1
|
Gutierrez-Morton E, Wang Y. The role of SUMOylation in biomolecular condensate dynamics and protein localization. CELL INSIGHT 2024; 3:100199. [PMID: 39399482 PMCID: PMC11467568 DOI: 10.1016/j.cellin.2024.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 10/15/2024]
Abstract
As a type of protein post-translational modification, SUMOylation is the process that attaches a small ubiquitin-like modifier (SUMO) to lysine residues of protein substrates. Not only do SUMO and ubiquitin exhibit structure similarity, but the enzymatic cascades for SUMOylation and ubiquitination are also similar. It is well established that protein ubiquitination triggers proteasomal degradation, but the function of SUMOylation remains poorly understood compared to ubiquitination. Recent studies reveal the role of SUMOylation in regulating protein localization, stability, and interaction networks. SUMO can be covalently attached to substrates either as an individual monomer (monoSUMOylation) or as a polymeric SUMO chain (polySUMOylation). Strikingly, mono- and polySUMOylation likely play distinct roles in protein subcellular localization and the assembly/disassembly of biomolecular condensates, which are membraneless cellular compartments with concentrated biomolecules. In this review, we summarize the recent advances in the understanding of the function and regulation of SUMOylation, which could reveal potential therapeutic targets in disease pathogenesis.
Collapse
Affiliation(s)
- Emily Gutierrez-Morton
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA
| | - Yanchang Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA
| |
Collapse
|
2
|
Kengmana E, Ornelas-Gatdula E, Chen KL, Schulman R. Spatial Control over Reactions via Localized Transcription within Membraneless DNA Nanostar Droplets. J Am Chem Soc 2024. [PMID: 39565729 DOI: 10.1021/jacs.4c07274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Biomolecular condensates control where and how fast many chemical reactions occur in cells by partitioning reactants and catalysts, enabling simultaneous reactions in different spatial locations of a cell. Even without a membrane or physical barrier, the partitioning of the reactants can affect the rates of downstream reaction cascades in ways that depend on reaction location. Such effects can enable systems of biomolecular condensates to spatiotemporally orchestrate chemical reaction networks in cells to facilitate complex behaviors such as ribosome assembly. Here, we develop a system for developing such control in synthetic systems. We localize different transcription templates within different phase-separated, membraneless DNA nanostar (NS) droplets─programmable, in vitro liquid-liquid phase separation systems for partitioning of substrates and localization of reactions to membraneless droplets. When RNA produced within such droplets is also degraded in the bulk, droplet-localized transcription creates RNA concentration gradients. Consistent with the formation of these gradients, toehold-mediated strand displacement reactions involving transcripts are 2-fold slower far from the site of transcription than when nearby. We then demonstrate how multiple such gradients can form and be maintained independently by simultaneous transcription reactions occurring in tandem, each localized to different NS droplet types. Our results provide a means for constructing reaction systems in which different reactions are spatially localized and controlled without the need for physical membranes. This system also provides a means for generally studying how localized reactions and the exchange of reaction products might occur between protocells.
Collapse
Affiliation(s)
- Eli Kengmana
- Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Elysse Ornelas-Gatdula
- Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kuan-Lin Chen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rebecca Schulman
- Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
3
|
Soeda Y, Yoshimura H, Bannai H, Koike R, Shiiba I, Takashima A. Intracellular tau fragment droplets serve as seeds for tau fibrils. Structure 2024; 32:1793-1807.e6. [PMID: 39032487 DOI: 10.1016/j.str.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/04/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Intracellular tau aggregation requires a local protein concentration increase, referred to as "droplets". However, the cellular mechanism for droplet formation is poorly understood. Here, we expressed OptoTau, a P301L mutant tau fused with CRY2olig, a light-sensitive protein that can form homo-oligomers. Under blue light exposure, OptoTau increased tau phosphorylation and was sequestered in aggresomes. Suppressing aggresome formation by nocodazole formed tau granular clusters in the cytoplasm. The granular clusters disappeared by discontinuing blue light exposure or 1,6-hexanediol treatment suggesting that intracellular tau droplet formation requires microtubule collapse. Expressing OptoTau-ΔN, a species of N-terminal cleaved tau observed in the Alzheimer's disease brain, formed 1,6-hexanediol and detergent-resistant tau clusters in the cytoplasm with blue light stimulation. These intracellular stable tau clusters acted as a seed for tau fibrils in vitro. These results suggest that tau droplet formation and N-terminal cleavage are necessary for neurofibrillary tangles formation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoshiyuki Soeda
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Hideaki Yoshimura
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroko Bannai
- School of Advanced Science and Engineering, Department of Electrical Engineering and Biosciences, Waseda University, 2-2 Wakamatsucho, Shinjuku-Ku, Tokyo 162-0056, Japan
| | - Riki Koike
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Isshin Shiiba
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Akihiko Takashima
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
4
|
Lin P, Zhang S, Komatsubara F, Konishi H, Nakata E, Morii T. Artificial Compartments Encapsulating Enzymatic Reactions: Towards the Construction of Artificial Organelles. Chempluschem 2024:e202400483. [PMID: 39351818 DOI: 10.1002/cplu.202400483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Cells have used compartmentalization to implement complex biological processes involving thousands of enzyme cascade reactions. Enzymes are spatially organized into the cellular compartments to carry out specific and efficient reactions in a spatiotemporally controlled manner. These compartments are divided into membrane-bound and membraneless organelles. Mimicking such cellular compartment systems has been a challenge for years. A variety of artificial scaffolds, including liposomes, polymersomes, proteins, nucleic acids, or hybrid materials have been used to construct artificial membrane-bound or membraneless compartments. These artificial compartments may have great potential for applications in biosynthesis, drug delivery, diagnosis and therapeutics, among others. This review first summarizes the typical examples of cellular compartments. In particular, the recent studies on cellular membraneless organelles (biomolecular condensates) are reviewed. We then summarize the recent advances in the construction of artificial compartments using engineered platforms. Finally, we provide our insights into the construction of biomimetic systems and the applications of these systems. This review article provides a timely summary of the relevant perspectives for the future development of artificial compartments, the building blocks for the construction of artificial organelles or cells.
