1
|
Gröger M, Börgel F, Karsten S, Meier HEM, Safonova K, Dutheil C, Receveur A, Polte P. Future climate change and marine heatwaves - Projected impact on key habitats for herring reproduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175756. [PMID: 39182788 DOI: 10.1016/j.scitotenv.2024.175756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/23/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
This study explores the impact of global climate targets on sea surface temperatures and marine heatwaves (MHWs) in the Baltic Sea. We further evaluate potential adverse climate effects on the reproductive success of the western Baltic Sea (WBS) herring stock, which underwent a dramatic decline during the past two decades. For this, we use refined ensemble climate projections from the Coupled Model Intercomparison Project. For the WBS herring spawning ground, the number of MHW days nearly triples from 34 days/year in the historical period, to 102 days/year already under the optimistic 1.5 °C target of global climate warming (Paris, 2015) and further increases at a rate of 36 to 48 [days yr-1]/0.5 °C beyond the 1.5 °C target. The average MHW surface extent more than doubles in the 1.5 °C target from ~8 % to 21 % in this area. This study finds the phenological winter climate considerably altered in response to future global warming and more frequent MHW days in the WBS. The winter duration reduces by ~25 % already in the 2.0 °C target but by ~60 % in the 4.0 °C target compared to the historical climate. Winter inceptions/terminations occur successively later/earlier and the share of missed winters, i.e. winters unsuitable to support herring reproductive success, increases by up to ~70 %. Days with heat stress on the cardiac function of herring larvae will likewise increase and occur earlier in the year. Consequently, the early life cycle of herring will face more often winter conditions that were unprecedented during the historical past, and the risk for future reproductive failure will increase. However, our results reveal that abiotic disturbances for the marine ecosystem can be partly mitigated if global warming remains compliant with the 1.5 °C target.
Collapse
Affiliation(s)
- Matthias Gröger
- Department of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 181 19 Rostock, Germany.
| | - Florian Börgel
- Department of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 181 19 Rostock, Germany
| | - Sven Karsten
- Department of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 181 19 Rostock, Germany
| | - H E Markus Meier
- Department of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 181 19 Rostock, Germany
| | - Kseniia Safonova
- Department of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 181 19 Rostock, Germany
| | - Cyril Dutheil
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Sète, Montpellier, France
| | - Aurore Receveur
- FRB-CESAB, 5 Rue de l'École de Médecine, 34000 Montpellier, France
| | - Patrick Polte
- Thuenen Institute of Baltic Sea Fisheries, Alter Hafen Süd 2, 180 69 Rostock, Germany
| |
Collapse
|
2
|
Blake C, Barber JN, Connallon T, McDonald MJ. Evolutionary shift of a tipping point can precipitate, or forestall, collapse in a microbial community. Nat Ecol Evol 2024:10.1038/s41559-024-02543-0. [PMID: 39294402 DOI: 10.1038/s41559-024-02543-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024]
Abstract
Global ecosystems are rapidly approaching tipping points, where minute shifts can lead to drastic ecological changes. Theory predicts that evolution can shape a system's tipping point behaviour, but direct experimental support is lacking. Here we investigate the power of evolutionary processes to alter these critical thresholds and protect an ecological community from collapse. To do this, we propagate a two-species microbial system composed of Escherichia coli and baker's yeast, Saccharomyces cerevisiae, for over 4,000 generations, and map ecological stability before and after coevolution. Our results reveal that tipping points-and other geometric properties of ecological communities-can evolve to alter the range of conditions under which our microbial community can flourish. We develop a mathematical model to illustrate how evolutionary changes in parameters such as growth rate, carrying capacity and resistance to environmental change affect ecological resilience. Our study shows that adaptation of key species can shift an ecological community's tipping point, potentially promoting ecological stability or accelerating collapse.
