1
|
Perrotta BG, Kidd KA, Marcarelli AM, Paterson G, Walters DM. Effects of chronic metal exposure and metamorphosis on the microbiomes of larval and adult insects and riparian spiders through the aquatic-riparian food web. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125867. [PMID: 39978531 DOI: 10.1016/j.envpol.2025.125867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/29/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
The macroinvertebrate microbiome controls various aspects of the host's physiology, from regulation of environmental contaminants to reproductive output. Aquatic insects provide critical nutritional subsidies linking aquatic and riparian food webs while simultaneously serving as a contaminant pathway for riparian insectivores in polluted ecosystems. Previous studies have characterized the transport and transfer of contaminants from aquatic to riparian ecosystems through insect metamorphosis, but both contaminant exposure and metamorphosis are energetically intensive processes that may cause host microbiomes to undergo radical transformation in structure and function, potentially affecting the host's physiology. We collected arthropods from three sites within Torch Lake, a historical copper mine in the Keweenaw Peninsula, Michigan, USA, and three sites within a nearby reference lake. Our objectives were to: 1) characterize the variation in microbiome communities and predicted metagenomic functions with legacy copper mining activity across space, among host types and family-level host taxonomy, 2) characterize how insect metamorphosis alters the microbiome community, including the degree of endosymbiotic infection, and predicted metagenomic function. We field-collected organisms, extracted their DNA, and sequenced the 16S region of the rRNA gene to characterize microbiome communities, then predicted metagenomic function. Site, lake, and host taxonomy affected the host microbiome community composition. Copper exposure increased the abundance of xenobiotic and lipid metabolism pathways in the Araneidae spider microbiome. Insect metamorphosis reduced the alpha diversity, altered the community composition, and predicted metagenomic function. We observed a bioconcentration of endosymbiotic bacteria in adult insects, especially holometabolous insects. Through metamorphosis, we observed a transition in function from xenobiotic degradation pathways to carbohydrate metabolism. Overall, contaminant exposure alters the microbiome composition in aquatic insects and riparian spiders and alters the function of the microbiome across the aquatic-riparian interface. Furthermore, metamorphosis is a critical element in shaping the aquatic insect microbiome across its life history.
Collapse
Affiliation(s)
- Brittany G Perrotta
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA; Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Karen A Kidd
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.
| | - Amy M Marcarelli
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Gordon Paterson
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - David M Walters
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA
| |
Collapse
|
2
|
Mortola BM, Wheeler SS, Huang S, De La Vega S, Scott JJ, Meighan ML, Hartle J, Mayberry J, Thiemann TC. Assessing pyrethroid resistance mechanisms in individual Culex tarsalis (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2025:tjaf001. [PMID: 40036312 DOI: 10.1093/jme/tjaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 12/07/2024] [Accepted: 01/06/2025] [Indexed: 03/06/2025]
Abstract
The evolution of pyrethroid insecticide resistance in Culex tarsalis Coquillett, a vector for West Nile and St. Louis encephalitis viruses, is a growing concern in Northern California. Common mechanisms of resistance include the target-site mutation, kdr, and increased levels of detoxification enzymes, such as mixed-function oxidases, GSTs, and esterases. The goal of this study was to compare the prevalence of kdr mutations (L1014F and L1014S) and detoxification enzymes between pyrethroid susceptible and resistant Cx. tarsalis individuals. Individual mosquitoes, categorized by resistance status from permethrin bottle bioassays, were prepared for both molecular and enzymatic testing by separating the legs of a mosquito from the remaining body. Legs were used to test for the presence of kdr mutations, while the bodies were used to test for the activity of detoxification enzymes. The number of phenylalanine (F) alleles present at the kdr target-site as well as levels of GST were increased in mosquitoes that survived the bottle bioassay compared to those that were knocked down. Individuals with 2 F alleles and an active GST level greater than or equal to 0.052 µg/ml showed a higher survival rate than either mechanism independently demonstrating resistance to pyrethroids in Cx. tarsalis is likely the result of multiple resistance mechanisms acting collectively. Further work is needed to determine the interplay of multiple resistance mechanisms to achieve phenotype resistance in this mosquito species.
Collapse
Affiliation(s)
- Billy M Mortola
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA
| | - Sarah S Wheeler
- Sacramento-Yolo Mosquito and Vector Control District, Elk Grove, CA, USA
| | - Shaoming Huang
- San Joaquin County Mosquito & Vector Control District, Stockton, CA, USA
| | - Sumiko De La Vega
- San Joaquin County Mosquito & Vector Control District, Stockton, CA, USA
| | | | | | - Jake Hartle
- Placer Mosquito and Vector Control District, Roseville, CA, USA
| | - John Mayberry
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA
| | - Tara C Thiemann
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA
| |
Collapse
|
3
|
Castañeda-Espinosa A, Duque-Granda D, Cadavid-Restrepo G, Murcia LM, Junca H, Moreno-Herrera CX, Vivero-Gómez RJ. Study of Bacterial Communities in Water and Different Developmental Stages of Aedes aegypti from Aquatic Breeding Sites in Leticia City, Colombian Amazon Biome. INSECTS 2025; 16:195. [PMID: 40003826 PMCID: PMC11856942 DOI: 10.3390/insects16020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
Aedes aegypti is a key vector in the transmission of arboviral diseases in the Colombian Amazon. This study aimed to characterize microbiota composition using DNA extracted from water in artificial breeding sites, immature stages, and adults of Ae. aegypti in Leticia, Amazonas. Additionally, the physicochemical water variables were correlated with the bacterial communities present. Eight artificial breeding sites were identified, with bucket, plant pot, and tire being the most frequent. The breeding sites exhibited similar physicochemical profiles, with significant temperature and salinity differences (p-value < 0.03). The most representative bacterial genera included Ottowia (82%), Xanthobacter (70.59%), and Rhodocyclaceae (92.78%) in breeding site water; Aquabacterium (61.07%), Dechloromonas (82.85%), and Flectobacillus (58.94%) in immature stages; and Elizabethkingia (70.89%) and Cedecea (39.19%) in males and females of Ae. aegypti. Beta diversity analysis revealed distinct clustering between adults and the water and immature communities (p-value < 0.001). Multivariate analysis showed strong correlations among bacterial communities, breeding sites, and physicochemical variables such as tire and drum cover which exhibited high levels of total dissolved solids, conductivity, and salinity associated with Flectobacillus, Leifsonia, Novosphingobium, Ottowia, and Rhodobacter. Bacterial genera such as Mycobacterium, Escherichia, Salmonella, and Clostridium, present in artificial breeding sites, are associated with public health relevance. This study provides insights into bacterial community dynamics across Ae. aegypti's life cycle and underscores the importance of water physicochemical and biological characteristics for developing new vector control strategies.
