID-19 showed that the accuracy (ACC), sensitivity (SEN), specificity (SPEC), and Matthew correlation coefficient (MCC) of the improved AlexNet and Googlenet both reached 98.39%, 98.97%, 96.67%, and 99.11%. The fusion of chest CT and tongue images used a tandem multimodal classifier fusion strategy to achieve optimal classification, and the results and screening accuracy of COVID-19 reached 98.98%, resulting in a significant improvement of 4.75% the highest accuracy in 375 years compared with the single-modality model. The fusion of chest x-rays and tongue images also had good classification accuracy. Conclusions Both experimental results demonstrate that tongue image not only has an excellent discriminative ability for screening COVID-19 but also can improve the screening accuracy based on chest CT or X-rays. To the best of our knowledge, it is the first work that verifies the effectiveness of tongue image on screening COVID-19. This paper provides a new perspective and a novel solution that contributes to large-scale screening toward fast stopping the pandemic of COVID-19.
Collapse
|
33
|
Heidari A, Jafari Navimipour N, Unal M, Toumaj S. Machine learning applications for COVID-19 outbreak management. Neural Comput Appl 2022; 34:15313-15348. [PMID: 35702664 PMCID: PMC9186489 DOI: 10.1007/s00521-022-07424-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 05/10/2022] [Indexed: 12/29/2022]
Abstract
Recently, the COVID-19 epidemic has resulted in millions of deaths and has impacted practically every area of human life. Several machine learning (ML) approaches are employed in the medical field in many applications, including detecting and monitoring patients, notably in COVID-19 management. Different medical imaging systems, such as computed tomography (CT) and X-ray, offer ML an excellent platform for combating the pandemic. Because of this need, a significant quantity of study has been carried out; thus, in this work, we employed a systematic literature review (SLR) to cover all aspects of outcomes from related papers. Imaging methods, survival analysis, forecasting, economic and geographical issues, monitoring methods, medication development, and hybrid apps are the seven key uses of applications employed in the COVID-19 pandemic. Conventional neural networks (CNNs), long short-term memory networks (LSTM), recurrent neural networks (RNNs), generative adversarial networks (GANs), autoencoders, random forest, and other ML techniques are frequently used in such scenarios. Next, cutting-edge applications related to ML techniques for pandemic medical issues are discussed. Various problems and challenges linked with ML applications for this pandemic were reviewed. It is expected that additional research will be conducted in the upcoming to limit the spread and catastrophe management. According to the data, most papers are evaluated mainly on characteristics such as flexibility and accuracy, while other factors such as safety are overlooked. Also, Keras was the most often used library in the research studied, accounting for 24.4 percent of the time. Furthermore, medical imaging systems are employed for diagnostic reasons in 20.4 percent of applications.
Collapse
Affiliation(s)
- Arash Heidari
- Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Department of Computer Engineering, Shabestar Branch, Islamic Azad University, Shabestar, Iran
| | | | - Mehmet Unal
- Department of Computer Engineering, Nisantasi University, Istanbul, Turkey
| | - Shiva Toumaj
- Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
34
|
2dCNN-BiCuDNNLSTM: Hybrid Deep-Learning-Based Approach for Classification of COVID-19 X-ray Images. SUSTAINABILITY 2022. [DOI: 10.3390/su14116785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The coronavirus (COVID-19) is a major global disaster of humankind, in the 21st century. COVID-19 initiates breathing infection, including pneumonia, common cold, sneezing, and coughing. Initial detection becomes crucial, to classify the virus and limit its spread. COVID-19 infection is similar to other types of pneumonia, and it may result in severe pneumonia, with bundles of illness onsets. This research is focused on identifying people affected by COVID-19 at a very early stage, through chest X-ray images. Chest X-ray classification is a beneficial method in the identification, follow up, and evaluation of treatment efficiency, for people with pneumonia. This research, also, considered chest X-ray classification as a basic method to evaluate the existence of lung irregularities in symptomatic patients, alleged for COVID-19 disease. The aim of this research is to classify COVID-19 samples from normal chest X-ray images and pneumonia-affected chest X-ray images of people, for early identification of the disease. This research will help people in diagnosing individuals for viruses and insisting that people receive proper treatment as well as preventive action, to stop the spread of the virus. To provide accurate classification of disease in patients’ chest X-ray images, this research proposed a novel classification model, named 2dCNN-BiCuDNNLSTM, which combines two-dimensional Convolutional Neural Network (CNN) and a Bidirectional CUDA Deep Neural Network Long Short-Term Memory (BiCuDNNLSTM). Deep learning is known for identifying the patterns in available data that will be helpful in accurate classification of disease. The proposed model (2dCNN and BiCuDNNLSTM layers, with proper hyperparameters) can differentiate normal chest X-rays from viral pneumonia and COVID-19 ones, with high accuracy. A total of 6863 X-ray images (JPEG) (1000 COVID-19 patients, 3863 normal cases, and 2000 pneumonia patients) have been engaged, to examine the achievement of the suggested neural network; 80% of the images dataset for every group is received for proposed model training, 10% is accepted for validation, and 10% is accepted for testing. It is observed that the proposed model acquires the towering classification accuracy of 93%. The proposed network is used for predictive analysis, to prompt people regarding the risk of early detection of COVID-19. X-ray images help to classify people with COVID-19 variants and to indicate the severity of disease in the future. This study demonstrates the effectiveness of the proposed CUDA-enabled hybrid deep learning models, to classify the X-ray image data, with a high accuracy of detecting COVID-19. It reveals that the proposed model can be applicable in numerous virus classifications. The chest X-ray classification is a commonly available and reasonable approach, for diagnosing people with lower respiratory signs or suspected COVID-19. Therefore, it is demonstrated that the proposed model has an efficient and promising accomplishment for classifying COVID-19 through X-ray images. The proposed hybrid model can, efficiently, preserve the comprehensive characteristic facts of the image data, for more exceptional concluding classification results than an individual neural network.