Collapse
Affiliation(s)
- Christopher Blake
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Jake N Barber
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Tim Connallon
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Michael J McDonald
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
3
|
Conradt J, Funk S, Sguotti C, Voss R, Blenckner T, Möllmann C. Robust fisheries management strategies under deep uncertainty. Sci Rep 2024; 14:16863. [PMID: 39043856 PMCID: PMC11266645 DOI: 10.1038/s41598-024-68006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
Fisheries worldwide face uncertain futures as climate change manifests in environmental effects of hitherto unseen strengths. Developing climate-ready management strategies traditionally requires a good mechanistic understanding of stock response to climate change in order to build projection models for testing different exploitation levels. Unfortunately, model-based projections of fish stocks are severely limited by large uncertainties in the recruitment process, as the required stock-recruitment relationship is usually not well represented by data. An alternative is to shift focus to improving the decision-making process, as postulated by the decision-making under deep uncertainty (DMDU) framework. Robust Decision Making (RDM), a key DMDU concept, aims at identifying management decisions that are robust to a vast range of uncertain scenarios. Here we employ RDM to investigate the capability of North Sea cod to support a sustainable and economically viable fishery under future climate change. We projected the stock under 40,000 combinations of exploitation levels, emission scenarios and stock-recruitment parameterizations and found that model uncertainties and exploitation have similar importance for model outcomes. Our study revealed that no management strategy exists that is fully robust to the uncertainty in relation to model parameterization and future climate change. We instead propose a risk assessment that accounts for the trade-offs between stock conservation and profitability under deep uncertainty.
Collapse
Affiliation(s)
- Jan Conradt
- Institute of Marine Ecosystem and Fishery Science, Universität Hamburg, Große Elbstraße 133, 22767, Hamburg, Germany.
| | - Steffen Funk
- Institute of Marine Ecosystem and Fishery Science, Universität Hamburg, Große Elbstraße 133, 22767, Hamburg, Germany
| | - Camilla Sguotti
- Institute of Marine Ecosystem and Fishery Science, Universität Hamburg, Große Elbstraße 133, 22767, Hamburg, Germany
- Department of Biology, University of Padova, Via U. Bassi 58/B, 85121, Padova, Italy
| | - Rudi Voss
- German Centre for Integrative Biodiversity Research (iDiv), Puschstraße 4, 04103, Leipzig, Germany
- Center for Ocean and Society (CeOS), Christian-Albrechts-University Kiel, Neufeldtstraße 10, 24118, Kiel, Germany
| | - Thorsten Blenckner
- Stockholm Resilience Centre, Stockholm University, Frescativägen 8, 10691, Stockholm, Sweden
| | - Christian Möllmann
- Institute of Marine Ecosystem and Fishery Science, Universität Hamburg, Große Elbstraße 133, 22767, Hamburg, Germany
| |
Collapse
|
4
|
Moll D, Asmus H, Blöcker A, Böttcher U, Conradt J, Färber L, Funk N, Funk S, Gutte H, Hinrichsen HH, Kotterba P, Krumme U, Madiraca F, Meier HEM, Meyer S, Moritz T, Otto SA, Pinto G, Polte P, Riekhof MC, Sarrazin V, Scotti M, Voss R, Winkler H, Möllmann C. A climate vulnerability assessment of the fish community in the Western Baltic Sea. Sci Rep 2024; 14:16184. [PMID: 39003317 PMCID: PMC11246524 DOI: 10.1038/s41598-024-67029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
Marine fisheries are increasingly impacted by climate change, affecting species distribution and productivity, and necessitating urgent adaptation efforts. Climate vulnerability assessments (CVA), integrating expert knowledge, are vital for identifying species that could thrive or suffer under changing environmental conditions. This study presents a first CVA for the Western Baltic Sea's fish community, a crucial fishing area for Denmark and Germany. Characterized by a unique mix of marine, brackish, and freshwater species, this coastal ecosystem faces significant changes due to the combined effects of overfishing, eutrophication and climate change. Our CVA involved a qualitative expert scoring of 22 fish species, assessing their sensitivity and exposure to climate change. Our study revealed a dichotomy in climate change vulnerability within the fish community of the Western Baltic Sea because traditional fishing targets cod and herring as well as other species with complex life histories are considered to face increased risks, whereas invasive or better adaptable species might thrive under changing conditions. Our findings hence demonstrate the complex interplay between life-history traits and climate change vulnerability in marine fish communities. Eventually, our study provides critical knowledge for the urgent development of tailored adaptation efforts addressing existing but especially future effects of climate change on fish and fisheries in the Western Baltic Sea, to navigate this endangered fisheries systems into a sustainable future.