Collapse
Affiliation(s)
- Alejandro Castañeda-Espinosa
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, St. 65 #59a-110, Medellín 050034, Colombia; (A.C.-E.); (D.D.-G.); (G.C.-R.)
| | - Daniela Duque-Granda
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, St. 65 #59a-110, Medellín 050034, Colombia; (A.C.-E.); (D.D.-G.); (G.C.-R.)
| | - Gloria Cadavid-Restrepo
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, St. 65 #59a-110, Medellín 050034, Colombia; (A.C.-E.); (D.D.-G.); (G.C.-R.)
| | - Luz Mila Murcia
- Grupo de Estudios en Salud Pública del Amazonas (GESPA), Laboratorio de Salud Pública Departamental del Amazonas, St. 10 #6-127 a 6-1, Leticia 910001, Colombia;
| | - Howard Junca
- Microbiomas Foundation, Div. Ecogenomics & Holobionts, RG Microbial Ecology, Metabolism, Genomics & Evolution, LT11A, Chía 250008, Colombia;
| | - Claudia X. Moreno-Herrera
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, St. 65 #59a-110, Medellín 050034, Colombia; (A.C.-E.); (D.D.-G.); (G.C.-R.)
| | - Rafael J. Vivero-Gómez
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, St. 65 #59a-110, Medellín 050034, Colombia; (A.C.-E.); (D.D.-G.); (G.C.-R.)
| |
Collapse
|
4
|
Bathia J, Miklós M, Gyulai I, Fraune S, Tökölyi J. Environmental microbial reservoir influences the bacterial communities associated with Hydra oligactis. Sci Rep 2024; 14:32167. [PMID: 39741169 PMCID: PMC11688501 DOI: 10.1038/s41598-024-82944-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025] Open
Abstract
The objective to study the influence of microbiome on host fitness is frequently constrained by spatial and temporal variability of microbial communities. In particular, the environment serves as a dynamic reservoir of microbes that provides potential colonizers for animal microbiomes. In this study, we analyzed the microbiome of Hydra oligactis and corresponding water samples from 15 Hungarian lakes to reveal the contribution of environmental microbiota on host microbiome. Correlation analyses and neutral modeling revealed that differences in Hydra microbiota are associated with differences in environmental microbiota. To further investigate the influence of environmental bacterial community on the host microbiome, field-collected Hydra polyps from three populations were cultured in native water or foreign water. Our results show that lake water bacteria significantly contribute to Hydra microbial communities, but the compositional profile remained stable when cultured in different water sources. Longitudinal analysis of the in vitro experiment revealed a site-specific change in microbiome that correlated with the source water quality. Taken together, our findings demonstrate that while freshwater serves as a critical microbial reservoir, Hydra microbial communities exhibit remarkable resilience to environmental changes maintaining stability despite potential invasion. This dual approach highlights the complex interplay between environmental reservoirs and host microbiome integrity.
Collapse
Affiliation(s)
- Jay Bathia
- Institute of Zoology and Organismic Interactions, Heinrich-Heine University, Düsseldorf, Germany.
| | - Máté Miklós
- Institute of Evolution, HUN-REN Centre for Ecological Research, Budapest, Hungary
- Centre for Eco-Epidemiology, National Laboratory for Health Security, Budapest, Hungary
| | - István Gyulai
- National Laboratory for Water Science and Water Security, Department of Hydrobiology, University of Debrecen, Debrecen, Hungary
| | - Sebastian Fraune
- Institute of Zoology and Organismic Interactions, Heinrich-Heine University, Düsseldorf, Germany
| | - Jácint Tökölyi
- MTA-DE "Momentum" Ecology, Evolution & Developmental Biology Research Group, Dept. of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
5
|
Zhong D, Degefa T, Zhou G, Lee MC, Wang C, Chen J, Yewhalaw D, Yan G. Esterase-Mediated Pyrethroid Resistance in Populations of an Invasive Malaria Vector Anopheles stephensi from Ethiopia. Genes (Basel) 2024; 15:1603. [PMID: 39766870 PMCID: PMC11675767 DOI: 10.3390/genes15121603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The swift expansion of the invasive malaria vector Anopheles stephensi throughout Africa presents a major challenge to malaria control initiatives. Unlike the native African vectors, An. stephensi thrives in urban settings and has developed resistance to multiple classes of insecticides, including pyrethroids, organophosphates, and carbamates. METHODS Insecticide susceptibility tests were performed on field-collected An. stephensi mosquitoes from Awash Sebac Kilo, Ethiopia, to assess insecticide resistance levels. Illumina RNA-seq analysis was then employed to compare the transcriptomes of field-resistant populations and susceptible laboratory strains (STE2). RESULTS An. stephensi populations exhibited high levels of resistance to both deltamethrin (mortality, 39.4 ± 6.0%) and permethrin (mortality, 59.3 ± 26.3%) in WHO tube bioassays. RNA-seq analysis revealed that both field-resistant and field-unexposed populations exhibited increased expressions of genes associated with pyrethroid resistance, including esterases, P450s, and GSTs, compared to the susceptible STE2 strain. Notably, esterase E4 and venom carboxylesterase-6 were significantly overexpressed, up to 70-fold, compared to the laboratory strain. Functional enrichment analysis revealed a significant overrepresentation of genes associated with catalytic activity under molecular functions and metabolic process under biological process. Using weighted gene co-expression network analysis (WGCNA), we identified two co-expression modules (green and blue) that included 48 genes strongly linked to pyrethroid insecticide resistance. A co-expression network was subsequently built based on the weight values within these modules. CONCLUSIONS This study highlights the role of esterases in the pyrethroid resistance of an An. stephensi population. The identification of candidate genes associated with insecticide resistance will facilitate the development of rapid diagnostic tools to monitor resistance trends.
Collapse
Affiliation(s)
- Daibin Zhong
- Joe C. Wen School of Population & Public Health, University of California at Irvine, Irvine, CA 92697, USA; (G.Z.); (M.-C.L.); (C.W.); (J.C.); (G.Y.)
| | - Teshome Degefa
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma MVJ4+R95, Ethiopia; (T.D.); (D.Y.)
