1
|
Tybirk L, Knudsen CS, Parkner T. Neurofilament light chain - Can it be measured in urine? Clin Chim Acta 2025; 569:120163. [PMID: 39870294 DOI: 10.1016/j.cca.2025.120163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/10/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
OBJECTIVE This exploratory study investigates if neurofilament light chain (NfL) is excreted in the urine and whether this depends on plasma NfL (pNfL) levels and kidney function in terms of eGFR and urine albumin-creatinine ratio (uACR). METHODS Using a computer algorithm, we identified excess urine and plasma from routine testing of uACR and eGFR in patients 45-50 years old. Up to 17 paired urine-plasma samples in each of six categories of kidney function defined by uACR and eGFR were analysed for NfL, and the urinary NfL-creatinine ratio (uNCR) was calculated to correct for urine dilution. RESULTS In the 35 subjects with normal eGFR (>90 ml/min/1.73 m2) and varying degrees of albuminuria, uNfL was only above the lower limit of quantification in one subject with microalbuminuria (uACR 30-300 mg/g), and in none of the subjects with uACR < 30 mg/g. In the 47 subjects with impaired eGFR (15-60 ml/min/1.73 m2), the percentage of subjects with detectable uNfL and the average level of uNCR increased with increasing albuminuria. However, multiple regression analysis revealed that uNCR only significantly correlated with pNfL, not eGFR and uACR. pNfL correlated inversely with eGFR, but not uACR. CONCLUSIONS Our results show that the urinary NfL excretion in subjects with normal kidney function and normal pNfL levels is very low. Thus, the increased pNfL often observed in patients with low eGFR seems not to be explained by impaired urinary NfL excretion, and urine is generally not a suitable matrix for NfL measurements.
Collapse
Affiliation(s)
- Lea Tybirk
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.
| | | | - Tina Parkner
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Rajput M, Malik IA, Methi A, Cortés Silva JA, Fey D, Wirths O, Fischer A, Wilting J, von Arnim CAF. Cognitive decline and neuroinflammation in a mouse model of obesity: An accelerating role of ageing. Brain Behav Immun 2025; 125:226-239. [PMID: 39730092 DOI: 10.1016/j.bbi.2024.12.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/30/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024] Open
Abstract
Obesity, a pandemic, worldwide afflicts almost one billion people. Obesity and ageing share several pathological pathways leading to neurological disorders. However, due to a lack of suitable animal models, the long-term effects of obesity on age-related disorders- cognitive impairment and dementia have not yet been thoroughly investigated. Therefore, the current investigation focuses on developing a suitable model to explore the effects of obese-ageing. It also aims to determine whether obesity affects cognitive abilities in an age-dependent manner, and to identify a potential biomarker(s) for cognitive decline. Cognitive tests were carried out on 6-months and 1-year-old melanocortin-4 receptor (Mc4r)-deficient-obese and lean (wildtype) mice. Additionally, brains and sera were harvested for molecular, histological and serological analyses from 6, 12, and 24-months-old mice. Finally, RT-PCR was carried out after hippocampal mRNA sequencing. The cognitive tests revealed that 1-year-old obese mice have cognitive impairment along with underlying neurodegenerative changes, such as enlarged lateral ventricles. Serum neurofilament light chain (sNfL) levels were also elevated. Lipid accumulation and neuroinflammation were apparent besides, a compromised blood-brain barrier (BBB) indicated by altered junction protein gene expression. Differentially-expressed genes associated with cognitive decline were identified by mRNA sequencing of hippocampi. One such gene, Secreted Phosphoprotein 1 (Spp1) had markedly increased expression in cognitively-impaired obese mice. Our findings present an obese-aged mouse model of cognitive decline with neuroinflammation, reduced BBB-integrity and predisposing neurodegenerative changes. Obese-ageing accelerates the progression of cognitive impairment. Furthermore, Spp1 appears to be a potential biomarker for early diagnosis of neuropathological disorders.
Collapse
Affiliation(s)
- Mansi Rajput
- Department of Geriatrics, University Medical Center Goettingen, Robert-Koch-Str. 42, 37075 Goettingen, Germany.
| | - Ihtzaz Ahmed Malik
- Department of Geriatrics, University Medical Center Goettingen, Robert-Koch-Str. 42, 37075 Goettingen, Germany.
| | - Aditi Methi
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Von-Siebold-Str. 3a, 37075 Goettingen, Germany.
| | - Jonathan Alexis Cortés Silva
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Von-Siebold-Str. 3a, 37075 Goettingen, Germany.
| | - Dorothea Fey
- Department of Geriatrics, University Medical Center Goettingen, Robert-Koch-Str. 42, 37075 Goettingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany.
| | - Oliver Wirths
- Department of Psychiatry, University Medical Center Goettingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany.
| | - André Fischer
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Von-Siebold-Str. 3a, 37075 Goettingen, Germany; Department of Psychiatry, University Medical Center Goettingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, 37075 Göttingen, Germany.
| | - Jörg Wilting
- Institute of Anatomy and Embryology, University Medical Center Goettingen, Kreuzbergring 36, D-37075 Goettingen, Germany.
| | - Christine A F von Arnim
- Department of Geriatrics, University Medical Center Goettingen, Robert-Koch-Str. 42, 37075 Goettingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|
3
|
Tortosa-Carreres J, Cubas-Núñez L, Sanz MT, Castillo-Villalba J, Gasqué-Rubio R, Carratalá-Boscá S, Alcalá-Vicente C, Quintanilla-Bordás C, Gorriz D, Casanova B, Laiz-Marro B, Pérez-Miralles F. Renal function's impact on serum neurofilament levels in patients with multiple sclerosis: an exploratory analysis. Neurol Sci 2025; 46:845-853. [PMID: 39307881 DOI: 10.1007/s10072-024-07772-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/05/2024] [Indexed: 01/28/2025]
Abstract
BACKGROUND sNfL, a promising biomarker for neuroaxonal damage in Multiple Sclerosis (MS), requires cautious interpretation due to several comorbidity influences. OBJECTIVES To investigate the impact of renal function on sNfL levels in MS patients. METHODS This retrospective study stratified patients by MS clinical phenotype, acute inflammatory activity (AIA) status-defined as relapse or gadolinium-enhancing lesions within 90 days of sample collection-renal function, assessed by estimated glomerular filtration rate (eGFR), and age (< 40 years, 40-60 years, > 60 years). Comparative analysis of sNfL levels across these groups was performed. The sNfL-eGFR relationship was examined using linear and non-linear regression models, with the best fit determined by R2 and the F estimator. RESULTS Data from 2933 determinations across 800 patients were analyzed. Patients with renal insufficiency (RI) (eGFR < 60 mL/min/1.73 m2) and mild renal impairment (MDRF) (eGFR 60-90 mL/min/1.73 m2) showed significantly higher sNfL levels compared to those with normal renal function, a pattern also observed in age groups 40 years and older. No significant differences were found between MDRF patients and those with AIA. Among RI patients, no differences in sNfL levels were observed between relapsing-remitting and progressive MS phenotypes. A regression S-Curve model was identified as the best fit, illustrating a marked increase in sNfL levels beginning at an eGFR of approximately 75 mL/min/1.73 m2. DISCUSSION Caution is advised when interpreting sNfL levels for monitoring MS in patients with impaired renal function.
Collapse
Affiliation(s)
- Jordi Tortosa-Carreres
- Clinical Laboratory Department, University and Polytechnic Hospital La Fe, Avinguda de Fernando Abril Martorell, 106, Quatre Carreres, Valencia, 46026, Spain.
- Neuroimmunology Unit, University and Polytechnic Hospital La Fe, Valencia, Spain.
| | - Laura Cubas-Núñez
- Neuroimmunology Unit, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Maria Teresa Sanz
- Department of Didactic of Mathematics, University of Valencia, Valencia, Spain
| | | | - Raquel Gasqué-Rubio
- Neuroimmunology Unit, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Sara Carratalá-Boscá
- Neuroimmunology Unit, University and Polytechnic Hospital La Fe, Valencia, Spain
| | | | | | - David Gorriz
- Neuroimmunology Unit, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Bonaventura Casanova
- Neuroimmunology Unit, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Begoña Laiz-Marro
- Clinical Laboratory Department, University and Polytechnic Hospital La Fe, Avinguda de Fernando Abril Martorell, 106, Quatre Carreres, Valencia, 46026, Spain
| | | |
Collapse
|
4
|
Selleri V, Malerba M, D'Alisera R, Seidenari C, Sinigaglia G, Zanini G, Micheloni G, Savino G, Mattioli AV, Curia G, Critelli R, Pinti M, Nasi M. Increase of circulating cell free mitochondrial DNA in amateur boxers after sparring matches. J Sci Med Sport 2025:S1440-2440(25)00030-1. [PMID: 39934060 DOI: 10.1016/j.jsams.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/20/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025]
Abstract
OBJECTIVES To determine if circulating mitochondrial deoxyribonucleic acid levels increase after sport activity involving blows to the head, such as boxing, and if it could play a role in inflammatory cascade regulation in response to trauma. DESIGN Observational, longitudinal. METHODS We measured mitochondrial deoxyribonucleic acid levels and integrity in ten non-professional male boxers before and after three weekly sparring matches. We set up a protocol to separate three different plasma fractions enriched in mitochondria-containing vesicles, mitochondrial deoxyribonucleic acid bound to proteins and naked mitochondrial deoxyribonucleic acid. We quantified the levels of the main cytokines involved in inflammatory response and the levels of neurofilament light, a well-known marker of brain damage. RESULTS Circulating mitochondrial deoxyribonucleic acid levels increased after each match. In the second fraction, we also observed an increase over the weeks. Mitochondrial deoxyribonucleic acid is less intact after each match if compared with pre-match integrity, especially the naked form which is not protected within vesicles or mitochondria. Circulating levels of interleukin-6, interleukin-1beta and interleukin-10 increased after each match linking traumatic brain injuries to inflammatory state. Neurofilament light chain showed a similar trend to mitochondrial deoxyribonucleic acid. CONCLUSIONS As mitochondrial deoxyribonucleic acid displays an inflammatory effect and neurofilament light chain is more specific for brain injury, we concluded that the simultaneous analysis of these two parameters could be helpful to monitor the effects of traumatic brain injury in contact sports, and that mitochondrial deoxyribonucleic acid is a promising candidate biomarker to study the inflammatory state of patients who suffered repeated traumatic brain injuries.