Collapse
Affiliation(s)
- Dorothee Moll
- Thuenen Institute of Baltic Sea Fisheries, Rostock, Germany
| | - Harald Asmus
- Alfred-Wegener Institute for Polar and Marine Research, Wadden Sea Station Sylt, List, Germany
| | - Alexandra Blöcker
- Institute of Marine Ecosystem and Fishery Science, Center for Earth System Research and Sustainability (CEN), Hamburg University, Hamburg, Germany
| | - Uwe Böttcher
- Thuenen Institute of Baltic Sea Fisheries, Rostock, Germany
| | - Jan Conradt
- Institute of Marine Ecosystem and Fishery Science, Center for Earth System Research and Sustainability (CEN), Hamburg University, Hamburg, Germany
| | - Leonie Färber
- Institute of Marine Ecosystem and Fishery Science, Center for Earth System Research and Sustainability (CEN), Hamburg University, Hamburg, Germany
| | - Nicole Funk
- Institute of Marine Ecosystem and Fishery Science, Center for Earth System Research and Sustainability (CEN), Hamburg University, Hamburg, Germany
| | - Steffen Funk
- Institute of Marine Ecosystem and Fishery Science, Center for Earth System Research and Sustainability (CEN), Hamburg University, Hamburg, Germany
| | - Helene Gutte
- Institute of Marine Ecosystem and Fishery Science, Center for Earth System Research and Sustainability (CEN), Hamburg University, Hamburg, Germany
| | - Hans-Harald Hinrichsen
- Marine Ecology Research Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Paul Kotterba
- Thuenen Institute of Baltic Sea Fisheries, Rostock, Germany
| | - Uwe Krumme
- Thuenen Institute of Baltic Sea Fisheries, Rostock, Germany
| | - Frane Madiraca
- Institute of Marine Ecosystem and Fishery Science, Center for Earth System Research and Sustainability (CEN), Hamburg University, Hamburg, Germany
| | - H E Markus Meier
- Department of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Steffi Meyer
- Institute of Marine Ecosystem and Fishery Science, Center for Earth System Research and Sustainability (CEN), Hamburg University, Hamburg, Germany
- BioConsult GmbH & Co. KG, Bremen, Germany
| | - Timo Moritz
- Stiftung Deutsches Meeresmuseum - Museum für Meereskunde und Fischerei, Deutsches Meeresmuseum, Stralsund, Germany
| | - Saskia A Otto
- Institute of Marine Ecosystem and Fishery Science, Center for Earth System Research and Sustainability (CEN), Hamburg University, Hamburg, Germany
| | - Guilherme Pinto
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
| | - Patrick Polte
- Thuenen Institute of Baltic Sea Fisheries, Rostock, Germany
| | | | - Victoria Sarrazin
- Leibniz Institute for Biodiversity Change Analysis (LIB), Museum of Nature - Zoology, Hamburg, Germany
| | - Marco Scotti
- Marine Ecology Research Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Institute of Biosciences and Bioresources, National Research Council of Italy, Firenze, Italy
| | - Rudi Voss
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
- Center for Ocean and Society (CeOS), Christian-Albrechts-University Kiel, Kiel, Germany
| | - Helmut Winkler
- Department of Zoology, University of Rostock, Rostock, Germany
| | - Christian Möllmann
- Institute of Marine Ecosystem and Fishery Science, Center for Earth System Research and Sustainability (CEN), Hamburg University, Hamburg, Germany.