- Tropical and Infectious Diseases Research Centre (TIDRC), Jimma University, Jimma MVJ4+R95, Ethiopia
| | - Guofa Zhou
- Joe C. Wen School of Population & Public Health, University of California at Irvine, Irvine, CA 92697, USA; (G.Z.); (M.-C.L.); (C.W.); (J.C.); (G.Y.)
| | - Ming-Chieh Lee
- Joe C. Wen School of Population & Public Health, University of California at Irvine, Irvine, CA 92697, USA; (G.Z.); (M.-C.L.); (C.W.); (J.C.); (G.Y.)
| | - Chloe Wang
- Joe C. Wen School of Population & Public Health, University of California at Irvine, Irvine, CA 92697, USA; (G.Z.); (M.-C.L.); (C.W.); (J.C.); (G.Y.)
| | - Jiale Chen
- Joe C. Wen School of Population & Public Health, University of California at Irvine, Irvine, CA 92697, USA; (G.Z.); (M.-C.L.); (C.W.); (J.C.); (G.Y.)
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma MVJ4+R95, Ethiopia; (T.D.); (D.Y.)
- Tropical and Infectious Diseases Research Centre (TIDRC), Jimma University, Jimma MVJ4+R95, Ethiopia
| | - Guiyun Yan
- Joe C. Wen School of Population & Public Health, University of California at Irvine, Irvine, CA 92697, USA; (G.Z.); (M.-C.L.); (C.W.); (J.C.); (G.Y.)
| |
Collapse
|
6
|
Li X, Fang T, Gao T, Gui H, Chen Y, Zhou L, Zhang Y, Yang Y, Xu L, Long Y. Widespread presence of gut bacterium Glutamicibacter ectropisis sp. nov. confers enhanced resistance to the pesticide bifenthrin in tea pests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176784. [PMID: 39414054 DOI: 10.1016/j.scitotenv.2024.176784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
The gut microbiota in Lepidopterans demonstrates variability and susceptibility to environmental influences, thereby presenting opportunities for the acquisition of novel bacterial strains. Ectropis grisescens (Warren), a notorious Lepidopteran pest, causes substantial damage to tea crops. Prolonged application usage of bifenthrin for the management of this pest has led to increased resistance. This study aims to investigate the relationship between the gut microbiota, as shaped by long-term pesticide use and the resistance of E. grisescenes. We employed high-throughput sequencing of the 16S rRNA gene to analyze the gut microbiota compositions in bifenthrin-resistant (BIF-R) and bifenthrin-sensitive (BIF-S) strains. Bifenthrin-degrading strains were isolated from the gut of BIF-R using selective media. The degradation efficiency and products of bifenthrin by the key strain were detected using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The effect of the key strain on host resistance was verified in vivo. Finally, the distribution and abundance of the degrading bacterium, in conjunction with insect's pesticide resistance, were assessed in 22 distinct E. grisescens populations. Bifenthrin resistance was diminished in BIF-R following the removal of gut bacteria, a phenomenon not observed in BIF-S. Subsequent high-throughput amplicon sequencing revealed distinct structural differences in the gut microbiota between the two groups, notably an increased abundance of Glutamicibacter in BIF-R. A newly identified bacterial strain from BIF-R larvae, Glutamicibacter ectropisis (B1), demonstrated bifenthrin degradation efficiency and the main metabolite was 2,4-di-tert-butylphenol. Inoculation of B1 into BIF-S larvae conferred increased resistance to bifenthrin. Furthermore, we confirmed the prevalence of B1 in the gut of E. grisescens across 22 tea-growing areas in China. A positive correlation was observed between the absolute abundance of B1 and bifenthrin resistance in E. grisescens. This study represents the first identification of a novel gut bacterium, G. ectropisis, which mediates host resistance through the direct degradation of bifenthrin. This mechanism has been widely validated across 22 distinct populations.
Collapse
Affiliation(s)
- Xiayu Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ting Fang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Tian Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Hao Gui
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Ying Chen
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Linlin Zhou
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yunqiu Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Yanhua Long
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
7
|
Li R, Tian Z, Yang J, Gao X, Chen H, Wang Y, Zhou Z. Emamectin benzoate-induced stress significantly affects the gut microbiome of adult Zeugodacus cucurbitae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117312. [PMID: 39531941 DOI: 10.1016/j.ecoenv.2024.117312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The detoxification mechanisms in insects, which are triggered by insecticides, alter the diversity of their intestinal microorganisms. Emamectin benzoate is an insecticide used to control Zeugodacus cucurbitae (Coquillett), a globally significant pest. In this study, high-throughput sequencing, traditional isolation and culture methods, and single bacterial 16S rDNA sequencing were used to analyze the diversity and functional predictions of intestinal microbial communities in Z. cucurbitae adults exposed to emamectin benzoate. The results showed that the intestinal microorganisms of Z. cucurbitae on Cucumis sativus and Benincasa hispida var. chieh-qua were primarily composed of the phyla Proteobacteria and Bacteroidetes and genera Providencia, Enterobacter, Citrobacter, and Klebsiella. The relative abundances of Citrobacter, Enterobacter, Klebsiella, and Raoultella decreased with the induced stress, whereas those of Providencia and Pectobacterium increased. Diversity analysis revealed significant differences in the midgut flora of Z. cucurbitae before and after stress induction with emamectin benzoate.