Collapse
Affiliation(s)
- Valentina Selleri
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy; National Institute for Cardiovascular Research - INRC, Italy
| | - Mara Malerba
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy
| | - Roberta D'Alisera
- Department of Public Healthcare, Sports Medicine Service, Azienda USL of Modena, Italy
| | - Chiara Seidenari
- Department of Public Healthcare, Sports Medicine Service, Azienda USL of Modena, Italy
| | - Giorgia Sinigaglia
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Giada Zanini
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Giulia Micheloni
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Gustavo Savino
- Department of Public Healthcare, Sports Medicine Service, Azienda USL of Modena, Italy
| | - Anna Vittoria Mattioli
- National Institute for Cardiovascular Research - INRC, Italy; Department of Quality of Life Sciences, Italy
| | - Giulia Curia
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Rosina Critelli
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy; National Institute for Cardiovascular Research - INRC, Italy.
| | - Milena Nasi
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy
| |
Collapse
|
5
|
Koerbel K, Yalachkov Y, Rotter T, Schaller-Paule MA, Schaefer JH, Friedauer L, Jakob J, Steffen F, Bittner S, Foerch C, Maiworm M. Exploring the Link Between Renal Function Fluctuations Within the Physiological Range and Serum/CSF Levels of NfL, GFAP, tTAU, and UCHL1. Int J Mol Sci 2025; 26:748. [PMID: 39859463 PMCID: PMC11765624 DOI: 10.3390/ijms26020748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/15/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Impaired renal function can influence biomarker levels through mechanisms involving blood-brain barrier integrity and clearance pathways; however, the impact of variations within normal renal function remains unclear. The main aim of this study was to determine whether adjustment for the specific level of renal function is necessary when renal function remains within physiological levels. We studied n = 183 patients (NID n = 122; other neurological diseases n = 39; somatoform controls n = 22) who underwent lumbar puncture at University Hospital Frankfurt. Serum and cerebrospinal fluid (CSF) levels of neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), total tau protein (tTAU), and ubiquitin C-terminal hydrolase-L1 (UCHL1) were measured using the single molecule array (SIMOA) technique. Estimated glomerular filtration rate (eGFR) correlated negatively with CSF GFAP (r = -0.217, p = 0.004) and serum NfL (r = -0.164, p = 0.032). Patients with impaired renal function exhibited higher CSF NfL (p = 0.036) and CSF GFAP (p = 0.026) levels. However, these findings did not remain significant after adjusting for BMI and age. Importantly, in patients with normal renal function, no significant correlations with eGFR and biomarker levels were observed after adjustment. Our findings indicate that serum and CSF concentrations of NfL, GFAP, tTAU, and UCHL1 are not significantly affected by fluctuations in physiological kidney function but emphasize the importance of considering comorbidities in impaired renal function when interpreting biomarker levels.
Collapse
Affiliation(s)
- Kimberly Koerbel
- Department of Neurology, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany
| | - Yavor Yalachkov
- Department of Neurology, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany
| | - Tabea Rotter
- Department of Neurology, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany
| | - Martin A. Schaller-Paule
- Department of Neurology, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany
- Practice for Neurology and Psychiatry Eltville, 65343 Eltville am Rhein, Germany
| | - Jan Hendrik Schaefer
- Department of Neurology, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany
| | - Lucie Friedauer
- Department of Neurology, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany
| | - Jasmin Jakob
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Falk Steffen
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Christian Foerch
- Department of Neurology, Klinikum Ludwigsburg, 71640 Ludwigsburg, Germany
| | - Michelle Maiworm
- Department of Neurology, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany
| |
Collapse
|
6
|
De Meyer S, Blujdea ER, Schaeverbeke JM, Adamczuk K, Vandenberghe R, Poesen K, Teunissen CE. Serum biomarkers as prognostic markers for Alzheimer's disease in a clinical setting. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2025; 17:e70071. [PMID: 39886322 PMCID: PMC11780118 DOI: 10.1002/dad2.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/06/2024] [Accepted: 12/15/2024] [Indexed: 02/01/2025]
Abstract
INTRODUCTION Blood-based glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), and phosphorylated tau (pTau) have shown promising prognostic potential in Alzheimer's disease (AD), but their applicability in clinical settings where comorbidities are prevalent remains uncertain. METHODS Simoa assays quantified GFAP, NfL, and pTau181 in retrospectively retrieved prediagnostic serum samples from 102 AD patients and 21 non-AD controls. RESULTS Higher serum GFAP levels predicted earlier clinical presentation and faster subsequent Mini-Mental State Examination decline in AD patients. Serum NfL levels were increased in patients with arterial hypertension (AHT), kidney dysfunction, and a history of stroke and only demonstrated predictive value for time to clinical AD presentation after adjustment for these comorbidities. Serum pTau181 instability during long-term storage at -20°C prevented its prognostic evaluation in retrospectively retrieved serum samples. DISCUSSION Serum GFAP is a robust prognostic marker for AD progression, whereas NfL is impacted by various comorbidities, which complicates the interpretation of its prognostic value. Highlights Serum GFAP levels predict time to clinical AD presentation.Serum NfL levels are increased by hypertension, kidney disease, and stroke history.Prognostic value of serum NfL in AD is only evident after comorbidity correction.Serum levels of GFAP, but not NfL, increase over time within prediagnostic AD stages.
Collapse
Affiliation(s)
- Steffi De Meyer
- Laboratory for Molecular Neurobiomarker ResearchDepartment of NeurosciencesLeuven Brain Institute, KU LeuvenLeuvenBelgium
- Laboratory for Cognitive NeurologyDepartment of NeurosciencesLeuven Brain Institute, KU LeuvenLeuvenBelgium
| | - Elena R. Blujdea
- Neurochemistry LaboratoryDepartment of Laboratory MedicineAmsterdam UMCAmsterdamThe Netherlands
| | - Jolien M. Schaeverbeke
- Laboratory for Cognitive NeurologyDepartment of NeurosciencesLeuven Brain Institute, KU LeuvenLeuvenBelgium
- Laboratory for NeuropathologyDepartment of Imaging and PathologyLeuven Brain Institute, KU LeuvenLeuvenBelgium
| | - Katarzyna Adamczuk
- Laboratory for Cognitive NeurologyDepartment of NeurosciencesLeuven Brain Institute, KU LeuvenLeuvenBelgium
| | - Rik Vandenberghe
- Laboratory for Cognitive NeurologyDepartment of NeurosciencesLeuven Brain Institute, KU LeuvenLeuvenBelgium
- Neurology DepartmentUZ LeuvenLeuvenBelgium
| | - Koen Poesen
- Laboratory for Molecular Neurobiomarker ResearchDepartment of NeurosciencesLeuven Brain Institute, KU LeuvenLeuvenBelgium
- Laboratory Medicine DepartmentUZ LeuvenLeuvenBelgium
| | - Charlotte E. Teunissen
- Neurochemistry LaboratoryDepartment of Laboratory MedicineAmsterdam UMCAmsterdamThe Netherlands
| |
Collapse
|
7
|
Sewell KR, Rainey-Smith SR, Pedrini S, Peiffer JJ, Sohrabi HR, Taddei K, Markovic SJ, Martins RN, Brown BM. The impact of exercise on blood-based biomarkers of Alzheimer's disease in cognitively unimpaired older adults. GeroScience 2024; 46:5911-5923. [PMID: 38488949 PMCID: PMC11493998 DOI: 10.1007/s11357-024-01130-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024] Open
Abstract
Physical activity is a promising preventative strategy for Alzheimer's disease: it is associated with lower dementia risk, better cognition, greater brain volume and lower brain beta-amyloid. Blood-based biomarkers have emerged as a low-cost, non-invasive strategy for detecting preclinical Alzheimer's disease, however, there is limited literature examining the effect of exercise (a structured form of physical activity) on blood-based biomarkers. The current study investigated the influence of a 6-month exercise intervention on levels of plasma beta-amyloid (Aβ42, Aβ40, Aβ42/40), phosphorylated tau (p-tau181), glial fibrillary acidic protein (GFAP) and neurofilament light (NfL) chain in cognitively unimpaired older adults, and as a secondary aim, whether blood-based biomarkers related to cognition. Ninety-nine community-dwelling older adults (69.1 ± 5.2) were allocated to an inactive control, or to moderate or high intensity exercise groups where they cycled twice weekly for six months. At baseline and six months (post-intervention), fasted blood was collected and analysed using single molecule array (SIMOA) assays, and cognition was assessed. Results demonstrated no change in levels of any plasma biomarker from pre- to post-intervention. At baseline, higher NfL was associated with poorer cognition (β = -0.33, SE = 0.13, adjusted p = .042). Exploratory analyses indicated higher cardiorespiratory fitness was associated with higher NfL and GFAP levels in apolipoprotein E (APOE) ε4 non-carriers compared to ε4 carriers (NfL, β = -0.43, SE = 0.19, p = .029; GFAP, β = -0.41, SE = 0.20, p = .044), though this association was mediated by body mass index (BMI). These results highlight the importance of considering BMI in analysis of blood-based biomarkers, especially when investigating differences between APOE ε4 carriers and non-carriers. Our results also indicate that longer follow-up periods may be required to observe exercise-induced change in blood-based biomarkers.
Collapse
Affiliation(s)
- Kelsey R Sewell
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.
| | - Stephanie R Rainey-Smith
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- School of Psychological Science, University of Western Australia, Crawley, WA, Australia
| | - Steve Pedrini
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Jeremiah J Peiffer
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Hamid R Sohrabi
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Department of Biomedical Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Kevin Taddei
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Shaun J Markovic
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Ralph N Martins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Department of Biomedical Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Belinda M Brown
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| |
Collapse
|
8
|
Yan Z, Gu Q, Yin H, Yi M, Wang X, Sun R, Liang F, Cai D, Qi W. Association of weight-adjusted waist index (WWI) and a body shape index (ABSI) with serum neurofilament light chain levels in a national study of U.S. adults. Eat Weight Disord 2024; 29:76. [PMID: 39612146 DOI: 10.1007/s40519-024-01706-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
OBJECTIVE This study explored how the weight-adjusted waist index (WWI) and a body shape index (ABSI) are related to serum neurofilament light chain (sNfL) levels among U.S. adults. We aimed to evaluate sNfL, which plays key roles in neuronal injury in neurological diseases, given its understudied connection to obesity. METHODS We used cross-sectional data from the 2013-2014 National Health and Nutrition Examination Survey (NHANES) of people with complete information on the weight-adjusted waist index (WWI), a body shape index (ABSI), and serum neurofilament light chain (sNfL). Multiple linear regression analysis allowed us to investigate the separate connections among the WWI, ABSI, and sNfL. Moreover, interaction testing and subgroup analysis were performed to improve the general validity of our results. To assess any nonlinear correlations, we also performed threshold effect analysis and smoothed curve fitting. RESULTS WWI and ABSI were positively linked with sNfL (WWI: β = 0.05, 95% CI 0.01-0.09; ABSI: β = 1.65, 95% CI 3.53-13.72). There was no clear reliance on this association according to subgroup analysis and interaction tests. Smoothed curve fitting and saturation effects also demonstrated nonlinear associations between WWI and ABSI and sNfL, with inflection points of 10.38 and 0.38, respectively. CONCLUSION In the adult American population, while the WWI and ABSI are linearly positively correlated with serum neurofilament light protein (sNfL), the effect size is greater for the ABSI. This correlation provides fresh evidence connecting obesity to neurological conditions, deepening our comprehension of the extensive health impacts associated with obesity. Level of Evidence Level I, experimental studies.
Collapse
Affiliation(s)
- Zixuan Yan
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qingxin Gu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hong Yin
- Chengdu Fifth People's Hospital, Chengdu, Sichuan, China
| | - Mingliang Yi
- Chengdu Fifth People's Hospital, Chengdu, Sichuan, China
| | - Xiao Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ruirui Sun
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Canadian Institute of Traditional Chinese Medicine, Calgary, AB, Canada
| | - Fanrong Liang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Dingjun Cai
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Wenchuan Qi
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Mielke MM, Fowler NR. Alzheimer disease blood biomarkers: considerations for population-level use. Nat Rev Neurol 2024; 20:495-504. [PMID: 38862788 PMCID: PMC11347965 DOI: 10.1038/s41582-024-00989-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
In the past 5 years, we have witnessed the first approved Alzheimer disease (AD) disease-modifying therapy and the development of blood-based biomarkers (BBMs) to aid the diagnosis of AD. For many reasons, including accessibility, invasiveness and cost, BBMs are more acceptable and feasible for patients than a lumbar puncture (for cerebrospinal fluid collection) or neuroimaging. However, many questions remain regarding how best to utilize BBMs at the population level. In this Review, we outline the factors that warrant consideration for the widespread implementation and interpretation of AD BBMs. To set the scene, we review the current use of biomarkers, including BBMs, in AD. We go on to describe the characteristics of typical patients with cognitive impairment in primary care, who often differ from the patient populations used in AD BBM research studies. We also consider factors that might affect the interpretation of BBM tests, such as comorbidities, sex and race or ethnicity. We conclude by discussing broader issues such as ethics, patient and provider preference, incidental findings and dealing with indeterminate results and imperfect accuracy in implementing BBMs at the population level.