| |
Collapse
|
5
|
Sguotti C, Vasilakopoulos P, Tzanatos E, Frelat R. Resilience assessment in complex natural systems. Proc Biol Sci 2024; 291:20240089. [PMID: 38807517 DOI: 10.1098/rspb.2024.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/09/2024] [Indexed: 05/30/2024] Open
Abstract
Ecological resilience is the capability of an ecosystem to maintain the same structure and function and avoid crossing catastrophic tipping points (i.e. undergoing irreversible regime shifts). While fundamental for management, concrete ways to estimate and interpret resilience in real ecosystems are still lacking. Here, we develop an empirical approach to estimate resilience based on the stochastic cusp model derived from catastrophe theory. The cusp model models tipping points derived from a cusp bifurcation. We extend cusp in order to identify the presence of stable and unstable states in complex natural systems. Our Cusp Resilience Assessment (CUSPRA) has three characteristics: (i) it provides estimates on how likely a system is to cross a tipping point (in the form of a cusp bifurcation) characterized by hysteresis, (ii) it assesses resilience in relation to multiple external drivers and (iii) it produces straightforward results for ecosystem-based management. We validate our approach using simulated data and demonstrate its application using empirical time series of an Atlantic cod population and marine ecosystems in the North Sea and the Mediterranean Sea. We show that Cusp Resilience Assessment is a powerful method to empirically estimate resilience in support of a sustainable management of our constantly adapting ecosystems under global climate change.
Collapse
Affiliation(s)
- Camilla Sguotti
- Department of Biology, University of Padova , Padova 35100, Italy
- Institute of Marine Ecosystems and Fishery Science (IMF), Center for Earth System Research and Sustainability (CEN), University of Hamburg , Hamburg 22767, Germany
| | | | | | - Romain Frelat
- PO Box 30709, International Livestock Research Institute , Nairobi 00100, Kenya
| |
Collapse
|
6
|
Antunes AC, Berti E, Brose U, Hirt MR, Karger DN, O'Connor LMJ, Pollock LJ, Thuiller W, Gauzens B. Linking biodiversity, ecosystem function, and Nature's contributions to people: a macroecological energy flux perspective. Trends Ecol Evol 2024; 39:427-434. [PMID: 38310065 DOI: 10.1016/j.tree.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 02/05/2024]
Abstract
At macroecological scales, the provision of Nature's contributions to people (NCP) is mostly estimated with biophysical information, ignoring the ecological processes underlying them. This hinders our ability to properly quantify the impact of declining biodiversity and the provision of NCP. Here, we propose a framework that combines local-scale food web energy flux approaches and large-scale biodiversity models to evaluate ecosystem functions and flux-related NCP at extensive spatiotemporal scales. Importantly, this approach has the potential to upscale ecosystem functions, assess the vulnerability of flux-related NCP to the climate crisis, and support the development of multiscale mitigation policies.
Collapse
Affiliation(s)
- Ana Carolina Antunes
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany; EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany.
| | - Emilio Berti
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany; EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Ulrich Brose
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany; EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Myriam R Hirt
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany; EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Dirk N Karger
- Swiss Federal Institute for Forest, Snow, and Landscape Research, 8903 Birmensdorf, Switzerland
| | - Louise M J O'Connor
- University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| | - Laura J Pollock
- Biology Department, McGill University, 1205 Docteur Penfield, Montréal, QC, H3A 1B1, Canada
| | - Wilfried Thuiller
- University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| | - Benoit Gauzens
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany; EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| |
Collapse
|
7
|
Gauzens B, Rosenbaum B, Kalinkat G, Boy T, Jochum M, Kortsch S, O’Gorman EJ, Brose U. Flexible foraging behaviour increases predator vulnerability to climate change. NATURE CLIMATE CHANGE 2024; 14:387-392. [PMID: 38617202 PMCID: PMC11006620 DOI: 10.1038/s41558-024-01946-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/01/2024] [Indexed: 04/16/2024]
Abstract
Higher temperatures are expected to reduce species coexistence by increasing energetic demands. However, flexible foraging behaviour could balance this effect by allowing predators to target specific prey species to maximize their energy intake, according to principles of optimal foraging theory. Here we test these assumptions using a large dataset comprising 2,487 stomach contents from six fish species with different feeding strategies, sampled across environments with varying prey availability over 12 years in Kiel Bay (Baltic Sea). Our results show that foraging shifts from trait- to density-dependent prey selectivity in warmer and more productive environments. This behavioural change leads to lower consumption efficiency at higher temperature as fish select more abundant but less energetically rewarding prey, thereby undermining species persistence and biodiversity. By integrating this behaviour into dynamic food web models, our study reveals that flexible foraging leads to lower species coexistence and biodiversity in communities under global warming.
