1
|
Zhang R, Liu Y, Ding P, Huang J, Dierolf M, Kelly SD, Qiu X, Chen Y, Hussain MZ, Li W, Bunzen H, Achterhold K, Pfeiffer F, Sharp ID, Warnan J, Fischer RA. Engineering a Cu-Pd Paddle-Wheel Metal-Organic Framework for Selective CO 2 Electroreduction. Angew Chem Int Ed Engl 2024; 63:e202414600. [PMID: 39448374 DOI: 10.1002/anie.202414600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Optimizing the binding energy between the intermediate and the active site is a key factor for tuning catalytic product selectivity and activity in the electrochemical carbon dioxide reduction reaction. Copper active sites are known to reduce CO2 to hydrocarbons and oxygenates, but suffer from poor product selectivity due to the moderate binding energies of several of the reaction intermediates. Here, we report an ion exchange strategy to construct Cu-Pd paddle wheel dimers within Cu-based metal-organic frameworks (MOFs), [Cu3-xPdx(BTC)2] (BTC=benzentricarboxylate), without altering the overall MOF structural properties. Compared to the pristine Cu MOF ([Cu3(BTC)2], HKUST-1), the Cu-Pd MOF shifts CO2 electroreduction products from diverse chemical species to selective CO generation. In situ X-ray absorption fine structure analysis of the catalyst oxidation state and local geometry, combined with theoretical calculations, reveal that the incorporation of Pd within the Cu-Pd paddle wheel node structure of the MOF promotes adsorption of the key intermediate COOH* at the Cu site. This permits CO-selective catalytic mechanisms and thus advances our understanding of the interplay between structure and activity toward electrochemical CO2 reduction using molecular catalysts.
Collapse
Affiliation(s)
- Ruirui Zhang
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
| | - Yan Liu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, P. R. China
| | - Pan Ding
- Walter Schottky Institute and TUM School of Natural Sciences, Technical University of Munich, Am Coulombwall 4, 85748, Garching, Germany
| | - Juanjuan Huang
- X-ray Science Division and Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA
| | - Martin Dierolf
- Chair of Biomedical Physics, Department of Physics and TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Shelly D Kelly
- X-ray Science Division and Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA
| | - Xinqi Qiu
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
| | - Yishuo Chen
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
| | - Mian Zahid Hussain
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
| | - Weijin Li
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
| | - Hana Bunzen
- Chair of Solid State and Materials Chemistry and Institute of Physics, University of Augsburg, 86159, Augsburg, Germany
| | - Klaus Achterhold
- Chair of Biomedical Physics, Department of Physics and TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Franz Pfeiffer
- Chair of Biomedical Physics, Department of Physics and TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Ian D Sharp
- Walter Schottky Institute and TUM School of Natural Sciences, Technical University of Munich, Am Coulombwall 4, 85748, Garching, Germany
| | - Julien Warnan
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
- Catalysis Research Center, Technical University of Munich, Ernst-Otto-Fischer-Str.1, 85748, Garching, Germany
| |
Collapse
|
2
|
Song B, Xia X, Ma Z, Li R, Wang X, Zhou L, Huang Y. Breaking the Linear Scaling Relationship by Alloying Micro Sn to a Cu Surface toward CO 2 Electrochemical Reduction. J Phys Chem Lett 2024; 15:9342-9348. [PMID: 39236290 DOI: 10.1021/acs.jpclett.4c02088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) to HCOOH provides an avenue for reducing global accelerated CO2 emissions and producing high-value-added chemicals. Nevertheless, the presence of an inherent linear scaling relationship (LSR) between *OCHO and *HCOOH leads to the electrosynthesis of HCOOH being achieved at high cathodic potentials. In this work, by adjusting the different Cu:Sn ratio of SnxCu(1-x) alloys, we comprehensively explored the electrocatalytic 2e- CO2RR performance toward the production of HCOOH. Combining density functional theory calculations with the constant-potential implicit solvent model, the Sn0.03Cu0.97 surface alloy was posited to be a promising electrocatalyst with superior HCOOH selectivity and an ultralow limiting potential of -0.20 V in an environment of pH = 7.2. The high performance was found to originate from the breaking of the LSR, which is a result of an extraordinary electronic property of the active Cu site. This work not only advances a global-searched strategy for the rational design of efficient catalysts toward HCOOH production but also provides in-depth insights into the underlying mechanism for the enhanced performance of microalloy electrocatalysts.
Collapse
Affiliation(s)
- Bowen Song
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241000, China
| | - Xueqian Xia
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241000, China
| | - Zengying Ma
- Anhui Key Laboratory of Molecule-Based Materials, Anhui Carbon Neutrality Engineering Center, Anhui Normal University, Wuhu 241000, China
| | - Renjie Li
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241000, China
| | - Xiufeng Wang
- Anhui Key Laboratory of Molecule-Based Materials, Anhui Carbon Neutrality Engineering Center, Anhui Normal University, Wuhu 241000, China
| | - Lin Zhou
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yucheng Huang
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241000, China
- Anhui Key Laboratory of Molecule-Based Materials, Anhui Carbon Neutrality Engineering Center, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
3
|
Chen H, Mo P, Zhu J, Xu X, Cheng Z, Yang F, Xu Z, Liu J, Wang L. Anionic Coordination Control in Building Cu-Based Electrocatalytic Materials for CO 2 Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400661. [PMID: 38597688 DOI: 10.1002/smll.202400661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Renewable energy-driven conversion of CO2 to value-added fuels and chemicals via electrochemical CO2 reduction reaction (CO2RR) technology is regarded as a promising strategy with substantial environmental and economic benefits to achieve carbon neutrality. Because of its sluggish kinetics and complex reaction paths, developing robust catalytic materials with exceptional selectivity to the targeted products is one of the core issues, especially for extensively concerned Cu-based materials. Manipulating Cu species by anionic coordination is identified as an effective way to improve electrocatalytic performance, in terms of modulating active sites and regulating structural reconstruction. This review elaborates on recent discoveries and progress of Cu-based CO2RR catalytic materials enhanced by anionic coordination control, regarding reaction paths, functional mechanisms, and roles of different non-metallic anions in catalysis. Finally, the review concludes with some personal insights and provides challenges and perspectives on the utilization of this strategy to build desirable electrocatalysts.
Collapse
Affiliation(s)
- Hanxia Chen
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Pengpeng Mo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Junpeng Zhu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Xiaoxue Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Zhixiang Cheng
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Feng Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Zhongfei Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Juzhe Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Lidong Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| |
Collapse
|
4
|
Xu Y, Liu X, Jiang M, Chi B, Lu Y, Guo J, Wang Z, Cui S. Achieving high selectivity and activity of CO 2 electroreduction to formate by in-situ synthesis of single atom Pb doped Cu catalysts. J Colloid Interface Sci 2024; 665:365-375. [PMID: 38537585 DOI: 10.1016/j.jcis.2024.03.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
Exploring highly selective and stable electrocatalysts is of great significance for the electrochemical conversion of CO2 into fuel. Herein, a three-dimensional (3D) nanostructure catalyst was developed by doping Pb single-atom (PbSA) in-situ on carbon paper (PbSA100-Cu/CP) through a low-energy and economical method. The designed catalyst exhibited abundant active sites and was beneficial to CO2 adsorption, activation, and subsequent conversion to fuel. Interestingly, PbSA100-Cu/CP showed a prominent Faraday efficiency (FE) of 97 % at -0.9 V versus reversible hydrogen electrode (vs. RHE) and a high partial current density of 27.9 mA·cm-2 for formate. Also, the catalyst remained significantly stable for 60 h during the durability test. The reaction mechanism was investigated by density functional theory (DFT), demonstrating that the doping PbSA induced the electrons redistribution, promoted the formate generation, reduced the rate-determining step (RDS) energy barrier, and inhibited the hydrogen evolution reaction. The study aims to provide a new strategy for developing of single-atom catalysts with high selectivity and stability, which will help reduce environmental pressure and alleviate energy problems.