Collapse
Affiliation(s)
- Michelle M Mielke
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - Nicole R Fowler
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Center for Aging Research, Indianapolis, IN, USA
- Regenstrief Institute, Inc., Indianapolis, IN, USA
| |
Collapse
|
10
|
Sarto J, Esteller-Gauxax D, Tort-Merino A, Guillén N, Pérez-Millan A, Falgàs N, Borrego-Écija S, Fernández-Villullas G, Bosch B, Juncà-Parella J, Antonell A, Naranjo L, Ruiz-García R, Augé JM, Sánchez-Valle R, Lladó A, Balasa M. Impact of demographics and comorbid conditions on plasma biomarkers concentrations and their diagnostic accuracy in a memory clinic cohort. J Neurol 2024; 271:1973-1984. [PMID: 38151575 DOI: 10.1007/s00415-023-12153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/29/2023]
Abstract
Plasma biomarkers have emerged as promising tools for identifying amyloid beta (Aβ) pathology. Before implementation in routine clinical practice, confounding factors modifying their concentration beyond neurodegenerative diseases should be identified. We studied the association of a comprehensive list of demographics, comorbidities, medication and laboratory parameters with plasma p-tau181, glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) on a prospective memory clinic cohort and studied their impact on diagnostic accuracy for discriminating CSF/amyloid PET-defined Aβ status. Three hundred sixty patients (mean age 66.5 years, 55% females, 53% Aβ positive) were included. Sex, age and Aβ status-adjusted models showed that only estimated glomerular filtration rate (eGFR, standardized β -0.115 [-0.192 to -0.035], p = 0.005) was associated with p-tau181 levels, although with a much smaller effect than Aβ status (0.685 [0.607-0.763], p < 0.001). Age, sex, body mass index (BMI), Charlson comorbidity index (CCI) and eGFR significantly modified GFAP concentration. Age, blood volume (BV) and eGFR were associated with NfL levels. p-tau181 predicted Aβ status with 87% sensitivity and specificity with no relevant increase in diagnostic performance by adding any of the confounding factors. Using two cut-offs, plasma p-tau181 could have spared 62% of amyloid-PET/CSF testing. Excluding patients with chronic kidney disease did not change the proposed cut-offs nor the diagnostic performance. In conclusion, in a memory clinic cohort, age, sex, eGFR, BMI, BV and CCI slightly modified plasma p-tau181, GFAP and NfL concentrations but their impact on the diagnostic accuracy of plasma biomarkers for Aβ status discrimination was minimal.
Collapse
Affiliation(s)
- Jordi Sarto
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036, Barcelona, Spain
| | - Diana Esteller-Gauxax
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036, Barcelona, Spain
| | - Adrià Tort-Merino
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036, Barcelona, Spain
| | - Núria Guillén
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036, Barcelona, Spain
| | - Agnès Pérez-Millan
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036, Barcelona, Spain
| | - Neus Falgàs
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036, Barcelona, Spain
| | - Sergi Borrego-Écija
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036, Barcelona, Spain
| | - Guadalupe Fernández-Villullas
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036, Barcelona, Spain
| | - Beatriz Bosch
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036, Barcelona, Spain
| | - Jordi Juncà-Parella
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036, Barcelona, Spain
| | - Anna Antonell
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036, Barcelona, Spain
| | - Laura Naranjo
- Immunology Service, Biomedical Diagnostic Center, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Raquel Ruiz-García
- Immunology Service, Biomedical Diagnostic Center, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Josep María Augé
- Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036, Barcelona, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036, Barcelona, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Mircea Balasa
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036, Barcelona, Spain.
| |
Collapse
|
11
|
Momkus J, Aiello AE, Stebbins R, Zhang Y, Harris KM. Sociodemographic patterns in biomarkers of aging in the Add Health cohort. BIODEMOGRAPHY AND SOCIAL BIOLOGY 2024; 69:57-74. [PMID: 38551453 PMCID: PMC11209792 DOI: 10.1080/19485565.2024.2334687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Biomarkers in population health research serve as indicators of incremental physiological deterioration and contribute to our understanding of mechanisms through which social disparities in health unfold over time. Yet, few population-based studies incorporate biomarkers of aging in early midlife, when disease risks may emerge and progress across the life course. We describe the distributions of several biomarkers of inflammation and neurodegeneration and their variation by sociodemographic characteristics using blood samples collected during Wave V of the National Longitudinal Study of Adolescent to Adult Health (ages 33-44 years). Higher mean levels of inflammatory and neurodegenerative biomarkers were associated with greater socioeconomic disadvantage. For example, the neurodegenerative markers, Neurofilament Light Chain and total Tau proteins were higher among lower income groups, though the relationship was not statistically significant. Similarly, proinflammatory marker Tumor Necrosis Factor-α (TNF-α) levels were higher among those with lower education. Significant differences in the mean levels of other proinflammatory markers were observed by race/ethnicity, sex, census region, BMI, and smoking status. These descriptive findings indicate that disparities in biomarkers associated with aging are already evident among young adults in their 30s and attention should focus on age-related disease risk earlier in the life course.
Collapse
Affiliation(s)
- Jennifer Momkus
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Allison E. Aiello
- Robert N. Butler Columbia Aging Center, Columbia University, New York City, USA
| | - Rebecca Stebbins
- Robert N. Butler Columbia Aging Center, Columbia University, New York City, USA
| | - Yuan Zhang
- Robert N. Butler Columbia Aging Center, Columbia University, New York City, USA
| | - Kathleen Mullan Harris
- Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
| |
Collapse
|
12
|
Rebelos E, Latva-Rasku A, Koskensalo K, Pekkarinen L, Saukko E, Ihalainen J, Honka MJ, Tuisku J, Bucci M, Laurila S, Rajander J, Salminen P, Nummenmaa L, Jansen JFA, Ferrannini E, Nuutila P. Insulin-stimulated brain glucose uptake correlates with brain metabolites in severe obesity: A combined neuroimaging study. J Cereb Blood Flow Metab 2024; 44:407-418. [PMID: 37824728 PMCID: PMC10870965 DOI: 10.1177/0271678x231207114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 10/14/2023]
Abstract
The human brain undergoes metabolic adaptations in obesity, but the underlying mechanisms have remained largely unknown. We compared concentrations of often reported brain metabolites measured with magnetic resonance spectroscopy (1H-MRS, 3 T MRI) in the occipital lobe in subjects with obesity and lean controls under different metabolic conditions (fasting, insulin clamp, following weight loss). Brain glucose uptake (BGU) quantified with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET)) was also performed in a subset of subjects during clamp. In dataset A, 48 participants were studied during fasting with brain 1H-MRS, while in dataset B 21 participants underwent paired brain 1H-MRS acquisitions under fasting and clamp conditions. In dataset C 16 subjects underwent brain 18F-FDG-PET and 1H-MRS during clamp. In the fasting state, total N-acetylaspartate was lower in subjects with obesity, while brain myo-inositol increased in response to hyperinsulinemia similarly in both lean participants and subjects with obesity. During clamp, BGU correlated positively with brain glutamine/glutamate, total choline, and total creatine levels. Following weight loss, brain creatine levels were increased, whereas increases in other metabolites remained not significant. To conclude, insulin signaling and glucose metabolism are significantly coupled with several of the changes in brain metabolites that occur in obesity.
Collapse
Affiliation(s)
- Eleni Rebelos
- Turku PET Centre, University of Turku, Turku, Finland
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Aino Latva-Rasku
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Kalle Koskensalo
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Laura Pekkarinen
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Ekaterina Saukko
- Department of Radiology, Turku University Hospital, Turku, Finland
| | - Jukka Ihalainen
- Turku PET Centre, Accelerator Laboratory, Åbo Akademi University, Turku, Finland
| | | | - Jouni Tuisku
- Turku PET Centre, University of Turku, Turku, Finland
| | - Marco Bucci
- Turku PET Centre, University of Turku, Turku, Finland
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Sanna Laurila
- Turku PET Centre, University of Turku, Turku, Finland
| | - Johan Rajander
- Turku PET Centre, Accelerator Laboratory, Åbo Akademi University, Turku, Finland
| | - Paulina Salminen
- Department of Digestive Surgery and Urology, Turku University Hospital, Turku, Finland
- Department of Surgery, University of Turku, Turku, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Psychology University of Turku, Turku, Finland
| | - Jacobus FA Jansen
- Department of Radiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ele Ferrannini
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| |
Collapse
|
13
|
Freedman MS, Gnanapavan S, Booth RA, Calabresi PA, Khalil M, Kuhle J, Lycke J, Olsson T. Guidance for use of neurofilament light chain as a cerebrospinal fluid and blood biomarker in multiple sclerosis management. EBioMedicine 2024; 101:104970. [PMID: 38354532 PMCID: PMC10875256 DOI: 10.1016/j.ebiom.2024.104970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 02/16/2024] Open
Abstract
Neurofilament light chain (NfL) is a long-awaited blood biomarker that can provide clinically useful information about prognosis and therapeutic efficacy in multiple sclerosis (MS). There is now substantial evidence for this biomarker to be used alongside magnetic resonance imaging (MRI) and clinical measures of disease progression as a decision-making tool for the management of patients with MS. Serum NfL (sNfL) has certain advantages over traditional measures of MS disease progression such as MRI because it is relatively noninvasive, inexpensive, and can be repeated frequently to monitor activity and treatment efficacy. sNfL levels can be monitored regularly in patients with MS to determine change from baseline and predict subclinical disease activity, relapse risk, and the development of gadolinium-enhancing (Gd+) lesions. sNfL does not replace MRI, which provides information related to spatial localisation and lesion stage. Laboratory platforms are starting to be made available for clinical application of sNfL in several countries. Further work is needed to resolve issues around comparisons across testing platforms (absolute values) and normalisation (reference ranges) in order to guide interpretation of the results.
Collapse
Affiliation(s)
- Mark S Freedman
- Department of Medicine (Neurology), University of Ottawa, and the Ottawa Hospital Research Institute, Ontario, Canada.
| | | | - Ronald A Booth
- Department of Pathology and Laboratory Medicine, University of Ottawa, The Ottawa Hospital & Eastern Ontario Regional Laboratory Association, Ontario, Canada
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Jens Kuhle
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel, Switzerland
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institute, Solna, Sweden
| |
Collapse
|
14
|
Hayden K, Mielke M, Evans J, Neiberg R, Molina-Henry D, Culkin M, Marcovina S, Johnson K, Carmichael O, Rapp S, Sachs B, Ding J, Shappell H, Wagenknecht L, Luchsinger J, Espeland M. Association between Modifiable Risk Factors and Levels of Blood-Based Biomarkers of Alzheimer's and Related Dementias in the Look AHEAD Cohort. JAR LIFE 2024; 13:1-21. [PMID: 38204926 PMCID: PMC10775955 DOI: 10.14283/jarlife.2024.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
Background Emerging evidence suggests that a number of factors can influence blood-based biomarker levels for Alzheimer's disease (AD) and Alzheimer's related dementias (ADRD). We examined the associations that demographic and clinical characteristics have with AD/ADRD blood-based biomarker levels in an observational continuation of a clinical trial cohort of older individuals with type 2 diabetes and overweight or obesity. Methods Participants aged 45-76 years were randomized to a 10-year Intensive Lifestyle Intervention (ILI) or a diabetes support and education (DSE) condition. Stored baseline and end of intervention (8-13 years later) plasma samples were analyzed with the Quanterix Simoa HD-X Analyzer. Changes in Aβ42, Aβ40, Aβ42/Aβ40, ptau181, neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP) were evaluated in relation to randomization status, demographic, and clinical characteristics. Results In a sample of 779 participants from the Look AHEAD cohort, we found significant associations between blood-based biomarkers for AD/ADRD and 15 of 18 demographic (age, gender, race and ethnicity, education) and clinical characteristics (APOE, depression, alcohol use, smoking, body mass index, HbA1c, diabetes duration, diabetes treatment, estimated glomerular filtration rate, hypertension, and history of cardiovascular disease) . Conclusions Blood-based biomarkers of AD/ADRD are influenced by common demographic and clinical characteristics. These factors should be considered carefully when interpreting these AD/ADRD blood biomarker values for clinical or research purposes.