Collapse
|
35
|
Pandey SK, Janghel RR, Mishra PK, Kaabra R. Machine learning based COVID -19 disease recognition using CT images of SIRM database. J Med Eng Technol 2022; 46:590-603. [PMID: 35639099 DOI: 10.1080/03091902.2022.2080883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The COVID-19 pandemic, probably one of the most widespread pandemics humanity has encountered in the twenty first century, caused death to almost 1.75 M people worldwide, impacting almost 80 M lives with direct contact. In order to contain the spread of coronavirus, it is necessary to develop a reliant and quick method to identify those who are affected and isolate them until full recovery is made. The imagery knowledge has been shown to be useful for quick COVID-19 diagnosis. Though the scans of computational tomography (CT) demonstrate a range of viral infection signals, considering the vast number of images, certain visual characteristics are challenging to distinguish and can take a long time to be identified by radiologists. In this study for detection of the COVID-19, a dataset is formed by taking 3764 images. The feature extraction process is applied to the dataset to increase the classification performance. Techniques like Grey Level Co-occurrence Matrix (GLCM) and Discrete Wavelet Transform (DWT) are used for feature extraction. Then various machine learning algorithms applied such as Support Vector Machines (SVM), Linear Discriminant Analysis (LDA), Multi- Level Perceptron, Naive Bayes, K-Nearest Neighbours and Random Forests are used for classification of COVID-19 disease detection. Sensitivity, Specificity, Accuracy, Precision, and F-score are the metrics used to measure the performance of different machine learning models. Among these machine learning models SVM with GLCM as feature extraction technique using 10-fold cross validation gives the best classification result with 99.70% accuracy, 99.80% sensitivity and 97.03% F-score. We also ran these tests on different data sets and found that the results are similar across those too, as discussed later in the results section.
Collapse
Affiliation(s)
- Saroj Kumar Pandey
- Department of Computer Engineering & Applications, GLA University, Mathura, India
| | - Rekh Ram Janghel
- Department of Information Technology, National Institute of Information Technology, Raipur, India
| | | | - Rachana Kaabra
- Department of Information Technology, RCET, Bhilai, India
| |
Collapse
|
36
|
Ho TT, Tran KD, Huang Y. FedSGDCOVID: Federated SGD COVID-19 Detection under Local Differential Privacy Using Chest X-ray Images and Symptom Information. SENSORS (BASEL, SWITZERLAND) 2022; 22:3728. [PMID: 35632136 PMCID: PMC9147951 DOI: 10.3390/s22103728] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022]
Abstract
Coronavirus (COVID-19) has created an unprecedented global crisis because of its detrimental effect on the global economy and health. COVID-19 cases have been rapidly increasing, with no sign of stopping. As a result, test kits and accurate detection models are in short supply. Early identification of COVID-19 patients will help decrease the infection rate. Thus, developing an automatic algorithm that enables the early detection of COVID-19 is essential. Moreover, patient data are sensitive, and they must be protected to prevent malicious attackers from revealing information through model updates and reconstruction. In this study, we presented a higher privacy-preserving federated learning system for COVID-19 detection without sharing data among data owners. First, we constructed a federated learning system using chest X-ray images and symptom information. The purpose is to develop a decentralized model across multiple hospitals without sharing data. We found that adding the spatial pyramid pooling to a 2D convolutional neural network improves the accuracy of chest X-ray images. Second, we explored that the accuracy of federated learning for COVID-19 identification reduces significantly for non-independent and identically distributed (Non-IID) data. We then proposed a strategy to improve the model's accuracy on Non-IID data by increasing the total number of clients, parallelism (client-fraction), and computation per client. Finally, for our federated learning model, we applied a differential privacy stochastic gradient descent (DP-SGD) to improve the privacy of patient data. We also proposed a strategy to maintain the robustness of federated learning to ensure the security and accuracy of the model.