Collapse
Affiliation(s)
- Yurui Xu
- College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, China; Institute of Disaster Prevention, Sanhe 065201, China
| | - Xiao Liu
- College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Minghui Jiang
- College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, China
| | - Bichuan Chi
- China Institute of Building Standard Design and Research, Beijing 100048, China
| | - Yue Lu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Jin Guo
- State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
| | - Ziming Wang
- College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, China
| | - Suping Cui
- College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
5
|
Li R, Tung CW, Zhu B, Lin Y, Tian FZ, Liu T, Chen HM, Kuang P, Yu J. d-band center engineering of single Cu atom and atomic Ni clusters for enhancing electrochemical CO 2 reduction to CO. J Colloid Interface Sci 2024; 674:326-335. [PMID: 38936089 DOI: 10.1016/j.jcis.2024.06.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/15/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
The rational design of catalysts with atomic dispersion and a deep understanding of the catalytic mechanism is crucial for achieving high performance in CO2 reduction reaction (CO2RR). Herein, we present an atomically dispersed electrocatalyst with single Cu atom and atomic Ni clusters supported on N-doped mesoporous hollow carbon sphere (CuSANiAC/NMHCS) for highly efficient CO2RR. CuSANiAC/NMHCS demonstrates a remarkable CO Faradaic efficiency (FECO) exceeding 90% across a potential range of -0.6 to -1.2 V vs. reversible hydrogen electrode (RHE) and achieves its peak FECO of 98% at -0.9 V vs. RHE. Theoretical studies reveal that the electron redistribution and modulated electronic structure-notably the positive shift in d-band center of Ni 3d orbital-resulting from the combination of single Cu atom and atomic Ni clusters markedly enhance the CO2 adsorption, facilitate the formation of *COOH intermediate, and thus promote the CO production activity. This study offers fresh perspectives on fabricating atomically dispersed catalysts with superior CO2RR performance.
Collapse
Affiliation(s)
- Ruina Li
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Road, Wuhan 430078, PR China
| | - Ching-Wei Tung
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Bicheng Zhu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Road, Wuhan 430078, PR China
| | - Yue Lin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, PR China
| | - Feng-Ze Tian
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Tao Liu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Road, Wuhan 430078, PR China
| | - Hao Ming Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Panyong Kuang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Road, Wuhan 430078, PR China.
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Road, Wuhan 430078, PR China.
| |
Collapse
|
6
|
O'Brien CP, Miao RK, Shayesteh Zeraati A, Lee G, Sargent EH, Sinton D. CO 2 Electrolyzers. Chem Rev 2024; 124:3648-3693. [PMID: 38518224 DOI: 10.1021/acs.chemrev.3c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
CO2 electrolyzers have progressed rapidly in energy efficiency and catalyst selectivity toward valuable chemical feedstocks and fuels, such as syngas, ethylene, ethanol, and methane. However, each component within these complex systems influences the overall performance, and the further advances needed to realize commercialization will require an approach that considers the whole process, with the electrochemical cell at the center. Beyond the cell boundaries, the electrolyzer must integrate with upstream CO2 feeds and downstream separation processes in a way that minimizes overall product energy intensity and presents viable use cases. Here we begin by describing upstream CO2 sources, their energy intensities, and impurities. We then focus on the cell, the most common CO2 electrolyzer system architectures, and each component within these systems. We evaluate the energy savings and the feasibility of alternative approaches including integration with CO2 capture, direct conversion of flue gas and two-step conversion via carbon monoxide. We evaluate pathways that minimize downstream separations and produce concentrated streams compatible with existing sectors. Applying this comprehensive upstream-to-downstream approach, we highlight the most promising routes, and outlook, for electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Colin P O'Brien
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Rui Kai Miao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Ali Shayesteh Zeraati
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Geonhui Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
7
|
Kang B, Song X, Yuan Y, Ma R, Wang F, Lee JY. Computational evaluation of CO 2 conversion into formic acid via a novel adsorption mechanism on metal-free B 4C 12. J Colloid Interface Sci 2024; 654:371-378. [PMID: 37847951 DOI: 10.1016/j.jcis.2023.10.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
The electrochemical reduction of CO2 (CO2RR) to formic acid (HCOOH) is a promising approach to harness renewable energy for the production of value-added chemicals and contribute to carbon cycling. The search for cost-effective and efficient metal-free electrocatalysts is critical for realizing industrial applications. However, limited literature is available on this topic, primarily because the significant challenge of efficiently activating inert CO2 remains unresolved. In this study, we have designed and applied a novel boron carbide (B4C12) monolayered cage as an electrocatalyst for CO2RR to produce HCOOH. B4C12 exhibits exceptional electronic, dynamic, and thermodynamic stability. Through comprehensive density functional theory computations, we have observed that B4C12 rapidly and stably adsorbs CO2 in a unique η3(O, C, O)-CO2 configuration, resulting in excellent CO2RR activity with a low limiting potential (-0.38 V) and suppressed hydrogen evolution reaction. Our mechanistic investigations reveal that B4C12 donates electrons to facilitate the bending of CO2, anchoring it onto the curved surface effectively. Additionally, the C atom in the η3(O, C, O)-CO2 configuration attracts H+ + e- pairs through its active p electron, leading to the observed low limiting potential. This study not only successfully designs a novel class of metal-free electrocatalysts but also provides a promising strategy for advancing CO2RR research in the future.
Collapse
Affiliation(s)
- Baotao Kang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Xiaoxue Song
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yuan Yuan
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Rongwei Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Fangfang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
8
|
Deng P, Liu Y, Liu Y, Li Y, Wu R, Meng L, Liang K, Gan Y, Qiao F, Liu N, Kang Z, Li H. Microwave Regenerable Nickel, Zinc Co-doped Nitrogen-Coordinated Porous Carbon Catalyst for Nitrogen Fixation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44809-44819. [PMID: 37698442 DOI: 10.1021/acsami.3c06037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
More than 90% of the global NH3 synthesis is dominated by the Haber-Bosch process, which consumes 2% of the worldwide energy and generates 1.44% of the global carbon emission. The electrochemical N2 reduction reaction (NRR) is regarded as an attractive alternative route to produce NH3 under mild reaction conditions, but the electrocatalysts suffer from the difficulty of N≡N cleavage. In this work, we report a leaf-like MOF-derived Ni/Zn bimetallic co-doped nitrogen-coordinated porous carbon (Ni/Zn-NPC) as a cost-effective NH3 synthesis electrocatalyst. The resultant electrocatalyst achieved a high NH3 production rate of 22.68 μg h-1 mgcat-1 at -1.0 V vs a reversible hydrogen electrode (RHE) in a 0.1 M Na2SO4 electrolyte. The Ni/Zn-NPC material can be called a microwave regenerable catalyst because microwave treatment has proven to be a crucial part of the multi-field coupling to detoxify and make the catalyst reactive, further improving its stability. Density functional theory (DFT) was chosen to explore the mechanism of Ni/Zn-NPC for NRR, providing a profound prediction of the structure of the active site and related reaction pathways and revealing that trace Ni doping optimizes the local coordination environment and N2 adsorption of Zn atoms.
Collapse
Affiliation(s)
- Peiji Deng
- School of Chemistry and Chemical Engineering, Institute for Energy Research of Jiangsu University, Zhenjiang 212013, Jiangsu, China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, China
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- School of Civil Engineering, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Yixian Liu
- School of Chemistry and Chemical Engineering, Institute for Energy Research of Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yunliang Liu
- School of Chemistry and Chemical Engineering, Institute for Energy Research of Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yaxi Li
- School of Chemistry and Chemical Engineering, Institute for Energy Research of Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Ruqiang Wu
- School of Chemistry and Chemical Engineering, Institute for Energy Research of Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Lijun Meng
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Kang Liang
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Yixiang Gan
- School of Civil Engineering, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Fen Qiao
- School of Chemistry and Chemical Engineering, Institute for Energy Research of Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Naiyun Liu
- School of Chemistry and Chemical Engineering, Institute for Energy Research of Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, China
| | - Haitao Li
- School of Chemistry and Chemical Engineering, Institute for Energy Research of Jiangsu University, Zhenjiang 212013, Jiangsu, China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
9
|
Hao M, Duan B, Leng G, Liu J, Li S, Wang S, Qu J. Exploring the mechanistic role of alloying elements in copper-based electrocatalysts for the reduction of carbon dioxide to methane. Front Chem 2023; 11:1235552. [PMID: 37608864 PMCID: PMC10440379 DOI: 10.3389/fchem.2023.1235552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023] Open
Abstract
The promise of electrochemically reducing excess anthropogenic carbon dioxide into useful chemicals and fuels has gained significant interest. Recently, indium-copper (In-Cu) alloys have been recognized as prospective catalysts for the carbon dioxide reduction reaction (CO2RR), although they chiefly yield carbon monoxide. Generating further reduced C1 species such as methane remains elusive due to a limited understanding of how In-Cu alloying impacts electrocatalysis. In this work, we investigated the effect of alloying In with Cu for CO2RR to form methane through first-principles simulations. Compared with pure copper, In-Cu alloys suppress the hydrogen evolution reaction while demonstrating superior initial CO2RR selectivity. Among the alloys studied, In7Cu10 exhibited the most promising catalytic potential, with a limiting potential of -0.54 V versus the reversible hydrogen electrode. Analyses of adsorbed geometries and electronic structures suggest that this decreased overpotential arises primarily from electronic perturbations around copper and indium ions and carbon-oxygen bond stability. This study outlines a rational strategy to modulate metal alloy compositions and design synergistic CO2RR catalysts possessing appreciable activity and selectivity.