Collapse
Affiliation(s)
- Benoit Gauzens
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Benjamin Rosenbaum
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Gregor Kalinkat
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Thomas Boy
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Malte Jochum
- Experimental Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
- Department of Global Change Ecology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Susanne Kortsch
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Eoin J. O’Gorman
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | - Ulrich Brose
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
8
|
Mishra AK, Mahmud I, Lorenzi PL, Jenq RR, Wargo JA, Ajami NJ, Peterson CB. TARO: tree-aggregated factor regression for microbiome data integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562792. [PMID: 37904958 PMCID: PMC10614880 DOI: 10.1101/2023.10.17.562792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Motivation Although the human microbiome plays a key role in health and disease, the biological mechanisms underlying the interaction between the microbiome and its host are incompletely understood. Integration with other molecular profiling data offers an opportunity to characterize the role of the microbiome and elucidate therapeutic targets. However, this remains challenging to the high dimensionality, compositionality, and rare features found in microbiome profiling data. These challenges necessitate the use of methods that can achieve structured sparsity in learning cross-platform association patterns. Results We propose Tree-Aggregated factor RegressiOn (TARO) for the integration of microbiome and metabolomic data. We leverage information on the phylogenetic tree structure to flexibly aggregate rare features. We demonstrate through simulation studies that TARO accurately recovers a low-rank coefficient matrix and identifies relevant features. We applied TARO to microbiome and metabolomic profiles gathered from subjects being screened for colorectal cancer to understand how gut microrganisms shape intestinal metabolite abundances. Availability and implementation The R package TARO implementing the proposed methods is available online at https://github.com/amishra-stats/taro-package .
Collapse
|
9
|
Cooke SJ, Fulton EA, Sauer WHH, Lynch AJ, Link JS, Koning AA, Jena J, Silva LGM, King AJ, Kelly R, Osborne M, Nakamura J, Preece AL, Hagiwara A, Forsberg K, Kellner JB, Coscia I, Helyar S, Barange M, Nyboer E, Williams MJ, Chuenpagdee R, Begg GA, Gillanders BM. Towards vibrant fish populations and sustainable fisheries that benefit all: learning from the last 30 years to inform the next 30 years. REVIEWS IN FISH BIOLOGY AND FISHERIES 2023; 33:317-347. [PMID: 37122954 PMCID: PMC9985478 DOI: 10.1007/s11160-023-09765-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/07/2023] [Indexed: 05/03/2023]
Abstract
A common goal among fisheries science professionals, stakeholders, and rights holders is to ensure the persistence and resilience of vibrant fish populations and sustainable, equitable fisheries in diverse aquatic ecosystems, from small headwater streams to offshore pelagic waters. Achieving this goal requires a complex intersection of science and management, and a recognition of the interconnections among people, place, and fish that govern these tightly coupled socioecological and sociotechnical systems. The World Fisheries Congress (WFC) convenes every four years and provides a unique global forum to debate and discuss threats, issues, and opportunities facing fish populations and fisheries. The 2021 WFC meeting, hosted remotely in Adelaide, Australia, marked the 30th year since the first meeting was held in Athens, Greece, and provided an opportunity to reflect on progress made in the past 30 years and provide guidance for the future. We assembled a diverse team of individuals involved with the Adelaide WFC and reflected on the major challenges that faced fish and fisheries over the past 30 years, discussed progress toward overcoming those challenges, and then used themes that emerged during the Congress to identify issues and opportunities to improve sustainability in the world's fisheries for the next 30 years. Key future needs and opportunities identified include: rethinking fisheries management systems and modelling approaches, modernizing and integrating assessment and information systems, being responsive and flexible in addressing persistent and emerging threats to fish and fisheries, mainstreaming the human dimension of fisheries, rethinking governance, policy and compliance, and achieving equity and inclusion in fisheries. We also identified a number of cross-cutting themes including better understanding the role of fish as nutrition in a hungry world, adapting to climate change, embracing transdisciplinarity, respecting Indigenous knowledge systems, thinking ahead with foresight science, and working together across scales. By reflecting on the past and thinking about the future, we aim to provide guidance for achieving our mutual goal of sustaining vibrant fish populations and sustainable fisheries that benefit all. We hope that this prospective thinking can serve as a guide to (i) assess progress towards achieving this lofty goal and (ii) refine our path with input from new and emerging voices and approaches in fisheries science, management, and stewardship.
