1
|
Li H, Liu X, Kan Z, Liu S, Zhao J. Boosting electrocatalytic nitrate-to-ammonia of single Fe active sites via coordination engineering: From theory to experiments. J Colloid Interface Sci 2024; 676:149-157. [PMID: 39024815 DOI: 10.1016/j.jcis.2024.07.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024]
Abstract
Atomically dispersed iron-nitrogen-carbon (Fe-N4-C) catalysts show great promises for the electrocatalytic nitrate (NO3-) reduction to ammonia (NH3). Nevertheless, the microenvironmental engineering of the single Fe active sites for further optimizing the catalytic performance remains a challenge. Herein, we proposed to regulate the coordination environment of single Fe active sites to boost its intrinsic electrocatalytic activity for NO3- -to-NH3 conversion by the incorporation of new heteroatoms, including B, C, O, Si, P, and S. Our results revealed that most of the candidates possess low formation energies, showing great potential for experimental synthesis. Moreover, incorporating heteroatoms effectively modulates the charge redistribution and the d-band center of single Fe active sites, enabling the regulation of the binding strength of nitrogenous intermediates. As a result, the N and C coordinated Fe active site (Fe-N3C) exhibits superior catalytic performance for NO3- electroreduction with a relatively low limiting potential (-0.13 V) due to its optimal adsorption strength with nitrogenous intermediates induced by its moderate charge and d-band center. Importantly, our experimental measures confirmed such theoretical prediction: a maximum NH3 yield rate of 21.07 mg h-1 mgcat.-1 and 95.74 % Faradaic efficiency were achieved for NO3- electroreduction on Fe-N3C catalyst. These findings not only suggest a highly efficient catalyst for nitrate reduction but also provide insight into how to design and prepare electrocatalysts with enhanced catalytic performance.
Collapse
Affiliation(s)
- Heying Li
- College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Xinyang Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Ziwang Kan
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Song Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Jingxiang Zhao
- College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
2
|
Yang T, Ding K, Zhou J, Ma X, Tan KC, Wang G, Huang H, Yang M. Unravelling Species-Specific Loading Effects on Oxygen Reduction Activity of Heteronuclear Single Atom Catalysts. SMALL METHODS 2024:e2401333. [PMID: 39552000 DOI: 10.1002/smtd.202401333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Indexed: 11/19/2024]
Abstract
Toward high-density single atom catalysts (SACs), the interaction between neighboring SACs and the induced non-linear loading effect become crucial for their intrinsic catalytic performance. Despite recent investigations on homonuclear SACs, understanding such effect in heteronuclear SACs remains limited. Using Fe and Co SACs co-supported on the nitrogen-doped graphene as a model system, the loading effect on the site-specific activity of heteronuclear SACs toward oxygen reduction reaction (ORR) is here reported by density functional theory calculations. The Fe site exhibits an oscillatory decrease in activity with the loading. In contrast, the Co site has a volcano-like activity with the optimum performance achieved at ≈16.8 wt.% (average inter-site distance: ≈7 Å). At the ultra-high loading of 38.4 wt.% (inter-site distance: ≈4 Å), the Co site is the only ORR active site, whereas Fe sites turn into spectators. This distinct loading-dependent activity between the Fe and Co sites can be ascribed to their difference in the binding capability with the substrate and the dxz and dyz orbitals' occupation. These findings highlight the importance of the loading effect in heteronuclear SACs, which could be useful for the development of high-performance heteronuclear and high-entropy SACs toward various catalytic reactions in the high-loading regime.
Collapse
Affiliation(s)
- Tong Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Keda Ding
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Jun Zhou
- Institute of Materials Research & Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
| | - Xiaoyang Ma
- School of Information Science and Engineering, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Kay Chen Tan
- Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Ge Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haitao Huang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Ming Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Centre on Data Sciences & Artificial Intelligence, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Centre for Nanoscience and Nanotechnology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
3
|
Tian J, Song Y, Hao X, Wang X, Shen Y, Liu P, Wei Z, Liao T, Jiang L, Guo J, Xu B, Sun Z. Greatly Enhanced Oxygen Reduction Reaction in Anion Exchange Membrane Fuel Cell and Zn-Air Battery via Hole Inner Edge Reconstruction of 2D Pd Nanomesh. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412051. [PMID: 39529551 DOI: 10.1002/adma.202412051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Platinum group metals (PGM) have yet to be the most active catalysts in various sustainable energy reactions. Their high cost, however, has made maximizing the activity and minimizing the dosage become an urgent priority for the practical applications of emerging technologies. Herein, a novel 2D Pd nanomesh structure possessing hole inner reconstructed edges (HIER) with exposed high energy facets and overstretched lattice parameters is fabricated through a facile room-temperature reduction method at gram-scale yields. The HIER enhances the catalytic performance of Pd in electrochemical oxygen reduction reaction (ORR), achieving superior mass activity (MA) of 2.672 A mgPd -1, which is 27.8 fold and 23.6 fold higher, respectively, than those of the commercial Pt/C (0.096 A mgPt -1) and Pd/C (0.113 A mgPd -1) at 0.9 VRHE. Most significantly, in H2-air anion exchange membrane fuel cell (AEMFC) and Zn-air battery (ZAB) applications, this unique Pd catalyst delivers a much-outperformed peak power density of 0.86 and 0.22 W cm-2, respectively, compared with 0.54 and 0.13 W cm-2 of the commercial Pt/C catalyst, indicating a novel pathway in electrocatalyst designs through HIER engineering.
Collapse
Affiliation(s)
- Jiakang Tian
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan, 030024, P. R. China
| | - Yanhui Song
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan, 030024, P. R. China
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
- Instrumental Analysis Center Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Xiaodong Hao
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
| | - Xudong Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan, 030024, P. R. China
| | - Yongqing Shen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan, 030024, P. R. China
| | - Peizhi Liu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan, 030024, P. R. China
| | - Zebin Wei
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan, 030024, P. R. China
| | - Ting Liao
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
| | - Lei Jiang
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Junjie Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan, 030024, P. R. China
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
| | - Bingshe Xu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan, 030024, P. R. China
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
| | - Ziqi Sun
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
| |
Collapse
|
4
|
Ren Y, Si Y, Du M, You C, Zhang C, Zhu YH, Sun Z, Huang K, Liu M, Duan L, Li N. Photothermal Synergistic Effect Induces Bimetallic Cooperation to Modulate Product Selectivity of CO 2 Reduction on Different CeO 2 Crystal Facets. Angew Chem Int Ed Engl 2024; 63:e202410474. [PMID: 39087314 DOI: 10.1002/anie.202410474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Product selectivity of solar-driven CO2 reduction and H2O oxidation reactions has been successfully controlled by tuning the spatial distance between Pt/Au bimetallic active sites on different crystal facets of CeO2 catalysts. The replacement depth of Ce atoms by monatomic Pt determines the distance between bimetallic sites, while Au clusters are deposited on the surface. This space configuration creates a favourable microenvironment for the migration of active hydrogen species (*H). The *H is generated via the activation of H2O on monatomic Pt sites and migrate towards Au clusters with a strong capacity for CO2 adsorption. Under concentrated solar irradiation, selectivity of the (100) facet towards CO is 100 %, and the selectivity of the (110) and (111) facets towards CH4 is 33.5 % and 97.6 %, respectively. Notably, the CH4 yield on the (111) facet is as high as 369.4 μmol/g/h, and the solar-to-chemical energy efficiency of 0.23 % is 33.8 times higher than that under non-concentrated solar irradiation. The impacts of high-density flux photon and thermal effects on carriers and *H migration at the microscale are comprehensively discussed. This study provides a new avenue for tuning the spatial distance between active sites to achieve optimal product selectivity.
Collapse
Affiliation(s)
- Yuqi Ren
- School of Chemistry and Chemical Engineering, Southeast University, No.2 Dongnandaxue Road, Nanjing, 211189, Jiangsu, P.R. China
| | - Yitao Si
- School of Chemistry and Chemical Engineering, Southeast University, No.2 Dongnandaxue Road, Nanjing, 211189, Jiangsu, P.R. China
| | - Mingyue Du
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P.R. China
| | - Changjun You
- School of Chemistry and Chemical Engineering, Southeast University, No.2 Dongnandaxue Road, Nanjing, 211189, Jiangsu, P.R. China
| | - Chunyang Zhang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P.R. China
| | - Yuan-Hao Zhu
- School of Chemistry and Chemical Engineering, Southeast University, No.2 Dongnandaxue Road, Nanjing, 211189, Jiangsu, P.R. China
| | - Zhenkun Sun
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, No.2 Dongnandaxue Road, Nanjing, 210096, Jiangsu, P.R. China
| | - Kai Huang
- School of Chemistry and Chemical Engineering, Southeast University, No.2 Dongnandaxue Road, Nanjing, 211189, Jiangsu, P.R. China
| | - Maochang Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P.R. China
| | - Lunbo Duan
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, No.2 Dongnandaxue Road, Nanjing, 210096, Jiangsu, P.R. China
| | - Naixu Li
- School of Chemistry and Chemical Engineering, Southeast University, No.2 Dongnandaxue Road, Nanjing, 211189, Jiangsu, P.R. China
| |
Collapse
|
5
|
Li Z, Jia J, Sang Z, Liu W, Nie J, Yin L, Hou F, Liu J, Liang J. A Computation-Guided Design of Highly Defined and Dense Bimetallic Active Sites on a Two-Dimensional Conductive Metal-Organic Framework for Efficient H 2O 2 Electrosynthesis. Angew Chem Int Ed Engl 2024; 63:e202408500. [PMID: 39115946 DOI: 10.1002/anie.202408500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Electrochemical synthesis of hydrogen peroxide (H2O2) via the two-electron oxygen reduction reaction (2e--ORR) provides an alternative method to the energy-intensive anthraquinone method. Metal macrocycles with precise coordination are widely used for 2e--ORR electrocatalysis, but they have to be commonly loaded on conductive substrates, thus exposing a large number of 2e--ORR-inactive sites that result in poor H2O2 production rate and efficiency. Herein, guided by first-principle predictions, a substrate-free and two-dimensional conductive metal-organic framework (Ni-TCPP(Co)), composed of CoN4 sites in porphine(Co) centers and Ni2O8 nodes, is designed as a multi-site catalyst for H2O2 electrosynthesis. The approperiate distance between the CoN4 and Ni2O8 sites in Ni-TCPP(Co) weakens the electron transfer between them, thus ensuring their inherent activities and creating high-density active sites. Meanwhile, the intrinsic electronic conductivity and porosity of Ni-TCPP(Co) further facilitate rapid reaction kinetics. Therefore, outstanding 2e--ORR electrocatalytic performance has been achieved in both alkaline and neutral electrolytes (>90 %/85 % H2O2 selectivity within 0-0.8 V vs. RHE and >18.2/18.0 mol g-1 h-1 H2O2 yield under alkaline/neutral conditions), with confirmed feasibility for water purification and disinfection applications. This strategy thus provides a new avenue for designing catalysts with precise coordination and high-density active sites, promoting high-efficiency electrosynthesis of H2O2 and beyond.
Collapse
Affiliation(s)
- Zhenxin Li
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jingjing Jia
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhiyuan Sang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Wei Liu
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiahuan Nie
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Lichang Yin
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyang, 110016, China
| | - Feng Hou
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiachen Liu
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Ji Liang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
6
|
Sun X, Li X, Huang H, Lu W, Xu X, Cui X, Li L, Zou X, Zheng W, Zhao X. Fine Engineering of d-Orbital Vacancies of ZnN 4 via High-Shell Metal and Nonmetal Single-Atoms for Efficient and Poisoning-Resistant ORR. NANO LETTERS 2024. [PMID: 39512070 DOI: 10.1021/acs.nanolett.4c02830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Atomically dispersed metal-nitrogen-carbon (M-N-C) materials are active oxygen reduction reaction (ORR) catalysts. Among M-N-C catalysts, ZnN4 single-atom catalysts (SACs) due to a nearly full 3d10 electronic configuration insufficiently activate oxygen and display low ORR activity. To finely engineer d-orbital vacancies of ZnN4, we combine high-shell metal and nonmetal SAs as electronic regulators that are ZnN4Cl and carbon vacancy-hosted -Cl motifs, which show complementary electron-withdrawing capacities versus the ZnN4. Under that, the ZnN4 exhibits significantly enhanced ORR activity with a half-wave potential (E1/2) of 0.912 VRHE relative to the unmodified ZnN4 (E1/2 = 0.822 VRHE) and simultaneously robust durability (negligible activity loss after 10,000 potential cycles). Particularly, the engineered ZnN4 possesses high resistance to SCN- poisoning, which is rarely achieved among M-N-C SACs. Our works show that combining high-shell metal and nonmetal SAs can finely engineer d-orbital vacancies of metal centers to an optimal state, thereby intrinsically enhancing their catalytic performance.