Collapse
Affiliation(s)
- Trang-Thi Ho
- Research Center for Information Technology Innovation, Academia Sinica, Taipei 10607, Taiwan; (K.-D.T.); (Y.H.)
| | | | | |
Collapse
|
37
|
Pan L, Ji B, Wang H, Wang L, Liu M, Chongcheawchamnan M, Peng S. MFDNN: multi-channel feature deep neural network algorithm to identify COVID19 chest X-ray images. Health Inf Sci Syst 2022; 10:4. [PMID: 35432950 PMCID: PMC9004212 DOI: 10.1007/s13755-022-00174-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
The use of chest X-ray images (CXI) to detect Severe Acute Respiratory Syndrome Coronavirus 2 (SARS CoV-2) caused by Coronavirus Disease 2019 (COVID19) is life-saving important for both patients and doctors. This research proposes a multi-channel feature deep neural network (MFDNN) algorithm to screen people infected with COVID19. The algorithm integrates data over-sampling technology and MFDNN model to carry out the training. The oversampling technique reduces the deviation of the prior probability of the MFDNN algorithm on unbalanced data. Multi-channel feature fusion technology improves the efficiency of feature extraction and the accuracy of model diagnosis. In the experiment, Compared with traditional deep learning models (VGG19, GoogLeNet, Resnet50, Desnet201), the MFDNN model obtains an average test accuracy of 93.19% in all data. Furthermore, in each type of screening, the precision, recall, and F1 Score of the MFDNN model are also better than traditional deep learning networks. Furthermore, through ablation experiments, we proved that a multi-channel convolutional neural network (CNN) is superior to single-channel CNN, additional layer and PSN module, and indirectly proved the sufficiency and necessity of each step of the MFDNN classification method. Finally, our experimental code will be placed at https://github.com/panliangrui/covid19.
Collapse
|
38
|
Bozkurt F. A deep and handcrafted features-based framework for diagnosis of COVID-19 from chest x-ray images. CONCURRENCY AND COMPUTATION : PRACTICE & EXPERIENCE 2022; 34:e6725. [PMID: 34899079 PMCID: PMC8646664 DOI: 10.1002/cpe.6725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/24/2021] [Accepted: 10/29/2021] [Indexed: 05/07/2023]
Abstract
Automatic early diagnosis of COVID-19 with computer-aided tools is crucial for disease treatment and control. Radiology images of COVID-19 and other lung diseases like bacterial pneumonia, viral pneumonia have common features. Thus, this similarity makes it difficult for radiologists to detect COVID-19 cases. A reliable method for classifying non-COVID-19 and COVID-19 chest x-ray images could be useful to reduce triage process and diagnose. In this study, we develop an original framework (HANDEFU) that supports handcrafted, deep, and fusion-based feature extraction techniques for feature engineering. The user interactively builds any model by selecting feature extraction technique and classification method through the framework. Any feature extraction technique and model could then be added dynamically to the library of software at a later time upon request. The novelty of this study is that image preprocessing and diverse feature extraction and classification techniques are assembled under an original framework. In this study, this framework is utilized for diagnosing COVID-19 from chest x-ray images on an open-access dataset. All of the experimental results and performance evaluations on this dataset are performed with this software. In experimental studies, COVID-19 prediction is performed by 27 different models through software. The superior performance with accuracy of 99.36% is obtained by LBP+SVM model.
Collapse
Affiliation(s)
- Ferhat Bozkurt
- Department of Computer Engineering, Faculty of EngineeringAtatürk UniversityErzurumTurkey
| |
Collapse
|
39
|
Aboutalebi H, Pavlova M, Gunraj H, Shafiee MJ, Sabri A, Alaref A, Wong A. MEDUSA: Multi-Scale Encoder-Decoder Self-Attention Deep Neural Network Architecture for Medical Image Analysis. Front Med (Lausanne) 2022; 8:821120. [PMID: 35242769 PMCID: PMC8886730 DOI: 10.3389/fmed.2021.821120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/15/2021] [Indexed: 01/08/2023] Open
Abstract
Medical image analysis continues to hold interesting challenges given the subtle characteristics of certain diseases and the significant overlap in appearance between diseases. In this study, we explore the concept of self-attention for tackling such subtleties in and between diseases. To this end, we introduce, a multi-scale encoder-decoder self-attention (MEDUSA) mechanism tailored for medical image analysis. While self-attention deep convolutional neural network architectures in existing literature center around the notion of multiple isolated lightweight attention mechanisms with limited individual capacities being incorporated at different points in the network architecture, MEDUSA takes a significant departure from this notion by possessing a single, unified self-attention mechanism with significantly higher capacity with multiple attention heads feeding into different scales in the network architecture. To the best of the authors' knowledge, this is the first "single body, multi-scale heads" realization of self-attention and enables explicit global context among selective attention at different levels of representational abstractions while still enabling differing local attention context at individual levels of abstractions. With MEDUSA, we obtain state-of-the-art performance on multiple challenging medical image analysis benchmarks including COVIDx, Radiological Society of North America (RSNA) RICORD, and RSNA Pneumonia Challenge when compared to previous work. Our MEDUSA model is publicly available.