Collapse
Affiliation(s)
- Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6 Canada
| | - Elizabeth A. Fulton
- CSIRO Environment, Hobart, 7001 TAS Australia
- Centre for Marine Socioecology, University of Tasmania, Hobart, 7001 TAS Australia
| | - Warwick H. H. Sauer
- Department of Ichthyology and Fisheries Science, Rhodes University, Grahamstown, South Africa
| | - Abigail J. Lynch
- National Climate Adaptation Science Center, U.S. Geological Survey, 12201 Sunrise Valley Drive, Reston, VA 20192 USA
| | - Jason S. Link
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Woods Hole, MA USA
| | - Aaron A. Koning
- Global Water Center, University of Nevada-Reno, Reno, NV USA
| | - Joykrushna Jena
- Indian Council of Agricultural Research, Krishi Anusandhan Bhawan-II, Pusa, New Delhi, 110012 India
| | - Luiz G. M. Silva
- Institute of Environmental Engineering, ETH-Zurich, Zurich, Switzerland
| | - Alison J. King
- Centre for Freshwater Ecosystems, La Trobe University, Wodonga, 3690 Vic Australia
| | - Rachel Kelly
- Centre for Marine Socioecology, University of Tasmania, Hobart, 7001 TAS Australia
| | - Matthew Osborne
- Department of Industry, Tourism and Trade, Northern Territory Government, Darwin, 0800 NT Australia
| | - Julia Nakamura
- Strathclyde Centre for Environmental Law and Governance, University of Strathclyde Law School, Glasgow, UK
| | | | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521 Japan
| | | | - Julie B. Kellner
- Woods Hole Oceanographic Institute, Falmouth, MA 02453 USA
- International Council for the Exploration of the Sea, 1553 Copenhagen, Denmark
| | - Ilaria Coscia
- School of Science, Engineering and Environment, University of Salford, Salford, M5 4WT UK
| | - Sarah Helyar
- School of Biological Sciences/Institute for Global Food Security, Queen’s University Belfast, Belfast, UK
| | - Manuel Barange
- Fisheries and Aquaculture Division, Food and Agriculture Organization of the United Nations, Viale Delle Terme Di Caracalla S/N, 00153 Rome, Italy
| | - Elizabeth Nyboer
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6 Canada
| | | | - Ratana Chuenpagdee
- Department of Geography, Memorial University of Newfoundland, St. John’s, NFLD Canada
| | - Gavin A. Begg
- Department of Primary Industries and Regions, PO Box 120, Henley Beach, 5022 SA Australia
| | | |
Collapse
|
10
|
Blöcker AM, Gutte HM, Bender RL, Otto SA, Sguotti C, Möllmann C. Regime shift dynamics, tipping points and the success of fisheries management. Sci Rep 2023; 13:289. [PMID: 36609587 PMCID: PMC9822959 DOI: 10.1038/s41598-022-27104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023] Open
Abstract
Recovery of depleted fish stocks is an important goal for fisheries management and crucial to sustain important ecosystem functions as well as global food security. Successful recovery requires adjusting fishing mortality to stock productivity but can be prevented or inhibited by additional anthropogenic impacts such as climate change. Despite management measures to recover fish stocks being in place in legislations such as the European Union´s Common Fisheries Policy (CFP), recovery can be hindered by the occurrence of regime shift dynamics. Such non-linear discontinuous dynamics imply tipping points and bear the characteristics of abrupt change, hysteresis and non-stationary functional relationships. We here used the recent reform of the CFP as a natural experiment to investigate the existence of regime shift dynamics and its potential effects on the recovery potential on six strongly fished or even depleted commercial fish stocks in the North Sea. Using a set of statistical approaches we show that regime shift dynamics exist in all six fish stocks as a response to changes in fishing pressure and temperature. Our results furthermore demonstrate the context-dependence of such dynamics and hence the ability of management measures to rebuild depleted fish stocks, leading to either failed recovery or positive tipping.