Collapse
Affiliation(s)
- Ruwen Li
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572019, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhenya Tian
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572019, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingfang Yang
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572019, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuyuan Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences,Nanning 530007, China
| | - Hongsong Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences,Nanning 530007, China
| | - Yusha Wang
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572019, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Zhongshi Zhou
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572019, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
8
|
Liu H, Yin J, Huang X, Zang C, Zhang Y, Cao J, Gong M. Mosquito Gut Microbiota: A Review. Pathogens 2024; 13:691. [PMID: 39204291 PMCID: PMC11357333 DOI: 10.3390/pathogens13080691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Mosquitoes are vectors of many important human diseases. The prolonged and widespread use of insecticides has led to the development of mosquito resistance to these insecticides. The gut microbiota is considered the master of host development and physiology; it influences mosquito biology, disease pathogen transmission, and resistance to insecticides. Understanding the role and mechanisms of mosquito gut microbiota in mosquito insecticide resistance is useful for developing new strategies for tackling mosquito insecticide resistance. We searched online databases, including PubMed, MEDLINE, SciELO, Web of Science, and the Chinese Science Citation Database. We searched all terms, including microbiota and mosquitoes, or any specific genera or species of mosquitoes. We reviewed the relationships between microbiota and mosquito growth, development, survival, reproduction, and disease pathogen transmission, as well as the interactions between microbiota and mosquito insecticide resistance. Overall, 429 studies were included in this review after filtering 8139 search results. Mosquito gut microbiota show a complex community structure with rich species diversity, dynamic changes in the species composition over time (season) and across space (environmental setting), and variation among mosquito species and mosquito developmental stages (larval vs. adult). The community composition of the microbiota plays profound roles in mosquito development, survival, and reproduction. There was a reciprocal interaction between the mosquito midgut microbiota and virus infection in mosquitoes. Wolbachia, Asaia, and Serratia are the three most studied bacteria that influence disease pathogen transmission. The insecticide resistance or exposure led to the enrichment or reduction in certain microorganisms in the resistant mosquitoes while enhancing the abundance of other microorganisms in insect-susceptible mosquitoes, and they involved many different species/genera/families of microorganisms. Conversely, microbiota can promote insecticide resistance in their hosts by isolating and degrading insecticidal compounds or altering the expression of host genes and metabolic detoxification enzymes. Currently, knowledge is scarce about the community structure of mosquito gut microbiota and its functionality in relation to mosquito pathogen transmission and insecticide resistance. The new multi-omics techniques should be adopted to find the links among environment, mosquito, and host and bring mosquito microbiota studies to the next level.
Collapse
Affiliation(s)
- Hongmei Liu
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Jianhai Yin
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Xiaodan Huang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Chuanhui Zang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Ye Zhang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Jianping Cao
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Maoqing Gong
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| |
Collapse
|
9
|
Wielkopolan B, Szabelska‐Beręsewicz A, Gawor J, Obrępalska‐Stęplowska A. Cereal leaf beetle-associated bacteria enhance the survival of their host upon insecticide treatments and respond differently to insecticides with different modes of action. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13247. [PMID: 38644048 PMCID: PMC11033208 DOI: 10.1111/1758-2229.13247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/12/2024] [Indexed: 04/23/2024]
Abstract
The cereal leaf beetle (CLB, Oulema melanopus) is one of the major cereal pests. The effect of insecticides belonging to different chemical classes, with different mechanisms of action and the active substances' concentrations on the CLB bacterial microbiome, was investigated. Targeted metagenomic analysis of the V3-V4 regions of the 16S ribosomal gene was used to determine the composition of the CLB bacterial microbiome. Each of the insecticides caused a decrease in the abundance of bacteria of the genus Pantoea, and an increase in the abundance of bacteria of the genus Stenotrophomonas, Acinetobacter, compared to untreated insects. After cypermethrin application, a decrease in the relative abundance of bacteria of the genus Pseudomonas was noted. The dominant bacterial genera in cypermethrin-treated larvae were Lactococcus, Pantoea, while in insects exposed to chlorpyrifos or flonicamid it was Pseudomonas. Insecticide-treated larvae were characterized, on average, by higher biodiversity and richness of bacterial genera, compared to untreated insects. The depletion of CLB-associated bacteria resulted in a decrease in larval survival, especially after cypermethrin and chlorpyrifos treatments. The use of a metagenome-based functional prediction approach revealed a higher predicted function of bacterial acetyl-CoA C-acetyltransferase in flonicamid and chlorpyrifos-treated larvae and tRNA dimethyltransferase in cypermethrin-treated insects than in untreated insects.
Collapse
Affiliation(s)
- Beata Wielkopolan
- Department of Monitoring and Signaling of AgrophagesInstitute of Plant Protection–National Research InstitutePoznanPoland
| | | | - Jan Gawor
- DNA Sequencing and Synthesis FacilityInstitute of Biochemistry and Biophysics, Polish Academy of SciencesWarsawPoland
| | | |
Collapse
|
10
|
Cameirão C, Costa D, Rufino J, Pereira JA, Lino-Neto T, Baptista P. Diversity, Composition, and Specificity of the Philaenus spumarius Bacteriome. Microorganisms 2024; 12:298. [PMID: 38399702 PMCID: PMC10893442 DOI: 10.3390/microorganisms12020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Philaenus spumarius (Linnaeus, 1758) (Hemiptera, Aphrophoridae) was recently classified as a pest due to its ability to act as a vector of the phytopathogen Xylella fastidiosa. This insect has been reported to harbour several symbiotic bacteria that play essential roles in P. spumarius health and fitness. However, the factors driving bacterial assemblages remain largely unexplored. Here, the bacteriome associated with different organs (head, abdomen, and genitalia) of males and females of P. spumarius was characterized using culturally dependent and independent methods and compared in terms of diversity and composition. The bacteriome of P. spumarius is enriched in Proteobacteria, Bacteroidota, and Actinobacteria phyla, as well as in Candidatus Sulcia and Cutibacterium genera. The most frequent isolates were Curtobacterium, Pseudomonas, and Rhizobiaceae sp.1. Males display a more diverse bacterial community than females, but no differences in diversity were found in distinct organs. However, the organ shapes the bacteriome structure more than sex, with the Microbacteriaceae family revealing a high level of organ specificity and the Blattabacteriaceae family showing a high level of sex specificity. Several symbiotic bacterial genera were identified in P. spumarius for the first time, including Rhodococcus, Citrobacter, Halomonas, Streptomyces, and Providencia. Differences in the bacterial composition within P. spumarius organs and sexes suggest an adaptation of bacteria to particular insect tissues, potentially shaped by their significance in the life and overall fitness of P. spumarius. Although more research on the bacteria of P. spumarius interactions is needed, such knowledge could help to develop specific bacterial-based insect management strategies.