Collapse
Affiliation(s)
- Hossein Aboutalebi
- Department of Computer Science, University of Waterloo, Waterloo, ON, Canada
- Waterloo AI Institute, University of Waterloo, Waterloo, ON, Canada
| | - Maya Pavlova
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Hayden Gunraj
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Mohammad Javad Shafiee
- Department of Computer Science, University of Waterloo, Waterloo, ON, Canada
- Waterloo AI Institute, University of Waterloo, Waterloo, ON, Canada
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Ali Sabri
- Department of Radiology, Niagara Health, McMaster University, Hamilton, ON, Canada
| | - Amer Alaref
- Department of Diagnostic Imaging, Northern Ontario School of Medicine, Thunder Bay, ON, Canada
- Department of Diagnostic Radiology, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON, Canada
| | - Alexander Wong
- Department of Computer Science, University of Waterloo, Waterloo, ON, Canada
- Waterloo AI Institute, University of Waterloo, Waterloo, ON, Canada
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
40
|
The application of a deep learning system developed to reduce the time for RT-PCR in COVID-19 detection. Sci Rep 2022; 12:1234. [PMID: 35075153 PMCID: PMC8786863 DOI: 10.1038/s41598-022-05069-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/06/2022] [Indexed: 01/02/2023] Open
Abstract
Reducing the time to diagnose COVID-19 helps to manage insufficient isolation-bed resources and adequately accommodate critically ill patients. There is currently no alternative method to real-time reverse transcriptase polymerase chain reaction (RT-PCR), which requires 40 cycles to diagnose COVID-19. We propose a deep learning (DL) model to improve the speed of COVID-19 RT-PCR diagnosis. We developed and tested a DL model using the long short-term memory method with a dataset of fluorescence values measured in each cycle of 5810 RT-PCR tests. Among the DL models developed here, the diagnostic performance of the 21st model showed an area under the receiver operating characteristic (AUROC), sensitivity, and specificity of 84.55%, 93.33%, and 75.72%, respectively. The diagnostic performance of the 24th model showed an AUROC, sensitivity, and specificity of 91.27%, 90.00%, and 92.54%, respectively.
Collapse
|
41
|
Kim CK, Choi JW, Jiao Z, Wang D, Wu J, Yi TY, Halsey KC, Eweje F, Tran TML, Liu C, Wang R, Sollee J, Hsieh C, Chang K, Yang FX, Singh R, Ou JL, Huang RY, Feng C, Feldman MD, Liu T, Gong JS, Lu S, Eickhoff C, Feng X, Kamel I, Sebro R, Atalay MK, Healey T, Fan Y, Liao WH, Wang J, Bai HX. An automated COVID-19 triage pipeline using artificial intelligence based on chest radiographs and clinical data. NPJ Digit Med 2022; 5:5. [PMID: 35031687 PMCID: PMC8760275 DOI: 10.1038/s41746-021-00546-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/28/2021] [Indexed: 01/08/2023] Open
Abstract
While COVID-19 diagnosis and prognosis artificial intelligence models exist, very few can be implemented for practical use given their high risk of bias. We aimed to develop a diagnosis model that addresses notable shortcomings of prior studies, integrating it into a fully automated triage pipeline that examines chest radiographs for the presence, severity, and progression of COVID-19 pneumonia. Scans were collected using the DICOM Image Analysis and Archive, a system that communicates with a hospital’s image repository. The authors collected over 6,500 non-public chest X-rays comprising diverse COVID-19 severities, along with radiology reports and RT-PCR data. The authors provisioned one internally held-out and two external test sets to assess model generalizability and compare performance to traditional radiologist interpretation. The pipeline was evaluated on a prospective cohort of 80 radiographs, reporting a 95% diagnostic accuracy. The study mitigates bias in AI model development and demonstrates the value of an end-to-end COVID-19 triage platform.
Collapse
Affiliation(s)
- Chris K Kim
- Department of Diagnostic Imaging, Rhode Island Hospital, Providence, RI, 02903, USA.,Department of Computer Science, Brown University, Providence, RI, 02912, USA
| | - Ji Whae Choi
- Department of Diagnostic Imaging, Rhode Island Hospital, Providence, RI, 02903, USA.,Warren Alpert Medical School of Brown University, Providence, RI, 02912, USA
| | - Zhicheng Jiao
- Department of Diagnostic Imaging, Rhode Island Hospital, Providence, RI, 02903, USA.,Warren Alpert Medical School of Brown University, Providence, RI, 02912, USA
| | - Dongcui Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jing Wu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Thomas Y Yi
- Department of Diagnostic Imaging, Rhode Island Hospital, Providence, RI, 02903, USA.,Warren Alpert Medical School of Brown University, Providence, RI, 02912, USA
| | - Kasey C Halsey
- Department of Diagnostic Imaging, Rhode Island Hospital, Providence, RI, 02903, USA.,Warren Alpert Medical School of Brown University, Providence, RI, 02912, USA
| | - Feyisope Eweje
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Thi My Linh Tran
- Department of Diagnostic Imaging, Rhode Island Hospital, Providence, RI, 02903, USA.,Warren Alpert Medical School of Brown University, Providence, RI, 02912, USA
| | - Chang Liu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Robin Wang
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Sollee
- Department of Diagnostic Imaging, Rhode Island Hospital, Providence, RI, 02903, USA.,Warren Alpert Medical School of Brown University, Providence, RI, 02912, USA
| | - Celina Hsieh
- Department of Diagnostic Imaging, Rhode Island Hospital, Providence, RI, 02903, USA.,Warren Alpert Medical School of Brown University, Providence, RI, 02912, USA
| | - Ken Chang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Fang-Xue Yang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ritambhara Singh
- Department of Computer Science, Brown University, Providence, RI, 02912, USA.,Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA
| | - Jie-Lin Ou
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Cai Feng
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Michael D Feldman
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tao Liu
- Department of Biostatistics, Brown University, Providence, RI, 02912, USA
| | - Ji Sheng Gong
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Shaolei Lu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Carsten Eickhoff
- Center for Biomedical Informatics, Brown University, Providence, RI, 02912, USA
| | - Xue Feng
- Carina Medical, Lexington, KY, 40513, USA
| | - Ihab Kamel
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ronnie Sebro
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael K Atalay
- Department of Diagnostic Imaging, Rhode Island Hospital, Providence, RI, 02903, USA.,Warren Alpert Medical School of Brown University, Providence, RI, 02912, USA
| | - Terrance Healey
- Department of Diagnostic Imaging, Rhode Island Hospital, Providence, RI, 02903, USA.,Warren Alpert Medical School of Brown University, Providence, RI, 02912, USA
| | - Yong Fan
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wei-Hua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, China.