Collapse
Affiliation(s)
- Xiaoyuan Sun
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Xinyi Li
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Hong Huang
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Wenting Lu
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Xiaochun Xu
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Xiaoqiang Cui
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Lu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Xiao Zhao
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
7
|
Shen M, Liu Q, Sun J, Liang C, Xiong C, Hou C, Huang J, Cao L, Feng Y, Shang Z. Vapor deposition strategy for implanting isolated Fe sites into papermaking nanofibers-derived N-doped carbon aerogels for liquid Electrolyte-/All-Solid-State Zn-Air batteries. J Colloid Interface Sci 2024; 673:453-462. [PMID: 38878379 DOI: 10.1016/j.jcis.2024.06.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/26/2024]
Abstract
Single-atom catalysts (SACs), with precisely controlled metal atom distribution and adjustable coordination architecture, have gained intensive concerns as efficient oxygen reduction reaction (ORR) electrocatalysts in Zn-air batteries (ZAB). The attainment of a monodispersed state for metallic atoms anchored on the carbonaceous substrate remains the foremost research priority; however, the persistent challenges lie in the relatively weak metal-support interactions and the instability of captured single atom active sites. Furthermore, in order to achieve rapid transport of O2 and other reactive substances within the carbon matrix, manufacturing SACs based on multi-stage porous carbon substrates is highly anticipated. Here, we propose a methodology for the fabrication of carbon aerogels (CA)-supported SACs utilizing papermaking nanofibers, which incorporates advanced strategies for N-atom self-doping, defect/vacancy introduction, and single-atom interface engineering. Specifically, taking advantages of using green and energy-efficient feedstocks, combining with a direct pore-forming template volatilization and chemical vapor deposition approach, we successfully developed N-doped carbon aerogels immobilized with separated iron sites (Fe-SAC@N/CA-Cd). The obtained Fe-SAC@N/CA-Cd exhibited substantially large specific surface area (SBET = 1173 m2/g) and a multi-level pore structure, which can effectively mitigate the random aggregation of Fe atoms during pyrolysis. As a result, it demonstrated appreciable activity and stability in catalyzing the ORR progress (E1/2 = 0.88 V, Eonset = 0.96 V). Furthermore, the assembled liquid electrolyte-state Zn-air batteries (LES-ZAB) and all-solid-state Zn-air battery (ASS-ZAB) also provides encouraging performance, with a peak power density of 169 mW cm-2 for LES-ZAB and a maximum power density of 124 mW cm-2 for ASS-ZAB.
Collapse
Affiliation(s)
- Mengxia Shen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Qingqing Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiaojiao Sun
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chanjuan Liang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chuanyin Xiong
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Chen Hou
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianfeng Huang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Liyun Cao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yongqiang Feng
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhen Shang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Suh J, Choi H, Kong Y, Oh J. Tandem Electroreduction of Nitrate to Ammonia Using a Cobalt-Copper Mixed Single-Atom/Cluster Catalyst with Synergistic Effects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407250. [PMID: 39297330 PMCID: PMC11558078 DOI: 10.1002/advs.202407250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/24/2024] [Indexed: 11/14/2024]
Abstract
Electrochemical conversion of waste nitrate (NO3 -) to ammonia (NH3) for environmental applications, such as carbon-neutral energy sources and hydrogen carriers, is a promising alternative to the energy-intensive Haber-Bosch process. However, increasing the energy efficiency is limited by the high overpotential and selectivity. Herein, a Co─Cu mixed single-atom/cluster catalyst (Co─Cu SCC) is demonstrated-with well-dispersed Co and Cu active sites anchored on a carbon support-that delivers high NH3 Faradaic efficiency of 91.2% at low potential (-0.3 V vs. RHE) due to synergism between the heterogenous active sites. Electrochemical analyses reveal that Cu in Co─Cu SCC preferentially catalyzes the NO3 --to-NO2 - pathway, whereupon Co catalyzes the NO2 --to-NH3 pathway. This tandem electroreduction bypasses the rate-determining steps (RDSs) for Co and Cu to lower the reaction energy barrier and surpass scaling relationship limitations. The electrocatalytic performance is amplified by the subnanoscale catalyst to increase the partial current density of NH3 by 2.3 and 5.4 times compared to those of individual Co, Cu single-atom/cluster catalysts (Co SCC, Cu SCC), respectively. This Co─Cu SCC is operated stably for 32 h in a long-term bipolar membrane (BPM)-based membrane electrode assembly (MEA) system for high-concentration NH3 synthesis to produce over 1 m NH3 for conversion into high-purity NH4Cl at 2.1 g day-1.
Collapse
Affiliation(s)
- Jungwon Suh
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Hyeonuk Choi
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Yujin Kong
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Jihun Oh
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| |
Collapse
|
9
|
Jiang S, Xue J, Liu T, Huang H, Xu A, Liu D, Luo Q, Bao J, Liu X, Ding T, Jiang Z, Yao T. Visualization of the Distance-Dependent Synergistic Interaction in Heterogeneous Dual-Site Catalysis. J Am Chem Soc 2024; 146:29084-29093. [PMID: 39394051 DOI: 10.1021/jacs.4c10613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Understanding the characteristics of interfacial hydroxyl (OH) at the solid/liquid electrochemical interface is crucial for deciphering synergistic catalysis. However, it remains challenging to elucidate the influences of spatial distance between interfacial OH and neighboring reactants on reaction kinetics at the atomic level. Herein, we visualize the distance-dependent synergistic interaction in heterogeneous dual-site catalysis by using ex-situ infrared nanospectroscopy and in situ infrared spectroscopy techniques. These spectroscopic techniques achieve direct identification of the spatial distribution of synergistic species and reveal that OH facilitates the reactant deprotonation process depending on site distances in dual-site catalysts. Via modulating Ir-Co pair distances, we find that the dynamic equilibrium between generation and consumption of OH accounts for high-efficiency synergism at the optimized distance of 7.9 Å. At farther or shorter distances, spatial inaccessibility and resistance of OH with intermediates lead to OH accumulation, thereby diminishing the synergistic effect. Hence, a volcano-shaped curve has been established between the spatial distance and mass activity using formic acid oxidation as the probe reaction. This notion could also be extended to oxophilic metals, like Ir-Ru pairs, where volcano curves and dynamic equilibrium further evidence the universal significance of spatial distances.
Collapse
Affiliation(s)
- Shuaiwei Jiang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Jiawei Xue
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Tong Liu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Hui Huang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Airong Xu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Dong Liu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China
| | - Jun Bao
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Xiaokang Liu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Tao Ding
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Zheng Jiang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Tao Yao
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| |
Collapse
|
10
|
Zhu ZS, Zhong S, Cheng C, Zhou H, Sun H, Duan X, Wang S. Microenvironment Engineering of Heterogeneous Catalysts for Liquid-Phase Environmental Catalysis. Chem Rev 2024; 124:11348-11434. [PMID: 39383063 DOI: 10.1021/acs.chemrev.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Environmental catalysis has emerged as a scientific frontier in mitigating water pollution and advancing circular chemistry and reaction microenvironment significantly influences the catalytic performance and efficiency. This review delves into microenvironment engineering within liquid-phase environmental catalysis, categorizing microenvironments into four scales: atom/molecule-level modulation, nano/microscale-confined structures, interface and surface regulation, and external field effects. Each category is analyzed for its unique characteristics and merits, emphasizing its potential to significantly enhance catalytic efficiency and selectivity. Following this overview, we introduced recent advancements in advanced material and system design to promote liquid-phase environmental catalysis (e.g., water purification, transformation to value-added products, and green synthesis), leveraging state-of-the-art microenvironment engineering technologies. These discussions showcase microenvironment engineering was applied in different reactions to fine-tune catalytic regimes and improve the efficiency from both thermodynamics and kinetics perspectives. Lastly, we discussed the challenges and future directions in microenvironment engineering. This review underscores the potential of microenvironment engineering in intelligent materials and system design to drive the development of more effective and sustainable catalytic solutions to environmental decontamination.
Collapse
Affiliation(s)
- Zhong-Shuai Zhu
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Cheng Cheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongyu Zhou
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth Western Australia 6009, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| |
Collapse
|
11
|
Zhang S, Yi J, Liu M, Shi L, Chen M, Wu L. High-Density Atomically Dispersed Metals Activate Adjacent Nitrogen/Carbon Sites for Efficient Ammonia Electrosynthesis from Nitrate. ACS NANO 2024; 18:26722-26732. [PMID: 39292647 DOI: 10.1021/acsnano.4c06754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
While electrocatalytic reduction of nitrate to ammonia presents a sustainable solution for addressing both the environmental and energy issues within the nitrogen cycle, it remains a great challenge to achieve high selectivity and activity due to undesired side reactions and sluggish reaction kinetics. Here, we fabricate a series of metal-N-C catalysts that feature hierarchically ordered porous structure and high-density atomically dispersed metals (HD M1/PNC). Specifically, the as-prepared HD Fe1/PNC catalyst achieves an ammonia production rate of 21.55 mol gcat-1 h-1 that is at least 1 order of magnitude enhancement compared with that of the reported metal-N-C catalysts, while maintaining a 92.5% Faradaic efficiency when run at 500 mA cm-2 for 300 h. In addition to abundant active sites, such high performance benefits from the fact that the high-density Fe can more significantly activate the adjacent N/C sites through charge redistribution for improved water adsorption/dissociation, providing sufficient active hydrogen to Fe sites for nitrate ammoniation, compared with the low-density counterpart. This finding deepens the understanding of high-density metal-N-C materials at the atomic scale and may further be used for designing other catalysts.
Collapse
Affiliation(s)
- Sai Zhang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Jianjian Yi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Mengdi Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Lan Shi
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Min Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| |
Collapse
|
12
|
Qiao Z, Jiang R, Xu H, Cao D, Zeng XC. A General Descriptor for Single-Atom Catalysts with Axial Ligands. Angew Chem Int Ed Engl 2024; 63:e202407812. [PMID: 38771728 DOI: 10.1002/anie.202407812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
Decoration of an axial coordination ligand (ACL) on the active metal site is a highly effective and versatile strategy to tune activity of single-atom catalysts (SACs). However, the regulation mechanism of ACLs on SACs is still incompletely known. Herein, we investigate diversified combinations of ACL-SACs, including all 3d-5d transition metals and ten prototype ACLs. We identify that ACLs can weaken the adsorption capability of the metal atom (M) by raising the bonding energy levels of the M-O bond while enhancing dispersity of the d orbital of M. Through examination of various local configurations and intrinsic parameters of ACL-SACs, a general structure descriptor σ is constructed to quantify the structure-activity relationship of ACL-SACs which solely based on a few key intrinsic features. Importantly, we also identified the axial ligand descriptor σACL, as a part of σ, which can serve as a potential descriptor to determine the rate-limiting steps (RLS) of ACL-SACs in experiment. And we predicted several ACL-SACs, namely, CrN4-, FeN4-, CoN4-, RuN4-, RhN4-, OsN4-, IrN4- and PtN4-ACLs, that entail markedly higher activities than the benchmark catalysts of Pt and IrO2 for oxygen reduction reaction and oxygen evolution reaction, respectively, thereby supporting that the general descriptor σ can provide a simple and cost-effective method to assess efficient electrocatalysts.