Collapse
Affiliation(s)
- Mingzhong Hao
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
| | - Baorong Duan
- Research Center for Leather and Protein of College of Chemistry and Chemical Engineering, Yantai University, Yantai, China
| | - Guorui Leng
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
| | - Junjie Liu
- Department of Physics, Binzhou Medical College, Yantai, China
| | - Song Li
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
| | - Shanshan Wang
- School of Pharmacy (School of Enology), Binzhou Medical College, Yantai, China
| | - Jiale Qu
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
10
|
Ibrahim I, Salehmin MNI, Balachandran K, Hil Me MF, Loh KS, Abu Bakar MH, Jong BC, Lim SS. Role of microbial electrosynthesis system in CO 2 capture and conversion: a recent advancement toward cathode development. Front Microbiol 2023; 14:1192187. [PMID: 37520357 PMCID: PMC10379653 DOI: 10.3389/fmicb.2023.1192187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Microbial electrosynthesis (MES) is an emerging electrochemical technology currently being researched as a CO2 sequestration method to address climate change. MES can convert CO2 from pollution or waste materials into various carbon compounds with low energy requirements using electrogenic microbes as biocatalysts. However, the critical component in this technology, the cathode, still needs to perform more effectively than other conventional CO2 reduction methods because of poor selectivity, complex metabolism pathways of microbes, and high material cost. These characteristics lead to the weak interactions of microbes and cathode electrocatalytic activities. These approaches range from cathode modification using conventional engineering approaches to new fabrication methods. Aside from cathode development, the operating procedure also plays a critical function and strategy to optimize electrosynthesis production in reducing operating costs, such as hybridization and integration of MES. If this technology could be realized, it would offer a new way to utilize excess CO2 from industries and generate profitable commodities in the future to replace fossil fuel-derived products. In recent years, several potential approaches have been tested and studied to boost the capabilities of CO2-reducing bio-cathodes regarding surface morphology, current density, and biocompatibility, which would be further elaborated. This compilation aims to showcase that the achievements of MES have significantly improved and the future direction this is going with some recommendations. Highlights - MES approach in carbon sequestration using the biotic component.- The role of microbes as biocatalysts in MES and their metabolic pathways are discussed.- Methods and materials used to modify biocathode for enhancing CO2 reduction are presented.
Collapse
Affiliation(s)
- Irwan Ibrahim
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Mohd Nur Ikhmal Salehmin
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional (UNITEN), Putrajaya Campus, Kajang, Malaysia
| | | | | | - Kee Shyuan Loh
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | | | - Bor Chyan Jong
- Agrotechnology and Bioscience Division, Malaysian Nuclear Agency, Kajang, Malaysia
| | - Swee Su Lim
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
11
|
Li M, Zhang JN. Rational design of bimetallic catalysts for electrochemical CO2 reduction reaction: A review. Sci China Chem 2023. [DOI: 10.1007/s11426-023-1565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
12
|
Liu H, Zou H, Wang D, Wang C, Li F, Dai H, Song T, Wang M, Ji Y, Duan L. Second Sphere Effects Promote Formic Acid Dehydrogenation by a Single-Atom Gold Catalyst Supported on Amino-Substituted Graphdiyne. Angew Chem Int Ed Engl 2023; 62:e202216739. [PMID: 36651658 DOI: 10.1002/anie.202216739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Regulating the second sphere of homogeneous molecular catalysts is a common and effective method to boost their catalytic activities, while the second sphere effects have rarely been investigated for heterogeneous single-atom catalysts primarily due to the synthetic challenge for installing functional groups in their second spheres. Benefiting from the well-defined and readily tailorable structure of graphdiyne (GDY), an Au single-atom catalyst on amino-substituted GDY is constructed, where the amino group is located in the second sphere of the Au center. The Au atoms on amino-decorated GDY displayed superior activity for formic acid dehydrogenation compared with those on unfunctionalized GDY. The experimental studies, particularly the proton inventory studies, and theoretical calculations revealed that the amino groups adjacent to an Au atom could serve as proton relays and thus facilitate the protonation of an intermediate Au-H to generate H2 . Our study paves the way to precisely constructing the functional second sphere on single-atom catalysts.
Collapse
Affiliation(s)
- Hong Liu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haiyuan Zou
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dan Wang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chuancheng Wang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fan Li
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hao Dai
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tao Song
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mei Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Yongfei Ji
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Lele Duan
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
13
|
Cu-Sn Aerogels for Electrochemical CO 2 Reduction with High CO Selectivity. Molecules 2023; 28:molecules28031033. [PMID: 36770699 PMCID: PMC9919718 DOI: 10.3390/molecules28031033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
This work reports the synthesis of CuxSny alloy aerogels for electrochemical CO2 reduction catalysts. An in situ reduction and the subsequent freeze-drying process can successfully give CnxSny aerogels with tuneable Sn contents, and such aerogels are composed of three-dimensional architectures made from inter-connected fine nanoparticles with pores as the channels. Density functional theory (DFT) calculations show that the introduction of Sn in Cu aerogels inhibits H2 evolution reaction (HER) activity, while the accelerated CO desorption on the catalyst surface is found at the same time. The porous structure of aerogel also favors exposing more active sites. Counting these together, with the optimized composition of Cu95Sn5 aerogel, the high selectivity of CO can be achieved with a faradaic efficiency of over 90% in a wide potential range (-0.7 V to -1.0 V vs. RHE).
Collapse
|
14
|
Highly selective electrochemical CO2 reduction to formate using Sn@Cu electrocatalyst. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01815-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Zhang B, Wu Y, Zhai P, Wang C, Sun L, Hou J. Rational design of bismuth-based catalysts for electrochemical CO2 reduction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64132-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Wang Q, Zhang Y, Liu Y, Wang K, Qiu W, Chen L, Li J, Li W. Core–Shell In/Cu 2O Nanowires Schottky Junction for Enhanced Photoelectrochemical CO 2 Reduction under Visible Light. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qingmei Wang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yanfang Zhang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Keke Wang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Weixin Qiu
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Long Chen
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jie Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Wenzhang Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, 410083, China
| |
Collapse
|
17
|
Zoubir O, Atourki L, Ait Ahsaine H, BaQais A. Current state of copper-based bimetallic materials for electrochemical CO 2 reduction: a review. RSC Adv 2022; 12:30056-30075. [PMID: 36329940 PMCID: PMC9585392 DOI: 10.1039/d2ra05385c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
The increasing CO2 concentration in the atmosphere has caused profound environmental issues such as global warming. The use of CO2 as a feedstock to replace traditional fossil sources holds great promise to reduce CO2 emissions. The electrochemical conversion of CO2 has attracted much attention because it can be powered by renewable sources such as solar energy. In this review article, we provide insight into the important parameters when studying CO2RR and give a comprehensive review on the description of synthesis methods with electrocatalytic CO2 reduction over bimetallic copper-based materials. Due to the important bibliographic data on Cu bimetallic materials, we have limited this review to Sn, In, Pd, Zn and Ag. At the end of this review, challenges and perspectives for further upgrading have been included to briefly highlight the important future considerations of this rapidly growing technology.