| | - Harrison X Bai
- Department of Diagnostic Imaging, Rhode Island Hospital, Providence, RI, 02903, USA. .,Warren Alpert Medical School of Brown University, Providence, RI, 02912, USA. .,Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
42
|
Hipolito Canario DA, Fromke E, Patetta MA, Eltilib MT, Reyes-Gonzalez JP, Rodriguez GC, Fusco Cornejo VA, Duncker S, Stewart JK. Using artificial intelligence to risk stratify COVID-19 patients based on chest X-ray findings. INTELLIGENCE-BASED MEDICINE 2022; 6:100049. [PMID: 35039806 PMCID: PMC8755446 DOI: 10.1016/j.ibmed.2022.100049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Deep learning-based radiological image analysis could facilitate use of chest x-rays as a triaging tool for COVID-19 diagnosis in resource-limited settings. This study sought to determine whether a modified commercially available deep learning algorithm (M-qXR) could risk stratify patients with suspected COVID-19 infections. METHODS A dual track clinical validation study was designed to assess the clinical accuracy of M-qXR. The algorithm evaluated all Chest-X-rays (CXRs) performed during the study period for abnormal findings and assigned a COVID-19 risk score. Four independent radiologists served as radiological ground truth. The M-qXR algorithm output was compared against radiological ground truth and summary statistics for prediction accuracy were calculated. In addition, patients who underwent both PCR testing and CXR for suspected COVID-19 infection were included in a co-occurrence matrix to assess the sensitivity and specificity of the M-qXR algorithm. RESULTS 625 CXRs were included in the clinical validation study. 98% of total interpretations made by M-qXR agreed with ground truth (p = 0.25). M-qXR correctly identified the presence or absence of pulmonary opacities in 94% of CXR interpretations. M-qXR's sensitivity, specificity, PPV, and NPV for detecting pulmonary opacities were 94%, 95%, 99%, and 88% respectively. M-qXR correctly identified the presence or absence of pulmonary consolidation in 88% of CXR interpretations (p = 0.48). M-qXR's sensitivity, specificity, PPV, and NPV for detecting pulmonary consolidation were 91%, 84%, 89%, and 86% respectively. Furthermore, 113 PCR-confirmed COVID-19 cases were used to create a co-occurrence matrix between M-qXR's COVID-19 risk score and COVID-19 PCR test results. The PPV and NPV of a medium to high COVID-19 risk score assigned by M-qXR yielding a positive COVID-19 PCR test result was estimated to be 89.7% and 80.4% respectively. CONCLUSION M-qXR was found to have comparable accuracy to radiological ground truth in detecting radiographic abnormalities on CXR suggestive of COVID-19.