Collapse
Affiliation(s)
- Zelong Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Run Jiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haoxiang Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiao Cheng Zeng
- Department of Materials Science & Engineering, City University of Hong Kong, Kowloon, 99977, Hong Kong
| |
Collapse
|
13
|
Huang S, Lin F, Wang S, Zeng X, Ling H, Hu X, Shen Z, Cao D. Asymmetric Microenvironment Tailoring Strategies of Atomically Dispersed Dual-Site Catalysts for Oxygen Reduction and CO 2 Reduction Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407974. [PMID: 39152929 DOI: 10.1002/adma.202407974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Dual-atom catalysts (DACs) with atomically dispersed dual-sites, as an extension of single-atom catalysts (SACs), have recently become a new hot topic in heterogeneous catalysis due to their maximized atom efficiency and dual-site diverse synergy, because the synergistic diversity of dual-sites achieved by asymmetric microenvironment tailoring can efficiently boost the catalytic activity by optimizing the electronic structure of DACs. Here, this work first summarizes the frequently-used experimental synthesis and characterization methods of DACs. Then, four synergistic catalytic mechanisms (cascade mechanism, assistance mechanism, co-adsorption mechanism and bifunction mechanism) and four key modulating methods (active site asymmetric strategy, transverse/axial-modification engineering, distance engineering and strain engineering) are elaborated comprehensively. The emphasis is placed on the effects of asymmetric microenvironment of DACs on oxygen/carbon dioxide reduction reaction. Finally, some perspectives and outlooks are also addressed. In short, the review summarizes a useful asymmetric microenvironment tailoring strategy to speed up synthesis of high-performance electrocatalysts for different reactions.
Collapse
Affiliation(s)
- Shiqing Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fanmiao Lin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaofei Zeng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hao Ling
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Xiayi Hu
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Zhigang Shen
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| |
Collapse
|
14
|
Wang Y, Zhu P, Wang R, Matthews KC, Xie M, Wang M, Qiu C, Liu Y, Zhou H, Warner JH, Liu Y, Wang H, Yu G. Fluorine-Tuned Carbon-Based Nickel Single-Atom Catalysts for Scalable and Highly Efficient CO 2 Electrocatalytic Reduction. ACS NANO 2024; 18:26751-26758. [PMID: 39297690 DOI: 10.1021/acsnano.4c06923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Electrocatalytic CO2 reduction is garnering significant interest due to its potential applications in mitigating CO2 and producing fuel. However, the scaling up of related catalysis is still hindered by several challenges, including the cost of the catalytic materials, low selectivity, small current densities to maintain desirable selectivity. In this study, Fluorine (F) atoms were introduced into an N-doped carbon-supported single nickel (Ni) atom catalyst via facile polymer-assisted pyrolysis. This method not only maintains the high atom utilization efficiency of Ni in a cost-effective and sustainable manner but also effectively manipulates the electronic structure of the active Ni-N4 site through F doping. The catalyst has also been further optimized by controlling the F states, including convalent and semi-ionic states, by adjusting the fluorine sources involved. Consequently, this catalyst with unique structure exhibited comparable electrocatalytic performance for CO2-to-CO conversion, achieving a Faradaic efficiency (FE) of over 99% across a wide potential range and an exceptional CO evolution rate of 9.5 × 104 h-1 at -1.16 V vs reversible hydrogen electrode (RHE). It also delivered a practical current of 400 mA cm-2 while maintaining more than 95% CO FE. Experimental analysis combined with density functional theory (DFT) calculations have also shown that F-doping modifies the electron configuration at the central Ni-N4 sites. This modification lowers the energy barrier for CO2 activation, thereby facilitating the production of the crucial *COOH intermediate.
Collapse
Affiliation(s)
- Yuyang Wang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Peng Zhu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Ruoyu Wang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kevin C Matthews
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Minghao Xie
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Maoyu Wang
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Chang Qiu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Yijin Liu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jamie H Warner
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuanyue Liu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Haotian Wang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
15
|
Wang Q, Cheng Y, Yang HB, Su C, Liu B. Integrative catalytic pairs for efficient multi-intermediate catalysis. NATURE NANOTECHNOLOGY 2024; 19:1442-1451. [PMID: 39103451 DOI: 10.1038/s41565-024-01716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/06/2024] [Indexed: 08/07/2024]
Abstract
Single-atom catalysts (SACs) have attracted considerable research interest owing to their combined merits of homogeneous and heterogeneous catalysts. However, the uniform and isolated active sites of SACs fall short in catalysing complex chemical processes that simultaneously involve multiple intermediates. In this Review, we highlight an emerging class of catalysts with adjacent binary active centres, which is called integrative catalytic pairs (ICPs), showing not only atomic-scale site-to-site electronic interactions but also synergistic catalytic effects. Compared with SACs or their derivative dual-atom catalysts (DACs), multi-interactive intermediates on ICPs can overcome kinetic barriers, adjust reaction pathways and break the universal linear scaling relations as the smallest active units. Starting from this active-site design principle, each single active atom can be considered as a brick to further build integrative catalytic clusters (ICCs) with desirable configurations, towards trimer or even larger multi-atom units depending on the requirement of a given reaction.
Collapse
Affiliation(s)
- Qilun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
- International Collaboration Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Yaqi Cheng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
| | - Chenliang Su
- International Collaboration Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China.
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
16
|
Laan PCM, Mekkering MJ, de Zwart FJ, Troglia A, Bliem R, Zhao K, Geels NJ, de Bruin B, Rothenberg G, Reek JNH, Yan N. Tuning catalytic performance of platinum single atoms by choosing the shape of cerium dioxide supports. Catal Sci Technol 2024; 14:5662-5670. [PMID: 39156760 PMCID: PMC11322700 DOI: 10.1039/d4cy00484a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/27/2024] [Indexed: 08/20/2024]
Abstract
The local coordination environment of single atom catalysts (SACs) often determines their catalytic performance. To understand these metal-support interactions, we prepared Pt SACs on cerium dioxide (CeO2) cubes, octahedra and rods, with well-structured exposed crystal facets. The CeO2 crystals were characterized by SEM, TEM, pXRD, and N2 sorption, confirming the shape-selective synthesis, identical bulk structure, and variations in specific surface area, respectively. EPR, XPS, TEM and XANES measurements showed differences in the oxygen vacancy density following the trend rods > octahedra > cubes. AC-HAADF-STEM, XPS and CO-DRIFTS measurements confirmed the presence of only single Pt2+ sites, with different surface platinum surface concentrations. We then compared the performance of the three catalysts in ammonia borane hydrolysis. Precise monitoring of reaction kinetics between 30-80 °C gave Arrhenius plots with hundreds of data points. All plots showed a clear inflection point, the temperature of which (rods > octahedra > cubes) correlates to the energy barrier of ammonia borane diffusion to the Pt sites. These activity differences reflect variations in the - facet dependent - degree of stabilization of intermediates by surface oxygen lone pairs and surface-metal binding strength. Our results show how choosing the right macroscopic support shape can give control over single atom catalysed reactions on the microscopic scale.
Collapse
Affiliation(s)
- Petrus C M Laan
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098XH Amsterdam The Netherlands
| | - Martijn J Mekkering
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098XH Amsterdam The Netherlands
| | - Felix J de Zwart
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098XH Amsterdam The Netherlands
| | - Alessandro Troglia
- Advanced Research Center for Nanolithography (ARCNL) Science Park 106 1098XG Amsterdam The Netherlands
| | - Roland Bliem
- Advanced Research Center for Nanolithography (ARCNL) Science Park 106 1098XG Amsterdam The Netherlands
| | - Kai Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University Wuhan 430072 China
| | - Norbert J Geels
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098XH Amsterdam The Netherlands
| | - Bas de Bruin
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098XH Amsterdam The Netherlands
| | - Gadi Rothenberg
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098XH Amsterdam The Netherlands
| | - Joost N H Reek
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098XH Amsterdam The Netherlands
| | - Ning Yan
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098XH Amsterdam The Netherlands
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University Wuhan 430072 China
| |
Collapse
|
17
|
Gao S, Chen Y, Zhang Y, Wang Y. Dual-Metal-Site Metal-Organic Frameworks for Oxygen Reduction: The Crucial Role of Environmental Species Covering on the Secondary Site. J Phys Chem Lett 2024; 15:9780-9786. [PMID: 39291861 DOI: 10.1021/acs.jpclett.4c02334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Macrocycle-based dual-metal-site metal-organic frameworks emerge as promising catalysts whose activity can be conveniently manipulated via metal node modification. However, how the metal node affects catalysis remains unclear. Herein, using first-principles calculations, we provide new mechanistic insight into dual-metal-site catalysis, where the recently synthesized M1-CoOAPc materials (M1 = Co, Ni, Cu; OAPc = octaaminophthalocyanine) are adopted for demonstration. The modeling results explain experimental measurements of Ni- and Cu-CoOAPc for facilitating oxygen reduction while highlighting a contradiction between the theoretical and experimental activity of Co-CoOAPc. Remarkably, this contradiction is attributed to the inherent H2O adsorption on Co nodes, which is usually neglected in dual-metal-site studies. We expand M1-CoOAPc with other metal nodes and find that Fe-CoOAPc (involving *H2O on the Fe nodes) exhibits a desirable theoretical half-wave potential of 0.82 V, as revealed from constant-potential and microkinetic modeling. This work improves the understanding of dual-metal-site catalysis by uncovering the impact of environmental species covering on the secondary site.
Collapse
Affiliation(s)
- Shurui Gao
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No. 1, Nanjing 210023, P.R. China
| | - Yuheng Chen
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No. 1, Nanjing 210023, P.R. China
| | - Yuwei Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No. 1, Nanjing 210023, P.R. China
| | - Yu Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No. 1, Nanjing 210023, P.R. China
| |
Collapse
|
18
|
Yang Z, Liu L, Zheng Y, Liu Z, Wang L, Yang RC, Liu Z, Wang Y, Chen Z. Enhanced catalytic performance through a single-atom preparation approach: a review on ruthenium-based catalysts. NANOSCALE 2024; 16:16744-16768. [PMID: 39175465 DOI: 10.1039/d4nr02289k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The outstanding catalytic properties of single-atom catalysts (SACs) stem from the maximum atom utilization and unique quantum size effects, leading to ever-increasing research interest in SACs in recent years. Ru-based SACs, which have shown excellent catalytic activity and selectivity, have been brought to the frontier of the research field due to their lower cost compared with other noble catalysts. The synthetic approaches for preparing Ru SACs are rather diverse in the open literature, covering a wide range of applications. In this review paper, we attempt to disclose the synthetic approaches for Ru-based SACs developed in the most recent years, such as defect engineering, coordination design, ion exchange, the dipping method, and electrochemical deposition etc., and discuss their representative applications in both electrochemical and organic reaction fields, with typical application examples given of: Li-CO2 batteries, N2 reduction, water splitting and oxidation of benzyl alcohols. The mechanisms behind their enhanced catalytic performance are discussed and their structure-property relationships are revealed in this review. Finally, future prospects and remaining unsolved issues with Ru SACs are also discussed so that a roadmap for the further development of Ru SACs is established.
Collapse
Affiliation(s)
- Ziyi Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, Zhejiang 315100, P. R. China.
| | - Li Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, Zhejiang 315100, P. R. China.
| | - Yayun Zheng
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, Zhejiang 315100, P. R. China.
| | - Zixuan Liu
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, Zhejiang 315100, P. R. China.
| | - Lin Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, Zhejiang 315100, P. R. China.
| | - Richard Chunhui Yang
- Centre for Advanced Manufacturing Technology (CfAMT), School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Zongjian Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Yichao Wang
- Centre for Advanced Manufacturing Technology (CfAMT), School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia
- School of Science, RMIT University, Melbourne, VIC 3000, Australia.
| | - Zhengfei Chen
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, Zhejiang 315100, P. R. China.
| |
Collapse
|
19
|
Gui Q, Cui W, Ba D, Sang X, Li Y, Liu J. Confining Conversion Chemistry in Intercalation Host for Aqueous Batteries. Angew Chem Int Ed Engl 2024; 63:e202409098. [PMID: 39115086 DOI: 10.1002/anie.202409098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 09/27/2024]
Abstract
Conversion-type anode materials with high theoretical capacities play a pivotal role in developing future aqueous rechargeable batteries (ARBs). However, their sustainable applications have long been impeded by the poor cycling stability and sluggish redox kinetics. Here we show that confining conversion chemistry in intercalation host could overcome the above challenges. Using sodium titanates as a model intercalation host, an integrated layered anode material of iron oxide hydroxide-pillared titanate (FeNTO) is demonstrated. The conversion reaction is spatially and kinetically confined within sub-nano interlayer, enabling superlow redox polarization (ca. 4-6 times reduced), ultralong lifespan (up to 8700 cycles) and excellent rate performance. Notably, the charge compensation of interlayer via universal cation intercalation into host endows FeNTO with the capability of operating well in a broad range of aqueous electrolytes (Li+, Na+, K+, Mg2+, Ca2+, etc.). We further demonstrate the large-scale synthesis of FeNTO thin film and powder, and rational design of quasi-solid-state high-voltage ARB pouch cells powering wearable electronics against extreme mechanical abuse. This work demonstrates a powerful confinement means to access disruptive electrode materials for next-generation energy devices.