Collapse
Affiliation(s)
- Peng Lin
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Shiwei Zhang
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Futa Komatsubara
- Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroaki Konishi
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Eiji Nakata
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
- Department of Health and Nutrition, Kyoto Koka Women's University, Ukyo-ku, Kyoto, 615-0882, Japan
| |
Collapse
|
5
|
Chan C, Liao YJ, Chiou SP. Stress induced factor 2 is a dual regulator for defense and seed germination in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112200. [PMID: 39038707 DOI: 10.1016/j.plantsci.2024.112200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/12/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Receptor-like kinases (RLKs) constitute a diverse superfamily of proteins pivotal for various plant physiological processes, including responses to pathogens, hormone perception, growth, and development. Their ability to recognize conserved epitopes for general elicitors and specific pathogens marked significant advancements in plant pathology research. Emerging evidence suggests that RLKs and associated components also act as modulators in hormone signaling and cellular trafficking, showcasing their multifunctional roles in growth and development. Notably, STRESS INDUCED FACTOR 2 (SIF2) stands out as a representative with distinct expression patterns in different Arabidopsis organs. Our prior work highlighted the specific induction of SIF2 expression in guard cells, emphasizing its positive contribution to stomatal immunity. Expanding on these findings, our present study delves into the diverse functions of SIF2 expression in root tissues. Utilizing comprehensive physiology, molecular biology, protein biochemistry, and genetic analyses, we reveal that SIF2 modulates abscisic acid (ABA) signaling in Arabidopsis roots. SIF2 is epistatic with key regulators in the ABA signaling pathway, thereby governing the expression of genes crucial for dormancy release and, consequently, Arabidopsis seed germination. This study sheds light on the intricate roles of SIF2 as a multi-functional RLK, underscoring its organ-specific contributions to plant immunity, hormonal regulation, and seed germination.
Collapse
Affiliation(s)
- Ching Chan
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan.
| | - Yi-Jun Liao
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Shian-Peng Chiou
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
6
|
Wang L, Wang Y, Ke Z, Wang Z, Guo Y, Zhang Y, Zhang X, Guo Z, Wan B. Liquid-liquid phase separation: a new perspective on respiratory diseases. Front Immunol 2024; 15:1444253. [PMID: 39391315 PMCID: PMC11464301 DOI: 10.3389/fimmu.2024.1444253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) is integral to various biological processes, facilitating signal transduction by creating a condensed, membrane-less environment that plays crucial roles in diverse physiological and pathological processes. Recent evidence has underscored the significance of LLPS in human health and disease. However, its implications in respiratory diseases remain poorly understood. This review explores current insights into the mechanisms and biological roles of LLPS, focusing particularly on its relevance to respiratory diseases, aiming to deepen our understanding and propose a new paradigm for studying phase separation in this context.
Collapse
Affiliation(s)
- Li Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Shanghai East Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Yongjun Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Zhangmin Ke
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Zexu Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yufang Guo
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongliang Guo
- Shanghai East Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Brasnett C, Kiani A, Sami S, Otto S, Marrink SJ. Capturing chemical reactions inside biomolecular condensates with reactive Martini simulations. Commun Chem 2024; 7:151. [PMID: 38961263 PMCID: PMC11222477 DOI: 10.1038/s42004-024-01234-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
Biomolecular condensates are phase separated systems that play an important role in the spatio-temporal organisation of cells. Their distinct physico-chemical nature offers a unique environment for chemical reactions to occur. The compartmentalisation of chemical reactions is also believed to be central to the development of early life. To demonstrate how molecular dynamics may be used to capture chemical reactions in condensates, here we perform reactive molecular dynamics simulations using the coarse-grained Martini forcefield. We focus on the formation of rings of benzene-1,3-dithiol inside a synthetic peptide-based condensate, and find that the ring size distribution shifts to larger macrocycles compared to when the reaction takes place in an aqueous environment. Moreover, reaction rates are noticeably increased when the peptides simultaneously undergo phase separation, hinting that condensates may act as chaperones in recruiting molecules to reaction hubs.
Collapse
Affiliation(s)
- Christopher Brasnett
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Armin Kiani
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Selim Sami
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
8
|
Zhang X, Yuan L, Zhang W, Zhang Y, Wu Q, Li C, Wu M, Huang Y. Liquid-liquid phase separation in diseases. MedComm (Beijing) 2024; 5:e640. [PMID: 39006762 PMCID: PMC11245632 DOI: 10.1002/mco2.640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS), an emerging biophysical phenomenon, can sequester molecules to implement physiological and pathological functions. LLPS implements the assembly of numerous membraneless chambers, including stress granules and P-bodies, containing RNA and protein. RNA-RNA and RNA-protein interactions play a critical role in LLPS. Scaffolding proteins, through multivalent interactions and external factors, support protein-RNA interaction networks to form condensates involved in a variety of diseases, particularly neurodegenerative diseases and cancer. Modulating LLPS phenomenon in multiple pathogenic proteins for the treatment of neurodegenerative diseases and cancer could present a promising direction, though recent advances in this area are limited. Here, we summarize in detail the complexity of LLPS in constructing signaling pathways and highlight the role of LLPS in neurodegenerative diseases and cancers. We also explore RNA modifications on LLPS to alter diseases progression because these modifications can influence LLPS of certain proteins or the formation of stress granules, and discuss the possibility of proper manipulation of LLPS process to restore cellular homeostasis or develop therapeutic drugs for the eradication of diseases. This review attempts to discuss potential therapeutic opportunities by elaborating on the connection between LLPS, RNA modification, and their roles in diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Lin Yuan
- Laboratory of Research in Parkinson's Disease and Related Disorders Health Sciences Institute China Medical University Shenyang China
| | - Wanlu Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Yi Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Qun Wu
- Department of Pediatrics Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Chunting Li
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Min Wu
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang China
- The Joint Research Center Affiliated Xiangshan Hospital of Wenzhou Medical University Ningbo China
| | - Yongye Huang
- College of Life and Health Sciences Northeastern University Shenyang China
- Key Laboratory of Bioresource Research and Development of Liaoning Province College of Life and Health Sciences Northeastern University Shenyang China
| |
Collapse
|
9
|
Bagchi D, Maity A, Chakraborty A. Metal Ion-Induced Unusual Stability of the Metastable Vesicle-like Intermediates Evolving during the Self-Assembly of Phenylalanine: Prominent Role of Surface Charge Inversion. J Phys Chem Lett 2024; 15:4468-4476. [PMID: 38631022 DOI: 10.1021/acs.jpclett.4c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The underlying mechanism and intermediate formation in the self-assembly of aromatic amino acids, peptides, and proteins remain elusive despite numerous reports. We, for the first time, report that one can stabilize the intermediates by tuning the metal ion-amino acid interaction. Microscopic and spectroscopic investigations of the self-assembly of carboxybenzyl (Z)-protected phenylalanine (ZF) reveal that the bivalent metal ions eventually lead to the formation of fibrillar networks similar to blank ZF whereas the trivalent ions develop vesicle-like intermediates that do not undergo fibrillation for a prolonged time. The time-lapse measurement of surface charge reveals that the surface charge of blank ZF and in the presence of bivalent metal ions changes from a negative value to zero, implying unstable intermediates leading to the fibril network. Strikingly, a prominent charge inversion from an initial negative value to a positive value in the presence of trivalent metal ions imparts unusual stability to the metastable intermediates.