Collapse
Affiliation(s)
- Alexandra M. Blöcker
- grid.9026.d0000 0001 2287 2617Center for Earth System Research and Sustainability (CEN), Institute of Marine Ecosystem and Fisheries Science (IMF), University of Hamburg, 22767 Hamburg, Germany
| | - Helene M. Gutte
- grid.9026.d0000 0001 2287 2617Center for Earth System Research and Sustainability (CEN), Institute of Marine Ecosystem and Fisheries Science (IMF), University of Hamburg, 22767 Hamburg, Germany
| | - Reuven L. Bender
- grid.9026.d0000 0001 2287 2617Center for Earth System Research and Sustainability (CEN), Institute of Marine Ecosystem and Fisheries Science (IMF), University of Hamburg, 22767 Hamburg, Germany
| | - Saskia A. Otto
- grid.9026.d0000 0001 2287 2617Center for Earth System Research and Sustainability (CEN), Institute of Marine Ecosystem and Fisheries Science (IMF), University of Hamburg, 22767 Hamburg, Germany
| | - Camilla Sguotti
- grid.9026.d0000 0001 2287 2617Center for Earth System Research and Sustainability (CEN), Institute of Marine Ecosystem and Fisheries Science (IMF), University of Hamburg, 22767 Hamburg, Germany ,grid.5608.b0000 0004 1757 3470Department of Biology, University of Padova, Via Bassi, 35100 Padova, Italy
| | - Christian Möllmann
- grid.9026.d0000 0001 2287 2617Center for Earth System Research and Sustainability (CEN), Institute of Marine Ecosystem and Fisheries Science (IMF), University of Hamburg, 22767 Hamburg, Germany
| |
Collapse
|
11
|
Schacht K, Voss R. German fishery's adaptation to historic events, Western Baltic Sea, 1890-1950. AMBIO 2023; 52:155-170. [PMID: 36136262 PMCID: PMC9666574 DOI: 10.1007/s13280-022-01768-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/21/2022] [Accepted: 06/29/2022] [Indexed: 06/16/2023]
Abstract
Marine social-ecological systems (SES) have been providing important cultural, social, and economic services for many centuries. They are, however, increasingly threatened by fast changing environmental, ecological, and socio-economic conditions. As historical marine research is increasingly developing into a multidisciplinary endeavour, it offers outstanding points of departure to analyse historic events and the response and adaptation of the respective SES. Such knowledge helps to inform today's fisheries management and promotes successful management of changing ecosystems. Here, we compile and analyse historical data (1890-1950) of the German Western Baltic Sea fishery SES. This period is characterised by a series of strong impacts due to political, technological, economic, and ecological changes, such as two world wars, a global economic crisis, and other economic or ecological disasters. In our opinion, potential negative effects of those events were in the past attenuated by the system's high capacity to adapt. However, most of the fishers´ historic options on how to respond and adapt have recently become no longer available. New threats (e.g. climate change) have emerged instead. We conclude that today's fisheries management needs to integrate options of adaptation by exhausting all present or future opportunities. Adaptive fisheries management should not only focus on environmental change but need to include socio-economic change as well.