Collapse
Affiliation(s)
- Otmane Zoubir
- MANAPSE Lab, Faculty of Sciences, Mohammed V University in Rabat Morocco
| | - Lahoucine Atourki
- MANAPSE Lab, Faculty of Sciences, Mohammed V University in Rabat Morocco
| | - Hassan Ait Ahsaine
- Laboratoire de Chimie Appliquée des Matériaux, Faculty of Sciences, Mohammed V University in Rabat Morocco
| | - Amal BaQais
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| |
Collapse
|
18
|
Li L, Kang X, He M, Sheveleva A, Hu K, Xu S, Zhou Y, Chen J, Sapchenko S, Whitehead G, Vitorica-Yrezabal IJ, Lopez-Odriozola L, Natrajan LS, McInnes EJL, Schröder M, Yang S, Tuna F. Evolution of bismuth-based metal-organic frameworks for efficient electroreduction of CO 2. JOURNAL OF MATERIALS CHEMISTRY. A 2022; 10:17801-17807. [PMID: 36132069 PMCID: PMC9426795 DOI: 10.1039/d2ta04485d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/03/2022] [Indexed: 05/14/2023]
Abstract
Understanding the structural and chemical changes that reactive metal-organic frameworks (MOFs) undergo is crucial for the development of new efficient catalysts for electrochemical reduction of CO2. Here, we describe three Bi(iii) materials, MFM-220, MFM-221 and MFM-222, which are constructed from the same ligand (biphenyl-3,3',5,5'-tetracarboxylic acid) but which show distinct porosity with solvent-accessible voids of 49.6%, 33.6% and 0%, respectively. We report the first study of the impact of porosity of MOFs on their evolution as electrocatalysts. A Faradaic efficiency of 90.4% at -1.1 V vs. RHE (reversible hydrogen electrode) is observed for formate production over an electrode decorated with MFM-220-p, formed from MFM-220 on application of an external potential in the presence of 0.1 M KHCO3 electrolyte. In situ electron paramagnetic resonance spectroscopy confirms the presence of ·COOH radicals as a reaction intermediate, with an observed stable and consistent Faradaic efficiency and current density for production of formate by electrolysis over 5 h. This study emphasises the significant role of porosity of MOFs as they react and evolve during electroreduction of CO2 to generate value-added chemicals.
Collapse
Affiliation(s)
- Lili Li
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| | - Xinchen Kang
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science Beijing 100190 China
| | - Meng He
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| | - Alena Sheveleva
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
- Photon Science Institute, University of Manchester Manchester M13 9PL UK
| | - Kui Hu
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| | - Shaojun Xu
- UK Catalysis Hub, Research Complex at Harwell Didcot OX11 0FA UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University Cardiff CF10 3AT UK
| | - Yiqi Zhou
- Department of Materials, University of Manchester Manchester M13 9PL UK
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing Beijing 100083 China
| | - Jin Chen
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| | - Sergei Sapchenko
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| | - George Whitehead
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| | | | | | - Louise S Natrajan
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| | - Eric J L McInnes
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
- Photon Science Institute, University of Manchester Manchester M13 9PL UK
| | - Martin Schröder
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| | - Sihai Yang
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| | - Floriana Tuna
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
- Photon Science Institute, University of Manchester Manchester M13 9PL UK
| |
Collapse
|
19
|
Fang M, Xu L, Zhang H, Zhu Y, Wong WY. Metalloporphyrin-Linked Mercurated Graphynes for Ultrastable CO 2 Electroreduction to CO with Nearly 100% Selectivity at a Current Density of 1.2 A cm -2. J Am Chem Soc 2022; 144:15143-15154. [PMID: 35947444 DOI: 10.1021/jacs.2c05059] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electrochemical reduction reaction of carbon dioxide (CO2RR) to the desired feedstocks with a high faradaic efficiency (FE) and high stability at a high current density is of great importance but challenging owing to its poor electrochemical stability and competition with the hydrogen evolution reaction (HER). Guided by theoretical calculations, herein, a series of novel metalloporphyrin-linked mercurated graphynes (Hg-MTPP) were designed as electrocatalysts for CO2RR, since the mercurated graphyne blocks induce a high HER overpotential. Notably, Hg-CoTPP was synthesized and produced a maximum CO FE of 95.6% at -0.76 V (vs reversible hydrogen electrode (RHE)) in an H-type cell, and a CO FE of 91.2% even at -1.26 V (vs RHE), due to a great suppression of HER. The Hg-CoTPP combined with N-doped graphene (Hg-CoTPP/NG) was able to achieve a high CO FE of nearly 100% at a current density of 1.2 A cm-2 and particularly a ground-breaking stability of over 360 h at around 420 mA cm-2 in a flow-type cell. Further experimental and computational results revealed that the mercurated graphyne of Hg-CoTPP brings a high HER overpotential and tunes the d-band electronic states of the metal center that make the d-band center closer to the Fermi level, thus enhancing the bonding of *COOH intermediates on Hg-CoTPP. The introduction of NG could shorten the Co-N coordination bonds, which enhances electron transfer to the metal center to lower the energy barrier for *COOH. Our results illustrated that Hg-MTPP could serve as a new class of two-dimensional (2D) materials and provide a design concept for developing efficient electrocatalysts for CO2RR in commercial applications.
Collapse
Affiliation(s)
- Mingwei Fang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, P. R. China
| | - Linli Xu
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Hongyang Zhang
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Ying Zhu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
20
|
Sulfur-modified copper synergy with nitrogen-defect sites for the electroreduction of CO2 to formate at low overpotentials. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Li S, Duan H, Yu J, Qiu C, Yu R, Chen Y, Fang Y, Cai X, Yang S. Cu Vacancy Induced Product Switching from Formate to CO for CO 2 Reduction on Copper Sulfide. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Simeng Li
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Huan Duan
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Jun Yu
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Chen Qiu
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Rongxing Yu
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Yanpeng Chen
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Yueping Fang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xin Cai
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shihe Yang
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China
| |
Collapse
|
22
|
Lim J, Garcia-Esparza AT, Lee JW, Kang G, Shin S, Jeon SS, Lee H. Electrodeposited Sn-Cu@Sn dendrites for selective electrochemical CO 2 reduction to formic acid. NANOSCALE 2022; 14:9297-9303. [PMID: 35748756 DOI: 10.1039/d2nr01563c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Large-scale CO2 electrolysis can be applied to store renewable energy in chemicals. Recent developments in gas diffusion electrodes now enable a commercially relevant current density. However, the low selectivity of the CO2 reduction reaction (CO2RR) still hinders practical applications. The selectivity of the CO2RR highly depends on the electrocatalyst. Sn catalysts are considered promising cathode materials for the production of formic acid. The selectivity of Sn catalysts can be regulated by controlling their morphology or alloying them with secondary metals. Herein, we enhanced the selectivity of CO2 reduction to formic acid by synthesizing Sn-Cu@Sn dendrites that have a core@shell architecture. The Sn-Cu@Sn dendrites were prepared by a scalable electro-deposition method. The electronic structure was modified to suppress a reaction pathway for CO production on the Sn surface. Notably, the Sn shell inhibited the cathodic corrosion of Cu during the CO2RR. On a gas diffusion electrode, the Sn-Cu@Sn dendrites exhibited 84.2% faraday efficiency to formic acid for 120 h with high stability.
Collapse
Affiliation(s)
- Jinkyu Lim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
| | - Angel T Garcia-Esparza
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Jae Won Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| | - Gihun Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| | - Sangyong Shin
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| | - Sun Seo Jeon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| | - Hyunjoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| |
Collapse
|
23
|
Hu C, Wang Y, Chen J, Wang HF, Shen K, Tang K, Chen L, Li Y. Main-Group Metal Single-Atomic Regulators in Dual-Metal Catalysts for Enhanced Electrochemical CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201391. [PMID: 35523724 DOI: 10.1002/smll.202201391] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Single-atom sites can not only act as active centers, but also serve as promising catalyst regulators and/or promoters. However, in many complex reaction systems such as electrochemical CO2 reduction reaction (CO2 RR), the introduction of single-atom regulators may inevitably induce the competitive hydrogen evolution reaction (HER) and thus reduce the selectivity. Here, the authors demonstrate that introducing HER-inert main-group metal single atoms adjacent to transition-metal single atoms can modify their electronic structure to enhance the CO2 RR to CO without inducing the HER side reaction. Dual-metal Cu and In single-site atoms anchored on mesoporous nitrogen-doped carbon (denoted as Cu-In-NC) are prepared by the pyrolysis of a multimetallic metal-organic framework. Cu-In-NC shows a high faradic efficiency of 96% toward CO formation at -0.7 V versus reversible hydrogen electrode, superior to that of its monometallic single-atom counterparts. Density functional theory studies reveal that the HER-inert In sites can activate the adjacent Cu sites through electronic modifications, strengthening the binding of *COOH intermediate and thus boosting the electrochemical reduction of CO2 to CO.