Collapse
Affiliation(s)
- Qiuyue Gui
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Wenjun Cui
- Nanostructure Research Center, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Deliang Ba
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiahan Sang
- Nanostructure Research Center, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Yuanyuan Li
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jinping Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| |
Collapse
|
20
|
Sun X, Zhang P, Zhang B, Xu C. Electronic Structure Regulated Carbon-Based Single-Atom Catalysts for Highly Efficient and Stable Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405624. [PMID: 39252646 DOI: 10.1002/smll.202405624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/18/2024] [Indexed: 09/11/2024]
Abstract
Single-atom-catalysts (SACs) with atomically dispersed sites on carbon substrates have attained great advancements in electrocatalysis regarding maximum atomic utilization, unique chemical properties, and high catalytic performance. Precisely regulating the electronic structure of single-atom sites offers a rational strategy to optimize reaction processes associated with the activation of reactive intermediates with enhanced electrocatalytic activities of SACs. Although several approaches are proposed in terms of charge transfer, band structure, orbital occupancy, and the spin state, the principles for how electronic structure controls the intrinsic electrocatalytic activity of SACs have not been sufficiently investigated. Herein, strategies for regulating the electronic structure of carbon-based SACs are first summarized, including nonmetal heteroatom doping, coordination number regulating, defect engineering, strain designing, and dual-metal-sites scheming. Second, the impacts of electronic structure on the activation behaviors of reactive intermediates and the electrocatalytic activities of water splitting, oxygen reduction reaction, and CO2/N2 electroreduction reactions are thoroughly discussed. The electronic structure-performance relationships are meticulously understood by combining key characterization techniques with density functional theory (DFT) calculations. Finally, a conclusion of this paper and insights into the challenges and future prospects in this field are proposed. This review highlights the understanding of electronic structure-correlated electrocatalytic activity for SACs and guides their progress in electrochemical applications.
Collapse
Affiliation(s)
- Xiaohui Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Peng Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Bangyan Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| |
Collapse
|
21
|
Li X, Ye G, Zhu W, Tian M, Wang R, Liu S, He Z. Directional Construction of Low-Coordination Fe-N 3 Coupled with Intrinsic Carbon Defects for High-Efficiency Oxygen Reduction. ACS NANO 2024; 18:24505-24514. [PMID: 39167730 DOI: 10.1021/acsnano.4c08695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Regulating the coordination environment of Fe-Nx sites is an efficient but challenging approach for promoting the intrinsic catalytic activity of single-atom Fe/N-codoped carbon (Fe-N-C) toward the oxygen reduction reaction (ORR). Herein, low-coordination Fe-N3 sites coupled with carbon vacancies (Fe-N3/CV) are directionally constructed in Fe-N-C via pyrolysis of a metal-organic framework (MOF) precursor with N3-Zn-O-Fe moieties, which are delicately prefabricated by chemically anchoring Fe3+ onto a H2O-etching induced linker-missing Zn-N3 site in the MOF precursor. The optimized Fe-N-C with the Fe-N3/CV sites displays a high ORR half-wave potential of 0.92 V (vs RHE), which is attributed to the optimized electronic structure and binding strengths of the active Fe center toward the ORR intermediates stemming from the synergy of the asymmetric configuration of Fe-N3 as well as the adjacent carbon vacancies. This work could be enlightening for the design and construction of high-activity coupling sites in metal and nitrogen-codoped carbon catalysts.
Collapse
Affiliation(s)
- Xinrui Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Guanying Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Weiwei Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Min Tian
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Ruiting Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Suqin Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
- Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan 410083, P. R. China
| | - Zhen He
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
- Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan 410083, P. R. China
| |
Collapse
|
22
|
Yin S, Chen L, Yang J, Cheng X, Zeng H, Hong Y, Huang H, Kuai X, Lin Y, Huang R, Jiang Y, Sun S. A Fe-NC electrocatalyst boosted by trace bromide ions with high performance in proton exchange membrane fuel cells. Nat Commun 2024; 15:7489. [PMID: 39209848 PMCID: PMC11362171 DOI: 10.1038/s41467-024-51858-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Replacement of expensive and rare platinum with metal-nitrogen-carbon catalysts for oxygen reduction reactions in proton exchange membrane fuel cells is hindered by their inferior activity. Herein, we report a highly active iron-nitrogen-carbon catalyst by optimizing the carbon structure and coordination environments of Fe-N4 sites. A critical high-temperature treatment with ammonium chloride and ammonium bromide not only enhances the intrinsic activity and density of Fe-N4 sites, but also introduces numerous defects, trace Br ions and creates mesopores in the carbon framework. Notably, surface Br ions significantly improve the interaction between the ionomer and catalyst particles, promoting ionomer infiltration and optimizing the O2 transport and charge transfer at triple-phase boundary. This catalyst delivers a high peak power density of 1.86 W cm-2 and 54 mA cm-2 at 0.9 ViR-free in a H2-O2 fuel cells at 80 °C. Our findings highlight the critical role of interface microenvironment regulation.
Collapse
Affiliation(s)
- Shuhu Yin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, P. R. China
| | - Long Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, P. R. China
| | - Jian Yang
- Center of Advanced Electrochemical Energy, Institute of Advanced Interdisciplinary Studies, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P.R. China
| | - Xiaoyang Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, P. R. China
| | - Hongbin Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, P. R. China
| | - Yuhao Hong
- Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen, Fujian, China
| | - Huan Huang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaoxiao Kuai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, P. R. China
- Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen, Fujian, China
| | - Yangu Lin
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan, R.O.C
| | - Rui Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, P. R. China.
| | - Yanxia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, P. R. China.
| | - Shigang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, P. R. China.
| |
Collapse
|
23
|
Song K, Jing H, Yang B, Shao J, Tao Y, Zhang W. Enhancing Oxygen Reduction Reaction of Single-Atom Catalysts by Structure Tuning. CHEMSUSCHEM 2024:e202401713. [PMID: 39187438 DOI: 10.1002/cssc.202401713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
Deciphering the fine structure has always been a crucial approach to unlocking the distinct advantages of high activity, selectivity, and stability in single-atom catalysts (SACs). However, the complex system and unclear catalytic mechanism have obscured the significance of exploring the fine structure. Therefore, we endeavored to develop a three-component strategy to enhance oxygen reduction reaction (ORR), delving deep into the profound implications of the fine structure, focusing on central atoms, coordinating atoms, and environmental atoms. Firstly, the mechanism by which the chemical state and element type of central atoms influence catalytic performance is discussed. Secondly, the significance of coordinating atoms in SACs is analyzed, considering both the number and type. Lastly, the impact of environmental atoms in SACs is reviewed, encompassing existence state and atomic structure. Thorough analysis and summarization of how the fine structure of SACs influences the ORR have the potential to offer valuable insights for the accurate design and construction of SACs.
Collapse
Affiliation(s)
- Kexin Song
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Haifeng Jing
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Binbin Yang
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Jing Shao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Youkun Tao
- College of Science, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Wei Zhang
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| |
Collapse
|
24
|
Wei S, Ma W, Sun M, Xiang P, Tian Z, Mao L, Gao L, Li Y. Atom-pair engineering of single-atom nanozyme for boosting peroxidase-like activity. Nat Commun 2024; 15:6888. [PMID: 39134525 PMCID: PMC11319669 DOI: 10.1038/s41467-024-51022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
Constructing atom-pair engineering and improving the activity of metal single-atom nanozyme (SAzyme) is significant but challenging. Herein, we design the atom-pair engineering of Zn-SA/CNCl SAzyme by simultaneously constructing Zn-N4 sites as catalytic sites and Zn-N4Cl1 sites as catalytic regulator. The Zn-N4Cl1 catalytic regulators effectively boost the peroxidase-like activities of Zn-N4 catalytic sites, resulting in a 346-fold, 1496-fold, and 133-fold increase in the maximal reaction velocity, the catalytic constant and the catalytic efficiency, compared to Zn-SA/CN SAzyme without the Zn-N4Cl1 catalytic regulator. The Zn-SA/CNCl SAzyme with excellent peroxidase-like activity effectively inhibits tumor cell growth in vitro and in vivo. The density functional theory (DFT) calculations reveal that the Zn-N4Cl1 catalytic regulators facilitate the adsorption of *H2O2 and re-exposure of Zn-N4 catalytic sites, and thus improve the reaction rate. This work provides a rational and effective strategy for improving the peroxidase-like activity of metal SAzyme by atom-pair engineering.
Collapse
Affiliation(s)
- Shengjie Wei
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Minmin Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Pan Xiang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Ziqi Tian
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
25
|
Wang P, Xi B, Xiong S. Insights into the Optimization of Catalytic Active Sites in Lithium-Sulfur Batteries. Acc Chem Res 2024; 57:2093-2104. [PMID: 38926150 DOI: 10.1021/acs.accounts.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
ConspectusLithium-sulfur batteries (LSBs), recognized for their high energy density and cost-effectiveness, offer significant potential for advancement in energy storage. However, their widespread deployment remains hindered by challenges such as sluggish reaction kinetics and the shuttle effect of lithium polysulfides (LiPSs). By the introduction of catalytic materials, the effective adsorption of LiPSs, smooth surface migration behavior, and significantly reduced conversion energy barriers are expected to be achieved, thereby sharpening electrochemical reaction kinetics and fundamentally addressing the aforementioned challenges. However, driven by practical application targets, the demand for higher loadings and reduced electrolyte parameters inevitably exacerbates the burden on catalytic materials during their service. Additionally, given that catalytic materials contribute negligible electrochemical capacity, their incorporation inevitably increases the mass of nonactive components for reducing the energy density of LSBs. A meticulous insight into the lithium-sulfur catalytic reaction reveals that the conversion of LiPSs is dominated by active sites on the surfaces of catalytic materials. These microregions provide the necessary electron and ion transport for the conversion reaction of LiPSs, with their efficacy and quantity directly impacting the conversion efficiency. In light of these considerations, the strategic optimization of active sites emerges as a paramount pathway toward promoting the performance of LSBs while concurrently mitigating unnecessary mass. Here, we outline three strategies developed by our group to optimize active sites of catalytic materials: (1) Augmenting active sites by customizing structural modulation and precise dimensional control to maximize exposure. Emphasis has been placed on the approaches for material synthesis and the essence of reactions for achieving this strategy. (2) Regulating the microenvironment of active sites by integrating the coordination refinement, long-range atomic interactions, metal-support interactions, and other electronic regulation strategies, thereby providing an elevation in the intrinsic catalytic performance. (3) Implementing a self-cleaning mechanism for active sites to counteract deactivation by designing a tandem adsorption-migration-transformation pathway of sulfur contained within the molecular domain. Throughout this process, the intrinsic mechanisms driving performance enhancement through active site optimization strategies have been prominently emphasized, which encompass aspects such as electronic structure, atomic composition, and molecular configuration and significantly expand the comprehension of Li-S catalytic chemistry. Subsequently, considerations demanding heightened attention in future processes of active site optimization for catalytic materials have been delineated, including the in situ evolution patterns and resistance to the poisoning of active sites. It is noteworthy that given the similarity between Li-S catalysis chemistry and traditional electrocatalytic processes, this Account elucidates the concept of active site optimization by drawing insights from representative works and our own works in the field of electrocatalysis, which is relatively rare in previous reviews of LSBs. The proposed insights contribute to uncovering the intrinsic mechanisms of Li-S catalysis chemistry and introducing innovative ideas into active site optimization, ultimately advancing energy density and stability in LSBs.