Collapse
Affiliation(s)
- Debanjan Bagchi
- Indian Institute of Technology Indore, Department of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Avijit Maity
- Indian Institute of Technology Indore, Department of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Anjan Chakraborty
- Indian Institute of Technology Indore, Department of Chemistry, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
10
|
Čermák V, Kašpar T, Fischer L. SPT6L, a newly discovered ancestral component of the plant RNA-directed DNA methylation pathway. FRONTIERS IN PLANT SCIENCE 2024; 15:1372880. [PMID: 38576781 PMCID: PMC10991848 DOI: 10.3389/fpls.2024.1372880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/20/2024] [Indexed: 04/06/2024]
Abstract
RNA-directed DNA methylation (RdDM) is driven by small RNAs (sRNAs) complementary to the nascent transcript of RNA polymerase V (Pol V). sRNAs associated with ARGONAUTE (AGO) proteins are tethered to Pol V mainly by the AGO-hook domain of its subunit NRPE1. We found, by in silico analyses, that Pol V strongly colocalizes on chromatin with another AGO-hook protein, SPT6-like (SPT6L), which is a known essential transcription elongation factor of Pol II. Our phylogenetic analysis revealed that SPT6L acquired its AGO-binding capacity already in the most basal streptophyte algae, even before the emergence of Pol V, suggesting that SPT6L might be a driving force behind the RdDM evolution. Since its emergence, SPT6L with the AGO-hook represents the only conserved SPT6 homolog in Viridiplantae, implying that the same protein is involved in both Pol II and Pol V complexes. To better understand the role of SPT6L in the Pol V complex, we characterized genomic loci where these two colocalize and uncovered that DNA methylation there is more dynamic, driven by higher levels of sRNAs often from non-canonical RdDM pathways and more dependent on chromatin modifying and remodeling proteins like MORC. Pol V loci with SPT6L are highly depleted in helitrons but enriched in gene promoters for which locally and temporally precise methylation is necessary. In view of these results, we discuss potential roles of multiple AGO-hook domains present in the Pol V complex and speculate that SPT6L mediates de novo methylation of naïve loci by interconnecting Pol II and Pol V activities.
Collapse
Affiliation(s)
- Vojtěch Čermák
- Laboratory of Plant Cell Biology and Biotechnology, Faculty of Science, Department of Experimental Plant Biology, Charles University, Prague, Czechia
| | | | | |
Collapse
|
11
|
Abasi LS, Elathram N, Movva M, Deep A, Corbett KD, Debelouchina GT. Phosphorylation regulates tau's phase separation behavior and interactions with chromatin. Commun Biol 2024; 7:251. [PMID: 38429335 PMCID: PMC10907630 DOI: 10.1038/s42003-024-05920-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/16/2024] [Indexed: 03/03/2024] Open
Abstract
Tau is a microtubule-associated protein often found in neurofibrillary tangles (NFTs) in the brains of patients with Alzheimer's disease. Beyond this context, mounting evidence suggests that tau localizes into the nucleus, where it may play a role in DNA protection and heterochromatin regulation. The molecular mechanisms behind these observations are currently unclear. Using in vitro biophysical experiments, here we demonstrate that tau can undergo liquid-liquid phase separation (LLPS) with DNA, mononucleosomes, and reconstituted nucleosome arrays under low salt conditions. Low concentrations of tau promote chromatin compaction and protect DNA from digestion. While the material state of samples at physiological salt is dominated by chromatin oligomerization, tau can still associate strongly and reversibly with nucleosome arrays. These properties are driven by tau's strong interactions with linker and nucleosomal DNA. In addition, tau co-localizes into droplets formed by nucleosome arrays and phosphorylated HP1α, a key heterochromatin constituent thought to function through an LLPS mechanism. Importantly, LLPS and chromatin interactions are disrupted by aberrant tau hyperphosphorylation. These biophysical properties suggest that tau may directly impact DNA and chromatin accessibility and that loss of these interactions could contribute to the aberrant nuclear effects seen in tau pathology.
Collapse
Affiliation(s)
- Lannah S Abasi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nesreen Elathram
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Manasi Movva
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Galia T Debelouchina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
12
|
Alshareedah I, Singh A, Yang S, Ramachandran V, Quinn A, Potoyan DA, Banerjee PR. Determinants of viscoelasticity and flow activation energy in biomolecular condensates. SCIENCE ADVANCES 2024; 10:eadi6539. [PMID: 38363841 PMCID: PMC10871536 DOI: 10.1126/sciadv.adi6539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/17/2024] [Indexed: 02/18/2024]
Abstract
The form and function of biomolecular condensates are intimately linked to their material properties. Here, we integrate microrheology with molecular simulations to dissect the physical determinants of condensate fluid phase dynamics. By quantifying the timescales and energetics of network relaxation in a series of heterotypic viscoelastic condensates, we uncover distinctive roles of sticker motifs, binding energy, and chain length in dictating condensate dynamical properties. We find that the mechanical relaxation times of condensate-spanning networks are determined by both intermolecular interactions and chain length. We demonstrate, however, that the energy barrier for network reconfiguration, termed flow activation energy, is independent of chain length and only varies with the strengths of intermolecular interactions. Biomolecular diffusion in the dense phase depends on a complex interplay between viscoelasticity and flow activation energy. Our results illuminate distinctive roles of chain length and sequence-specific multivalent interactions underlying the complex material and transport properties of biomolecular condensates.