Collapse
Affiliation(s)
- Chenghong Hu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yajing Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jianmin Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Hao-Fan Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Kui Shen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Kewen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, 414006, P. R. China
| | - Liyu Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yingwei Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
24
|
Woldu AR, Huang Z, Zhao P, Hu L, Astruc D. Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214340] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Cui X, Liu S, Zhao L, Yu J, Ling S, Zhao Y, Wang J, Qin W, Mao X, Zhang J. Modulating carbon dioxide activation on carbon nanotube immobilized salophen complexes by varying metal centers for efficient electrocatalytic reduction. J Colloid Interface Sci 2022; 608:1827-1836. [PMID: 34742091 DOI: 10.1016/j.jcis.2021.10.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022]
Abstract
Electrocatalytic CO2 reduction (ECR) into valuable chemicals, especially driven by renewable energy, presents a promising pattern to realize carbon neutrality. Site-isolated metal complexes flourish in the area of ECR as single-atom-like catalysts because of their competent and tailorable activity. In this study, salophen-based metal (Fe, Co, Ni and Cu) complexes were anchored onto carbon nanotubes (CNTs) to construct efficient catalysts for electrochemically converting CO2 to CO. Both experimental and theoretical results verified that CO2 activation was the rate-determining step for the catalytic performance of these hybrid molecular catalysts. The coordinate activation ability can be manipulated by varying the metal centers. The as-synthesized Fe-salophen hybrid CNT (Fe-salophen/CNT) shows the best activity and selectivity of -13.24 mA·cm-2 current density with 86.8% Faradaic efficiency for generating CO (FECO) at -0.76 V vs. RHE in aqueous solution, whereas Cu-salophen/CNT only achieved a -2.22 mA·cm-2 current density and 57.9% FECO under the same reaction conditions. These distinct catalytic performances resulted from the different coordination activation abilities of CO2 on various metal centers.
Collapse
Affiliation(s)
- Xiaofeng Cui
- Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, Anhui 246011, PR China.
| | - Shuyan Liu
- Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, Anhui 246011, PR China
| | - Lijun Zhao
- Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, Anhui 246011, PR China
| | - Jinfa Yu
- Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, Anhui 246011, PR China
| | - Shan Ling
- Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, Anhui 246011, PR China
| | - Yingguo Zhao
- Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, Anhui 246011, PR China.
| | - Junwei Wang
- Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, Anhui 246011, PR China
| | - Wei Qin
- Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, Anhui 246011, PR China
| | - Xiaoxia Mao
- Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, Anhui 246011, PR China
| | - Jianli Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, PR China
| |
Collapse
|
26
|
Xue Y, Li C, Zhou X, Kuang Z, Zhao W, Zhang Q, Chen H. MOF derived Cu/Bi bi‐metallic catalyst to enhanced selectivity toward formate for CO2 electroreduction. ChemElectroChem 2022. [DOI: 10.1002/celc.202101648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yi Xue
- Shanghai Institute of Ceramics Chinese Academy of Sciences State Key Laboratory of High Performance Ceramics and Superfine Microstructure CHINA
| | - Chengjin Li
- Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai Laboratory of High Performance Ceramics and Superfine Microstructure CHINA
| | - Xiaoxia Zhou
- Shanghai Institute of Ceramics Chinese Academy of Sciences State Key Laboratory of High Performance Ceramics and Superfine Microstructure CHINA
| | - Zhaoyu Kuang
- Shanghai Institute of Ceramics Chinese Academy of Sciences State Key Laboratory of High Performance Ceramics and Superfine Microstructure CHINA
| | - Wanpeng Zhao
- Shanghai Institute of Ceramics Chinese Academy of Sciences State Key Laboratory of High Performance Ceramics and Superfine Microstructure CHINA
| | - Qingming Zhang
- Shanghai Institute of Ceramics Chinese Academy of Sciences State Key Laboratory of High Performance Ceramics and Superfine Microstructure CHINA
| | - Hangrong Chen
- Shanghai Institute of Ceramics State Key Laboratory of High Performance Ceramics and Superfine Microstructure No. 1295, Dingxi Road 200050 Shanghai CHINA
| |
Collapse
|
27
|
Zhu C, Wen C, Wang M, Zhang M, Geng Y, Su Z. Non-metal boron atoms on a CuB12 monolayer as efficient catalytic sites for urea production. Chem Sci 2022; 13:1342-1354. [PMID: 35222918 PMCID: PMC8809401 DOI: 10.1039/d1sc04845g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/15/2021] [Indexed: 02/05/2023] Open
Abstract
Non-metal B atoms at the midpoint of the edges of the squares is confirmed to be the excellent catalytic sites on CuB12 monolayer presents superior catalytic activity thermodynamically and kinetically than the reported urea catalysts.
Collapse
Affiliation(s)
- Changyan Zhu
- Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun 130024, China
| | - Chaoxia Wen
- Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun 130024, China
| | - Miao Wang
- Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun 130024, China
| | - Min Zhang
- Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun 130024, China
| | - Yun Geng
- Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun 130024, China
| | - Zhongmin Su
- Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun 130024, China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| |
Collapse
|
28
|
Liu XC, Wei C, Wu Y, Fang Y, Li WQ, Ding RR, Wang G, Mu Y. Tailoring the Electrochemical Protonation Behavior of CO 2 by Tuning Surface Noncovalent Interactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Xiao-Cheng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Cong Wei
- Department of Applied Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Yishang Wu
- Department of Applied Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Yanyan Fang
- Department of Applied Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Wen-Qiang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Rong-Rong Ding
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Gongming Wang
- Department of Applied Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| |
Collapse
|
29
|
Zheng T, Liu C, Guo C, Zhang M, Li X, Jiang Q, Xue W, Li H, Li A, Pao CW, Xiao J, Xia C, Zeng J. Copper-catalysed exclusive CO 2 to pure formic acid conversion via single-atom alloying. NATURE NANOTECHNOLOGY 2021; 16:1386-1393. [PMID: 34531557 DOI: 10.1038/s41565-021-00974-5] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Converting CO2 emissions, powered by renewable electricity, to produce fuels and chemicals provides an elegant route towards a carbon-neutral energy cycle. Progress in the understanding and synthesis of Cu catalysts has spurred the explosive development of electrochemical CO2 reduction (CO2RR) technology to produce hydrocarbons and oxygenates; however, Cu, as the predominant catalyst, often exhibits limited selectivity and activity towards a specific product, leading to low productivity and substantial post-reaction purification. Here, we present a single-atom Pb-alloyed Cu catalyst (Pb1Cu) that can exclusively (~96% Faradaic efficiency) convert CO2 into formate with high activity in excess of 1 A cm-2. The Pb1Cu electrocatalyst converts CO2 into formate on the modulated Cu sites rather than on the isolated Pb. In situ spectroscopic evidence and theoretical calculations revealed that the activated Cu sites of the Pb1Cu catalyst regulate the first protonation step of the CO2RR and divert the CO2RR towards a HCOO* path rather than a COOH* path, thus thwarting the possibility of other products. We further showcase the continuous production of a pure formic acid solution at 100 mA cm-2 over 180 h using a solid electrolyte reactor and Pb1Cu.
Collapse
Affiliation(s)
- Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, People's Republic of China
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Chunxiao Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Chenxi Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, People's Republic of China
| | - Menglu Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Xu Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Qiu Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Weiqing Xue
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Hongliang Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Aowen Li
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Jianping Xiao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, People's Republic of China.
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, People's Republic of China.
| | - Jie Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, People's Republic of China.
| |
Collapse
|
30
|
Liang F, Zhang K, Zhang L, Zhang Y, Lei Y, Sun X. Recent Development of Electrocatalytic CO 2 Reduction Application to Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100323. [PMID: 34151517 DOI: 10.1002/smll.202100323] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/12/2021] [Indexed: 06/13/2023]
Abstract
Carbon dioxide (CO2 ) emission has caused greenhouse gas pollution worldwide. Hence, strengthening CO2 recycling is necessary. CO2 electroreduction reaction (CRR) is recognized as a promising approach to utilize waste CO2 . Electrocatalysts in the CRR process play a critical role in determining the selectivity and activity of CRR. Different types of electrocatalysts are introduced in this review: noble metals and their derived compounds, transition metals and their derived compounds, organic polymer, and carbon-based materials, as well as their major products, Faradaic efficiency, current density, and onset potential. Furthermore, this paper overviews the recent progress of the following two major applications of CRR according to the different energy conversion methods: electricity generation and formation of valuable carbonaceous products. Considering electricity generation devices, the electrochemical properties of metal-CO2 batteries, including Li-CO2 , Na-CO2 , Al-CO2 , and Zn-CO2 batteries, are mainly summarized. Finally, different pathways of CO2 electroreduction to carbon-based fuels is presented, and their reaction mechanisms are illustrated. This review provides a clear and innovative insight into the entire reaction process of CRR, guiding the new electrocatalysts design, state-of-the-art analysis technique application, and reaction system innovation.