Collapse
Affiliation(s)
- K.M. Hayden
- Department of Social Sciences and Health Policy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - M.M. Mielke
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - J.K. Evans
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - R. Neiberg
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - D. Molina-Henry
- Winston-Salem State University, Winston-Salem, NC, USA
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, San Diego, CA, USA
| | - M. Culkin
- Department of Social Sciences and Health Policy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - S. Marcovina
- Medpace Reference Laboratories, Cincinnati, OH, USA
| | - K.C. Johnson
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - O.T. Carmichael
- Biomedical Imaging Center, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - S.R. Rapp
- Department of Social Sciences and Health Policy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Psychiatry & Behavioral Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - B.C. Sachs
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Sticht Division of Gerontology and Geriatric Medicine Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - J. Ding
- Sticht Division of Gerontology and Geriatric Medicine Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - H. Shappell
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - L. Wagenknecht
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - J.A. Luchsinger
- Departments of Medicine and Epidemiology, Columbia University Irving Medical Center, New York, NY, USA
| | - M.A. Espeland
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Sticht Division of Gerontology and Geriatric Medicine Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
15
|
Zheng HT, Wu Z, Mielke MM, Murray AM, Ryan J. Plasma Biomarkers of Alzheimer's Disease and Neurodegeneration According to Sociodemographic Characteristics and Chronic Health Conditions. J Prev Alzheimers Dis 2024; 11:1189-1197. [PMID: 39350363 PMCID: PMC11436401 DOI: 10.14283/jpad.2024.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/23/2024] [Indexed: 10/04/2024]
Abstract
Ultrasensitive assays have been developed which enable biomarkers of Alzheimer's disease pathology and neurodegeneration to be measured in blood. These biomarkers can aid in diagnosis, and have been used to predict risk of cognitive decline and Alzheimer's disease. The ease and cost-effectiveness of blood collections means that these biomarkers could be applied more broadly in population-based screening, however it is critical to first understand what other factors could affect blood biomarker levels. The aim of this review was to determine the extent that sociodemographic, lifestyle and health factors have been associated with blood biomarkers of Alzheimer's disease and neuropathology. Of the 32 studies included in this review, all but one measured biomarker levels in plasma, and age and sex were the most commonly investigated factors. The most consistent significant findings were a positive association between age and neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP), and females had higher GFAP than men. Apolipoprotein ε4 allele carriers had lower Aβ42 and Aβ42/40 ratio. Body mass index was negatively associated with GFAP and NfL, and chronic kidney disease with higher levels of all biomarkers. Too few studies have investigated other chronic health conditions and this requires further investigation. Given the potential for plasma biomarkers to enhance Alzheimer's disease diagnosis in primary care, it is important to understand how to interpret the biomarkers in light of factors that physiologically impact blood biomarker levels. This information will be critical for the establishment of reference ranges and thus the correct interpretation of these biomarkers in clinical screening.
Collapse
Affiliation(s)
- H T Zheng
- Joanne Ryan, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia,
| | | | | | | | | |
Collapse
|
16
|
Lehmann S, Schraen-Maschke S, Vidal JS, Blanc F, Paquet C, Allinquant B, Bombois S, Gabelle A, Delaby C, Hanon O. Blood Neurofilament Levels Predict Cognitive Decline across the Alzheimer's Disease Continuum. Int J Mol Sci 2023; 24:17361. [PMID: 38139190 PMCID: PMC10743700 DOI: 10.3390/ijms242417361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Neurofilament light chain (NfL) is a potential diagnostic and prognostic plasma biomarker for numerous neurological diseases including Alzheimer's disease (AD). In this study, we investigated the relationship between baseline plasma concentration of Nfl and Mild Cognitive Impairment in participants who did and did not have a clinically determined diagnosis of dementia by the end of the three-year study. Additionally, we explored the connection between baseline plasma concentration of NfL and AD dementia patients, considering their demographics, clinical features, and cognitive profiles. A total of 350 participants from the Biomarker of AmyLoid pepTide and AlZheimer's diseAse Risk (BALTAZAR) multicenter prospective study were investigated: 161 AD dementia participants and 189 MCI participants (of which 141 had amnestic MCI and 48 non-amnestic MCI). Plasma biomarkers were measured at baseline and the progression of clinical and cognitive profiles was followed over the three years of follow-up. Baseline plasma NfL concentration increased across the Alzheimer's disease continuum with a mean NfL value of 17.1 ng/mL [SD = 6.1] in non-amnestic MCI, 20.7 ng/mL [SD = 12.0] in amnestic MCI, and 23.1 ng/mL [SD = 22.7] in AD dementia patients. Plasma NfL concentration correlated with age, body mass index (BMI), and global cognitive performance and decline, as measured by the Mini-Mental State Examination (MMSE). MMSE scores decreased in parallel with increasing plasma NfL concentration, independently of age and BMI. However, NfL concentration did not predict MCI participants' conversion to dementia within three years. Discussion: Baseline plasma NfL concentration is associated with cognitive status along the AD continuum, suggesting its usefulness as a potential informative biomarker for cognitive decline follow-up in patients.
Collapse
Affiliation(s)
- Sylvain Lehmann
- Laboratoire et Plateforme de Protéomique Clinique, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, 80 av Fliche, F-34295 Montpellier, France;
| | - Susanna Schraen-Maschke
- Univ. Lille, Inserm, CHU Lille, UMR-S-U1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, F-59000 Lille, France; (S.S.-M.); (S.B.)
| | - Jean-Sébastien Vidal
- Université Paris Cité, INSERM U1144, GHU APHP Centre, Hopital Broca, Memory Resource and Research Centre de Paris-Broca-Ile de France, F-75013 Paris, France; (J.-S.V.); (O.H.)
| | - Frédéric Blanc
- Université de Strasbourg, Hôpitaux Universitaires de Strasbourg, Memory Resource and Research, French National Centre for Scientific Research (CNRS), ICube Laboratory UMR7357 and Fédération de Médecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Intégrative en Santé (IMIS), F-67000 Strasbourg, France;
| | - Claire Paquet
- Université Paris Cité, INSERM U1144, GHU APHP Nord Lariboisière Fernand Widal, Centre de Neurologie Cognitive, F-75010 Paris, France;
| | - Bernadette Allinquant
- Université Paris Cité, Institute of Psychiatry and Neurosciences, Inserm, UMR-S 1266, F-75014 Paris, France;
| | - Stéphanie Bombois
- Univ. Lille, Inserm, CHU Lille, UMR-S-U1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, F-59000 Lille, France; (S.S.-M.); (S.B.)
- Assistance Publique-Hôpitaux de Paris (AP-HP), Département de Neurologie, Centre des Maladies Cognitives et Comportementales, GH Pitié-Salpêtrière, F-75013 Paris, France
| | - Audrey Gabelle
- Université de Montpellier, CHU Montpellier, Memory Research and Resources Center, Department of Neurology, Inserm INM NeuroPEPs Team, Excellence Center of Neurodegenerative Disorders, F-34000 Montpellier, France;
| | - Constance Delaby
- Laboratoire et Plateforme de Protéomique Clinique, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, 80 av Fliche, F-34295 Montpellier, France;
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, F-08041 Barcelona, Spain
| | - Olivier Hanon
- Université Paris Cité, INSERM U1144, GHU APHP Centre, Hopital Broca, Memory Resource and Research Centre de Paris-Broca-Ile de France, F-75013 Paris, France; (J.-S.V.); (O.H.)
| |
Collapse
|
17
|
Tybirk L, Hviid CVB, Knudsen CS, Parkner T. Serum GFAP - pediatric reference interval in a cohort of Danish children. Clin Chem Lab Med 2023; 61:2041-2045. [PMID: 37195150 DOI: 10.1515/cclm-2023-0280] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
OBJECTIVES Glial fibrillary acidic protein (GFAP) in blood is an emerging biomarker of brain injury and neurological disease. Its clinical use in children is limited by the lack of a reference interval (RI). Thus, the aim of the present study was to establish an age-dependent continuous RI for serum GFAP in children. METHODS Excess serum from routine allergy testing of 391 children, 0.4-17.9 years of age, was measured by a single-molecule array (Simoa) assay. A continuous RI was modelled using non-parametric quantile regression and presented both graphically and tabulated as discrete one-year RIs based on point estimates from the model. RESULTS Serum GFAP showed a strong age-dependency with declining levels and variability from infants to adolescents. The estimated median level decreased 66 % from four months to five years of age and another 65 % from five years to 17.9 years of age. No gender difference was observed. CONCLUSIONS The study establishes an age-dependent RI for serum GFAP in children showing high levels and variability in the first years of life.
Collapse
Affiliation(s)
- Lea Tybirk
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Vinter Bødker Hviid
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Tina Parkner
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Ramanan VK, Graff-Radford J, Syrjanen J, Shir D, Algeciras-Schimnich A, Lucas J, Martens YA, Carrasquillo MM, Day GS, Ertekin-Taner N, Lachner C, Willis FB, Knopman DS, Jack CR, Petersen RC, Vemuri P, Graff-Radford N, Mielke MM. Association of Plasma Biomarkers of Alzheimer Disease With Cognition and Medical Comorbidities in a Biracial Cohort. Neurology 2023; 101:e1402-e1411. [PMID: 37580163 PMCID: PMC10573134 DOI: 10.1212/wnl.0000000000207675] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/06/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Recent advances in blood-based biomarkers offer the potential to revolutionize the diagnosis and management of Alzheimer disease (AD), but additional research in diverse populations is critical. We assessed the profiles of blood-based AD biomarkers and their relationships to cognition and common medical comorbidities in a biracial cohort. METHODS Participants were evaluated through the Mayo Clinic Jacksonville Alzheimer Disease Research Center and matched on age, sex, and cognitive status. Plasma AD biomarkers (β-amyloid peptide 1-42 [Aβ42/40], plasma tau phosphorylated at position 181 [p-tau181], glial fibrillary acidic protein [GFAP], and neurofilament light) were measured using the Quanterix SiMoA HD-X analyzer. Cognition was assessed with the Mini-Mental State Examination. Wilcoxon rank sum tests were used to assess for differences in plasma biomarker levels by sex. Linear models tested for associations of self-reported race, chronic kidney disease (CKD), and vascular risk factors with plasma AD biomarker levels. Additional models assessed for interactions between race and plasma biomarkers in predicting cognition. RESULTS The sample comprised African American (AA; N = 267) and non-Hispanic White (NHW; N = 268) participants, including 69% female participants and age range 43-100 (median 80.2) years. Education was higher in NHW participants (median 16 vs 12 years, p < 0.001) while APOE ε4 positivity was higher in AA participants (43% vs 34%; p = 0.04). We observed no differences in plasma AD biomarker levels between AA and NHW participants. These results were unchanged after stratifying by cognitive status (unimpaired vs impaired). Although the p-tau181-cognition association seemed stronger in NHW participants while the Aβ42/40-cognition association seemed stronger in AA participants, these findings did not survive after excluding individuals with CKD. Female participants displayed higher GFAP (177.5 pg/mL vs 157.73 pg/mL; p = 0.002) and lower p-tau181 (2.62 pg/mL vs 3.28 pg/mL; p = 0.001) levels than male participants. Diabetes was inversely associated with GFAP levels (β = -0.01; p < 0.001). DISCUSSION In a biracial community-based sample of adults, we observed that sex differences, CKD, and vascular risk factors, but not self-reported race, contributed to variation in plasma AD biomarkers. Although some prior studies have reported primary effects of race/ethnicity, our results reinforce the need to account for broad-based medical and social determinants of health (including sex, systemic comorbidities, and other factors) in effectively and equitably deploying plasma AD biomarkers in the general population.