Collapse
Affiliation(s)
- Diego A. Hipolito Canario
- UNC School of Medicine, University of North Carolina at Chapel Hill, Bondurant Hall, CB 9535, Chapel Hill, NC, 27599-3280, United States,Corresponding author
| | - Eric Fromke
- UNC School of Medicine, University of North Carolina at Chapel Hill, Bondurant Hall, CB 9535, Chapel Hill, NC, 27599-3280, United States
| | - Matthew A. Patetta
- UNC School of Medicine, University of North Carolina at Chapel Hill, Bondurant Hall, CB 9535, Chapel Hill, NC, 27599-3280, United States
| | - Mohamed T. Eltilib
- UNC School of Medicine, University of North Carolina at Chapel Hill, Bondurant Hall, CB 9535, Chapel Hill, NC, 27599-3280, United States
| | - Juan P. Reyes-Gonzalez
- Department of Radiology, Angeles del Pedregal Hospital, Camino de Sta, Teresa 1055-S, Héroes de Padierna, La Magdalena Contreras, 10700, Ciudad de México, Mexico
| | - Georgina Cornelio Rodriguez
- Department of Radiology, Angeles del Pedregal Hospital, Camino de Sta, Teresa 1055-S, Héroes de Padierna, La Magdalena Contreras, 10700, Ciudad de México, Mexico
| | | | - Seymour Duncker
- Mindscale, 800 W El Camino Real Suite 180 Mountain View, CA, 94040, United States
| | - Jessica K. Stewart
- Division of Interventional Radiology, Department of Radiology, David Geffen School of Medicine, University of California at Los Angeles. 757 Westwood Plaza, Suite 2125, Los Angeles, CA, 90095, United States
| |
Collapse
|
43
|
Lazari LC, Rosa-Fernandes L, Palmisano G. Machine Learning Approaches to Analyze MALDI-TOF Mass Spectrometry Protein Profiles. Methods Mol Biol 2022; 2511:375-394. [PMID: 35838976 DOI: 10.1007/978-1-0716-2395-4_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Machine learning is being employed for the development of diagnostic methods for several diseases, but prognostic techniques are still poorly explored. The development of such approaches is essential to assist healthcare workers to ensure the most appropriate treatment for patients. In this chapter, we demonstrate a detailed protocol for the application of machine learning to MALDI-TOF MS spectra of COVID-19-infected plasma samples for risk classification and biomarker identification.
Collapse
Affiliation(s)
- Lucas C Lazari
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Sao Paulo, Brazil
| | - Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Sao Paulo, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Sao Paulo, Brazil.
| |
Collapse
|
44
|
Sharma DK, Subramanian M, Malyadri P, Reddy BS, Sharma M, Tahreem M. Classification of COVID-19 by using supervised optimized machine learning technique. MATERIALS TODAY. PROCEEDINGS 2021; 56:2058-2062. [PMID: 34868886 PMCID: PMC8627851 DOI: 10.1016/j.matpr.2021.11.388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In recent two years, covid-19 diseases is the most harmful diseases in entire world. This disease increase the high mortality rate in several developed countries. Earlier identification of covid-19 symptoms can avoid the over illness or death. However, there are several researchers are introduced different methodology to identification of diseases symptoms. But, identification and classification of covid-19 diseases is the difficult task for every researchers and doctors. In this modern world, machine learning techniques is useful for several medical applications. This study is more focused in applying machine learning classifier model as SVM for classification of diseases. By improve the classification accuracy of the classifier by using hyper parameter optimization technique as modified cuckoo search algorithm. High dimensional data have unrelated, misleading features, which maximize the search space size subsequent in struggle to process data further thus not contributing to the learning practise, So we used a hybrid feature selection technique as mRMR (Minimum Redundancy Maximum Relevance) algorithm. The experiment is conducted by using UCI machine learning repository dataset. The classifier is conducted to classify the two set of classes such as COVID-19, and normal cases. The proposed model performance is analysed by using different parametric metrics, which are explained in result section.
Collapse
Affiliation(s)
- Dilip Kumar Sharma
- Department of Mathematics, Jaypee University of Engineering and Technology, Guna, M.P., India
| | | | - Pacha Malyadri
- Centre for Economic and Social Studies, Begumpet, Hyderabad, Telangana, India
| | - Bojja Suryanarayana Reddy
- Jaagruthi Degree and PG College, Mahatma Gandhi University, Bhongir, Yadadribhongir, Telangana, India
| | - Mukta Sharma
- School of Life Sciences and Technology, IIMT University, Meerut
| | - Madiha Tahreem
- Zakir Hussain College of Engineering & Technology, Aligarh Muslim University, Aligarh, U.P., India
| |
Collapse
|
45
|
Cushnan D, Bennett O, Berka R, Bertolli O, Chopra A, Dorgham S, Favaro A, Ganepola T, Halling-Brown M, Imreh G, Jacob J, Jefferson E, Lemarchand F, Schofield D, Wyatt JC. An overview of the National COVID-19 Chest Imaging Database: data quality and cohort analysis. Gigascience 2021; 10:giab076. [PMID: 34849869 PMCID: PMC8633457 DOI: 10.1093/gigascience/giab076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/04/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The National COVID-19 Chest Imaging Database (NCCID) is a centralized database containing mainly chest X-rays and computed tomography scans from patients across the UK. The objective of the initiative is to support a better understanding of the coronavirus SARS-CoV-2 disease (COVID-19) and the development of machine learning technologies that will improve care for patients hospitalized with a severe COVID-19 infection. This article introduces the training dataset, including a snapshot analysis covering the completeness of clinical data, and availability of image data for the various use-cases (diagnosis, prognosis, longitudinal risk). An additional cohort analysis measures how well the NCCID represents the wider COVID-19-affected UK population in terms of geographic, demographic, and temporal coverage. FINDINGS The NCCID offers high-quality DICOM images acquired across a variety of imaging machinery; multiple time points including historical images are available for a subset of patients. This volume and variety make the database well suited to development of diagnostic/prognostic models for COVID-associated respiratory conditions. Historical images and clinical data may aid long-term risk stratification, particularly as availability of comorbidity data increases through linkage to other resources. The cohort analysis revealed good alignment to general UK COVID-19 statistics for some categories, e.g., sex, whilst identifying areas for improvements to data collection methods, particularly geographic coverage. CONCLUSION The NCCID is a growing resource that provides researchers with a large, high-quality database that can be leveraged both to support the response to the COVID-19 pandemic and as a test bed for building clinically viable medical imaging models.