Collapse
Affiliation(s)
- Feng Liang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clear Utilization, Kunming University of Science and Technology, Kunming, 650093, China
| | - Kaiwen Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Lei Zhang
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Yingjie Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Yong Lei
- Institute of Physics & IMN MacroNano (ZIK), Technical University of Ilmenau, 98693, Ilmenau, Germany
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| |
Collapse
|
31
|
Zhang N, Yang B, Liu K, Li H, Chen G, Qiu X, Li W, Hu J, Fu J, Jiang Y, Liu M, Ye J. Machine Learning in Screening High Performance Electrocatalysts for CO 2 Reduction. SMALL METHODS 2021; 5:e2100987. [PMID: 34927959 DOI: 10.1002/smtd.202100987] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/18/2021] [Indexed: 06/14/2023]
Abstract
Converting CO2 into carbon-based fuels is promising for relieving the greenhouse gas effect and the energy crisis. However, the selectivity and efficiency of current electrocatalysts for CO2 reductions are still not satisfactory. In this paper, the development of machine learning methods in screening CO2 reduction electrocatalysts over the recent years is reviewed. Through high-throughput calculation of some key descriptors such as adsorption energies, d-band center, and coordination number by well-constructed machine learning models, the catalytic activity, optimal composition, active sites, and CO2 reduction reaction pathway over various possible materials can be predicted and understood. Machine learning is now realized as a fast and low-cost method to effectively explore high performance electrocatalysts for CO2 reduction.
Collapse
Affiliation(s)
- Ning Zhang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Baopeng Yang
- School of Physical Science and Electronics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Kang Liu
- School of Physical Science and Electronics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Hongmei Li
- School of Physical Science and Electronics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Gen Chen
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Xiaoqing Qiu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Wenzhang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Junhua Hu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Junwei Fu
- School of Physical Science and Electronics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Yong Jiang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Min Liu
- School of Physical Science and Electronics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Jinhua Ye
- National Institute for Materials Science (NIMS), International Center for Materials Nanoarchitectonics (WPI-MANA), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
32
|
Sans J, Sanz V, Turon P, Alemán C. Enhanced CO
2
Conversion into Ethanol by Permanently Polarized Hydroxyapatite through C−C Coupling. ChemCatChem 2021. [DOI: 10.1002/cctc.202101157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jordi Sans
- Departament d'Enginyeria Química and Barcelona Research Center in Multiscale Science and Engineering Universitat Politècnica de Catalunya Av. Eduard Maristany 10-Barcelona, 14 08019 Barcelona Spain
| | - Vanesa Sanz
- B. Braun Surgical, S.A.U Carretera de Terrassa 121 08191 Rubí-Barcelona Spain
| | - Pau Turon
- B. Braun Surgical, S.A.U Carretera de Terrassa 121 08191 Rubí-Barcelona Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química and Barcelona Research Center in Multiscale Science and Engineering Universitat Politècnica de Catalunya Av. Eduard Maristany 10-Barcelona, 14 08019 Barcelona Spain
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology Baldiri Reixac 10–12 08028 Barcelona Spain
| |
Collapse
|
33
|
Mustafa A, Lougou BG, Shuai Y, Razzaq S, Wang Z, Shagdar E, Zhao J. A Techno-Economic Study of Commercial Electrochemical CO2 Reduction into Diesel Fuel and Formic Acid. J ELECTROCHEM SCI TE 2021. [DOI: 10.33961/jecst.2021.00584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Wan WB, Zhou YT, Zeng SP, Shi H, Yao RQ, Wen Z, Lang XY, Jiang Q. Nanoporous Intermetallic Cu 3 Sn/Cu Hybrid Electrodes as Efficient Electrocatalysts for Carbon Dioxide Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100683. [PMID: 34310042 DOI: 10.1002/smll.202100683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Designing highly selective and cost-effective electrocatalysts toward electrochemical carbon dioxide (CO2 ) reduction is crucial for desirable transformation of greenhouse gas into fuels or high-value chemical products. Here, the authors report intermetallic Cu3 Sn that is in situ formed and seamlessly integrated on self-supported bimodal nanoporous Cu skeleton (Cu3 Sn/Cu) via a spontaneous alloying of Sn and Cu as robust electrocatalyst for selective electroreduction of CO2 to CO. By virtue of Sn atoms strengthening CO adsorption on Cu atoms, the intermetallic Cu3 Sn has an intrinsic activity of ≈10.58 μA cm-2 , more than 80-fold higher than that of monometallic Cu. By virtue of hierarchical bicontinuous nanoporous Cu architecture facilitating electron transfer and CO2 and proton mass transport and offering high specific surface areas for full use of electroactive Cu3 Sn sites, the nanoporous Cu3 Sn/Cu hybrid electrodes produce CO at a low overpotential of 0.09 V, and exhibit high partial current density of ≈15 mA cm-2 geo at overpotential of 0.59 V, along with excellent stability and selectivity of 91.5% Faradaic efficiency. The outstanding electrochemical performance make them attractive alternatives to precious Au- and Ag-based electrocatalysts for building low-cost CO2 electrolyzers to selectively produce CO.
Collapse
Affiliation(s)
- Wu-Bin Wan
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Yi-Tong Zhou
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Shu-Pei Zeng
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Hang Shi
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Rui-Qi Yao
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Zi Wen
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Xing-You Lang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
- State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| |
Collapse
|
35
|
Lu S, Huynh HL, Lou F, Guo M, Yu Z. Electrochemical reduction of CO2 to CH4 over transition metal atom embedded antimonene: First-principles study. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
36
|
Proietto F, Patel U, Galia A, Scialdone O. Electrochemical conversion of CO2 to formic acid using a Sn based electrode: A critical review on the state-of-the-art technologies and their potential. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Zhang W, Chao Y, Zhang W, Zhou J, Lv F, Wang K, Lin F, Luo H, Li J, Tong M, Wang E, Guo S. Emerging Dual-Atomic-Site Catalysts for Efficient Energy Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102576. [PMID: 34296795 DOI: 10.1002/adma.202102576] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/09/2021] [Indexed: 05/24/2023]
Abstract
Atomically dispersed metal catalysts with well-defined structures have been the research hotspot in heterogeneous catalysis because of their high atomic utilization efficiency, outstanding activity, and selectivity. Dual-atomic-site catalysts (DASCs), as an extension of single-atom catalysts (SACs), have recently drawn surging attention. The DASCs possess higher metal loading, more sophisticated and flexible active sites, offering more chance for achieving better catalytic performance, compared with SACs. In this review, recent advances on how to design new DASCs for enhancing energy catalysis will be highlighted. It will start with the classification of marriage of two kinds of single-atom active sites, homonuclear DASCs and heteronuclear DASCs according to the configuration of active sites. Then, the state-of-the-art characterization techniques for DASCs will be discussed. Different synthetic methods and catalytic applications of the DASCs in various reactions, including oxygen reduction reaction, carbon dioxide reduction reaction, carbon monoxide oxidation reaction, and others will be followed. Finally, the major challenges and perspectives of DASCs will be provided.
Collapse
Affiliation(s)
- Weiyu Zhang
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Yuguang Chao
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Wenshu Zhang
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Jinhui Zhou
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Fan Lv
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Kai Wang
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Fangxu Lin
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Heng Luo
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Jing Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Erkang Wang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shaojun Guo
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
38
|
Research progress of electrochemical CO2 reduction for copper-based catalysts to multicarbon products. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213983] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Wang R, Liu J, Huang Q, Dong LZ, Li SL, Lan YQ. Partial Coordination-Perturbed Bi-Copper Sites for Selective Electroreduction of CO 2 to Hydrocarbons. Angew Chem Int Ed Engl 2021; 60:19829-19835. [PMID: 34164890 DOI: 10.1002/anie.202105343] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/19/2021] [Indexed: 11/07/2022]
Abstract
In the electrochemical CO2 reduction reaction (CO2 RR), it is challenging to develop a stable, well-defined catalyst model system that is able to examine the influence of the synergistic effect between adjacent catalytic active sites on the selective generation of C1 or C2 products. We have designed and synthesized a stable crystalline single-chain catalyst model system for electrochemical CO2 RR, which involves four homomorphic one-dimensional chain-like compounds (Cu-PzH, Cu-PzCl, Cu-PzBr, and Cu-PzI). The main structural difference of these four chains is the substituents of halogen atoms with different electronegativity on the Pz ligands. Consequently, different synergistic effects between bi-copper centers lead to changes in the faradic efficiency (FE CH 4 :FE C 2 H 4 ). This work provides a simple and stable crystalline single-chain model system for systematically studying the influence of coordination microenvironment on catalytically active centers in the CO2 RR.