Collapse
Affiliation(s)
- Karoline Schacht
- Biodiversity Economics, German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
- WWF Germany, International WWF-Center for Marine Conservation, Moenckebergstr. 27, 20095 Hamburg, Germany
| | - Rudi Voss
- Biodiversity Economics, German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
- Department of Economics, University of Kiel, Kiel, Germany
| |
Collapse
|
12
|
Addressing the dichotomy of fishing and climate in fishery management with the FishClim model. Commun Biol 2022; 5:1146. [DOI: 10.1038/s42003-022-04100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractThe relative influence of fishing and Climate-Induced Environmental Change (CIEC) on long-term fluctuations in exploited fish stocks has been controversial1–3 because separating their contributions is difficult for two reasons. Firstly, there is in general, no estimation of CIEC for a pre-fishing period and secondly, the assessment of the effects of fishing on stocks has taken place at the same time as CIEC4. Here, we describe a new model we have called FishClim that we apply to North Sea cod from 1963 to 2019 to estimate how fishing and CIEC interact and how they both may affect stocks in the future (2020-2100) using CMIP6 scenarios5. The FishClim model shows that both fishing and CIEC are intertwined and can either act synergistically (e.g. the 2000-2007 collapse) or antagonistically (e.g. second phase of the gadoid outburst). Failure to monitor CIEC, so that fisheries management immediately adjusts fishing effort in response to environmentally-driven shifts in stock productivity, will therefore create a deleterious response lag that may cause the stock to collapse. We found that during 1963-2019, although the effect of fishing and CIEC drivers fluctuated annually, the pooled influence of fishing and CIEC on the North Sea cod stock was nearly equal at ~55 and ~45%, respectively. Consequently, the application of FishClim, which quantifies precisely the respective influence of fishing and climate, will help to develop better strategies for sustainable, long-term, fish stock management.
Collapse
|
13
|
Garrison JA, Nordström MC, Albertsson J, Nascimento FJA. Temporal and spatial changes in benthic invertebrate trophic networks along a taxonomic richness gradient. Ecol Evol 2022; 12:e8975. [PMID: 35784047 PMCID: PMC9168554 DOI: 10.1002/ece3.8975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/31/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
Species interactions underlie most ecosystem functions and are important for understanding ecosystem changes. Representing one type of species interaction, trophic networks were constructed from biodiversity monitoring data and known trophic links to assess how ecosystems have changed over time. The Baltic Sea is subject to many anthropogenic pressures, and low species diversity makes it an ideal candidate for determining how pressures change food webs. In this study, we used benthic monitoring data for 20 years (1980-1989 and 2010-2019) from the Swedish coast of the Baltic Sea and Skagerrak to investigate changes in benthic invertebrate trophic interactions. We constructed food webs and calculated fundamental food web metrics evaluating network horizontal and vertical diversity, as well as stability that were compared over space and time. Our results show that the west coast of Sweden (Skagerrak) suffered a reduction in benthic invertebrate biodiversity by 32% between the 1980s and 2010s, and that the number of links, generality of predators, and vulnerability of prey have been significantly reduced. The other basins (Bothnian Sea, Baltic Proper, and Bornholm Basin) do not show any significant changes in species richness or consistent significant trends in any food web metrics investigated, demonstrating resilience at a lower species diversity. The decreased complexity of the Skagerrak food webs indicates vulnerability to further perturbations and pressures should be limited as much as possible to ensure continued ecosystem functions.
Collapse
Affiliation(s)
- Julie A. Garrison
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | | | - Jan Albertsson
- Umeå Marine Sciences CentreUmeå UniversityHörneforsSweden
| | - Francisco J. A. Nascimento
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- Baltic Sea CentreStockholm UniversityStockholmSweden
| |
Collapse
|