Collapse
Affiliation(s)
- Dominic Cushnan
- AI Lab, NHSX, Skipton House, 80 London Road, London SE1 6LH,
UK
| | | | | | | | | | | | | | | | - Mark Halling-Brown
- Scientific Computing, Royal Surrey NHS Foundation Trust,
Egerton Road, Guildford GU2 7XX, UK
| | | | - Joseph Jacob
- UCL Respiratory, 1st Floor, Rayne Institute, University College
London, London WC1E 6JF, UK
| | - Emily Jefferson
- Health Data Research UK, Gibbs Building, 215 Euston Road,
London NW1 2BE, UK
- Health Informatics Centre (HIC), School of Medicine, University of
Dundee, DD1 4HN, Dundee, UK
| | | | | | - Jeremy C Wyatt
- Emeritus Professor of Digital Healthcare, University of
Southampton, Southampton SO17 1BJ, UK
- NHSX, Skipton House, 80 London Road, London SE1 6LH, UK
| | | |
Collapse
|
46
|
Lafzi A, Boodaghi M, Zamani S, Mohammadshafie N, Hasti VR. Analysis of the effectiveness of face-coverings on the death ratio of COVID-19 using machine learning. Sci Rep 2021; 11:21675. [PMID: 34737389 PMCID: PMC8569016 DOI: 10.1038/s41598-021-01005-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/18/2021] [Indexed: 01/12/2023] Open
Abstract
The recent outbreak of the COVID-19 led to death of millions of people worldwide. To stave off the spread of the virus, the authorities in the US employed different strategies, including the mask mandate order issued by the states' governors. In the current work, we defined a parameter called average death ratio as the monthly average of the number of daily deaths to the monthly average number of daily cases. We utilized survey data to quantify people's abidance by the mask mandate order. Additionally, we implicitly addressed the extent to which people abide by the mask mandate order, which may depend on some parameters such as population, income, and education level. Using different machine learning classification algorithms, we investigated how the decrease or increase in death ratio for the counties in the US West Coast correlates with the input parameters. The results showed that for the majority of counties, the mask mandate order decreased the death ratio, reflecting the effectiveness of such a preventive measure on the West Coast. Additionally, the changes in the death ratio demonstrated a noticeable correlation with the socio-economic condition of each county. Moreover, the results showed a promising classification accuracy score as high as 90%.
Collapse
Affiliation(s)
- Ali Lafzi
- Department of Agricultural and Biological Engineering, Purdue University, Indiana, 47907, USA.
| | - Miad Boodaghi
- School of Mechanical Engineering, Purdue University, Indiana, 47907, USA
| | - Siavash Zamani
- School of Mechanical Engineering, Purdue University, Indiana, 47907, USA
| | - Niyousha Mohammadshafie
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pennsylvania, 15261, USA
| | | |
Collapse
|
47
|
Arslan H. COVID-19 prediction based on genome similarity of human SARS-CoV-2 and bat SARS-CoV-like coronavirus. COMPUTERS & INDUSTRIAL ENGINEERING 2021; 161:107666. [PMID: 34511707 PMCID: PMC8423779 DOI: 10.1016/j.cie.2021.107666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/13/2021] [Accepted: 09/05/2021] [Indexed: 05/03/2023]
Abstract
This paper proposes an efficient and accurate method to predict coronavirus disease 19 (COVID-19) based on the genome similarity of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and a bat SARS-CoV-like coronavirus. We introduce similarity features to distinguish COVID-19 from other human coronaviruses by comparing human coronaviruses with a bat SARS-CoV-like coronavirus. In the proposed method each human coronavirus sequence is assigned to three similarity scores considering nucleotide similarities and mutations that lead to the strong absence of cytosine and guanine nucleotides. Next the proposed features are integrated with CpG island features of the genome sequences to improve COVID-19 prediction. Thus, each genome sequence is represented by five real numbers. We exhibit the effectiveness of the proposed features using six machine learning classifiers on a dataset including the genome sequences of human coronaviruses similar to SARS-CoV-2. The performances of the machine learning classifiers are close to each other and k-nearest neighbor classifier with similarity features achieves the best results with an accuracy of 99.2%. Moreover, k-nearest neighbor classifier with the integration of CpG based and similarity features has an admirable performance and achieves an accuracy of 99.8%. Experimental results demonstrate that similarity features remarkably decrease the number of false negatives and significantly improve the overall performance. The superiority of the proposed method is also highlighted by comparing with the state-of-the-art studies detecting COVID-19 from genome sequences.