Collapse
Affiliation(s)
- Vijay K Ramanan
- From the Department of Neurology (V.K.R., J.G.-R., D.S., D.S.K., R.C.P.), Department of Quantitative Health Sciences (J.S., R.C.P.), and Department of Laboratory Medicine and Pathology (A.A.-S.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.L., C.L.), Department of Neuroscience (Y.A.M., M.M.C., G.S.D., N.E.-T.), Department of Neurology (N.E.-T., C.L., N.G.-R.), and Department of Family Medicine (F.B.W.), Mayo Clinic, Jacksonville, FL; Department of Radiology (C.R.J., P.V.), Mayo Clinic, Rochester, MN; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC.
| | - Jonathan Graff-Radford
- From the Department of Neurology (V.K.R., J.G.-R., D.S., D.S.K., R.C.P.), Department of Quantitative Health Sciences (J.S., R.C.P.), and Department of Laboratory Medicine and Pathology (A.A.-S.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.L., C.L.), Department of Neuroscience (Y.A.M., M.M.C., G.S.D., N.E.-T.), Department of Neurology (N.E.-T., C.L., N.G.-R.), and Department of Family Medicine (F.B.W.), Mayo Clinic, Jacksonville, FL; Department of Radiology (C.R.J., P.V.), Mayo Clinic, Rochester, MN; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Jeremy Syrjanen
- From the Department of Neurology (V.K.R., J.G.-R., D.S., D.S.K., R.C.P.), Department of Quantitative Health Sciences (J.S., R.C.P.), and Department of Laboratory Medicine and Pathology (A.A.-S.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.L., C.L.), Department of Neuroscience (Y.A.M., M.M.C., G.S.D., N.E.-T.), Department of Neurology (N.E.-T., C.L., N.G.-R.), and Department of Family Medicine (F.B.W.), Mayo Clinic, Jacksonville, FL; Department of Radiology (C.R.J., P.V.), Mayo Clinic, Rochester, MN; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Dror Shir
- From the Department of Neurology (V.K.R., J.G.-R., D.S., D.S.K., R.C.P.), Department of Quantitative Health Sciences (J.S., R.C.P.), and Department of Laboratory Medicine and Pathology (A.A.-S.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.L., C.L.), Department of Neuroscience (Y.A.M., M.M.C., G.S.D., N.E.-T.), Department of Neurology (N.E.-T., C.L., N.G.-R.), and Department of Family Medicine (F.B.W.), Mayo Clinic, Jacksonville, FL; Department of Radiology (C.R.J., P.V.), Mayo Clinic, Rochester, MN; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Alicia Algeciras-Schimnich
- From the Department of Neurology (V.K.R., J.G.-R., D.S., D.S.K., R.C.P.), Department of Quantitative Health Sciences (J.S., R.C.P.), and Department of Laboratory Medicine and Pathology (A.A.-S.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.L., C.L.), Department of Neuroscience (Y.A.M., M.M.C., G.S.D., N.E.-T.), Department of Neurology (N.E.-T., C.L., N.G.-R.), and Department of Family Medicine (F.B.W.), Mayo Clinic, Jacksonville, FL; Department of Radiology (C.R.J., P.V.), Mayo Clinic, Rochester, MN; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - John Lucas
- From the Department of Neurology (V.K.R., J.G.-R., D.S., D.S.K., R.C.P.), Department of Quantitative Health Sciences (J.S., R.C.P.), and Department of Laboratory Medicine and Pathology (A.A.-S.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.L., C.L.), Department of Neuroscience (Y.A.M., M.M.C., G.S.D., N.E.-T.), Department of Neurology (N.E.-T., C.L., N.G.-R.), and Department of Family Medicine (F.B.W.), Mayo Clinic, Jacksonville, FL; Department of Radiology (C.R.J., P.V.), Mayo Clinic, Rochester, MN; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Yuka A Martens
- From the Department of Neurology (V.K.R., J.G.-R., D.S., D.S.K., R.C.P.), Department of Quantitative Health Sciences (J.S., R.C.P.), and Department of Laboratory Medicine and Pathology (A.A.-S.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.L., C.L.), Department of Neuroscience (Y.A.M., M.M.C., G.S.D., N.E.-T.), Department of Neurology (N.E.-T., C.L., N.G.-R.), and Department of Family Medicine (F.B.W.), Mayo Clinic, Jacksonville, FL; Department of Radiology (C.R.J., P.V.), Mayo Clinic, Rochester, MN; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Minerva M Carrasquillo
- From the Department of Neurology (V.K.R., J.G.-R., D.S., D.S.K., R.C.P.), Department of Quantitative Health Sciences (J.S., R.C.P.), and Department of Laboratory Medicine and Pathology (A.A.-S.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.L., C.L.), Department of Neuroscience (Y.A.M., M.M.C., G.S.D., N.E.-T.), Department of Neurology (N.E.-T., C.L., N.G.-R.), and Department of Family Medicine (F.B.W.), Mayo Clinic, Jacksonville, FL; Department of Radiology (C.R.J., P.V.), Mayo Clinic, Rochester, MN; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Gregory S Day
- From the Department of Neurology (V.K.R., J.G.-R., D.S., D.S.K., R.C.P.), Department of Quantitative Health Sciences (J.S., R.C.P.), and Department of Laboratory Medicine and Pathology (A.A.-S.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.L., C.L.), Department of Neuroscience (Y.A.M., M.M.C., G.S.D., N.E.-T.), Department of Neurology (N.E.-T., C.L., N.G.-R.), and Department of Family Medicine (F.B.W.), Mayo Clinic, Jacksonville, FL; Department of Radiology (C.R.J., P.V.), Mayo Clinic, Rochester, MN; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Nilüfer Ertekin-Taner
- From the Department of Neurology (V.K.R., J.G.-R., D.S., D.S.K., R.C.P.), Department of Quantitative Health Sciences (J.S., R.C.P.), and Department of Laboratory Medicine and Pathology (A.A.-S.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.L., C.L.), Department of Neuroscience (Y.A.M., M.M.C., G.S.D., N.E.-T.), Department of Neurology (N.E.-T., C.L., N.G.-R.), and Department of Family Medicine (F.B.W.), Mayo Clinic, Jacksonville, FL; Department of Radiology (C.R.J., P.V.), Mayo Clinic, Rochester, MN; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Christian Lachner
- From the Department of Neurology (V.K.R., J.G.-R., D.S., D.S.K., R.C.P.), Department of Quantitative Health Sciences (J.S., R.C.P.), and Department of Laboratory Medicine and Pathology (A.A.-S.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.L., C.L.), Department of Neuroscience (Y.A.M., M.M.C., G.S.D., N.E.-T.), Department of Neurology (N.E.-T., C.L., N.G.-R.), and Department of Family Medicine (F.B.W.), Mayo Clinic, Jacksonville, FL; Department of Radiology (C.R.J., P.V.), Mayo Clinic, Rochester, MN; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Floyd B Willis
- From the Department of Neurology (V.K.R., J.G.-R., D.S., D.S.K., R.C.P.), Department of Quantitative Health Sciences (J.S., R.C.P.), and Department of Laboratory Medicine and Pathology (A.A.-S.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.L., C.L.), Department of Neuroscience (Y.A.M., M.M.C., G.S.D., N.E.-T.), Department of Neurology (N.E.-T., C.L., N.G.-R.), and Department of Family Medicine (F.B.W.), Mayo Clinic, Jacksonville, FL; Department of Radiology (C.R.J., P.V.), Mayo Clinic, Rochester, MN; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - David S Knopman
- From the Department of Neurology (V.K.R., J.G.-R., D.S., D.S.K., R.C.P.), Department of Quantitative Health Sciences (J.S., R.C.P.), and Department of Laboratory Medicine and Pathology (A.A.-S.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.L., C.L.), Department of Neuroscience (Y.A.M., M.M.C., G.S.D., N.E.-T.), Department of Neurology (N.E.-T., C.L., N.G.-R.), and Department of Family Medicine (F.B.W.), Mayo Clinic, Jacksonville, FL; Department of Radiology (C.R.J., P.V.), Mayo Clinic, Rochester, MN; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Clifford R Jack
- From the Department of Neurology (V.K.R., J.G.-R., D.S., D.S.K., R.C.P.), Department of Quantitative Health Sciences (J.S., R.C.P.), and Department of Laboratory Medicine and Pathology (A.A.-S.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.L., C.L.), Department of Neuroscience (Y.A.M., M.M.C., G.S.D., N.E.-T.), Department of Neurology (N.E.-T., C.L., N.G.-R.), and Department of Family Medicine (F.B.W.), Mayo Clinic, Jacksonville, FL; Department of Radiology (C.R.J., P.V.), Mayo Clinic, Rochester, MN; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Ronald C Petersen
- From the Department of Neurology (V.K.R., J.G.-R., D.S., D.S.K., R.C.P.), Department of Quantitative Health Sciences (J.S., R.C.P.), and Department of Laboratory Medicine and Pathology (A.A.-S.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.L., C.L.), Department of Neuroscience (Y.A.M., M.M.C., G.S.D., N.E.-T.), Department of Neurology (N.E.-T., C.L., N.G.-R.), and Department of Family Medicine (F.B.W.), Mayo Clinic, Jacksonville, FL; Department of Radiology (C.R.J., P.V.), Mayo Clinic, Rochester, MN; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Prashanthi Vemuri
- From the Department of Neurology (V.K.R., J.G.-R., D.S., D.S.K., R.C.P.), Department of Quantitative Health Sciences (J.S., R.C.P.), and Department of Laboratory Medicine and Pathology (A.A.-S.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.L., C.L.), Department of Neuroscience (Y.A.M., M.M.C., G.S.D., N.E.-T.), Department of Neurology (N.E.-T., C.L., N.G.-R.), and Department of Family Medicine (F.B.W.), Mayo Clinic, Jacksonville, FL; Department of Radiology (C.R.J., P.V.), Mayo Clinic, Rochester, MN; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Neill Graff-Radford
- From the Department of Neurology (V.K.R., J.G.-R., D.S., D.S.K., R.C.P.), Department of Quantitative Health Sciences (J.S., R.C.P.), and Department of Laboratory Medicine and Pathology (A.A.-S.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.L., C.L.), Department of Neuroscience (Y.A.M., M.M.C., G.S.D., N.E.-T.), Department of Neurology (N.E.-T., C.L., N.G.-R.), and Department of Family Medicine (F.B.W.), Mayo Clinic, Jacksonville, FL; Department of Radiology (C.R.J., P.V.), Mayo Clinic, Rochester, MN; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Michelle M Mielke
- From the Department of Neurology (V.K.R., J.G.-R., D.S., D.S.K., R.C.P.), Department of Quantitative Health Sciences (J.S., R.C.P.), and Department of Laboratory Medicine and Pathology (A.A.-S.), Mayo Clinic, Rochester, MN; Department of Psychiatry and Psychology (J.L., C.L.), Department of Neuroscience (Y.A.M., M.M.C., G.S.D., N.E.-T.), Department of Neurology (N.E.-T., C.L., N.G.-R.), and Department of Family Medicine (F.B.W.), Mayo Clinic, Jacksonville, FL; Department of Radiology (C.R.J., P.V.), Mayo Clinic, Rochester, MN; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
19
|
Niculae AŞ, Niculae LE, Văcăraş C, Văcăraş V. Serum levels of neurofilament light chains in pediatric multiple sclerosis: a systematic review and meta-analysis. J Neurol 2023; 270:4753-4762. [PMID: 37394516 DOI: 10.1007/s00415-023-11841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Multiple sclerosis is a neuro-inflammatory disease that affects adults and children and causes somatic and cognitive symptoms. Diagnosis after the first clinical symptoms is challenging, involves laboratory and magnetic resonance imaging work-up and is often inconclusive unless subsequent clinical attacks occur. Neurofilament light chains are structural proteins within neurons. Levels of this marker in cerebrospinal fluid, plasma and serum are consistently higher in patients with an initial clinical demyelinating attack that later go on to develop multiple sclerosis. Evidence concerning serum levels of this biomarker in children with multiple sclerosis is scarce. Our aim is to review and analyze the evidence available for patients with multiple sclerosis, under the age of 18. METHODS We conducted a systematic search of PubMed/Medline, Embase, Cochrane Database, and ProQuest. Human studies that provided data on serum levels of Neurofilament light chains in pediatric patients with MS, measured at the time of the first demyelinating attack and before treatment were included in meta-analysis. RESULTS Three studies satisfied the inclusion criteria. 157 pediatric patients with multiple sclerosis and 270 hospital-based controls that did not present with this condition were included in the analysis. A fixed effects meta-analysis showed that the standardized mean difference between patients and controls is 1.82, with a 95% confidence interval of [1.56-2.08]. CONCLUSION Pediatric patients with multiple sclerosis show higher levels of serum neurofilament light chains at their first clinical demyelinating attack compared to pediatric hospital-based controls.