Collapse
Affiliation(s)
- Peng Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Baojuan Xi
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Shenglin Xiong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
26
|
Chen JN, Pan ZH, Sun FL, Wu PX, Zheng ST, Zhuang GL, Long LS, Zheng LS, Kong XJ. Tuning Electrocatalytic Water Oxidation Activity: Insights from the Active-Site Distance in LnCu 6 Clusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401044. [PMID: 38516941 DOI: 10.1002/smll.202401044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/12/2024] [Indexed: 03/23/2024]
Abstract
Atomically precise metal clusters serve as a unique model for unraveling the intricate mechanism of the catalytic reaction and exploring the complex relationship between structure and activity. Herein, three series of water-soluble heterometallic clusters LnCu6, abbreviated as LnCu6-AC (Ln = La, Nd, Gd, Er, Yb; HAC = acetic acid), LnCu6-IM (Ln = La and Nd; IM = Imidazole), and LnCu6-IDA (Ln = Nd; H2IDA = Iminodiacetic acid) are presented, each featuring a uniform metallic core stabilized by distinct protected ligands. Crystal structure analysis reveals a triangular prism topology formed by six Cu2+ ions around one Ln3+ ion in LnCu6, with variations in Cu···Cu distances attributed to different ligands. Electrocatalytic oxygen evolution reaction (OER) shows that these different LnCu6 clusters exhibit different OER activities with remarkable turnover frequency of 135 s-1 for NdCu6-AC, 79 s-1 for NdCu6-IM and 32 s-1 for NdCu6-IDA. Structural analysis and Density Functional Theory (DFT) calculations underscore the correlation between shorter Cu···Cu distances and improves OER catalytic activity, emphasizing the pivotal role of active-site distance in regulating electrocatalytic OER activities. These results provide valuable insights into the OER mechanism and contribute to the design of efficient homogeneous OER electrocatalysts.
Collapse
Affiliation(s)
- Jia-Nan Chen
- State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhong-Hua Pan
- State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Fu-Li Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Ping-Xin Wu
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Gui-Lin Zhuang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - La-Sheng Long
- State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lan-Sun Zheng
- State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiang-Jian Kong
- State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Fujian Key Laboratory of Rare-earth Functional Materials, Fujian Shanghai Collaborative Innovation Centre of Rare-earth Functional Materials, Longyan, 366300, China
| |
Collapse
|
27
|
Yin S, Yi H, Liu M, Yang J, Yang S, Zhang BW, Chen L, Cheng X, Huang H, Huang R, Jiang Y, Liao H, Sun S. An in situ exploration of how Fe/N/C oxygen reduction catalysts evolve during synthesis under pyrolytic conditions. Nat Commun 2024; 15:6229. [PMID: 39043680 PMCID: PMC11266712 DOI: 10.1038/s41467-024-50629-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
In pursuing cheap and effective oxygen reduction catalysts, the Fe/N/C system emerges as a promising candidate. Nevertheless, the structural transformations of starting materials into Fe- and N-doped carbon catalysts remains poorly characterized under pyrolytic conditions. Here, we explore the evolution of Fe species and track the formation of Fe-N4 site development by employing diverse in-situ diagnostic techniques. In-situ heating microscopy reveals the initial formation of FeOx nanoparticles and subsequent internal migration within the carbon matrix, which stops once FeOx is fully reduced. The migration and decomposition of nanoparticles then leads to carbon layer reconstruction. Experimental and theoretical analysis reveals size-dependent behavior of FeOx where nanoparticles below 7 nm readily release Fe atoms to form Fe-N4 while nanoparticles with sizes >10 nm tend to coalesce and impede Fe-N4 site formation. The work visualizes the pyrolysis process of Fe/N/C materials, providing theoretical guidance for the rational design of catalysts.
Collapse
Affiliation(s)
- Shuhu Yin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, 361005, P. R. China
| | - Hongyuan Yi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, 361005, P. R. China
| | - Mengli Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, 361005, P. R. China
| | - Jian Yang
- Center of Advanced Electrochemical Energy, Institute of Advanced Interdisciplinary Studies, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, PR China
| | - Shuangli Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, 361005, P. R. China
| | - Bin-Wei Zhang
- Center of Advanced Electrochemical Energy, Institute of Advanced Interdisciplinary Studies, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, PR China
| | - Long Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaoyang Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, 361005, P. R. China
| | - Huan Huang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Rui Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, 361005, P. R. China
| | - Yanxia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, 361005, P. R. China.
| | - Honggang Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, 361005, P. R. China.
| | - Shigang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
28
|
Al-Hilfi S, Jiang X, Heuer J, Akula S, Tammeveski K, Hu G, Yang J, Wang HI, Bonn M, Landfester K, Müllen K, Zhou Y. Single-Atom Catalysts through Pressure-Controlled Metal Diffusion. J Am Chem Soc 2024; 146:19886-19895. [PMID: 38990188 PMCID: PMC11273616 DOI: 10.1021/jacs.4c03066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Single-atom catalysts (SACs) open up new possibilities for advanced technologies. However, a major complication in preparing high-density single-atom sites is the aggregation of single atoms into clusters. This complication stems from the delicate balance between the diffusion and stabilization of metal atoms during pyrolysis. Here, we present pressure-controlled metal diffusion as a new concept for fabricating ultra-high-density SACs. Reducing the pressure inhibits aggregation substantially, resulting in almost three times higher single-atom loadings than those obtained at ambient pressure. Molecular dynamics and computational fluid dynamics simulations reveal the role of a metal hopping mechanism, maximizing the metal atom distribution through an increased probability of metal-ligand binding. The investigation of the active site density by electrocatalytic oxygen reduction validates the robustness of our approach. The first realization of Ullmann-type carbon-oxygen couplings catalyzed on single Cu sites demonstrates further options for efficient heterogeneous catalysis.
Collapse
Affiliation(s)
- Samir
H. Al-Hilfi
- School
of Materials Science and Engineering, Jiangsu
University, Zhenjiang 212013, Jiangsu, China
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Xikai Jiang
- State
Key Laboratory of Nonlinear Mechanics, Institute
of Mechanics, Chinese Academy of Science, Beijing 100190, China
| | - Julian Heuer
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Srinu Akula
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Kaido Tammeveski
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Guoqing Hu
- Department
of Engineering Mechanics, State Key Laboratory of Fluid Power and
Mechatronic Systems, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Juan Yang
- School
of Materials Science and Engineering, Jiangsu
University, Zhenjiang 212013, Jiangsu, China
| | - Hai. I. Wang
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
- Nanophotonics,
Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | | | - Klaus Müllen
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Yazhou Zhou
- School
of Materials Science and Engineering, Jiangsu
University, Zhenjiang 212013, Jiangsu, China
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
29
|
Huang B, Gu Q, Tang X, Lützenkirchen-Hecht D, Yuan K, Chen Y. Experimentally validating sabatier plot by molecular level microenvironment customization for oxygen electroreduction. Nat Commun 2024; 15:6077. [PMID: 39030179 PMCID: PMC11271610 DOI: 10.1038/s41467-024-50377-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
Microenvironmental modifications on metal sites are crucial to tune oxygen reduction catalytic behavior and decrypt intrinsic mechanism, whereas the stochastic properties of traditional pyrolyzed single-atom catalysts induce vague recognition on structure-reactivity relations. Herein, we report a theoretical descriptor relying on binding energies of oxygen adsorbates and directly associating the derived Sabatier volcano plot with calculated overpotential to forecast catalytic efficiency of cobalt porphyrin. This Sabatier volcano plot instructs that electron-withdrawing substituents mitigate the over-strong *OH intermediate adsorption by virtue of the decreased proportion of electrons in bonding orbital. To experimentally validate this speculation, we implement a secondary sphere microenvironment customization strategy on cobalt porphyrin-based polymer nanocomposite analogs. Systematic X-ray spectroscopic and in situ electrochemical characterizations capture the pronounced accessible active site density and the fast interfacial/outward charge migration kinetics contributions for the optimal carboxyl group-substituted catalyst. This work offers ample strategies for designing single-atom catalysts with well-managed microenvironment under the guidance of Sabatier volcano map.
Collapse
Affiliation(s)
- Bingyu Huang
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, 330031, PR China
- College of Chemistry and Materials/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Qiao Gu
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, 330031, PR China
| | - Xiannong Tang
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, 330031, PR China
| | - Dirk Lützenkirchen-Hecht
- Faculty of Mathematics and Natural Sciences-Physics Department, Bergische Universität Wuppertal, Gauss-Str. 20, D-42119, Wuppertal, Germany
| | - Kai Yuan
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, 330031, PR China.
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, 330031, PR China.
- College of Chemistry and Materials/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
30
|
Yang Y, Wang G, Liu C, Lin Y, Jiao C, Chen Q, Zhuo Z, Mao J, Liu Y. Asymmetrically Coordinated Calcium Single Atom for High-Performance Oxygen Reduction Reaction. Inorg Chem 2024; 63:13086-13092. [PMID: 38937860 DOI: 10.1021/acs.inorgchem.4c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
S-block single atoms represent an ideal catalyst for the oxygen reduction reaction (ORR) as they can suppress the Fenton reaction. However, the symmetry of the s/p orbitals tends to generate either an excessively strong or weak interaction with intermediates. Herein, Ca single atoms coordinated with -S, -OP, and three N atoms (Ca/NPS-HC) were fabricated to modulate the adsorption of intermediates and promote the efficiency of s-block ORR catalysts. The experimental results from ORR demonstrated that the Ca/NPS-HC catalyst exhibited outstanding catalytic capability with a half-wave potential of 0.89 V, a kinetic current density of 56.6 mA cm-2 at 0.85 V, and a Tafel slope of 42 mV dec-1, outperforming commercial Pt/C. The detailed mechanistic studies revealed that the asymmetric coordination of Ca single atoms led to the symmetry-breaking of electron distribution in Ca single atoms, attenuating the s-p hybridization from the intermediate adsorption process, and thereby minimizing the energy barrier of the whole ORR.
Collapse
Affiliation(s)
- Yan Yang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Gang Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Changwei Liu
- Chery New Energy Automobile Co., Ltd, Wuhu 241002, China
| | - Yutao Lin
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Chi Jiao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qingqing Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Zhiwen Zhuo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yan Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
31
|
Lv X, Shu A, Shu L, Liu H, Liu Y, Cui K, Tang Y, Chen X. Electron cycling mechanism in Fe/Mn DSAzyme accelerates BPA degradation and nanoenzyme regeneration. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135228. [PMID: 39024761 DOI: 10.1016/j.jhazmat.2024.135228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/24/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
Peroxidase-like (POD-like) as a kind of new Fenton-like catalyst can effectively activate H2O2 to degrade organic pollutants in water, but improving the catalytic activity and stability of POD-like remains a challenging task. Here, we synthesized a novel dual single-atom nanoenzyme (DSAzyme) FeMn/N-CNTs with Fe-N4 and Mn-N4 bimetallic single-atom active centers by mimicking the active centers of natural enzymes and taking advantage of the synergistic effect between the dual metals. FeMn/N-CNTs DSAzyme showed significantly enhanced POD-like activity compared to monometallic-loaded Fe/N-CNTs and Mn/N-CNTs. Within the FeMn/N-CNTs/H2O2 system, bisphenol A (BPA) could be removed 100 % within 20 min. DFT calculations show that Mn-N4 in FeMn/N-CNTs can readily adsorb negatively charged BPA molecules and capture electrons. Meanwhile, Fe-N4 sites can easily adsorb H2O2 molecules, leading to their activation and splitting into strongly oxidizing hydroxyl radicals (·OH). Throughout this process, electrons are continuously recycled in BPA → Mn-N4 → Fe-N4 → H2O2, effectively promoting the regeneration of Fe2+. Practical studies on wastewater and cycling experiments have demonstrated the great potential of this method for remediating water environments.