Collapse
Affiliation(s)
- Rui Wang
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jiang Liu
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.,School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Qing Huang
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Long-Zhang Dong
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Shun-Li Li
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.,School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Ya-Qian Lan
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.,School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
40
|
Wang R, Liu J, Huang Q, Dong L, Li S, Lan Y. Partial Coordination‐Perturbed Bi‐Copper Sites for Selective Electroreduction of CO
2
to Hydrocarbons. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rui Wang
- Jiangsu Key Laboratory of Biofunctional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Jiang Liu
- Jiangsu Key Laboratory of Biofunctional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| | - Qing Huang
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| | - Long‐Zhang Dong
- Jiangsu Key Laboratory of Biofunctional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Shun‐Li Li
- Jiangsu Key Laboratory of Biofunctional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| | - Ya‐Qian Lan
- Jiangsu Key Laboratory of Biofunctional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| |
Collapse
|
41
|
Wu Y, Deng X, Yuan H, Yang X, Wang J, Wang X. Engineering Bimetallic Copper‐Tin Based Core‐Shell Alloy@Oxide Nanowire as Efficient Catalyst for Electrochemical CO
2
Reduction. ChemElectroChem 2021. [DOI: 10.1002/celc.202100623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yifan Wu
- Laboratory of Advanced Materials and Energy Electrochemistry Institute of New Carbon Materials College of Materials Science & Engineering Taiyuan University of Technology Taiyuan 030024 China
| | - Xiaoyang Deng
- Laboratory of Advanced Materials and Energy Electrochemistry Institute of New Carbon Materials College of Materials Science & Engineering Taiyuan University of Technology Taiyuan 030024 China
| | - Hefeng Yuan
- Laboratory of Advanced Materials and Energy Electrochemistry Institute of New Carbon Materials College of Materials Science & Engineering Taiyuan University of Technology Taiyuan 030024 China
| | - Xiaowei Yang
- Yancheng Teachers University Yancheng 224000 China
| | - Jianxing Wang
- State Key Laboratory of Optoelectronic Materials and Technologies College of Materials Science & Engineering Sun Yat-sen University Guangzhou 510275 China
| | - Xiaoguang Wang
- Laboratory of Advanced Materials and Energy Electrochemistry Institute of New Carbon Materials College of Materials Science & Engineering Taiyuan University of Technology Taiyuan 030024 China
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization Taiyuan 030024 China
| |
Collapse
|
42
|
Shang H, Kim D, Wallentine SK, Kim M, Hofmann DM, Dasgupta R, Murphy CJ, Asthagiri A, Baker LR. Ensemble effects in Cu/Au ultrasmall nanoparticles control the branching point for C1 selectivity during CO 2 electroreduction. Chem Sci 2021; 12:9146-9152. [PMID: 34276944 PMCID: PMC8261774 DOI: 10.1039/d1sc02602j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/29/2021] [Indexed: 11/21/2022] Open
Abstract
Bimetallic catalysts provide opportunities to overcome scaling laws governing selectivity of CO2 reduction (CO2R). Cu/Au nanoparticles show promise for CO2R, but Au surface segregation on particles with sizes ≥7 nm prevent investigation of surface atom ensembles. Here we employ ultrasmall (2 nm) Cu/Au nanoparticles as catalysts for CO2R. The high surface to volume ratio of ultrasmall particles inhibits formation of a Au shell, enabling the study of ensemble effects in Cu/Au nanoparticles with controllable composition and uniform size and shape. Electrokinetics show a nonmonotonic dependence of C1 selectivity between CO and HCOOH, with the 3Au:1Cu composition showing the highest HCOOH selectivity. Density functional theory identifies Cu2/Au(211) ensembles as unique in their ability to synthesize HCOOH by stabilizing CHOO* while preventing H2 evolution, making C1 product selectivity a sensitive function of Cu/Au surface ensemble distribution, consistent with experimental findings. These results yield important insights into C1 branching pathways and demonstrate how ultrasmall nanoparticles can circumvent traditional scaling laws to improve the selectivity of CO2R.
Collapse
Affiliation(s)
- Hongyu Shang
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio USA
| | - Dongjoon Kim
- Department of Chemical Engineering, The Ohio State University Columbus Ohio USA
| | - Spencer K Wallentine
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio USA
| | - Minkyu Kim
- Department of Chemical Engineering, The Ohio State University Columbus Ohio USA
| | | | - Runiya Dasgupta
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio USA
| | | | - Aravind Asthagiri
- Department of Chemical Engineering, The Ohio State University Columbus Ohio USA
| | - L Robert Baker
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio USA
| |
Collapse
|
43
|
Wu JX, Zhu XR, Liang T, Zhang XD, Hou SZ, Xu M, Li YF, Gu ZY. Sn(101) Derived from Metal-Organic Frameworks for Efficient Electrocatalytic Reduction of CO 2. Inorg Chem 2021; 60:9653-9659. [PMID: 34133150 DOI: 10.1021/acs.inorgchem.1c00946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of a specific Sn plane as an efficient electrocatalyst for CO2 electrochemical reduction to generate fuels and chemicals is still a huge challenge. Density functional theory (DFT) calculations first reveal that the Sn(101) crystal plane is more advantageous for CO2 electroreduction. A metal-organic framework (MOF) precursor Sn-MOF has been carbonized and then etched to successfully fabricate Sn(101)/SnO2/C composites with good control of the carbonization time and the concentration of hydrochloric acid. The Sn(101) crystal plane of the catalyst could enhance the faradaic efficiency of formate to as high as 93.3% and catalytic stability up to 20 h. The promotion of the selectivity and activity by Sn(101) advances new possibilities for the rational design of high-activity Sn catalysts derived from MOFs.
Collapse
Affiliation(s)
- Jian-Xiang Wu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Xiao-Rong Zhu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Ting Liang
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, P. R. China
| | - Xiang-Da Zhang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Shu-Zhen Hou
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Ya-Fei Li
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
44
|
Zhang Z, Wen G, Luo D, Ren B, Zhu Y, Gao R, Dou H, Sun G, Feng M, Bai Z, Yu A, Chen Z. "Two Ships in a Bottle" Design for Zn-Ag-O Catalyst Enabling Selective and Long-Lasting CO 2 Electroreduction. J Am Chem Soc 2021; 143:6855-6864. [PMID: 33852301 DOI: 10.1021/jacs.0c12418] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Electrochemical CO2 reduction (CO2RR) using renewable energy sources represents a sustainable means of producing carbon-neutral fuels. Unfortunately, low energy efficiency, poor product selectivity, and rapid deactivation are among the most intractable challenges of CO2RR electrocatalysts. Here, we strategically propose a "two ships in a bottle" design for ternary Zn-Ag-O catalysts, where ZnO and Ag phases are twinned to constitute an individual ultrafine nanoparticle impregnated inside nanopores of an ultrahigh-surface-area carbon matrix. Bimetallic electron configurations are modulated by constructing a Zn-Ag-O interface, where the electron density reconfiguration arising from electron delocalization enhances the stabilization of the *COOH intermediate favorable for CO production, while promoting CO selectivity and suppressing HCOOH generation by altering the rate-limiting step toward a high thermodynamic barrier for forming HCOO*. Moreover, the pore-constriction mechanism restricts the bimetallic particles to nanosized dimensions with abundant Zn-Ag-O heterointerfaces and exposed active sites, meanwhile prohibiting detachment and agglomeration of nanoparticles during CO2RR for enhanced stability. The designed catalysts realize 60.9% energy efficiency and 94.1 ± 4.0% Faradaic efficiency toward CO, together with a remarkable stability over 6 days. Beyond providing a high-performance CO2RR electrocatalyst, this work presents a promising catalyst-design strategy for efficient energy conversion.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Guobin Wen
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Dan Luo
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Bohua Ren
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yanfei Zhu
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Rui Gao
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Haozhen Dou
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Guiru Sun
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Ming Feng
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Zhengyu Bai
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Aiping Yu
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Zhongwei Chen
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
45
|
Chatzipanagiotou KR, Soekhoe V, Jourdin L, Buisman CJN, Bitter JH, Strik DPBTB. Catalytic Cooperation between a Copper Oxide Electrocatalyst and a Microbial Community for Microbial Electrosynthesis. Chempluschem 2021; 86:763-777. [PMID: 33973736 DOI: 10.1002/cplu.202100119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/26/2021] [Indexed: 11/06/2022]
Abstract
Electrocatalytic metals and microorganisms can be combined for CO2 conversion in microbial electrosynthesis (MES). However, a systematic investigation on the nature of interactions between metals and MES is still lacking. To investigate this nature, we integrated a copper electrocatalyst, converting CO2 to formate, with microorganisms, converting CO2 to acetate. A co-catalytic (i. e. metabolic) relationship was evident, as up to 140 mg L-1 of formate was produced solely by copper oxide, while formate was also evidently produced by copper and consumed by microorganisms producing acetate. Due to non-metabolic interactions, current density decreased by over 4 times, though acetate yield increased by 3.3 times. Despite the antimicrobial role of copper, biofilm formation was possible on a pure copper surface. Overall, we show for the first time that a CO2 -reducing copper electrocatalyst can be combined with MES under biological conditions, resulting in metabolic and non-metabolic interactions.