Collapse
Affiliation(s)
- Alexandru-Ştefan Niculae
- Second Department of Pediatrics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Lucia-Elena Niculae
- Department of Neonatology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristiana Văcăraş
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Vitalie Văcăraş
- Second Department of Neurology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
20
|
Hviid CVB, Benros ME, Krogh J, Nordentoft M, Christensen SH. Serum glial fibrillary acidic protein and neurofilament light chain in treatment-naïve patients with unipolar depression. J Affect Disord 2023; 338:341-348. [PMID: 37336248 DOI: 10.1016/j.jad.2023.06.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Unipolar depression has been associated with increased levels of glial dysfunction and neurodegeneration biomarkers, such as Glial Fibrillary Acidic Protein (GFAP) and Neurofilament light chain (NfL). However, previous studies were conducted on patients taking psychotropic medication and did not monitor longitudinal associations between disease status and GFAP/NfL. METHODS Treatment-naïve patients with unipolar depression (n = 110) and healthy controls (n = 33) were included. GFAP/NfL serum levels were analyzed by Single Molecule Array at baseline and 3-month follow-up. The primary endpoint was GFAP/NfL levels in patients with depression compared with healthy controls. The secondary endpoint was the associations between GFAP/NfL with depression severity and cognitive function. RESULTS The patients' mean HAM-D17 score was 18.9 (SD 3.9) at baseline and improved by 7.9 (SD 6.8) points during follow-up. GFAP/NfL was quantified in all individuals. At baseline, the adjusted GFAP levels were -16.8 % (95 % CI: -28.8 to -1.9, p = 0.03) lower among patients with depression compared to healthy controls, while NfL levels were comparable between the groups (p = 0.57). In patients with depression, mean NfL levels increased from baseline to follow-up (0.68 pg/ml, p = 0.03), while GFAP levels were unchanged (p = 0.24). We did not find consistent associations between NfL/GFAP with depression scores or cognitive function. CONCLUSION This largest study of serum NfL/GFAP levels in patients with depression did not support previous findings of elevated GFAP/NfL in patients with depression or positive associations with depression severity. Although limited by a small control group, our study may support the presence of glial dysfunction but not damage to neurons in depression.
Collapse
Affiliation(s)
- Claus V B Hviid
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Michael E Benros
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jesper Krogh
- Department of Endocrinology and Metabolism, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Merete Nordentoft
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Denmark
| | - Silje H Christensen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
21
|
Schjørring ME, Parkner T, Knudsen CS, Tybirk L, Hviid CVB. Neurofilament light chain: serum reference intervals in Danish children aged 0-17 years. Scand J Clin Lab Invest 2023; 83:403-407. [PMID: 37632388 DOI: 10.1080/00365513.2023.2251003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/07/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023]
Abstract
Elevated levels of neurofilament light chain (NfL) in the blood is an unspecific biomarker for damage to neuronal axons. The measurement of NfL levels in the blood can provide useful information for monitoring and prognostication of various neurological disorders in children, but a reference interval (RI) is needed before the clinical implementation of the biomarker. We aimed to establish a RI for children aged 0-17 years. Serum samples from 292 healthy reference subjects aged 0.4-17.9 years were analysed by a single-molecule array (Simoa®) established for routine clinical use. Non-parametric quantile regression was used to model a continuous RI, and a traditional age-partitioned non-parametric RI was established according to Clinical and Laboratory Standard Institute (CLSI) guideline C28-A3. Furthermore, we investigated the effect of hemolysis on assay performance. The traditional age-partitioned non-parametric RI for the age group <3 years was 3.5-16.6 ng/L and 2.1-13.9 ng/L in the age group ≥3 years, respectively. The continuous RI showed an age-dependent decrease in median NfL levels in the first three years of life which was also evident in the age-partitioning of the traditional RI. We found no difference between sexes and no impact of hemolysis on the NfL test results. This study establishes a pediatric RI for serum NfL and lays the groundwork for its future use in clinical practice.
Collapse
Affiliation(s)
- Mia Elbek Schjørring
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Tina Parkner
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark
| | | | - Lea Tybirk
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Vinter Bødker Hviid
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark
- Department of Clinical Biochemistry, Aalborg University Hospital, Denmark
- Department of Clinical Medicine, Aalborg University, Denmark
| |
Collapse
|
22
|
Sievert T, Didriksson I, Spångfors M, Lilja G, Blennow K, Zetterberg H, Frigyesi A, Friberg H. Neurofilament light chain on intensive care admission is an independent predictor of mortality in COVID-19: a prospective multicenter study. Intensive Care Med Exp 2023; 11:66. [PMID: 37768470 PMCID: PMC10539241 DOI: 10.1186/s40635-023-00547-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), and total-tau protein (tau) are novel blood biomarkers of neurological injury, and may be used to predict outcomes in critical COVID-19. METHODS A prospective multicentre cohort study of 117 consecutive and critically ill COVID-19 patients in six intensive care units (ICUs) in southern Sweden between May and November 2020. Serial NfL, GFAP and tau were analysed in relation to mortality, the Glasgow Outcome Scale Extended (GOSE) and the physical (PCS) and mental (MCS) components of health-related quality of life at one year. RESULTS NfL, GFAP and tau on ICU admission predicted one-year mortality with an area under the curve (AUC) of 0.82 (95% confidence interval [CI] 0.74[Formula: see text]0.90), 0.72 (95% CI 0.62[Formula: see text]0.82) and 0.66 (95% CI 0.54[Formula: see text]0.77). NfL on admission was an independent predictor of one-year mortality (p = 0.039). Low NfL and GFAP values were associated with good PCS ([Formula: see text]45) at one year but not with good MCS ([Formula: see text]45) or GOSE ([Formula: see text]5). CONCLUSIONS NfL on ICU admission was an independent predictor of mortality. High levels of NfL, GFAP and tau were associated with mortality but not with poor GOSE in survivors at one year. Low levels of NfL and GFAP were associated with improved physical health-related quality of life.
Collapse
Affiliation(s)
- Theodor Sievert
- Department of Clinical Medicine, Anaesthesiology and Intensive Care, Lund University, Lund, SE-22185 Sweden
- Department of Intensive and Perioperative Care, Skåne University Hospital, Lund, SE-22185 Sweden
| | - Ingrid Didriksson
- Department of Clinical Medicine, Anaesthesiology and Intensive Care, Lund University, Lund, SE-22185 Sweden
- Department of Intensive and Perioperative Care, Skåne University Hospital, Malmö, SE-20502 Sweden
| | - Martin Spångfors
- Department of Clinical Medicine, Anaesthesiology and Intensive Care, Lund University, Lund, SE-22185 Sweden
- Department of Anaesthesia and Intensive Care, Kristianstad Hospital, Kristianstad, SE-29133 Sweden
| | - Gisela Lilja
- Department of Neurology, Skåne University Hospital, Lund, SE-22185 Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, SE-43180 Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, SE-43180 Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, SE-43180 Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, SE-43180 Sweden
- Department of Neurodegenerative Disease, University College London Institute of Neurology, London, United Kingdom
- United Kingdom Dementia Research Institute, University College London, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States of America
| | - Attila Frigyesi
- Department of Clinical Medicine, Anaesthesiology and Intensive Care, Lund University, Lund, SE-22185 Sweden
- Department of Intensive and Perioperative Care, Skåne University Hospital, Lund, SE-22185 Sweden
| | - Hans Friberg
- Department of Clinical Medicine, Anaesthesiology and Intensive Care, Lund University, Lund, SE-22185 Sweden
- Department of Intensive and Perioperative Care, Skåne University Hospital, Malmö, SE-20502 Sweden
| |
Collapse
|
23
|
Ciardullo S, Muraca E, Bianconi E, Ronchetti C, Cannistraci R, Rossi L, Perra S, Zerbini F, Perseghin G. Serum neurofilament light chain levels are associated with all-cause mortality in the general US population. J Neurol 2023:10.1007/s00415-023-11739-6. [PMID: 37085649 DOI: 10.1007/s00415-023-11739-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
INTRODUCTION Serum neurofilament light chain (sNfL) levels are biomarkers of neuro-axonal injury in multiple neurological diseases. Little is known on their potential role as prognostic markers in people without known neurological conditions. OBJECTIVE The aim of this study is to evaluate the association between sNfL levels and all-cause mortality in a general population setting. METHODS sNfL levels were measured in 2071 people aged 25-75 years from the general US population that participated in the 2013-2014 cycles of the National Health and Nutrition Examination Survey (NHANES). Cognitive function was evaluated in a subset of participants aged 60-75 years using the Consortium to Establish a Registry for Alzheimer's Disease-Word Learning test, the Animal Fluency test and the Digit Symbol Substitution test. We applied Cox proportional hazard models adjusted for several potential confounders to evaluate the association between sNfL and all-cause mortality through December 2019 by linking NHANES data with data from the National Death Index. RESULTS In a cross-sectional analysis, higher sNfL levels were associated with worse performance in all three cognitive function tests. Over a median follow-up of 6.1 years, 85 participants died. In a multivariable model adjusted for age, sex, race-ethnicity, diabetes, chronic kidney disease, harmful alcohol consumption, cigarette smoke and prevalent cardiovascular disease, higher sNfL levels were significantly and positively associated with all-cause mortality (HR per unit increase in log-transformed sNfL: 2.46, 95% CI 1.77-3.43, p < 0.001). Results were robust when analyses were stratified according to age, sex, body mass index and kidney function. CONCLUSION We found a positive association between sNfL levels and mortality in the general US population. Further studies are needed to understand the biological mechanisms underlying this association.
Collapse
Affiliation(s)
- Stefano Ciardullo
- Department of Medicine and Rehabilitation, Policlinico di Monza, Via Modigliani 10, 20900, Monza, MB, Italy.