Collapse
Affiliation(s)
- Xinxin Lv
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Aolan Shu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Lei Shu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Huilai Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Yao Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Yuchao Tang
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Waste Recycling, Anhui Jianzhu University, Hefei 230009, PR China
| | - Xing Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, PR China; School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, PR China.
| |
Collapse
|
32
|
Shu S, Song T, Wang C, Dai H, Duan L. [2+1] Cycloadditions Modulate the Hydrophobicity of Ni-N 4 Single-Atom Catalysts for Efficient CO 2 Electroreduction. Angew Chem Int Ed Engl 2024; 63:e202405650. [PMID: 38695268 DOI: 10.1002/anie.202405650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Indexed: 06/11/2024]
Abstract
Microenvironment regulation of M-N4 single-atom catalysts (SACs) is a promising way to tune their catalytic properties toward the electrochemical CO2 reduction reaction. However, strategies that can effectively introduce functional groups around the M-N4 sites through strong covalent bonding and under mild reaction conditions are highly desired. Taking the hydrophilic Ni-N4 SAC as a representative, we report herein a [2+1] cycloaddition reaction between Ni-N4 and in situ generated difluorocarbene (F2C:), and enable the surface fluorocarbonation of Ni-N4, resulting in the formation of a super-hydrophobic Ni-N4-CF2 catalyst. Meanwhile, the mild reaction conditions allow Ni-N4-CF2 to inherit both the electronic and structural configuration of the Ni-N4 sites from Ni-N4. Enhanced electrochemical CO2-to-CO Faradaic efficiency above 98 % is achieved in a wide operating potential window from -0.7 V to -1.3 V over Ni-N4-CF2. In situ spectroelectrochemical studies reveal that a highly hydrophobic microenvironment formed by the -CF2- group repels asymmetric H-bonded water at the electrified interface, inhibiting the hydrogen evolution reaction and promoting CO production. This work highlights the advantages of [2+1] cycloaddition reactions on the covalent modification of N-doped carbon-supported catalysts.
Collapse
Affiliation(s)
- Siyan Shu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
| | - Tao Song
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Cheng Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
| | - Hao Dai
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
| | - Lele Duan
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd, Hangzhou, 310000, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| |
Collapse
|
33
|
Bai J, Lin Y, Xu J, Zhou W, Zhou P, Deng Y, Lian Y. PGM-free single atom catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. Chem Commun (Camb) 2024; 60:7113-7123. [PMID: 38912537 DOI: 10.1039/d4cc02106a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The progress of proton exchange membrane fuel cells (PEMFCs) in the clean energy sector is notable for its efficiency and eco-friendliness, although challenges remain in terms of durability, cost and power density. The oxygen reduction reaction (ORR) is a key sluggish process and although current platinum-based catalysts are effective, their high cost and instability is a significant barrier. Single-atom catalysts (SACs) offer an economically viable alternative with comparable catalytic activity for ORR. The primary concern regarding SACs is their operational stability under PEMFCs conditions. In this article, we review current strategies for increasing the catalytic activity of SACs, including increasing active site density, optimizing metal center coordination through heteroatom doping, and engineering porous substrates. To enhance durability, we discuss methods to stabilize metal centers, mitigate the effects of the Fenton reaction, and improve graphitization of the carbon matrix. Future research should apply computational chemistry to predict catalyst properties, develop in situ characterization for real-time active site analysis, explore novel catalysts without the use of platinum-based catalysts to reduce dependence on rare and noble metal, and investigate the long-term stability of catalyst under operating conditions. The aim is to engineer SACs that meet and surpass the performance benchmarks of PEMFCs, contributing to a sustainable energy future.
Collapse
Affiliation(s)
- Jirong Bai
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
| | - Yao Lin
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
| | - Jinnan Xu
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213022, China
| | - Wangkai Zhou
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213022, China
| | - Pin Zhou
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213022, China
| | - Yaoyao Deng
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
| | - Yuebin Lian
- School of Optoelectronics, Changzhou Institute of Technology, Changzhou, 213022, China.
| |
Collapse
|
34
|
Mekkering MJ, Laan PCM, Troglia A, Bliem R, Kizilkaya AC, Rothenberg G, Yan N. Bottom-Up Synthesis of Platinum Dual-Atom Catalysts on Cerium Oxide. ACS Catal 2024; 14:9850-9859. [PMID: 38988652 PMCID: PMC11232020 DOI: 10.1021/acscatal.4c01840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024]
Abstract
We present here the synthesis and performance of dual-atom catalysts (DACs), analogous to well-known single-atom catalysts (SACs). DACs feature sites containing pairs of metal atoms and can outperform SACs due to their additional binding possibilities. Yet quantifying the improved catalytic activity in terms of proximity effects remains difficult, as it requires both high-resolution kinetic data and an understanding of the reaction pathways. Here, we use an automated bubble counter setup for comparing the catalytic performance of ceria-supported platinum SACs and DACs in ammonia borane hydrolysis. The catalysts were synthesized by wet impregnation and characterized using SEM, HAADF-STEM, XRD, XPS, and CO-DRIFTS. High-precision kinetic studies of ammonia borane hydrolysis in the presence of SACs show two temperature-dependent regions, with a transition point at 43 °C. Conversely, the DACs show only one regime. We show that this is because DACs preorganize both ammonia borane and water at the dual-atom active site. The additional proximal Pt atom improves the reaction rate 3-fold and enables faster reactions at lower temperatures. We suggest that the DACs enable the activation of the water-O-H bond as well as increase the hydrogen spillover effect due to the adjacent Pt site. Interestingly, using ammonia borane hydrolysis as a benchmark reaction gives further insight into hydrogen spillover mechanisms, above what is known from the CO oxidation studies.
Collapse
Affiliation(s)
- Martijn J Mekkering
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Petrus C M Laan
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Alessandro Troglia
- Advanced Research Center for Nanolithography (ARCNL), Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - Roland Bliem
- Advanced Research Center for Nanolithography (ARCNL), Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - Ali C Kizilkaya
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Department of Chemical Engineering, Izmir Institute of Technology, 35430 Urla, Izmir, Turkey
| | - Gadi Rothenberg
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Ning Yan
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
35
|
Jiang J, Zhou W, Jiang Y, Zhang X, An Q, Hu F, Wang H, Zheng K, Soldatov MA, Wei S, Liu Q. In situ Activation of Molecular Oxygen at Intermetallic Spacing-Optimized Iron Network-Like Sites for Boosting Electrocatalytic Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310163. [PMID: 38389176 DOI: 10.1002/smll.202310163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/06/2024] [Indexed: 02/24/2024]
Abstract
The oxygen reduction reaction (ORR) catalyzed by transition-metal single-atom catalysts (SACs) is promising for practical applications in energy-conversion devices, but great challenges still remain due to the sluggish kinetics of O═O cleavage. Herein, a kind of high-density iron network-like sites catalysts are constructed with optimized intermetallic distances on an amino-functionalized carbon matrix (Fe-HDNSs). Quasi-in situ soft X-ray absorption spectroscopy and in situ synchrotron infrared characterizations demonstrate that the optimized intermetallic distances in Fe-HDNSs can in situ activate the molecular oxygen by fast electron compensation through the hybridized Fe 3d‒O 2p, which efficiently facilitates the cleavage of the O═O bond to *O species and highly suppresses the side reactions for an accelerated kinetics of the 4e- ORR. As a result, the well-designed Fe-HDNSs catalysts exhibit superior performances with a half-wave potential of 0.89 V versus reversible hydrogen electrode (RHE) and a kinetic current density of 72 mA cm-2@0.80 V versus RHE, exceeding most of the noble-metal-free ORR catalysts. This work offers some new insights into the understanding of 4e- ORR kinetics and reaction pathways to boost electrochemical performances of SACs.
Collapse
Affiliation(s)
- Jingjing Jiang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Wanlin Zhou
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Yaling Jiang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Xu Zhang
- Beijing Key Lab of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Qizheng An
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Fengchun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Huijuan Wang
- Experimental Center of Engineering and Material Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Kun Zheng
- Beijing Key Lab of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Mikhail A Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, Rostov-on-Don, 344090, Russia
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| |
Collapse
|
36
|
Wang X, Huang R, Mao X, Liu T, Guo P, Sun H, Mao Z, Han C, Zheng Y, Du A, Liu J, Jia Y, Wang L. Coupling Ni Single Atomic Sites with Metallic Aggregates at Adjacent Geometry on Carbon Support for Efficient Hydrogen Peroxide Electrosynthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402240. [PMID: 38605604 PMCID: PMC11220688 DOI: 10.1002/advs.202402240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/06/2024] [Indexed: 04/13/2024]
Abstract
Single atomic catalysts have shown great potential in efficiently electro-converting O2 to H2O2 with high selectivity. However, the impact of coordination environment and introduction of extra metallic aggregates on catalytic performance still remains unclear. Herein, first a series of carbon-based catalysts with embedded coupling Ni single atomic sites and corresponding metallic nanoparticles at adjacent geometry is synthesized. Careful performance evaluation reveals NiSA/NiNP-NSCNT catalyst with precisely controlled active centers of synergetic adjacent Ni-N4S single sites and crystalline Ni nanoparticles exhibits a high H2O2 selectivity over 92.7% within a wide potential range (maximum selectivity can reach 98.4%). Theoretical studies uncover that spatially coupling single atomic NiN4S sites with metallic Ni aggregates in close proximity can optimize the adsorption behavior of key intermediates *OOH to achieve a nearly ideal binding strength, which thus affording a kinetically favorable pathway for H2O2 production. This strategy of manipulating the interaction between single atoms and metallic aggregates offers a promising direction to design new high-performance catalysts for practical H2O2 electrosynthesis.
Collapse
Affiliation(s)
- Xin Wang
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Run Huang
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Xin Mao
- School of ChemistryPhysics and Mechanical EngineeringQueensland University of TechnologyBrisbaneQLD4000Australia
| | - Tian Liu
- Division of Nanomaterials & ChemistryHefei National Research Center for Physical Sciences at the MicroscaleInstitute of EnergyHefei Comprehensive National Science CenterDepartment of ChemistryInstitute of Biomimetic Materials & ChemistryAnhui Engineering Laboratory of Biomimetic MaterialsUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Panjie Guo
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Hai Sun
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Zhelin Mao
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Chao Han
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Yarong Zheng
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringSchool of Chemistry and Chemical EngineeringHefei University of TechnologyHefei230041P. R. China
| | - Aijun Du
- School of ChemistryPhysics and Mechanical EngineeringQueensland University of TechnologyBrisbaneQLD4000Australia
| | - Jianwei Liu
- Division of Nanomaterials & ChemistryHefei National Research Center for Physical Sciences at the MicroscaleInstitute of EnergyHefei Comprehensive National Science CenterDepartment of ChemistryInstitute of Biomimetic Materials & ChemistryAnhui Engineering Laboratory of Biomimetic MaterialsUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Yi Jia
- Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical SynthesisCollege of Chemical EngineeringZhejiang Carbon Neutral Innovation InstituteZhejiang University of Technology (ZJUT)Hangzhou310014P. R. China
- Moganshan Institute ZJUTDeqing313200P. R. China
| | - Lei Wang
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| |
Collapse
|
37
|
Liu Y, Ma X, Huang H, Deng G, Wang J, Chen X, Gao T. Ammonia-assisted Ni particle preferential deposition in Ni-Fe pyrophosphates on iron foam to improve the catalytic performance for overall water splitting. J Colloid Interface Sci 2024; 665:573-581. [PMID: 38552574 DOI: 10.1016/j.jcis.2024.03.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/16/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024]
Abstract
Designing efficient and cost-effective electrocatalysts for overall water splitting remains a major challenge in hydrogen production. Herein, ammonia was introduced to pyrophosphate chelating solution assisted Ni particles preferential plating on porous Fe substrate to form coral-like Ni/NiFe-Pyro electrode. The pyrophosphate with multiple complex sites can couple with nickel and iron ions to form an integrated network structure, which also consists of metallic nickel due to the introduction of ammonia. The large network structure in Ni/NiFe-Pyro significantly enhances the synergistic effect between nickel and iron and then improves the electrocatalytic performance. As a result, the coral-like Ni/NiFe-Pyro@IF exhibits good electrocatalytic activity and stability for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The electrolyzer assembled with Ni/NiFe-Pyro@IF as cathode and anode just needs a low water-splitting voltage of 1.54 V to obtain the current density of 10 mA cm-2. Meanwhile, the stability test of Ni/NiFe-Pyro@IF is performed at the current densities ranging from 10 to 400 mA cm-2 for 50 h without any significant decay, indicating robust catalytic stability for overall water splitting. This strategy for synthesizing metal/metal pyrophosphate composites may provide a new avenue for future studies of efficient bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Yunhua Liu
- School of Chemical Engineering of Guizhou Institute of Technology, Guiyang, 550000, PR China
| | - Xianguo Ma
- School of Chemical Engineering of Guizhou Institute of Technology, Guiyang, 550000, PR China
| | - Hongsheng Huang
- School of Chemical Engineering of Guizhou Institute of Technology, Guiyang, 550000, PR China
| | - Guowei Deng
- Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, College of Chemistry and Life Science, Chengdu Normal University, Chengdu, 611130, PR China
| | - Jiexue Wang
- Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, College of Chemistry and Life Science, Chengdu Normal University, Chengdu, 611130, PR China
| | - Xiaojuan Chen
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Taotao Gao
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, PR China.