Collapse
Affiliation(s)
| | - Anurag Singh
- Department of Physics, University at Buffalo, Buffalo, NY 14260, USA
| | - Sean Yang
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | | | - Alexander Quinn
- Department of Physics, University at Buffalo, Buffalo, NY 14260, USA
| | - Davit A. Potoyan
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Priya R. Banerjee
- Department of Physics, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
13
|
Spegg V, Altmeyer M. Genome maintenance meets mechanobiology. Chromosoma 2024; 133:15-36. [PMID: 37581649 PMCID: PMC10904543 DOI: 10.1007/s00412-023-00807-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023]
Abstract
Genome stability is key for healthy cells in healthy organisms, and deregulated maintenance of genome integrity is a hallmark of aging and of age-associated diseases including cancer and neurodegeneration. To maintain a stable genome, genome surveillance and repair pathways are closely intertwined with cell cycle regulation and with DNA transactions that occur during transcription and DNA replication. Coordination of these processes across different time and length scales involves dynamic changes of chromatin topology, clustering of fragile genomic regions and repair factors into nuclear repair centers, mobilization of the nuclear cytoskeleton, and activation of cell cycle checkpoints. Here, we provide a general overview of cell cycle regulation and of the processes involved in genome duplication in human cells, followed by an introduction to replication stress and to the cellular responses elicited by perturbed DNA synthesis. We discuss fragile genomic regions that experience high levels of replication stress, with a particular focus on telomere fragility caused by replication stress at the ends of linear chromosomes. Using alternative lengthening of telomeres (ALT) in cancer cells and ALT-associated PML bodies (APBs) as examples of replication stress-associated clustered DNA damage, we discuss compartmentalization of DNA repair reactions and the role of protein properties implicated in phase separation. Finally, we highlight emerging connections between DNA repair and mechanobiology and discuss how biomolecular condensates, components of the nuclear cytoskeleton, and interfaces between membrane-bound organelles and membraneless macromolecular condensates may cooperate to coordinate genome maintenance in space and time.
Collapse
Affiliation(s)
- Vincent Spegg
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Abasi LS, Elathram N, Movva M, Deep A, Corbett KD, Debelouchina GT. Phosphorylation regulates tau's phase separation behavior and interactions with chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572911. [PMID: 38187700 PMCID: PMC10769318 DOI: 10.1101/2023.12.21.572911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Tau is a microtubule-associated protein often found in neurofibrillary tangles (NFTs) in the brains of patients with Alzheimer's disease (AD). Beyond this context, mounting evidence suggests that tau localizes into the nucleus, where it may play a role in DNA protection and heterochromatin regulation. Models of tau depletion or pathology show loss of genetically silent heterochromatin, aberrant expression of heterochromatic genes, and transposable element activation. The molecular mechanisms behind these observations are currently unclear. Using in vitro biophysical experiments, here we demonstrate that tau can undergo liquid-liquid phase separation (LLPS) with DNA, mononucleosomes, and reconstituted nucleosome arrays under low salt conditions. Low concentrations of tau promote chromatin compaction and protect DNA from digestion. While the material state of samples at physiological salt is dominated by chromatin oligomerization, tau can still associate strongly and reversibly with nucleosome arrays. These properties are driven by tau's strong interactions with linker and nucleosomal DNA, while magic angle spinning (MAS) solid-state NMR experiments show that tau binding does not drastically alter nucleosome structure and dynamics. In addition, tau co-localizes into droplets formed by nucleosome arrays and phosphorylated HP1α, a key heterochromatin constituent thought to function through an LLPS mechanism. Importantly, LLPS and chromatin interactions are disrupted by aberrant tau hyperphosphorylation. These biophysical properties suggest that tau may directly impact DNA and chromatin accessibility and that loss of these interactions could contribute to the aberrant nuclear effects seen in tau pathology.
Collapse
Affiliation(s)
- Lannah S. Abasi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nesreen Elathram
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Manasi Movva
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin D. Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
15
|
Abstract
The eukaryotic nucleus displays a variety of membraneless compartments with distinct biomolecular composition and specific cellular activities. Emerging evidence indicates that protein-based liquid-liquid phase separation (LLPS) plays an essential role in the formation and dynamic regulation of heterochromatin compartmentalization. This feature is especially conspicuous at the pericentric heterochromatin domains. In this review, we will describe our understanding of heterochromatin organization and LLPS. In addition, we will highlight the increasing importance of multivalent weak homo- and heteromolecular interactions in LLPS-mediated heterochromatin compartmentalization in the complex environment inside living cells.
Collapse
Affiliation(s)
- Hui Zhang
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Weihua Qin
- Human Biology and Bioimaging, Faculty of Biology, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Hector Romero
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Heinrich Leonhardt
- Human Biology and Bioimaging, Faculty of Biology, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - M. Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany,CONTACT M. Cristina Cardoso Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287Darmstadt, Germany
| |
Collapse
|
16
|
Sahgal A, Uversky V, Davé V. Microproteins transitioning into a new Phase: Defining the undefined. Methods 2023; 220:38-54. [PMID: 37890707 DOI: 10.1016/j.ymeth.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Recent advancements in omics technologies have unveiled a hitherto unknown group of short polypeptides called microproteins (miPs). Despite their size, accumulating evidence has demonstrated that miPs exert varied and potent biological functions. They act in paracrine, juxtracrine, and endocrine fashion, maintaining cellular physiology and driving diseases. The present study focuses on biochemical and biophysical analysis and characterization of twenty-four human miPs using distinct computational methods, including RIDAO, AlphaFold2, D2P2, FuzDrop, STRING, and Emboss Pep wheel. miPs often lack well-defined tertiary structures and may harbor intrinsically disordered regions (IDRs) that play pivotal roles in cellular functions. Our analyses define the physicochemical properties of an essential subset of miPs, elucidating their structural characteristics and demonstrating their propensity for driving or participating in liquid-liquid phase separation (LLPS) and intracellular condensate formation. Notably, miPs such as NoBody and pTUNAR revealed a high propensity for LLPS, implicating their potential involvement in forming membrane-less organelles (MLOs) during intracellular LLPS and condensate formation. The results of our study indicate that miPs have functionally profound implications in cellular compartmentalization and signaling processes essential for regulating normal cellular functions. Taken together, our methodological approach explains and highlights the biological importance of these miPs, providing a deeper understanding of the unusual structural landscape and functionality of these newly defined small proteins. Understanding their functions and biological behavior will aid in developing targeted therapies for diseases that involve miPs.