Collapse
Affiliation(s)
- Cristina Cameirão
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (C.C.); (J.A.P.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Daniela Costa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (D.C.); (T.L.-N.)
| | - José Rufino
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (C.C.); (J.A.P.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Teresa Lino-Neto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (D.C.); (T.L.-N.)
| | - Paula Baptista
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (C.C.); (J.A.P.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| |
Collapse
|
11
|
Ye S, Tian Z, Ma W, Gao X, Chen H, Yang J, Ma C, Zhang Y, Zhou Z. Rapid response of midgut bacteria in Bactrocera tau (Walker) (Diptera: Tephritidae) to lambda-cyhalothrin- and spinosad-induced stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115502. [PMID: 37742569 DOI: 10.1016/j.ecoenv.2023.115502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
In recent decades, the increasingly widespread application of chemical pesticides has exacerbated the emergence of insecticide resistance among insect pests. In this study, we examined the rapid response of bacteria in the midgut of the fruit fly Bactrocera tau (Walker) (Diptera: Tephritidae) to stress induced by the insecticides lambda-cyhalothrin and spinosad by analyzing the bacterial community structure and diversity in the midguts of 4-day-old B. tau. The results revealed that 4-day-old B. tau females were more resistant to lambda-cyhalothrin and spinosad than their 4-day-old male counterparts. Alpha- and beta-diversity analyses revealed no significant differences between male and female B. tau with respect to the diversity and richness of gut bacteria in response to the same treatments. In response to treatment with lambda-cyhalothrin and spinosad at lethal concentration 50 (LC50), we detected significant changes in the structure and diversity of the bacterial community in the midguts of both male and female B. tau. Particularly among the dominant bacterial genera, there were decreases in the relative abundances of Citrobacter, Enterobacter, Klebsiella, and Pectobacterium. Increases were observed in the relative abundances of Dysgonomonas, Erwinia, and Providencia. Our findings provide a theoretical basis for gaining a better understanding of the relationships between midgut bacteria and the insecticide resistance of B. tau.
Collapse
Affiliation(s)
- Suzhen Ye
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Zhenya Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572019, China
| | - Weihua Ma
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572019, China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuyuan Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572019, China; Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Hongsong Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572019, China; Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Jingfang Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572019, China
| | - Chao Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572019, China
| | - Yan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572019, China
| | - Zhongshi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572019, China.
| |
Collapse
|
12
|
Abstract
Haematophagous arthropods, including mosquitoes, ticks, flies, triatomine bugs and lice (here referred to as vectors), are involved in the transmission of various pathogens to mammals on whom they blood feed. The diseases caused by these pathogens, collectively known as vector-borne diseases (VBDs), threaten the health of humans and animals. Although the vector arthropods differ in life histories, feeding behaviour as well as reproductive strategies, they all harbour symbiotic microorganisms, known as microbiota, on which they depend for completing essential aspects of their biology, such as development and reproduction. In this Review, we summarize the shared and unique key features of the symbiotic associations that have been characterized in the major vector taxa. We discuss the crosstalks between microbiota and their arthropod hosts that influence vector metabolism and immune responses relevant for pathogen transmission success, known as vector competence. Finally, we highlight how current knowledge on symbiotic associations is being explored to develop non-chemical-based alternative control methods that aim to reduce vector populations, or reduce vector competence. We conclude by highlighting the remaining knowledge gaps that stand to advance basic and translational aspects of vector-microbiota interactions.
Collapse
Affiliation(s)
- Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China.
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China.
| | - Li Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
| |
Collapse
|
13
|
dos Santos NAC, de Carvalho VR, Souza-Neto JA, Alonso DP, Ribolla PEM, Medeiros JF, Araujo MDS. Bacterial Microbiota from Lab-Reared and Field-Captured Anopheles darlingi Midgut and Salivary Gland. Microorganisms 2023; 11:1145. [PMID: 37317119 PMCID: PMC10224351 DOI: 10.3390/microorganisms11051145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 06/16/2023] Open
Abstract
Anopheles darlingi is a major malaria vector in the Amazon region and, like other vectors, harbors a community of microorganisms with which it shares a network of interactions. Here, we describe the diversity and bacterial composition from the midguts and salivary glands of lab-reared and field-captured An. darlingi using metagenome sequencing of the 16S rRNA gene. The libraries were built using the amplification of the region V3-V4 16S rRNA gene. The bacterial community from the salivary glands was more diverse and richer than the community from the midguts. However, the salivary glands and midguts only showed dissimilarities in beta diversity between lab-reared mosquitoes. Despite that, intra-variability was observed in the samples. Acinetobacter and Pseudomonas were dominant in the tissues of lab-reared mosquitoes. Sequences of Wolbachia and Asaia were both found in the tissue of lab-reared mosquitoes; however, only Asaia was found in field-captured An. darlingi, but in low abundance. This is the first report on the characterization of microbiota composition from the salivary glands of An. darlingi from lab-reared and field-captured individuals. This study can provide invaluable insights for future investigations regarding mosquito development and interaction between mosquito microbiota and Plasmodium sp.
Collapse
Affiliation(s)
- Najara Akira Costa dos Santos
- Programa de Pós-Graduação em Biologia Experimental, Departament of Medicine, Fundação Universidade Federal de Rondônia/Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil; (N.A.C.d.S.); (J.F.M.)
- Plataforma de Produção e Infecção de Vetores da Malária-PIVEM, Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil
| | - Vanessa Rafaela de Carvalho
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (V.R.d.C.); (J.A.S.-N.)
| | - Jayme A. Souza-Neto
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (V.R.d.C.); (J.A.S.-N.)
| | - Diego Peres Alonso
- Department of Biotecnology (IBTEC–Campus Botucatu), Instituto de Biotecnologia da UNESP, Universidade Estadual Paulista (UNESP), Botucatu 18607-440, SP, Brazil; (D.P.A.); (P.E.M.R.)
| | - Paulo Eduardo Martins Ribolla
- Department of Biotecnology (IBTEC–Campus Botucatu), Instituto de Biotecnologia da UNESP, Universidade Estadual Paulista (UNESP), Botucatu 18607-440, SP, Brazil; (D.P.A.); (P.E.M.R.)
| | - Jansen Fernandes Medeiros
- Programa de Pós-Graduação em Biologia Experimental, Departament of Medicine, Fundação Universidade Federal de Rondônia/Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil; (N.A.C.d.S.); (J.F.M.)