| |
Collapse
|
38
|
Wang Q, Wei X, Wu Y, Ma G, Lei Z, Ren S. Bimetallic iron complex constructed clusters and single atoms neighboring structure to enhance oxygen reduction reaction performance. J Colloid Interface Sci 2024; 664:893-901. [PMID: 38493654 DOI: 10.1016/j.jcis.2024.03.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Electrocatalysts are useful in lowering the energy barrier in oxygen reduction reaction (ORR). In this study, a catalyst with neighboring Fe single-atom and cluster is created by adsorbing a bimetallic Fe complex onto N-doped carbon and then pyrolyzing it. The resulting catalyst has good performance and a half-wave potential of 0.89 V. When used in Zn-air batteries, the voltage drops by only 8.13 % after 145 h of cycling. Theoretical studies show that electrons transfer from neighboring clusters to single atoms and the catalyst has a lower d-band center. These reduce intermediate desorption energy, hence improving ORR performance. This work demonstrates the capacity to adjust the catalytic properties through the interaction of diverse metal structures, which helps to design more efficient catalysts.
Collapse
Affiliation(s)
- Qingtao Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Xun Wei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yanxia Wu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Guofu Ma
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ziqiang Lei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Shufang Ren
- Key Laboratory of Evidence Science Research and Application of Gansu Province, Gansu University of Political Science and Law, Lanzhou 730070, China.
| |
Collapse
|
39
|
Rong M, Liu J, Lu L. Self-Assembly of 2D Polyphthalocyanine in Lysosome Enables Multienzyme Activity Enhancement to Induce Tumor Ferroptosis. Adv Healthc Mater 2024; 13:e2400325. [PMID: 38364772 DOI: 10.1002/adhm.202400325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/15/2024] [Indexed: 02/18/2024]
Abstract
Nanozymes show great potential in facilitating tumor ferroptosis by upregulation of reactive oxygen species (ROS) and downregulation of glutathione (GSH). However, mild acidity (pH 6.5-6.9) of tumor microenvironment severely restricts the activity of nanozymes. Although lysosomes as acidic organelles (pH = 3.5-5.5) are hopeful for improving enzyme-like activity, most reported nanozymes are not capable of effectively accumulating in the lysosomes. Herein, an acid-responsive self-assembly strategy based on iron phthalocyanine-rich covalent organic framework nanosheets (COFFePc NSs) is developed, which enables lysosomal targeting aggregation of COFFePc NSs due to the existence of abundant negative hydroxyl groups and rigid structure. Meanwhile, COFFePc NSs display exceptional multienzyme-mimic performance at lower pH to efficiently generate ROS to cause lysosome damage and apoptosis by synergistic photothermal effect. Subsequently, the released COFFePc with GSH oxidase-mimicking activity can consume GSH to promote ferroptosis. This is the first report of a 2D COF using its own properties to achieve lysosomal self-assembly. Overall, the work provides a new paradigm for the development of lysosome-targeted nanosystems.
Collapse
Affiliation(s)
- Mingjie Rong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jian Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
40
|
Li M, Sun G, Wang Z, Zhang X, Peng J, Jiang F, Li J, Tao S, Liu Y, Pan Y. Structural Design of Single-Atom Catalysts for Enhancing Petrochemical Catalytic Reaction Process. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313661. [PMID: 38499342 DOI: 10.1002/adma.202313661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Petroleum, as the "lifeblood" of industrial development, is the important energy source and raw material. The selective transformation of petroleum into high-end chemicals is of great significance, but still exists enormous challenges. Single-atom catalysts (SACs) with 100% atom utilization and homogeneous active sites, promise a broad application in petrochemical processes. Herein, the research systematically summarizes the recent research progress of SACs in petrochemical catalytic reaction, proposes the role of structural design of SACs in enhancing catalytic performance, elucidates the catalytic reaction mechanisms of SACs in the conversion of petrochemical processes, and reveals the high activity origins of SACs at the atomic scale. Finally, the key challenges are summarized and an outlook on the design, identification of active sites, and the appropriate application of artificial intelligence technology is provided for achieving scale-up application of SACs in petrochemical process.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Guangxun Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zhidong Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xin Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiatian Peng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Fei Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Junxi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Shu Tao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
41
|
Chang J, Shi Y, Wu H, Yu J, Jing W, Wang S, Waterhouse GIN, Tang Z, Lu S. Oxygen Radical Coupling on Short-Range Ordered Ru Atom Arrays Enables Exceptional Activity and Stability for Acidic Water Oxidation. J Am Chem Soc 2024; 146:12958-12968. [PMID: 38695595 DOI: 10.1021/jacs.3c13248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The discovery of efficient and stable electrocatalysts for oxygen evolution reaction (OER) in acid is vital for the commercialization of the proton-exchange membrane water electrolyzer. In this work, we demonstrate that short-range Ru atom arrays with near-ideal Ru-Ru interatomic distances and a unique Ru-O hybridization state can trigger direct O*-O* radical coupling to form an intermediate O*-O*-Ru configuration during acidic OER without generating OOH* species. Further, the Ru atom arrays suppress the participation of lattice oxygen in the OER and the dissolution of active Ru. Benefiting from these advantages, the as-designed Ru array-Co3O4 electrocatalyst breaks the activity/stability trade-off that plagues RuO2-based electrocatalysts, delivering an excellent OER overpotential of only 160 mV at 10 mA cm-2 in 0.5 M H2SO4 and outstanding durability during 1500 h operation, representing one of the best acid-stable OER electrocatalysts reported to date. 18O-labeled operando spectroscopic measurements together with theoretical investigations revealed that the short-range Ru atom arrays switched on an oxide path mechanism (OPM) during the OER. Our work not only guides the design of improved acidic OER catalysts but also encourages the pursuit of short-range metal atom array-based electrocatalysts for other electrocatalytic reactions.
Collapse
Affiliation(s)
- Jiangwei Chang
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450000, China
| | - Yuanyuan Shi
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450000, China
| | - Han Wu
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450000, China
| | - Jingkun Yu
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450000, China
| | - Wen Jing
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450000, China
| | - Siyang Wang
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450000, China
| | | | - Zhiyong Tang
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Siyu Lu
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
42
|
Zhang Y, Wang D, Wei G, Li B, Mao Z, Xu SM, Tang S, Jiang J, Li Z, Wang X, Xu X. Engineering Spin Polarization of the Surface-Adsorbed Fe Atom by Intercalating a Transition Metal Atom into the MoS 2 Bilayer for Enhanced Nitrogen Reduction. JACS AU 2024; 4:1509-1520. [PMID: 38665658 PMCID: PMC11040660 DOI: 10.1021/jacsau.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024]
Abstract
The precise control of spin states in transition metal (TM)-based single-atom catalysts (SACs) is crucial for advancing the functionality of electrocatalysts, yet it presents significant scientific challenges. Using density functional theory (DFT) calculations, we propose a novel mechanism to precisely modulate the spin state of the surface-adsorbed Fe atom on the MoS2 bilayer. This is achieved by strategically intercalating a TM atom into the interlayer space of the MoS2 bilayer. Our results show that these strategically intercalated TM atoms can induce a substantial interfacial charge polarization, thereby effectively controlling the charge transfer and spin polarization on the surface Fe site. In particular, by varying the identity of the intercalated TM atoms and their vacancy filling site, a continuous modulation of the spin states of the surface Fe site from low to medium to high can be achieved, which can be accurately described using descriptors composed of readily accessible intrinsic properties of materials. Using the electrochemical dinitrogen reduction reaction (eNRR) as a prototypical reaction, we discovered a universal volcano-like relation between the tuned spin and the catalytic activity of Fe-based SACs. This finding contrasts with the linear scaling relationships commonly seen in traditional studies and offers a robust new approach to modulating the activity of SACs through interfacial engineering.
Collapse
Affiliation(s)
- Yuqin Zhang
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Da Wang
- School
of Mathematics and Computer Science, Gannan
Normal University, Ganzhou 341000, China
| | - Guanping Wei
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Baolei Li
- School
of Mathematics and Computer Science, Gannan
Normal University, Ganzhou 341000, China
| | - Zongchang Mao
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Si-Min Xu
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Shaobin Tang
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Jun Jiang
- Key
Laboratory of Precision and Intelligent Chemistry, School of Chemistry
and Materials Science, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - Zhenyu Li
- Key
Laboratory of Precision and Intelligent Chemistry, School of Chemistry
and Materials Science, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - Xijun Wang
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Xin Xu
- Collaborative
Innovation Center of Chemistry for Energy Materials, Shanghai Key
Laboratory of Molecular Catalysis and Innovative Materials, MOE Key
Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
43
|
Qu W, Tang Z, Tang S, Zhong T, Zhao H, Tian S, Shu D, He C. Precisely constructing orbital coupling-modulated iron dinuclear site for enhanced catalytic ozonation performance. Proc Natl Acad Sci U S A 2024; 121:e2319119121. [PMID: 38588435 PMCID: PMC11032441 DOI: 10.1073/pnas.2319119121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/14/2024] [Indexed: 04/10/2024] Open
Abstract
The advancement of atomically precise dinuclear heterogeneous catalysts holds great potential in achieving efficient catalytic ozonation performance and contributes to the understanding of synergy mechanisms during reaction conditions. Herein, we demonstrate a "ship-in-a-bottle and pyrolysis" strategy that utilizes Fe2(CO)9 dinuclear-cluster to precisely construct Fe2 site, consisting of two Fe1-N3 units connected by Fe-Fe bonds and firmly bonded to N-doped carbon. Systematic characterizations and theoretical modeling reveal that the Fe-Fe coordination motif markedly reduced the devotion of the antibonding state in the Fe-O bond because of the strong orbital coupling interaction of dual Fe d-d orbitals. This facilitates O-O covalent bond cleavage of O3 and enhances binding strength with reaction intermediates (atomic oxygen species; *O and *OO), thus boosting catalytic ozonation performance. As a result, Fe dinuclear site catalyst exhibits 100% ozonation efficiency for CH3SH elimination, outperforming commercial MnO2 catalysts by 1,200-fold. This research provides insights into the atomic-level structure-activity relationship of ozonation catalysts and extends the use of dinuclear catalysts in catalytic ozonation and beyond.