Collapse
Affiliation(s)
- Aayushi Sahgal
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; Biotechnology Graduate Program, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Vladimir Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Vrushank Davé
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; Biotechnology Graduate Program, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States.
| |
Collapse
|
17
|
Mangiarotti A, Siri M, Tam NW, Zhao Z, Malacrida L, Dimova R. Biomolecular condensates modulate membrane lipid packing and hydration. Nat Commun 2023; 14:6081. [PMID: 37770422 PMCID: PMC10539446 DOI: 10.1038/s41467-023-41709-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Membrane wetting by biomolecular condensates recently emerged as a key phenomenon in cell biology, playing an important role in a diverse range of processes across different organisms. However, an understanding of the molecular mechanisms behind condensate formation and interaction with lipid membranes is still missing. To study this, we exploited the properties of the dyes ACDAN and LAURDAN as nano-environmental sensors in combination with phasor analysis of hyperspectral and lifetime imaging microscopy. Using glycinin as a model condensate-forming protein and giant vesicles as model membranes, we obtained vital information on the process of condensate formation and membrane wetting. Our results reveal that glycinin condensates display differences in water dynamics when changing the salinity of the medium as a consequence of rearrangements in the secondary structure of the protein. Remarkably, analysis of membrane-condensates interaction with protein as well as polymer condensates indicated a correlation between increased wetting affinity and enhanced lipid packing. This is demonstrated by a decrease in the dipolar relaxation of water across all membrane-condensate systems, suggesting a general mechanism to tune membrane packing by condensate wetting.
Collapse
Affiliation(s)
- Agustín Mangiarotti
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany.
| | - Macarena Siri
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany
| | - Nicky W Tam
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany
| | - Ziliang Zhao
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745, Jena, Germany
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, 07743, Jena, Germany
| | - Leonel Malacrida
- Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
- Advanced Bioimaging Unit, Institut Pasteur of Montevideo and Universidad de la República, Montevideo, Uruguay.
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany.
| |
Collapse
|
18
|
Jang YH, Raspaud E, Lansac Y. DNA-protamine condensates under low salt conditions: molecular dynamics simulation with a simple coarse-grained model focusing on electrostatic interactions. NANOSCALE ADVANCES 2023; 5:4798-4808. [PMID: 37705794 PMCID: PMC10496769 DOI: 10.1039/d2na00847e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 08/14/2023] [Indexed: 09/15/2023]
Abstract
Protamine, a small, strongly positively-charged protein, plays a key role in achieving chromatin condensation inside sperm cells and is also involved in the formulation of nanoparticles for gene therapy and packaging of mRNA-based vaccines against viral infection and cancer. The detailed mechanisms of such condensations are still poorly understood especially under low salt conditions where electrostatic interaction predominates. Our previous study, with a refined coarse-grained model in full consideration of the long-range electrostatic interactions, has demonstrated the crucial role of electrostatic interaction in protamine-controlled reversible DNA condensation. Therefore, we herein pay our attention only to the electrostatic interaction and devise a coarser-grained bead-spring model representing the right linear charge density on protamine and DNA chains but treating other short-range interactions as simply as possible, which would be suitable for real-scale simulations. Effective pair potential calculations and large-scale molecular dynamics simulations using this extremely simple model reproduce the phase behaviour of DNA in a wide range of protamine concentrations under low salt conditions, again revealing the importance of the electrostatic interaction in this process and providing a detailed nanoscale picture of bundle formation mediated by a charge disproportionation mechanism. Our simulations also show that protamine length alters DNA overcharging and in turn redissolution thresholds of DNA condensates, revealing the important role played by entropies and correlated fluctuations of condensing agents and thus offering an additional opportunity to design tailored nanoparticles for gene therapy. The control mechanism of DNA-protamine condensates will also provide a better microscopic picture of biomolecular condensates, i.e., membraneless organelles arising from liquid-liquid phase separation, that are emerging as key principles of intracellular organization. Such condensates controlled by post-translational modification of protamine, in particular phosphorylation, or by variations in protamine length from species to species may also be responsible for the chromatin-nucleoplasm patterning observed during spermatogenesis in several vertebrate and invertebrate species.