- Plataforma de Produção e Infecção de Vetores da Malária-PIVEM, Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil
| | - Maisa da Silva Araujo
- Plataforma de Produção e Infecção de Vetores da Malária-PIVEM, Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil
- Programa de Pós-Graduação em Conservação e uso de Recursos Naturais–PPGReN, Departament of Biology, Fundação Universidade Federal de Rondônia, Campus José Ribeiro Filho, Porto Velho 76801-059, RO, Brazil
- Laboratório de Pesquisa Translacional e Clínica, Centro de Pesquisa em Medicina Tropical, Porto Velho 76812-329, RO, Brazil
| |
Collapse
|
14
|
Ratnayake OC, Chotiwan N, Saavedra-Rodriguez K, Perera R. The buzz in the field: the interaction between viruses, mosquitoes, and metabolism. Front Cell Infect Microbiol 2023; 13:1128577. [PMID: 37360524 PMCID: PMC10289420 DOI: 10.3389/fcimb.2023.1128577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 06/28/2023] Open
Abstract
Among many medically important pathogens, arboviruses like dengue, Zika and chikungunya cause severe health and economic burdens especially in developing countries. These viruses are primarily vectored by mosquitoes. Having surmounted geographical barriers and threat of control strategies, these vectors continue to conquer many areas of the globe exposing more than half of the world's population to these viruses. Unfortunately, no medical interventions have been capable so far to produce successful vaccines or antivirals against many of these viruses. Thus, vector control remains the fundamental strategy to prevent disease transmission. The long-established understanding regarding the replication of these viruses is that they reshape both human and mosquito host cellular membranes upon infection for their replicative benefit. This leads to or is a result of significant alterations in lipid metabolism. Metabolism involves complex chemical reactions in the body that are essential for general physiological functions and survival of an organism. Finely tuned metabolic homeostases are maintained in healthy organisms. However, a simple stimulus like a viral infection can alter this homeostatic landscape driving considerable phenotypic change. Better comprehension of these mechanisms can serve as innovative control strategies against these vectors and viruses. Here, we review the metabolic basis of fundamental mosquito biology and virus-vector interactions. The cited work provides compelling evidence that targeting metabolism can be a paradigm shift and provide potent tools for vector control as well as tools to answer many unresolved questions and gaps in the field of arbovirology.
Collapse
Affiliation(s)
- Oshani C. Ratnayake
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Nunya Chotiwan
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Karla Saavedra-Rodriguez
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rushika Perera
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
15
|
Wei X, Peng H, Li Y, Meng B, Wang S, Bi S, Zhao X. Pyrethroids exposure alters the community and function of the internal microbiota in Aedes albopictus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114579. [PMID: 36706527 DOI: 10.1016/j.ecoenv.2023.114579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Large amounts of insecticides bring selection pressure and then develop insecticide resistance in Aedes albopictus. This study demonstrated for the first time the effect of pyrethroid exposure on the internal microbiota in Ae. albopictus. 36, 48, 57 strains of virgin adult Ae. albopictus were exposed to the pyrethroids deltamethrin (Dme group), β-cypermethrin (Bcy group), and cis-permethrin (Cper group), respectively, with n-hexane exposure (Hex group) as the controls (n = 36). The internal microbiota community and functions were analyzed based on the metagenomic analysis. The analysis of similarity (ANOSIM) results showed that the Hex/Bcy (p = 0.001), Hex/Cper (p = 0.006), Hex/Dme (p = 0.001) groups were well separated, and the internal microbes of Ae. albopictus vary in the composition and functions depending on the type of pyrethroid insecticide they are applied. Four short chain fatty acid-producing genera, Butyricimonas, Prevotellaceae, Anaerococcus, Pseudorhodobacter were specifically absent in the pyrethroid-exposed mosquitoes. Morganella and Streptomyces were significantly enriched in cis-permethrin-exposed mosquitoes. Wolbachia and Chryseobacterium showed significant enrichment in β-cypermethrin-exposed mosquitoes. Pseudomonas was significantly abundant in deltamethrin-exposed mosquitoes. The significant proliferation of these bacteria may be closely related to insecticide metabolism. Our study recapitulated a specifically enhanced metabolic networks relevant to the exposure to cis-permethrin and β-cypermethrin, respectively. Benzaldehyde dehydrogenase (EC 1.2.1.28), key enzyme in aromatic compounds metabolism, was detected enhanced in cis-permethrin and β-cypermethrin exposed mosquitoes. The internal microbiota metabolism of aromatic compounds may be important influencing factors for pyrethroid resistance. Future work will be needed to elucidate the specific mechanisms by which mosquito microbiota influences host resistance and vector ability.
Collapse
Affiliation(s)
- Xiao Wei
- Centers for Disease Control and Prevention of PLA, Beijing, China
| | - Hong Peng
- Centers for Disease Control and Prevention of PLA, Beijing, China
| | - Yan Li
- Centers for Disease Control and Prevention of PLA, Beijing, China
| | - Biao Meng
- Centers for Disease Control and Prevention of PLA, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Shichao Wang
- Centers for Disease Control and Prevention of PLA, Beijing, China
| | - Shanzheng Bi
- Centers for Disease Control and Prevention of PLA, Beijing, China
| | - Xiangna Zhao
- Centers for Disease Control and Prevention of PLA, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.
| |
Collapse
|
16
|
Mogilicherla K, Roy A. Epigenetic regulations as drivers of insecticide resistance and resilience to climate change in arthropod pests. Front Genet 2023; 13:1044980. [PMID: 36685945 PMCID: PMC9853188 DOI: 10.3389/fgene.2022.1044980] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Arthropod pests are remarkably capable of rapidly adapting to novel forms of environmental stress, including insecticides and climate change. The dynamic interplay between epigenetics and genetics explains the largely unexplored reality underlying rapid climatic adaptation and the development of insecticide resistance in insects. Epigenetic regulation modulates gene expression by methylating DNA and acetylating histones that play an essential role in governing insecticide resistance and adaptation to climate change. This review summarises and discusses the significance of recent advances in epigenetic regulation that facilitate phenotypic plasticity in insects and their symbiotic microbes to cope with selection pressure implied by extensive insecticide applications and climate change. We also discuss how epigenetic changes are passed on to multiple generations through sexual recombination, which remains enigmatic. Finally, we explain how these epigenetic signatures can be utilized to manage insecticide resistance and pest resilience to climate change in Anthropocene.