Collapse
Affiliation(s)
- Hilal Arslan
- Department of Software Engineering, Ankara Yıldırım Beyazıt University, Turkey
| |
Collapse
|
48
|
López-Cabrera JD, Orozco-Morales R, Portal-Díaz JA, Lovelle-Enríquez O, Pérez-Díaz M. Current limitations to identify covid-19 using artificial intelligence with chest x-ray imaging (part ii). The shortcut learning problem. HEALTH AND TECHNOLOGY 2021; 11:1331-1345. [PMID: 34660166 PMCID: PMC8502237 DOI: 10.1007/s12553-021-00609-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022]
Abstract
Since the outbreak of the COVID-19 pandemic, computer vision researchers have been working on automatic identification of this disease using radiological images. The results achieved by automatic classification methods far exceed those of human specialists, with sensitivity as high as 100% being reported. However, prestigious radiology societies have stated that the use of this type of imaging alone is not recommended as a diagnostic method. According to some experts the patterns presented in these images are unspecific and subtle, overlapping with other viral pneumonias. This report seeks to evaluate the analysis the robustness and generalizability of different approaches using artificial intelligence, deep learning and computer vision to identify COVID-19 using chest X-rays images. We also seek to alert researchers and reviewers to the issue of "shortcut learning". Recommendations are presented to identify whether COVID-19 automatic classification models are being affected by shortcut learning. Firstly, papers using explainable artificial intelligence methods are reviewed. The results of applying external validation sets are evaluated to determine the generalizability of these methods. Finally, studies that apply traditional computer vision methods to perform the same task are considered. It is evident that using the whole chest X-Ray image or the bounding box of the lungs, the image regions that contribute most to the classification appear outside of the lung region, something that is not likely possible. In addition, although the investigations that evaluated their models on data sets external to the training set, the effectiveness of these models decreased significantly, it may provide a more realistic representation as how the model will perform in the clinic. The results indicate that, so far, the existing models often involve shortcut learning, which makes their use less appropriate in the clinical setting.
Collapse
Affiliation(s)
- José Daniel López-Cabrera
- Centro de Investigaciones de La Informática, Facultad de Matemática, Física y Computación, Universidad Central “Marta Abreu” de Las Villas, Villa Clara, Santa Clara, Cuba
| | - Rubén Orozco-Morales
- Departamento de Control Automático, Facultad de Ingeniería Eléctrica, Universidad Central “Marta Abreu” de Las Villas, Villa Clara, Santa Clara, Cuba
| | - Jorge Armando Portal-Díaz
- Departamento de Control Automático, Facultad de Ingeniería Eléctrica, Universidad Central “Marta Abreu” de Las Villas, Villa Clara, Santa Clara, Cuba
| | - Orlando Lovelle-Enríquez
- Departamento de Imagenología, Hospital Comandante Manuel Fajardo Rivero, Villa Clara, Santa Clara, Cuba
| | - Marlén Pérez-Díaz
- Departamento de Control Automático, Facultad de Ingeniería Eléctrica, Universidad Central “Marta Abreu” de Las Villas, Villa Clara, Santa Clara, Cuba
| |
Collapse
|
49
|
Sayed SAF, Elkorany AM, Sayed Mohammad S. Applying Different Machine Learning Techniques for Prediction of COVID-19 Severity. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2021; 9:135697-135707. [PMID: 34786321 PMCID: PMC8545185 DOI: 10.1109/access.2021.3116067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Due to the increase in the number of patients who died as a result of the SARS-CoV-2 virus around the world, researchers are working tirelessly to find technological solutions to help doctors in their daily work. Fast and accurate Artificial Intelligence (AI) techniques are needed to assist doctors in their decisions to predict the severity and mortality risk of a patient. Early prediction of patient severity would help in saving hospital resources and decrease the continual death of patients by providing early medication actions. Currently, X-ray images are used as early symptoms in detecting COVID-19 patients. Therefore, in this research, a prediction model has been built to predict different levels of severity risks for the COVID-19 patient based on X-ray images by applying machine learning techniques. To build the proposed model, CheXNet deep pre-trained model and hybrid handcrafted techniques were applied to extract features, two different methods: Principal Component Analysis (PCA) and Recursive Feature Elimination (RFE) were integrated to select the most important features, and then, six machine learning techniques were applied. For handcrafted features, the experiments proved that merging the features that have been selected by PCA and RFE together (PCA + RFE) achieved the best results with all classifiers compared with using all features or using the features selected by PCA or RFE individually. The XGBoost classifier achieved the best performance with the merged (PCA + RFE) features, where it accomplished 97% accuracy, 98% precision, 95% recall, 96% f1-score and 100% roc-auc. Also, SVM carried out the same results with some minor differences, but overall it was a good performance where it accomplished 97% accuracy, 96% precision, 95% recall, 95% f1-score and 99% roc-auc. On the other hand, for pre-trained CheXNet features, Extra Tree and SVM classifiers with RFE achieved 99.6% for all measures.
Collapse
|
50
|
SÜNNETCİ KM, ALKAN A, TAR E. Göğüs X-Ray görüntülerinin AlexNet tabanlı sınıflandırılması. COMPUTER SCIENCE 2021. [DOI: 10.53070/bbd.989192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|