Collapse
Affiliation(s)
- Yun Hee Jang
- GREMAN UMR 7347, Université de Tours, CNRS, INSA CVL 37200 Tours France
- Department of Energy Science and Engineering, DGIST Daegu 42988 Korea
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris-Saclay 91405 Orsay France
| | - Eric Raspaud
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris-Saclay 91405 Orsay France
| | - Yves Lansac
- GREMAN UMR 7347, Université de Tours, CNRS, INSA CVL 37200 Tours France
- Department of Energy Science and Engineering, DGIST Daegu 42988 Korea
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris-Saclay 91405 Orsay France
| |
Collapse
|
19
|
Chan C. Phase separation in flowering control: DCP5 and SSF co-regulate FLC by liquid-liquid phase separation. THE PLANT CELL 2023; 35:3160-3161. [PMID: 37282719 PMCID: PMC10473213 DOI: 10.1093/plcell/koad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Affiliation(s)
- Ching Chan
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists, Rockville, MD, USA
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
20
|
Cordeiro Y, Freire MHO, Wiecikowski AF, do Amaral MJ. (Dys)functional insights into nucleic acids and RNA-binding proteins modulation of the prion protein and α-synuclein phase separation. Biophys Rev 2023; 15:577-589. [PMID: 37681103 PMCID: PMC10480379 DOI: 10.1007/s12551-023-01067-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 09/09/2023] Open
Abstract
Prion diseases are prototype of infectious diseases transmitted by a protein, the prion protein (PrP), and are still not understandable at the molecular level. Heterogenous species of aggregated PrP can be generated from its monomer. α-synuclein (αSyn), related to Parkinson's disease, has also shown a prion-like pathogenic character, and likewise PrP interacts with nucleic acids (NAs), which in turn modulate their aggregation. Recently, our group and others have characterized that NAs and/or RNA-binding proteins (RBPs) modulate recombinant PrP and/or αSyn condensates formation, and uncontrolled condensation might precede pathological aggregation. Tackling abnormal phase separation of neurodegenerative disease-related proteins has been proposed as a promising therapeutic target. Therefore, understanding the mechanism by which polyanions, like NAs, modulate phase transitions intracellularly, is key to assess their role on toxicity promotion and neuronal death. Herein we discuss data on the nucleic acids binding properties and phase separation ability of PrP and αSyn with a special focus on their modulation by NAs and RBPs. Furthermore, we provide insights into condensation of PrP and/or αSyn in the light of non-trivial subcellular locations such as the nuclear and cytosolic environments.
Collapse
Affiliation(s)
- Yraima Cordeiro
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho 373, bloco B, subsolo Sala 36, Rio de Janeiro, RJ 21941-902 Brazil
| | - Maria Heloisa O. Freire
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho 373, bloco B, subsolo Sala 36, Rio de Janeiro, RJ 21941-902 Brazil
| | - Adalgisa Felippe Wiecikowski
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho 373, bloco B, subsolo Sala 36, Rio de Janeiro, RJ 21941-902 Brazil
| | - Mariana Juliani do Amaral
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho 373, bloco B, subsolo Sala 36, Rio de Janeiro, RJ 21941-902 Brazil
| |
Collapse
|
21
|
Sarthak K, Winogradoff D, Ge Y, Myong S, Aksimentiev A. Benchmarking Molecular Dynamics Force Fields for All-Atom Simulations of Biological Condensates. J Chem Theory Comput 2023; 19:3721-3740. [PMID: 37134270 PMCID: PMC11169342 DOI: 10.1021/acs.jctc.3c00148] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Proteins containing intrinsically disordered regions are integral parts of the cellular signaling pathways and common components of biological condensates. Point mutations in the protein sequence, genetic at birth or acquired through aging, can alter the properties of the condensates, marking the onset of neurodegenerative diseases such as ALS and dementia. While the all-atom molecular dynamics method can, in principle, elucidate the conformational changes that arise from point mutations, the applications of this method to protein condensate systems is conditioned upon the availability of molecular force fields that can accurately describe both structured and disordered regions of such proteins. Using the special-purpose Anton 2 supercomputer, we benchmarked the efficacy of nine presently available molecular force fields in describing the structure and dynamics of a Fused in sarcoma (FUS) protein. Five-microsecond simulations of the full-length FUS protein characterized the effect of the force field on the global conformation of the protein, self-interactions among its side chains, solvent accessible surface area, and the diffusion constant. Using the results of dynamic light scattering as a benchmark for the FUS radius of gyration, we identified several force fields that produced FUS conformations within the experimental range. Next, we used these force fields to perform ten-microsecond simulations of two structured RNA binding domains of FUS bound to their respective RNA targets, finding the choice of the force field to affect stability of the RNA-FUS complex. Taken together, our data suggest that a combination of protein and RNA force fields sharing a common four-point water model provides an optimal description of proteins containing both disordered and structured regions and RNA-protein interactions. To make simulations of such systems available beyond the Anton 2 machines, we describe and validate implementation of the best performing force fields in a publicly available molecular dynamics program NAMD. Our NAMD implementation enables simulations of large (tens of millions of atoms) biological condensate systems and makes such simulations accessible to a broader scientific community.
Collapse
Affiliation(s)
- Kumar Sarthak
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - David Winogradoff
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - Yingda Ge
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sua Myong
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Aleksei Aksimentiev
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| |
Collapse
|
22
|
Ricard-Blum S, Couchman JR. Conformations, interactions and functions of intrinsically disordered syndecans. Biochem Soc Trans 2023:BST20221085. [PMID: 37334846 DOI: 10.1042/bst20221085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Syndecans are transmembrane heparan sulfate proteoglycans present on most mammalian cell surfaces. They have a long evolutionary history, a single syndecan gene being expressed in bilaterian invertebrates. Syndecans have attracted interest because of their potential roles in development and disease, including vascular diseases, inflammation and various cancers. Recent structural data is providing important insights into their functions, which are complex, involving both intrinsic signaling through cytoplasmic binding partners and co-operative mechanisms where syndecans form a signaling nexus with other receptors such as integrins and tyrosine kinase growth factor receptors. While the cytoplasmic domain of syndecan-4 has a well-defined dimeric structure, the syndecan ectodomains are intrinsically disordered, which is linked to a capacity to interact with multiple partners. However, it remains to fully establish the impact of glycanation and partner proteins on syndecan core protein conformations. Genetic models indicate that a conserved property of syndecans links the cytoskeleton to calcium channels of the transient receptor potential class, compatible with roles as mechanosensors. In turn, syndecans influence actin cytoskeleton organization to impact motility, adhesion and the extracellular matrix environment. Syndecan clustering with other cell surface receptors into signaling microdomains has relevance to tissue differentiation in development, for example in stem cells, but also in disease where syndecan expression can be markedly up-regulated. Since syndecans have potential as diagnostic and prognostic markers as well as possible targets in some forms of cancer, it remains important to unravel structure/function relationships in the four mammalian syndecans.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- ICBMS, UMR 5246 CNRS, Universite Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - John R Couchman
- Biotech Research & Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
23
|
Djaja NA, Chang MT, Beinart FR, Morris VM, Ganser LR, Myong S. Nucleation and dissolution mechanism underlying amyotrophic lateral sclerosis/frontotemporal lobar dementia-linked fused in sarcoma condensates. iScience 2023; 26:106537. [PMID: 37123224 PMCID: PMC10139993 DOI: 10.1016/j.isci.2023.106537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/17/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Fused in sarcoma (FUS) is a nuclear RNA-binding protein. Mutations in FUS lead to the mislocalization of FUS from the nucleus to the cytosol and formation of pathogenic aggregates in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD), yet with unknown molecular mechanisms. Using mutant and stress conditions, we visualized FUS localization and aggregate formation in cells. We used single-molecule pull-down (SiMPull) to quantify the native oligomerization states of wildtype (WT) and mutant FUS in cells. We demonstrate that the NLS mutants exhibited the highest oligomerization (>3) followed by other FUS mutants (>2) and WT FUS which is primarily monomeric. Strikingly, the mutant FUS oligomers are extremely stable and resistant to treatment by high salt, hexanediol, RNase, and Karyopherin-β2 and only soluble in GdnHCl and SDS. We propose that the increased oligomerization units of mutant FUS and their high stability may contribute to ALS/FTLD pathogenesis.