Collapse
|
17
|
Manvell C, Berman H, Callahan B, Breitschwerdt E, Swain W, Ferris K, Maggi R, Lashnits E. Identification of microbial taxa present in Ctenocephalides felis (cat flea) reveals widespread co-infection and associations with vector phylogeny. Parasit Vectors 2022; 15:398. [PMID: 36316689 PMCID: PMC9623975 DOI: 10.1186/s13071-022-05487-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Ctenocephalides felis, the cat flea, is the most common ectoparasite of cats and dogs worldwide. As a cause of flea allergy dermatitis and a vector for two genera of zoonotic pathogens (Bartonella and Rickettsia spp.), the effect of the C. felis microbiome on pathogen transmission and vector survival is of substantial medical importance to both human and veterinary medicine. The aim of this study was to assay the pathogenic and commensal eubacterial microbial communities of individual C. felis from multiple geographic locations and analyze these findings by location, qPCR pathogen prevalence, and flea genetic diversity. METHODS 16S Next Generation Sequencing (NGS) was utilized to sequence the microbiome of fleas collected from free-roaming cats, and the cox1 gene was used for flea phylogenetic analysis. NGS data were analyzed for 168 individual fleas from seven locations within the US and UK. Given inconsistency in the genera historically reported to constitute the C. felis microbiome, we utilized the decontam prevalence method followed by literature review to separate contaminants from true microbiome members. RESULTS NGS identified a single dominant and cosmopolitan amplicon sequence variant (ASV) from Rickettsia and Wolbachia while identifying one dominant Bartonella clarridgeiae and one dominant Bartonella henselae/Bartonella koehlerae ASV. Multiple less common ASVs from these genera were detected within restricted geographical ranges. Co-detection of two or more genera (Bartonella, Rickettsia, and/or Wolbachia) or multiple ASVs from a single genus in a single flea was common. Achromobacter, Peptoniphilus, and Rhodococcus were identified as additional candidate members of the C. felis microbiome on the basis of decontam analysis and literature review. Ctenocephalides felis phylogenetic diversity as assessed by the cox1 gene fell within currently characterized clades while identifying seven novel haplotypes. NGS sensitivity and specificity for Bartonella and Rickettsia spp. DNA detection were compared to targeted qPCR. CONCLUSIONS Our findings confirm the widespread coinfection of fleas with multiple bacterial genera and strains, proposing three additional microbiome members. The presence of minor Bartonella, Rickettsia, and Wolbachia ASVs was found to vary by location and flea haplotype. These findings have important implications for flea-borne pathogen transmission and control.
Collapse
Affiliation(s)
- Charlotte Manvell
- Intracellular Pathogens Research Laboratory, College of Veterinary Medicine, North Carolina State University, Raleigh, NC USA
| | - Hanna Berman
- Department of Population Health and Pathobiology, College of Veterinary Medicine and Bioinformatics Research Center, North Carolina State University, Raleigh, NC USA
| | - Benjamin Callahan
- Department of Population Health and Pathobiology, College of Veterinary Medicine and Bioinformatics Research Center, North Carolina State University, Raleigh, NC USA
| | - Edward Breitschwerdt
- Intracellular Pathogens Research Laboratory, College of Veterinary Medicine, North Carolina State University, Raleigh, NC USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC USA
| | - William Swain
- Intracellular Pathogens Research Laboratory, College of Veterinary Medicine, North Carolina State University, Raleigh, NC USA
- School of Veterinary Medicine, One Health Institute, University of California, Davis, CA USA
| | - Kelli Ferris
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC USA
| | - Ricardo Maggi
- Intracellular Pathogens Research Laboratory, College of Veterinary Medicine, North Carolina State University, Raleigh, NC USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC USA
| | - Erin Lashnits
- Intracellular Pathogens Research Laboratory, College of Veterinary Medicine, North Carolina State University, Raleigh, NC USA
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
18
|
Association of Midgut Bacteria and Their Metabolic Pathways with Zika Infection and Insecticide Resistance in Colombian Aedes aegypti Populations. Viruses 2022; 14:v14102197. [PMID: 36298752 PMCID: PMC9609292 DOI: 10.3390/v14102197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Aedes aegypti is the vector of several arboviruses such as dengue, Zika, and chikungunya. In 2015-16, Zika virus (ZIKV) had an outbreak in South America associated with prenatal microcephaly and Guillain-Barré syndrome. This mosquito's viral transmission is influenced by microbiota abundance and diversity and its interactions with the vector. The conditions of cocirculation of these three arboviruses, failure in vector control due to insecticide resistance, limitations in dengue management during the COVID-19 pandemic, and lack of effective treatment or vaccines make it necessary to identify changes in mosquito midgut bacterial composition and predict its functions through the infection. Its study is fundamental because it generates knowledge for surveillance of transmission and the risk of outbreaks of these diseases at the local level. METHODS Midgut bacterial compositions of females of Colombian Ae. aegypti populations were analyzed using DADA2 Pipeline, and their functions were predicted with PICRUSt2 analysis. These analyses were done under the condition of natural ZIKV infection and resistance to lambda-cyhalothrin, alone and in combination. One-step RT-PCR determined the percentage of ZIKV-infected females. We also measured the susceptibility to the pyrethroid lambda-cyhalothrin and evaluated the presence of the V1016I mutation in the sodium channel gene. RESULTS We found high ZIKV infection rates in Ae. aegypti females from Colombian rural municipalities with deficient water supply, such as Honda with 63.6%. In the face of natural infection with an arbovirus such as Zika, the diversity between an infective and non-infective form was significantly different. Bacteria associated with a state of infection with ZIKV and lambda-cyhalothrin resistance were detected, such as the genus Bacteroides, which was related to functions of pathogenicity, antimicrobial resistance, and bioremediation of insecticides. We hypothesize that it is a vehicle for virus entry, as it is in human intestinal infections. On the other hand, Bello, the only mosquito population classified as susceptible to lambda-cyhalothrin, was associated with bacteria related to mucin degradation functions in the intestine, belonging to the Lachnospiraceae family, with the genus Dorea being increased in ZIKV-infected females. The Serratia genus presented significantly decreased functions related to phenazine production, potentially associated with infection control, and control mechanism functions for host defense and quorum sensing. Additionally, Pseudomonas was the genus principally associated with functions of the degradation of insecticides related to tryptophan metabolism, ABC transporters with a two-component system, efflux pumps, and alginate synthesis. CONCLUSIONS Microbiota composition may be modulated by ZIKV infection and insecticide resistance in Ae. aegypti Colombian populations. The condition of resistance to lambda-cyhalothrin could be inducing a phenome of dysbiosis in field Ae. aegypti affecting the transmission of arboviruses.