Collapse
Affiliation(s)
- Wei Qu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Zhuoyun Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Su Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Tao Zhong
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Huinan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Shuanghong Tian
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Dong Shu
- School of Chemistry, South China Normal University, Guangzhou510006, China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| |
Collapse
|
44
|
Wang Y, Wei M, Ding Q, Li H, Ma W. Identification of Intersite Distance Effects in Au-Ag Single-Atom Alloy Catalysts Using Single Nanoparticle Collision Electrochemistry. NANO LETTERS 2024. [PMID: 38620010 DOI: 10.1021/acs.nanolett.3c04006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Regulating the atomic density of single-atom alloys (SAAs) promotes the potential to significantly enhance the electrocatalytic activity. However, conventional methods for study on the electrocatalytic performance of SAAs versus the intersite distance demand exhaustive experiments and characterization. Herein, we present a combinatorial synthesis and analysis method to investigate the intersite distance effect of SAA electrocatalysts. We employ single-nanoparticle collision electrochemistry to realize in situ electrodeposition of a precisely tunable Au atomic density onto individual parent Ag nanoparticles, followed by instantaneous electrocatalytic measurement of the newborn Au-Ag SAAs. In this work, the utility of our method is confirmed by the identification of intersite distance effects of Au-Ag SAAs toward the oxygen reduction reaction. When the site distance between two neighboring Au atoms is 1.9 nm, Au-Ag SAAs exhibit optimal activity. This work provides a simple and efficient method for screening other SAA electrocatalysts with ideal intersite distance at the single-nanoparticle level.
Collapse
Affiliation(s)
- Yixiao Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Mengdan Wei
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Qingdan Ding
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Huimin Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Wei Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| |
Collapse
|
45
|
Zhang Y, Chen ZW, Liu X, Wen Z, Singh CV, Yang CC, Jiang Q. Vacancy-Enhanced Sb-N 4 Sites for the Oxygen Reduction Reaction and Zn-Air Battery. NANO LETTERS 2024; 24:4291-4299. [PMID: 38551180 DOI: 10.1021/acs.nanolett.4c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
With the advantages of a Fenton-inactive characteristic and unique p electrons that can hybridize with O2 molecules, p-block metal-based single-atom catalysts (SACs) for the oxygen reduction reaction (ORR) have tremendous potential. Nevertheless, their undesirable intrinsic activity caused by the closed d10 electronic configuration remains a major challenge. Herein, an Sb-based SAC featuring carbon vacancy-enhanced Sb-N4 active centers, corroborated by the results of high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure, has been developed for an incredibly effective ORR. The obtained SbSA-N-C demonstrates a positive half-wave potential of 0.905 V and excellent structural stability in alkaline environments. Density functional theory calculations reveal that the carbon vacancies weaken the adsorption between Sb atoms and the OH* intermediate, thus promoting the ORR performance. Practically, the SbSA-N-C-based Zn-air batteries achieve impressive outcomes, such as a high power density of 181 mW cm-2, showing great potential in real-world applications.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Zhi-Wen Chen
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| | - Xu Liu
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Zi Wen
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Chandra Veer Singh
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Chun Cheng Yang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
46
|
Li H, Wu D, Wu J, Lv W, Duan Z, Ma D. Graphene-based iron single-atom catalysts for electrocatalytic nitric oxide reduction: a first-principles study. NANOSCALE 2024; 16:7058-7067. [PMID: 38445992 DOI: 10.1039/d4nr00028e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The electrocatalytic NO reduction reaction (NORR) emerges as an intriguing strategy to convert harmful NO into valuable NH3. Due to their unique intrinsic properties, graphene-based Fe single-atom catalysts (SACs) have gained considerable attention in electrocatalysis, while their potential for NORR and the underlying mechanism remain to be explored. Herein, using constant-potential density functional theory calculations, we systematically investigated the electrocatalytic NORR on the graphene-based Fe SACs. By changing the local coordination environment of Fe single atoms, 26 systems were constructed. Theoretical results show that, among these systems, the Fe SAC coordinated with four pyrrole N atoms and that co-coordinated with three pyridine N atoms and one O atom exhibit excellent NORR activity with low limiting potentials of -0.26 and -0.33 V, respectively, as well as have high selectivity toward NH3 by inhibiting the formation of byproducts, especially under applied potential. Furthermore, electronic structure analyses indicate that NO molecules can be effectively adsorbed and activated via the electron "donation-backdonation" mechanism. In particular, the d-band center of the Fe SACs was identified as an efficient catalytic activity descriptor for NORR. Our work could stimulate and guide the experimental exploration of graphene-based Fe SACs for efficient NORR toward NH3 under ambient conditions.
Collapse
Affiliation(s)
- Haobo Li
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Donghai Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Jiarui Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Wenjing Lv
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Zhiyao Duan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
47
|
Tang T, Bai X, Wang Z, Guan J. Structural engineering of atomic catalysts for electrocatalysis. Chem Sci 2024; 15:5082-5112. [PMID: 38577377 PMCID: PMC10988631 DOI: 10.1039/d4sc00569d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
As a burgeoning category of heterogeneous catalysts, atomic catalysts have been extensively researched in the field of electrocatalysis. To satisfy different electrocatalytic reactions, single-atom catalysts (SACs), diatomic catalysts (DACs) and triatomic catalysts (TACs) have been successfully designed and synthesized, in which microenvironment structure regulation is the core to achieve high-efficiency catalytic activity and selectivity. In this review, the effect of the geometric and electronic structure of metal active centers on catalytic performance is systematically introduced, including substrates, central metal atoms, and the coordination environment. Then theoretical understanding of atomic catalysts for electrocatalysis is innovatively discussed, including synergistic effects, defect coupled spin state change and crystal field distortion spin state change. In addition, we propose the challenges to optimize atomic catalysts for electrocatalysis applications, including controlled synthesis, increasing the density of active sites, enhancing intrinsic activity, and improving the stability. Moreover, the structure-function relationships of atomic catalysts in the CO2 reduction reaction, nitrogen reduction reaction, oxygen reduction reaction, hydrogen evolution reaction, and oxygen evolution reaction are highlighted. To facilitate the development of high-performance atomic catalysts, several technical challenges and research orientations are put forward.
Collapse
Affiliation(s)
- Tianmi Tang
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Xue Bai
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Zhenlu Wang
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| |
Collapse
|
48
|
Liu L, Chen T, Chen Z. Understanding the Dynamic Aggregation in Single-Atom Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308046. [PMID: 38287886 PMCID: PMC10987127 DOI: 10.1002/advs.202308046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/22/2023] [Indexed: 01/31/2024]
Abstract
The dynamic response of single-atom catalysts to a reactive environment is an increasingly significant topic for understanding the reaction mechanism at the molecular level. In particular, single atoms may experience dynamic aggregation into clusters or nanoparticles driven by thermodynamic or kinetic factors. Herein, the inherent mechanistic nuances that determine the dynamic profile during the reaction will be uncovered, including the intrinsic stability and site-migration barrier of single atoms, external stimuli (temperature, voltage, and adsorbates), and the influence of catalyst support. Such dynamic aggregation can be beneficial or deleterious on the catalytic performance depending on the optimal initial state. Those examples will be highlighted where in situ formed clusters, rather than single atoms, serve as catalytically active sites for improved catalytic performance. This is followed by the introduction of operando techniques to understand the structural evolution. Finally, the emerging strategies via confinement and defect-engineering to regulate dynamic aggregation will be briefly discussed.
Collapse
Affiliation(s)
- Laihao Liu
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172China
| | - Tiankai Chen
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172China
| | - Zhongxin Chen
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172China
| |
Collapse
|
49
|
Saha D, Yu HJ, Wang J, Prateek, Chen X, Tang C, Senger C, Pagaduan JN, Katsumata R, Carter KR, Zhou G, Bai P, Wu N, Watkins JJ. Mesoporous Single Atom-Cluster Fe-N/C Oxygen Evolution Electrocatalysts Synthesized with Bottlebrush Block Copolymer-Templated Rapid Thermal Annealing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13729-13744. [PMID: 38457643 DOI: 10.1021/acsami.3c18693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Current electrocatalysts for oxygen evolution reaction (OER) are either expensive (such as IrO2, RuO2) or/and exhibit high overpotential as well as sluggish kinetics. This article reports mesoporous earth-abundant iron (Fe)-nitrogen (N) doped carbon electrocatalysts with iron clusters and closely surrounding Fe-N4 active sites. Unique to this work is that the mechanically stable mesoporous carbon-matrix structure (79 nm in pore size) with well-dispersed nitrogen-coordinated Fe single atom-cluster is synthesized via rapid thermal annealing (RTA) within only minutes using a self-assembled bottlebrush block copolymer (BBCP) melamine-formaldehyde resin composite template. The resulting porous structure and domain size can be tuned with the degree of polymerization of the BBCP backbone, which increases the electrochemically active surface area and improves electron transfer and mass transport for an effective OER process. The optimized electrocatalyst shows a required potential of 1.48 V (versus RHE) to obtain the current density of 10 mA/cm2 in 1 M KOH aqueous electrolyte and a small Tafel slope of 55 mV/decade at a given overpotential of 250 mV, which is significantly lower than recently reported earth-abundant electrocatalysts. Importantly, the Fe single-atom nitrogen coordination environment facilitates the surface reconstruction into a highly active oxyhydroxide under OER conditions, as revealed by X-ray photoelectron spectroscopy and in situ Raman spectroscopy, while the atomic clusters boost the single atoms reactive sites to prevent demetalation during the OER process. Density functional theory (DFT) calculations support that the iron nitrogen environment and reconstructed oxyhydroxides are electrocatalytically active sites as the kinetics barrier is largely reduced. This work has opened a new avenue for simple, rapid synthesis of inexpensive, earth-abundant, tailorable, mechanically stable, mesoporous carbon-coordinated single-atom electrocatalysts that can be used for renewable energy production.
Collapse
Affiliation(s)
- Dipankar Saha
- Conte Center for Polymer Research, Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hsin-Jung Yu
- Conte Center for Polymer Research, Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jiacheng Wang
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Prateek
- Conte Center for Polymer Research, Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Xiaobo Chen
- Department of Materials Science and Engineering, Binghamton University, State University of New York at Binghamton, Binghamton, New York 13850, United States
| | - Chaoyun Tang
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Claire Senger
- Conte Center for Polymer Research, Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - James Nicolas Pagaduan
- Conte Center for Polymer Research, Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Reika Katsumata
- Conte Center for Polymer Research, Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Kenneth R Carter
- Conte Center for Polymer Research, Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Guangwen Zhou
- Department of Materials Science and Engineering, Binghamton University, State University of New York at Binghamton, Binghamton, New York 13850, United States
| | - Peng Bai
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Nianqiang Wu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - James J Watkins
- Conte Center for Polymer Research, Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
50
|
Liu K, Li H, Xie M, Wang P, Jin Z, Liu Y, Zhou M, Li P, Yu G. Thermally Enhanced Relay Electrocatalysis of Nitrate-to-Ammonia Reduction over Single-Atom-Alloy Oxides. J Am Chem Soc 2024; 146:7779-7790. [PMID: 38466142 DOI: 10.1021/jacs.4c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The electrochemical nitrate reduction reaction (NO3RR) holds promise for converting nitrogenous pollutants to valuable ammonia products. However, conventional electrocatalysis faces challenges in effectively driving the complex eight-electron and nine-proton transfer process of the NO3RR while also competing with the hydrogen evolution reaction. In this study, we present the thermally enhanced electrocatalysis of nitrate-to-ammonia conversion over nickel-modified copper oxide single-atom alloy oxide nanowires. The catalyst demonstrates improved ammonia production performance with a Faradaic efficiency of approximately 80% and a yield rate of 9.7 mg h-1 cm-2 at +0.1 V versus a reversible hydrogen electrode at elevated cell temperatures. In addition, this thermally enhanced electrocatalysis system displays impressive stability, interference resistance, and favorable energy consumption and greenhouse gas emissions for the simulated industrial wastewater treatment. Complementary in situ analyses confirm that the significantly superior relay of active hydrogen species formed at Ni sites facilitates the thermal-field-coupled electrocatalysis of Cu surface-adsorbed *NOx hydrogenation. Theoretical calculations further support the thermodynamic and kinetic feasibility of the relay catalysis mechanism for the NO3RR over the Ni1Cu model catalyst. This study introduces a conceptual thermal-electrochemistry approach for the synergistic regulation of complex catalytic processes, highlighting the potential of multifield-coupled catalysis to advance sustainable-energy-powered chemical synthesis technologies.
Collapse
Affiliation(s)
- Kui Liu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hongmei Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Minghao Xie
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, the University of Texas at Austin, Austin, Texas 78712, United States
| | - Pengfei Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhaoyu Jin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuanting Liu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Min Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Panpan Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, the University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|