Collapse
Affiliation(s)
- Nathalie A. Djaja
- Program in Cellular Molecular Developmental Biology and Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Matthew T. Chang
- Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Freya R. Beinart
- Department of Biology, Kenyon College, 106 College Park Dr, Gambler, OH 43022, USA
| | - Vivian M. Morris
- Lymphoid Malignancy Branch, National Cancer Institute, National Institutes of Health, Building 10, Bethesda, MD 20814, USA
| | - Laura R. Ganser
- Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Sua Myong
- Program in Cellular Molecular Developmental Biology and Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
24
|
Radhakrishnan S, Martin CA, Rammohan A, Vij M, Chandrasekar M, Rela M. Significance of nucleologenesis, ribogenesis, and nucleolar proteome in the pathogenesis and recurrence of hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol 2023; 17:363-378. [PMID: 36919496 DOI: 10.1080/17474124.2023.2191189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
INTRODUCTION Emerging evidence suggests that enhanced ribosome biogenesis, increased size, and quantitative distribution of nucleoli are associated with dysregulated transcription, which in turn drives a cell into aberrant cellular proliferation and malignancy. Nucleolar alterations have been considered a prognostic histological marker for aggressive tumors. More recently, advancements in the understanding of chromatin network (nucleoplasm viscosity) regulated liquid-liquid phase separation mechanism of nucleolus formation and their multifunctional role shed light on other regulatory processes, apart from ribosomal biogenesis of the nucleolus. AREAS COVERED Using hepatocellular carcinoma as a model to study the role of nucleoli in tumor progression, we review the potential of nucleolus coalescence in the onset and development of tumors through non-ribosomal biogenesis pathways, thereby providing new avenues for early diagnosis and cancer therapy. EXPERT OPINION Molecular-based classifications have failed to identify the nucleolar-based molecular targets that facilitate cell-cycle progression. However, the algorithm-based tumor risk identification with high-resolution medical images suggests prominent nucleoli, karyotheca, and increased nucleus/cytoplasm ratio as largely associated with tumor recurrence. Nonetheless, the role of the non-ribosomal functions of nucleoli in tumorigenesis remains elusive. This clearly indicates the lacunae in the study of the nucleolar proteins pertaining to cancer. [Figure: see text].
Collapse
Affiliation(s)
| | | | - Ashwin Rammohan
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mukul Vij
- Department of Pathology, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mani Chandrasekar
- Department of Oncology, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mohamed Rela
- Cell Laboratory, National Foundation for Liver Research, Chennai, India
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Chennai, India
| |
Collapse
|
25
|
From the Catastrophic Objective Irreproducibility of Cancer Research and Unavoidable Failures of Molecular Targeted Therapies to the Sparkling Hope of Supramolecular Targeted Strategies. Int J Mol Sci 2023; 24:ijms24032796. [PMID: 36769134 PMCID: PMC9917659 DOI: 10.3390/ijms24032796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
The unprecedented non-reproducibility of the results published in the field of cancer research has recently come under the spotlight. In this short review, we try to highlight some general principles in the organization and evolution of cancerous tumors, which objectively lead to their enormous variability and, consequently, the irreproducibility of the results of their investigation. This heterogeneity is also extremely unfavorable for the effective use of molecularly targeted medicine. Against the seemingly comprehensive background of this heterogeneity, we single out two supramolecular characteristics common to all tumors: the clustered nature of tumor interactions with their microenvironment and the formation of biomolecular condensates with tumor-specific distinctive features. We suggest that these features can form the basis of strategies for tumor-specific supramolecular targeted therapies.
Collapse
|
26
|
Fluorescence and phosphorescence lifetime imaging reveals a significant cell nuclear viscosity and refractive index changes upon DNA damage. Sci Rep 2023; 13:422. [PMID: 36624137 PMCID: PMC9829731 DOI: 10.1038/s41598-022-26880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Cytoplasmic viscosity is a crucial parameter in determining rates of diffusion-limited reactions. Changes in viscosity are associated with several diseases, whilst nuclear viscosity determines gene integrity, regulation and expression. Yet how drugs including DNA-damaging agents affect viscosity is unknown. We demonstrate the use of a platinum complex, Pt[L]Cl, that localizes efficiently mostly in the nucleus as a probe for nuclear viscosity. The phosphorescence lifetime of Pt[L]Cl is sensitive to viscosity and provides an excellent tool to investigate the impact of DNA damage. We show using Fluorescence Lifetime Imaging (FLIM) that the lifetime of both green and red fluorescent proteins (FP) are also sensitive to changes in cellular viscosity and refractive index. However, Pt[L]Cl proved to be a more sensitive viscosity probe, by virtue of microsecond phosphorescence lifetime versus nanosecond fluorescence lifetime of FP, hence greater sensitivity to bimolecular reactions. DNA damage was inflicted by either a two-photon excitation, one-photon excitation microbeam and X-rays. DNA damage of live cells causes significant increase in the lifetime of either Pt[L]Cl (HeLa cells, 12.5-14.1 µs) or intracellularly expressed mCherry (HEK293 cells, 1.54-1.67 ns), but a decrease in fluorescence lifetime of GFP from 2.65 to 2.29 ns (in V15B cells). These values represent a viscosity change from 8.59 to 20.56 cP as well as significant changes in the refractive index (RI), according to independent calibration. Interestingly DNA damage localized to a submicron region following a laser microbeam induction showed a whole cell viscosity change, with those in the nucleus being greater than the cytoplasm. We also found evidence of a by-stander effect, whereby adjacent un-irradiated cells also showed nuclear viscosity change. Finally, an increase in viscosity following DNA damage was also observed in bacterial cells with an over-expressed mNeonGreen FP, evidenced by the change in its lifetime from 2.8 to 2.4 ns.