- Department of Medicine and Surgery, University of Milano Bicocca, Milan, Italy.
| | - Emanuele Muraca
- Department of Medicine and Rehabilitation, Policlinico di Monza, Via Modigliani 10, 20900, Monza, MB, Italy
| | - Eleonora Bianconi
- Department of Medicine and Rehabilitation, Policlinico di Monza, Via Modigliani 10, 20900, Monza, MB, Italy
| | - Celeste Ronchetti
- Department of Medicine and Rehabilitation, Policlinico di Monza, Via Modigliani 10, 20900, Monza, MB, Italy
- Department of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Rosa Cannistraci
- Department of Medicine and Rehabilitation, Policlinico di Monza, Via Modigliani 10, 20900, Monza, MB, Italy
- Department of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Laura Rossi
- Department of Medicine and Rehabilitation, Policlinico di Monza, Via Modigliani 10, 20900, Monza, MB, Italy
| | - Silvia Perra
- Department of Medicine and Rehabilitation, Policlinico di Monza, Via Modigliani 10, 20900, Monza, MB, Italy
| | - Francesca Zerbini
- Department of Medicine and Rehabilitation, Policlinico di Monza, Via Modigliani 10, 20900, Monza, MB, Italy
| | - Gianluca Perseghin
- Department of Medicine and Rehabilitation, Policlinico di Monza, Via Modigliani 10, 20900, Monza, MB, Italy
- Department of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| |
Collapse
|
24
|
Gueorguieva I, Willis BA, Chua L, Chow K, Ernest CS, Wang J, Shcherbinin S, Sims JR, Chigutsa E. Donanemab exposure and efficacy relationship using modeling in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12404. [PMID: 37388759 PMCID: PMC10301702 DOI: 10.1002/trc2.12404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023]
Abstract
INTRODUCTION Donanemab is an amyloid-targeting therapy that specifically targets brain amyloid plaques. The objective of these analyses was to characterize the relationship of donanemab exposure with plasma biomarkers and clinical efficacy through modeling. METHODS Data for the analyses were from participants with Alzheimer's disease from the phase 1 and TRAILBLAZER-ALZ studies. Indirect-response models were used to fit plasma phosphorylated tau 217 (p-tau217) and plasma glial fibrillated acidic protein (GFAP) data over time. Disease-progression models were developed using pharmacokinetic/pharmacodynamic modeling. RESULTS The plasma p-tau217 and plasma GFAP models adequately predicted the change over time, with donanemab resulting in decreased plasma p-tau217 and plasma GFAP concentrations. The disease-progression models confirmed that donanemab significantly reduced the rate of clinical decline. Simulations revealed that donanemab slowed disease progression irrespective of baseline tau positron emission tomography (PET) level within the evaluated population. DISCUSSION The disease-progression models show a clear treatment effect of donanemab on clinical efficacy regardless of baseline disease severity.
Collapse
Affiliation(s)
| | - Brian A. Willis
- Former Employee of Eli Lilly and CompanyIndianapolisIndianaUSA
| | | | - Kay Chow
- Eli Lilly and CompanyBracknellUK
| | | | - Jian Wang
- Eli Lilly and CompanyIndianapolisIndianaUSA
| | | | | | | |
Collapse
|
25
|
Cheng W, Sun Z, Cai K, Wu J, Dong X, Liu Z, Shi Y, Yang S, Zhang W, Chen A. Relationship between Overweight/Obesity and Social Communication in Autism Spectrum Disorder Children: Mediating Effect of Gray Matter Volume. Brain Sci 2023; 13:brainsci13020180. [PMID: 36831723 PMCID: PMC9954689 DOI: 10.3390/brainsci13020180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
With advances in medical diagnostic technology, the healthy development of children with autism spectrum disorder (ASD) is receiving more and more attention. In this article, the mediating effect of brain gray matter volume (GMV) between overweight/obesity and social communication (SC) was investigated through the analysis of the relationship between overweight/obesity and SC in autism spectrum disorder children. In total, 101 children with ASD aged 3-12 years were recruited from three special educational centers (Yangzhou, China). Overweight/obesity in children with ASD was indicated by their body mass index (BMI); the Social Responsiveness Scale, Second Edition (SRS-2) was used to assess their social interaction ability, and structural Magnetic Resonance Imaging (sMRI) was used to measure GMV. A mediation model was constructed using the Process plug-in to analyze the mediating effect of GMV between overweight/obesity and SC in children with ASD. The results revealed that: overweight/obesity positively correlated with SRS-2 total points (p = 0.01); gray matter volume in the left dorsolateral superior frontal gyrus (Frontal_Sup_L GMV) negatively correlated with SRS-2 total points (p = 0.001); and overweight/obesity negatively correlated with Frontal_Sup_L GMV (p = 0.001). The Frontal_Sup_L GMV played a partial mediating role in the relationship between overweight/obesity and SC, accounting for 36.6% of total effect values. These findings indicate the significant positive correlation between overweight/obesity and SC; GMV in the left dorsolateral superior frontal gyrus plays a mediating role in the relationship between overweight/obesity and SC. The study may provide new evidence toward comprehensively revealing the overweight/obesity and SC relationship.
Collapse
Affiliation(s)
- Wei Cheng
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Zhiyuan Sun
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Kelong Cai
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Jingjing Wu
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Xiaoxiao Dong
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Zhimei Liu
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Yifan Shi
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Sixin Yang
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Weike Zhang
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Aiguo Chen
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
- Correspondence: ; Tel.: +86-139-5272-5968
| |
Collapse
|
26
|
Association of admission serum levels of neurofilament light chain and in-hospital mortality in geriatric patients with COVID-19. J Neurol 2023; 270:37-43. [PMID: 36114298 PMCID: PMC9483416 DOI: 10.1007/s00415-022-11373-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 01/07/2023]
|
27
|
Casaletto KB, Kornack J, Paolillo EW, Rojas JC, VandeBunte A, Staffaroni AS, Lee S, Heuer H, Forsberg L, Ramos EM, Miller BL, Kramer JH, Yaffe K, Petrucelli L, Boxer A, Boeve B, Gendron TF, Rosen H. Association of Physical Activity With Neurofilament Light Chain Trajectories in Autosomal Dominant Frontotemporal Lobar Degeneration Variant Carriers. JAMA Neurol 2023; 80:82-90. [PMID: 36374516 PMCID: PMC9664369 DOI: 10.1001/jamaneurol.2022.4178] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022]
Abstract
Importance Physical activity is associated with cognitive health, even in autosomal dominant forms of dementia. Higher physical activity is associated with slowed cognitive and functional declines over time in adults carrying autosomal dominant variants for frontotemporal lobar degeneration (FTLD), but whether axonal degeneration is a potential neuroprotective target of physical activity in individuals with FTLD is unknown. Objective To examine the association between physical activity and longitudinal neurofilament light chain (NfL) trajectories in individuals with autosomal dominant forms of FTLD. Design, Setting, and Participants This cohort study included individuals from the ALLFTD Consortium, which recruited patients from sites in the US and Canada. Symptomatic and asymptomatic adults with pathogenic variants in one of 3 common genes associated with FTLD (GRN, C9orf72, or MAPT) who reported baseline physical activity levels and completed annual blood draws were assessed annually for up to 4 years. Genotype, clinical measures, and blood draws were collected between December 2014 and June 2019; data were analyzed from August 2021 to January 2022. Associations between reported baseline physical activity and longitudinal plasma NfL changes were assessed using generalized linear mixed-effects models adjusting for baseline age, sex, education, functional severity, and motor symptoms. Exposures Baseline physical activity levels reported via the Physical Activity Scale for the Elderly. To estimate effect sizes, marginal means were calculated at 3 levels of physical activity: 1 SD above the mean represented high physical activity, 0 SD represented average physical activity, and 1 SD below the mean represented low physical activity. Main Outcomes and Measures Annual plasma NfL concentrations were measured with single-molecule array technology. Results Of 160 included FTLD variant carriers, 84 (52.5%) were female, and the mean (SD) age was 50.7 (14.7) years. A total of 51 (31.8%) were symptomatic, and 77 carried the C9orf72 variant; 39, GRN variant; and 44, MAPT variant. Higher baseline physical activity was associated with slower NfL trajectories over time. On average, NfL increased 45.8% (95% CI, 22.5 to 73.7) over 4 years in variant carriers. Variant carriers with high physical activity demonstrated 14.0% (95% CI, -22.7 to -4.3) slower NfL increases compared with those with average physical activity and 30% (95% CI, -52.2 to -8.8) slower NfL increases compared with those with low physical activity. Within genotype, C9orf72 and MAPT carriers with high physical activity evidenced 18% to 21% (95% CI, -43.4 to -7.2) attenuation in NfL, while the association between physical activity and NfL trajectory was not statistically significant in GRN carriers. Activities associated with higher cardiorespiratory and cognitive demands (sports, housework, and yardwork) were most strongly correlated with slower NfL trajectories (vs walking and strength training). Conclusions and Relevance In this study, higher reported physical activity was associated with slower progression of an axonal degeneration marker in individuals with autosomal dominant FTLD. Physical activity may serve as a primary prevention target in FTLD.
Collapse
Affiliation(s)
- Kaitlin B. Casaletto
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - John Kornack
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Emily W. Paolillo
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Julio C. Rojas
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Anna VandeBunte
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Adam S. Staffaroni
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Shannon Lee
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Hilary Heuer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Leah Forsberg
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Eliana M. Ramos
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles
| | - Bruce L. Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Joel H. Kramer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Kristine Yaffe
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, Florida
| | - Adam Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Brad Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Tania F. Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, Florida
| | - Howard Rosen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| |
Collapse
|
28
|
Yalachkov Y, Schäfer JH, Jakob J, Friedauer L, Steffen F, Bittner S, Foerch C, Schaller-Paule MA. Effect of Estimated Blood Volume and Body Mass Index on GFAP and NfL Levels in the Serum and CSF of Patients With Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200045. [PMID: 36316116 PMCID: PMC9673750 DOI: 10.1212/nxi.0000000000200045] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/30/2022] [Indexed: 02/16/2023]
Abstract
BACKGROUND AND OBJECTIVES To increase the validity of biomarker measures in multiple sclerosis (MS), factors affecting their concentration need to be identified. Here, we test whether the volume of distribution approximated by the patients' estimated blood volume (BV) and body mass index (BMI) affect the serum concentrations of glial fibrillary acidic protein (GFAP). As a control, we also determine the relationship between BV/BMI and GFAP concentrations in CSF. To confirm earlier findings, we test the same hypotheses for neurofilament light chain (NfL). METHODS NfL and GFAP concentrations were measured in serum and CSF (sNFL/sGFAP and cNFL/cGFAP) in 157 patients (n = 106 with MS phenotype and n = 51 with other neurologic/somatoform diseases). Using multivariate linear regressions, BV was tested in the MS cohort as a predictor for each of the biomarkers while controlling for age, sex, MS phenotype, Expanded Disability Status Scale score, gadolinium-enhancing lesions, and acute relapse. In addition, overweight/obese patients (BMI ≥25 kg/m2) were compared with patients with BMI <25 kg/m2 using the general linear model. The analyses were repeated including the neurologic/somatoform controls. RESULTS In the MS cohort, BV predicted sGFAP (ß = -0.301, p = 0.014). Overweight/obese patients with MS had lower sGFAP concentrations compared with patients with MS and BMI <25 kg/m2 (F = 4.732, p = 0.032). Repeating the analysis after adding patients with other neurologic/somatoform diseases did not change these findings (ß = -0.276, p = 0.009; F = 7.631, p = 0.006). Although sNfL was inversely correlated with BV (r = -0.275, p = 0.006) and body weight (r = -0.258, p = 0.010), those results did not remain significant after adjusting for covariates. BV and BMI were not associated with cGFAP or cNfL concentrations. DISCUSSION These findings support the notion that the volume of distribution of sGFAP approximated by BV and BMI is a relevant variable and should therefore be controlled for when measuring sGFAP in MS, while this might not be necessary when measuring cGFAP concentrations.