Collapse
Affiliation(s)
- Konstantina-Roxani Chatzipanagiotou
- Biobased Chemistry and Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.,Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Virangni Soekhoe
- Biobased Chemistry and Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.,Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Ludovic Jourdin
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.,Currently at Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Cees J N Buisman
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - J Harry Bitter
- Biobased Chemistry and Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - David P B T B Strik
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| |
Collapse
|
46
|
Peng CJ, Zeng G, Ma DD, Cao C, Zhou S, Wu XT, Zhu QL. Hydrangea-like Superstructured Micro/Nanoreactor of Topotactically Converted Ultrathin Bismuth Nanosheets for Highly Active CO 2 Electroreduction to Formate. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20589-20597. [PMID: 33878860 DOI: 10.1021/acsami.1c03871] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An electrocatalytic carbon dioxide reduction reaction (CO2RR) is an appealing route to obtain the value-added feedstocks and alleviate the energy crisis. However, how to achieve high-performance electrocatalysts for CO2 reduction to formate is challenging owing to the poor intrinsic activity, insufficient conductivity, and low surface density of active sites. Herein, we fabricated an extremely active and selective hydrangea-like superstructured micro/nanoreactor of ultrathin bismuth nanosheets through an in situ electrochemical topotactic transformation of hierarchical bismuth oxide formate (BiOCOOH). The resulted bismuth nanosheet superstructure is in the form of three-dimensional intercrossed networks of ultrathin nanosheets, forming an ordered open porous structure through self-assembly, which can be used as a micro/nanoreactor to enable a large electrochemically active surface area as well as high atomic utilization. Such a distinctive nanostructure endows the material with high electrocatalytic performances for CO2 reduction to formate with near-unity Faradaic selectivity (>95%) in a wide potential window from -0.78 to -1.18 V. Furthermore, this micro/nanoreactor can give the high current densities over 300 mA cm-2 at low applied potentials without compromising selectivity in a flow cell reactor. Density functional theory (DFT) and in situ attenuated total reflection-infrared spectroscopy (in situ ATR-IR) were further conducted to interpret the CO2RR mechanisms.
Collapse
Affiliation(s)
- Chan-Juan Peng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang Zeng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Dong-Dong Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Changsheng Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shenghua Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
47
|
Xiao Y, Chen D, Chen R. Mechanistic study of efficient producing CO2 electroreduction via 2D metal-organic frameworks M3(2,3,6,7,10,11-hexaiminotriphenylene)2 surface. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Zou Y, Wang S. An Investigation of Active Sites for electrochemical CO 2 Reduction Reactions: From In Situ Characterization to Rational Design. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003579. [PMID: 33977051 PMCID: PMC8097356 DOI: 10.1002/advs.202003579] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/19/2021] [Indexed: 05/03/2023]
Abstract
The electrochemical carbon dioxide (CO2) reduction reaction (CO2RR) is among the most promising approaches used to transform greenhouse gas into useful fuels and chemicals. However, the reaction suffers from low selectivity, high overpotential, and low reaction rate. Active site identification in the CO2RR is vital for the understanding of the reaction mechanism and the rational development of new electrocatalysts with both high selectivity and stability. Herein, in situ characterization monitoring of active sites during the reaction is summarized and a general understanding of active sites on the various catalysts in the CO2RR, including metal-based catalysts, carbon-based catalysts, and metal-organic frameworks-based electrocatalysts is updated. For each type of electrocatalysts, the reaction pathway and real active sites are proposed based on in situ characterization techniques and theoretical calculations. Finally, the key limitations and challenges observed for the electrochemical fixation of CO2 is presented. It is expected that this review will provide new insights and directions into further scientific development and practical applicability of CO2 electroreduction.
Collapse
Affiliation(s)
- Yuqin Zou
- State Key Laboratory of Chem/Bio‐Sensing and ChemometricsProvincial Hunan Key Laboratory for Graphene Materials and DevicesCollege of Chemistry and Chemical Engineeringthe National Supercomputer Centers in ChangshaHunan UniversityChangsha410082P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio‐Sensing and ChemometricsProvincial Hunan Key Laboratory for Graphene Materials and DevicesCollege of Chemistry and Chemical Engineeringthe National Supercomputer Centers in ChangshaHunan UniversityChangsha410082P. R. China
| |
Collapse
|
49
|
Dong WJ, Lim JW, Hong DM, Kim J, Park JY, Cho WS, Baek S, Lee JL. Grain Boundary Engineering of Cu-Ag Thin-Film Catalysts for Selective (Photo)Electrochemical CO 2 Reduction to CO and CH 4. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18905-18913. [PMID: 33848138 DOI: 10.1021/acsami.1c03735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We investigated the relationship between grain boundary (GB) oxidation of Cu-Ag thin-film catalysts and selectivity of the (photo)electrochemical CO2 reduction reaction (CO2 RR). The change in the thickness of the Cu thin film accompanies the variation of GB density, and the Ag layer (3 nm) has an island-like morphology on the Cu thin film. Therefore, oxygen from ambient air penetrates into the Cu thin film through the GB of Cu and binds with it because the uncoordinated Cu atoms at the GBs are unstable. It was found that the Cu thin film with a small grain size was susceptible to spontaneous oxidation and degraded the faradaic efficiency (FE) of CO and CH4. However, a relatively thick (≥80 nm) Cu layer was effective in preventing the GB oxidation and realized catalytic properties similar to those of bulk Cu-Ag catalysts. The optimized Cu (100 nm)-Ag (3 nm) thin film exhibited a unique bifunctional characteristic, which enables selective production of both CO (FECO = 79.8%) and CH4 (FECH4 = 59.3%) at a reductive potential of -1.0 and -1.4 VRHE, respectively. Moreover, the Cu-Ag thin film was used as a cocatalyst for photo-electrochemical CO2 reduction by patterning the Cu-Ag thin film and a SiO2 passivation layer on a p-type Si photocathode. This novel architecture improved the selectivity of CO and CH4 under light illumination (100 mW/cm2).
Collapse
Affiliation(s)
- Wan Jae Dong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | - Jin Wook Lim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | - Dae Myung Hong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | - Jiwon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | - Jae Yong Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | - Won Seok Cho
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | - Sangwon Baek
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | - Jong-Lam Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| |
Collapse
|
50
|
Qiu Y, Xu W, Yao P, Zheng Q, Zhang H, Li X. Electrochemical Production of Formic Acid from CO 2 with Cetyltrimethylammonium Bromide-Assisted Copper-Based Catalysts. CHEMSUSCHEM 2021; 14:1962-1969. [PMID: 33751811 DOI: 10.1002/cssc.202100275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/04/2021] [Indexed: 06/12/2023]
Abstract
The electrochemical reduction of CO2 (ERC) to valuable chemicals has attracted extensive attention. However, the relatively low selectivity and efficiency of the reaction remain challenges. In this study, Cu electrodes derived from Cu2 O with predominant (111) facets are synthesized by cetyltrimethylammonium bromide-assisted preparation. The optimized electrode shows a high faradaic efficiency of 90 % for HCOOH obtained by ERC at -2.0 V (vs.SCE), which surpasses most reported Cu electrodes. Based on a comprehensive analysis of the relationship between the catalytic activity and the thickness of the Cu2 O layer, the catalytic activity of the unit active site on the Cu2 O-derived Cu electrodes is found to be higher than that on the blank Cu electrode. DFT calculations indicate that OCHO* would be produced preferentially over *COOH in the presence of cetyltrimethylammonium bromide (CTAB). This deduction is verified by testing of the effects of CTAB and KBr addition on HCOO- selectivity.
Collapse
Affiliation(s)
- Yanling Qiu
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
| | - Wenbin Xu
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
| | - Pengfei Yao
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P.R. China
| | - Qiong Zheng
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
| | - Huamin Zhang
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
| | - Xianfeng Li
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
| |
Collapse
|