Collapse
|
19
|
Alomar AA, Eastmond BH, Rapti Z, Walker ED, Alto BW. Ingestion of spinosad-containing toxic sugar bait alters Aedes albopictus vector competence and vectorial capacity for dengue virus. Front Microbiol 2022; 13:933482. [PMID: 36090120 PMCID: PMC9459233 DOI: 10.3389/fmicb.2022.933482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/05/2022] [Indexed: 12/01/2022] Open
Abstract
Dengue virus (DENV) is a highly prevalent vector-borne virus that causes life-threatening illnesses to humans worldwide. The development of a tool to control vector populations has the potential to reduce the burden of DENV. Toxic sugar bait (TSB) provides a form of vector control that takes advantage of the sugar-feeding behavior of adult mosquitoes. However, studies on the effect of ingestion of toxins in TSB on vector competence and vectorial capacity for viruses are lacking. This study evaluated vector competence for DENV serotype-1 of Aedes albopictus at 7 and 14 days post-ingestion of TSB formulated with spinosad (of bacteria origin) as an oral toxin. Our results and others were modeled to estimate effects on Ae. albopictus vectorial capacity for DENV. Ingestion of TSB caused a reduction in survival of females, but increased mosquito susceptibility to DENV infection, disseminated infection, and transmission. However, this increase in vector competence was obviated by the reduction in survival, leading to a lower predicted vectorial capacity. The findings of this study highlight the importance of evaluating the net impact of TSB ingestion on epidemiological parameters of vectorial capacity in the context of vector control efforts to reduce the risk of transmission of vector-borne viruses.
Collapse
Affiliation(s)
- Abdullah A. Alomar
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, United States
- *Correspondence: Abdullah A. Alomar,
| | - Bradley H. Eastmond
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, United States
| | - Zoi Rapti
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Edward D. Walker
- Department of Entomology, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Barry W. Alto
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, United States
| |
Collapse
|
20
|
Bras A, Roy A, Heckel DG, Anderson P, Karlsson Green K. Pesticide resistance in arthropods: Ecology matters too. Ecol Lett 2022; 25:1746-1759. [PMID: 35726578 PMCID: PMC9542861 DOI: 10.1111/ele.14030] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 12/22/2022]
Abstract
Pesticide resistance development is an example of rapid contemporary evolution that poses immense challenges for agriculture. It typically evolves due to the strong directional selection that pesticide treatments exert on herbivorous arthropods. However, recent research suggests that some species are more prone to evolve pesticide resistance than others due to their evolutionary history and standing genetic variation. Generalist species might develop pesticide resistance especially rapidly due to pre‐adaptation to handle a wide array of plant allelochemicals. Moreover, research has shown that adaptation to novel host plants could lead to increased pesticide resistance. Exploring such cross‐resistance between host plant range evolution and pesticide resistance development from an ecological perspective is needed to understand its causes and consequences better. Much research has, however, been devoted to the molecular mechanisms underlying pesticide resistance while both the ecological contexts that could facilitate resistance evolution and the ecological consequences of cross‐resistance have been under‐studied. Here, we take an eco‐evolutionary approach and discuss circumstances that may facilitate cross‐resistance in arthropods and the consequences cross‐resistance may have for plant–arthropod interactions in both target and non‐target species and species interactions. Furthermore, we suggest future research avenues and practical implications of an increased ecological understanding of pesticide resistance evolution.
Collapse
Affiliation(s)
- Audrey Bras
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.,Faculty of Forestry and Wood Sciences, EXTEMIT-K and EVA.4.0 Unit, Czech University of Life Sciences, Suchdol, Czech Republic
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, EXTEMIT-K and EVA.4.0 Unit, Czech University of Life Sciences, Suchdol, Czech Republic
| | - David G Heckel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Peter Anderson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Kristina Karlsson Green
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
21
|
El Hamss H, Ghosh S, Maruthi MN, Delatte H, Colvin J. Microbiome diversity and reproductive incompatibility induced by the prevalent endosymbiont Arsenophonus in two species of African cassava Bemisia tabaci whiteflies. Ecol Evol 2021; 11:18032-18041. [PMID: 35003655 PMCID: PMC8717322 DOI: 10.1002/ece3.8400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/01/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
A minimum of 13 diverse whitefly species belonging to the Bemisia tabaci (B. tabaci) species complex are known to infest cassava crops in sub-Saharan Africa (SSA), designated as SSA1-13. Of these, the SSA1 and SSA2 are the predominant species colonizing cassava crops in East Africa. The SSA species of B. tabaci harbor diverse bacterial endosymbionts, many of which are known to manipulate insect reproduction. One such symbiont, Arsenophonus, is known to drive its spread by inducing reproductive incompatibility in its insect host and are abundant in SSA species of B. tabaci. However, whether Arsenophonus affects the reproduction of SSA species is unknown. In this study, we investigated both the reproductive compatibility between Arsenophonus infected and uninfected whiteflies by inter-/intraspecific crossing experiments involving the sub-group three haplotypes of the SSA1 (SSA1-SG3), SSA2 species, and their microbial diversity. The number of eggs, nymphs, progenies produced, hatching rate, and survival rate were recorded for each cross. In intra-specific crossing trials, both male and female progenies were produced and thus demonstrated no reproductive incompatibility. However, the total number of eggs laid, nymphs hatched, and the emerged females were low in the intra-species crosses of SSA1-SG3A+, indicating the negative effect of Arsenophonus on whitefly fitness. In contrast, the inter-species crosses between the SSA1-SG3 and SSA2 produced no female progeny and thus demonstrated reproductive incompatibility. The relative frequency of other bacteria colonizing the whiteflies was also investigated using Illumina sequencing of 16S rDNA and diversity indices were recorded. Overall, SSA1-SG3 and SSA2 harbored high microbial diversity with more than 137 bacteria discovered. These results described for the first time the microbiome diversity and the reproductive behaviors of intra-/inter-species of Arsenophonus in whitefly reproduction, which is crucial for understanding the invasion abilities of cassava whiteflies.
Collapse
Affiliation(s)
- Hajar El Hamss
- Natural Resources InstituteUniversity of GreenwichKentUK
| | - Saptarshi Ghosh
- Department of EntomologyUniversity of GeorgiaGriffinGeorgiaUSA
| | - M. N. Maruthi
- Natural Resources InstituteUniversity of GreenwichKentUK
| | | | - John Colvin
- Natural Resources InstituteUniversity of GreenwichKentUK
| |
Collapse
|