Collapse
Affiliation(s)
- Yavor Yalachkov
- From the Department of Neurology (Y.Y., J.H.S., L.F., C.F., M.A.S.-P.), University Hospital Frankfurt; and Department of Neurology (J.J., F.S., S.B.), Universitätsmedizin Mainz, Germany.
| | - Jan Hendrik Schäfer
- From the Department of Neurology (Y.Y., J.H.S., L.F., C.F., M.A.S.-P.), University Hospital Frankfurt; and Department of Neurology (J.J., F.S., S.B.), Universitätsmedizin Mainz, Germany
| | - Jasmin Jakob
- From the Department of Neurology (Y.Y., J.H.S., L.F., C.F., M.A.S.-P.), University Hospital Frankfurt; and Department of Neurology (J.J., F.S., S.B.), Universitätsmedizin Mainz, Germany
| | - Lucie Friedauer
- From the Department of Neurology (Y.Y., J.H.S., L.F., C.F., M.A.S.-P.), University Hospital Frankfurt; and Department of Neurology (J.J., F.S., S.B.), Universitätsmedizin Mainz, Germany
| | - Falk Steffen
- From the Department of Neurology (Y.Y., J.H.S., L.F., C.F., M.A.S.-P.), University Hospital Frankfurt; and Department of Neurology (J.J., F.S., S.B.), Universitätsmedizin Mainz, Germany
| | - Stefan Bittner
- From the Department of Neurology (Y.Y., J.H.S., L.F., C.F., M.A.S.-P.), University Hospital Frankfurt; and Department of Neurology (J.J., F.S., S.B.), Universitätsmedizin Mainz, Germany
| | - Christian Foerch
- From the Department of Neurology (Y.Y., J.H.S., L.F., C.F., M.A.S.-P.), University Hospital Frankfurt; and Department of Neurology (J.J., F.S., S.B.), Universitätsmedizin Mainz, Germany
| | - Martin Alexander Schaller-Paule
- From the Department of Neurology (Y.Y., J.H.S., L.F., C.F., M.A.S.-P.), University Hospital Frankfurt; and Department of Neurology (J.J., F.S., S.B.), Universitätsmedizin Mainz, Germany
| |
Collapse
|
29
|
Schindler P, Aktas O, Ringelstein M, Wildemann B, Jarius S, Paul F, Ruprecht K. Glial fibrillary acidic protein as a biomarker in neuromyelitis optica spectrum disorder: a current review. Expert Rev Clin Immunol 2023; 19:71-91. [PMID: 36378751 DOI: 10.1080/1744666x.2023.2148657] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Neuromyelitis optica spectrum disorder (NMOSD) is a relapsing, often debilitating neuroinflammatory disease, whose predominant clinical manifestations are longitudinally extensive transverse myelitis and optic neuritis. About 80% of the patients with an NMOSD phenotype have pathogenic autoantibodies against the astrocyte water channel aquaporin-4 (AQP4-IgG). While therapeutic options for NMOSD have greatly expanded in recent years, well-established biomarkers for prognosis or treatment response are still lacking. Glial fibrillary acidic protein (GFAP) is mainly expressed in astrocytes and can be detected in cerebrospinal fluid (CSF) and blood of patients with NMOSD. AREAS COVERED Here, we comprehensively review the current knowledge on GFAP as a biomarker in NMOSD. EXPERT OPINION In patients with AQP4-IgG+ NMOSD, GFAP levels are elevated in CSF and serum during acute attacks and correlate with disability, consistent with the pathophysiology of this antibody-mediated astrocytopathy. Serum GFAP levels tend to be higher in AQP4-IgG+ NMOSD than in its differential diagnoses, multiple sclerosis, and myelin oligodendrocyte antibody-associated disease. Importantly, serum GFAP levels in AQP4-IgG+ NMOSD during remission may be predictive of future disease activity. Serial serum GFAP measurements are emerging as a biomarker to monitor disease activity in AQP4-IgG+ NMOSD and could have the potential for application in clinical practice.
Collapse
Affiliation(s)
- Patrick Schindler
- Experimental and Clinical Research Center, A Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Marius Ringelstein
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,Department of Neurology, Center for Neurology and Neuropsychiatry, LVR-Klinikum, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, A Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
30
|
Chung H, Wickel J, Oswald M, Dargvainiene J, Rupp J, Rohde G, Witzenrath M, Leypoldt F, König R, Pletz MW, Geis C. Neurofilament light chain levels predict encephalopathy and outcome in community-acquired pneumonia. Ann Clin Transl Neurol 2022; 10:204-212. [PMID: 36479924 PMCID: PMC9930427 DOI: 10.1002/acn3.51711] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Serum neurofilament light chain (sNfL) is a biomarker for neuroaxonal damage and has been found to be elevated in several neurological diseases with neuronal destruction. New onset of confusion is a hallmark of severity in infections. The objective of this study was to determine whether sNfL levels are increased in patients with community-acquired pneumonia (CAP) and if increased sNfL levels are associated with disease-associated confusion or disease severity. METHODS In this observational study, sNfL levels were determined with single-molecule array technology in CAP patients of the CAPNETZ cohort with validated CRB (confusion, respiratory rate, and blood pressure)-65 score. We determined associations between log-transformed sNfL concentrations, well-defined clinical characteristics, and unfavorable outcome in multivariable analyses. Receiver operating characteristic (ROC) analysis was performed to assess the prediction accuracy of sNfL levels for confusion in CAP patients. RESULTS sNfL concentrations were evaluated in 150 CAP patients. Patients with confusion had higher sNfL levels as compared to non-confusion patients of comparable overall disease severity. ROC analysis of sNfL and confusion provided an area under the curve (AUC) of 0.73 (95% CI 0.62-0.82). Log-transformed sNfL levels were not associated with general disease severity. In a logistic regression analysis, log2-sNfL was identified as a strong predictor for an unfavorable outcome. INTERPRETATION sNfL levels are specifically associated with confusion and not with pneumonia disease severity, thus reflecting a potential objective marker for encephalopathy in these patients. Furthermore, sNfL levels are also associated with unfavorable outcome in these patients and might help clinicians to identify patients at risk.
Collapse
Affiliation(s)
- Ha‐Yeun Chung
- Section of Translational Neuroimmunology, Department of NeurologyJena University HospitalJenaGermany,Center for Sepsis Control and CareJena University HospitalJenaGermany
| | - Jonathan Wickel
- Section of Translational Neuroimmunology, Department of NeurologyJena University HospitalJenaGermany,Center for Sepsis Control and CareJena University HospitalJenaGermany
| | - Marcus Oswald
- Systems Biology Research Group, Institute for Infectious Diseases and Infection Control (IIMK)Jena University HospitalJenaGermany
| | - Justina Dargvainiene
- Neuroimmunology, Institute of Clinical Chemistry and Department of Neurology, UKSH Kiel/LübeckKiel UniversityKielGermany
| | - Jan Rupp
- Department of Infectious Diseases and MicrobiologyUniversity Hospital Schleswig‐HolsteinLübeckGermany,CAPNETZ STIFTUNGHannoverGermany
| | - Gernot Rohde
- CAPNETZ STIFTUNGHannoverGermany,Biomedical Research in Endstage in Obstructive Lung Disease Hannover (BREATH)German Center for Lung Research (DZL)HannoverGermany,Department of Respiratory Medicine, Medical Clinic IFrankfurt University Hospital, Goethe University FrankfurtFrankfurt/MainGermany
| | - Martin Witzenrath
- CAPNETZ STIFTUNGHannoverGermany,Department of Infectious Diseases and Respiratory MedicineCharité – Universitätsmedizin BerlinBerlinGermany
| | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry and Department of Neurology, UKSH Kiel/LübeckKiel UniversityKielGermany
| | - Rainer König
- Systems Biology Research Group, Institute for Infectious Diseases and Infection Control (IIMK)Jena University HospitalJenaGermany
| | - Mathias W. Pletz
- Center for Sepsis Control and CareJena University HospitalJenaGermany,CAPNETZ STIFTUNGHannoverGermany,Institute of Infectious Diseases and Infection ControlJena University HospitalJenaGermany
| | - Christian Geis
- Section of Translational Neuroimmunology, Department of NeurologyJena University HospitalJenaGermany,Center for Sepsis Control and CareJena University HospitalJenaGermany
| | | |
Collapse
|
31
|
Heiskanen M, Jääskeläinen O, Manninen E, Das Gupta S, Andrade P, Ciszek R, Gröhn O, Herukka SK, Puhakka N, Pitkänen A. Plasma Neurofilament Light Chain (NF-L) Is a Prognostic Biomarker for Cortical Damage Evolution but Not for Cognitive Impairment or Epileptogenesis Following Experimental TBI. Int J Mol Sci 2022; 23:ijms232315208. [PMID: 36499527 PMCID: PMC9736117 DOI: 10.3390/ijms232315208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/08/2022] Open
Abstract
Plasma neurofilament light chain (NF-L) levels were assessed as a diagnostic biomarker for traumatic brain injury (TBI) and as a prognostic biomarker for somatomotor recovery, cognitive decline, and epileptogenesis. Rats with severe TBI induced by lateral fluid-percussion injury (n = 26, 13 with and 13 without epilepsy) or sham-operation (n = 8) were studied. During a 6-month follow-up, rats underwent magnetic resonance imaging (MRI) (day (D) 2, D7, and D21), composite neuroscore (D2, D6, and D14), Morris-water maze (D35−D39), and a 1-month-long video-electroencephalogram to detect unprovoked seizures during the 6th month. Plasma NF-L levels were assessed using a single-molecule assay at baseline (i.e., naïve animals) and on D2, D9, and D178 after TBI or a sham operation. Plasma NF-L levels were 483-fold higher on D2 (5072.0 ± 2007.0 pg/mL), 89-fold higher on D9 (930.3 ± 306.4 pg/mL), and 3-fold higher on D176 32.2 ± 8.9 pg/mL after TBI compared with baseline (10.5 ± 2.6 pg/mL; all p < 0.001). Plasma NF-L levels distinguished TBI rats from naïve animals at all time-points examined (area under the curve [AUC] 1.0, p < 0.001), and from sham-operated controls on D2 (AUC 1.0, p < 0.001). Plasma NF-L increases on D2 were associated with somatomotor impairment severity (ρ = −0.480, p < 0.05) and the cortical lesion extent in MRI (ρ = 0.401, p < 0.05). Plasma NF-L increases on D2 or D9 were associated with the cortical lesion extent in histologic sections at 6 months post-injury (ρ = 0.437 for D2; ρ = 0.393 for D9, p < 0.05). Plasma NF-L levels, however, did not predict somatomotor recovery, cognitive decline, or epileptogenesis (p > 0.05). Plasma NF-L levels represent a promising noninvasive translational diagnostic biomarker for acute TBI and a prognostic biomarker for post-injury somatomotor impairment and long-term structural brain damage.
Collapse
Affiliation(s)
- Mette Heiskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Olli Jääskeläinen
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Eppu Manninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Shalini Das Gupta
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Pedro Andrade
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Robert Ciszek
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Olli Gröhn
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Sanna-Kaisa Herukka
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
- Department of Neurology, Kuopio University Hospital, P.O. Box 1777, 70211 Kuopio, Finland
| | - Noora Puhakka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
- Correspondence:
| |
Collapse
|
32
|
Insulin Resistance and the Brain–Novel Insights Combining Metabolic Research and Neuroscience. Metabolites 2022; 12:metabo12090780. [PMID: 36144185 PMCID: PMC9503398 DOI: 10.3390/metabo12090780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
|