Collapse
|
27
|
Alshareedah I, Banerjee PR. Measurement of Protein and Nucleic Acid Diffusion Coefficients Within Biomolecular Condensates Using In-Droplet Fluorescence Correlation Spectroscopy. Methods Mol Biol 2023; 2563:199-213. [PMID: 36227474 PMCID: PMC9884114 DOI: 10.1007/978-1-0716-2663-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Liquid-liquid phase separation of protein and RNA complexes into biomolecular condensates has emerged as a ubiquitous phenomenon in living systems. These protein-RNA condensates are thought to be involved in many biological functions in all forms of life. One of the most sought-after properties of these condensates is their dynamical properties, as they are a major determinant of condensate physiological function and disease processes. Measurement of the diffusion dynamics of individual components in a multicomponent biomolecular condensate is therefore routinely performed. Here, we outline the experimental procedure for performing in-droplet fluorescence correlation spectroscopy (FCS) measurements to extract the diffusion coefficient of individual molecules within a biomolecular condensate in vitro. Unlike more common experiments such as fluorescence recovery after photobleaching (FRAP), where data interpretation is not straightforward and strictly model dependent, FCS offers a robust and more accurate way to quantify biomolecular diffusion rates in the dense phase. The small observation volume allows FCS experiments to report on the local diffusion coefficient within a spatial resolution of <1 μm, making it ideal for probing spatial inhomogeneities within condensates as well as variable dynamics within subcompartments of multiphasic condensates.
Collapse
Affiliation(s)
| | - Priya R Banerjee
- Department of Physics, University at Buffalo SUNY, Buffalo, NY, USA.
| |
Collapse
|
28
|
Samuel AZ, Sugiyama K, Ando M, Takeyama H. Direct imaging of intracellular RNA, DNA, and liquid-liquid phase separated membraneless organelles with Raman microspectroscopy. Commun Biol 2022; 5:1383. [PMID: 36528668 PMCID: PMC9759543 DOI: 10.1038/s42003-022-04342-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Methodologies for direct intracellular imaging of RNA and DNA are necessary for the advancement of bioimaging. Here we show direct label-free imaging of RNA and DNA in single cells by isolating their accurate Raman spectra. Raman images of DNA from interphase cells show intact nucleus, while those from mitotic cells reveal condensed chromosome. The condensed chromosome images are accurate enough to assign the stage of mitotic cell division (e.g., metaphase). Raman spectral features indicate B-DNA double helical conformational form in all the cell lines investigated here. The Raman images of RNAs, on the other hand, reveal liquid-liquid phase separated (LLPS) membraneless organelles in interphase cells, which disappears during mitosis. Further, the Raman spectrum of proteins from the intracellular LLPS organelles indicates slight enrichment of amyloid-like secondary structural features. Vibrational imaging of intracellular DNA and RNA simultaneously would open myriad of opportunities for examining functional biochemical aspects of cells and organelles.
Collapse
Affiliation(s)
- Ashok Zachariah Samuel
- Research Organization for Nano and Life Innovations, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.
| | - Kaori Sugiyama
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Masahiro Ando
- Research Organization for Nano and Life Innovations, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Haruko Takeyama
- Research Organization for Nano and Life Innovations, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, Japan, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| |
Collapse
|
29
|
Sridharan S, Hernandez-Armendariz A, Kurzawa N, Potel CM, Memon D, Beltrao P, Bantscheff M, Huber W, Cuylen-Haering S, Savitski MM. Systematic discovery of biomolecular condensate-specific protein phosphorylation. Nat Chem Biol 2022; 18:1104-1114. [PMID: 35864335 PMCID: PMC9512703 DOI: 10.1038/s41589-022-01062-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/13/2022] [Indexed: 12/27/2022]
Abstract
Reversible protein phosphorylation is an important mechanism for regulating (dis)assembly of biomolecular condensates. However, condensate-specific phosphosites remain largely unknown, thereby limiting our understanding of the underlying mechanisms. Here, we combine solubility proteome profiling with phosphoproteomics to quantitatively map several hundred phosphosites enriched in either soluble or condensate-bound protein subpopulations, including a subset of phosphosites modulating protein-RNA interactions. We show that multi-phosphorylation of the C-terminal disordered segment of heteronuclear ribonucleoprotein A1 (HNRNPA1), a key RNA-splicing factor, reduces its ability to locate to nuclear clusters. For nucleophosmin 1 (NPM1), an essential nucleolar protein, we show that phosphorylation of S254 and S260 is crucial for lowering its partitioning to the nucleolus and additional phosphorylation of distal sites enhances its retention in the nucleoplasm. These phosphorylation events decrease RNA and protein interactions of NPM1 to regulate its condensation. Our dataset is a rich resource for systematically uncovering the phosphoregulation of biomolecular condensates.
Collapse
Affiliation(s)
- Sindhuja Sridharan
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Alberto Hernandez-Armendariz
- Cell Biology and Biophysics Unit, EMBL, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nils Kurzawa
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Clement M Potel
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Danish Memon
- European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Pedro Beltrao
- European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | | | - Wolfgang Huber
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
30
|
Multiscale characterization reveals oligomerization dependent phase separation of primer-independent RNA polymerase nsp8 from SARS-CoV-2. Commun Biol 2022; 5:925. [PMID: 36071105 PMCID: PMC9451113 DOI: 10.1038/s42003-022-03892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
RNA replication and transcription machinery is an important drug target for fighting against coronavirus. Non-structure protein nsp8 was proposed harboring primase activity. However, the RNA primer synthesis mechanism of nsp8 is still largely unknown. Here, we purified dimer and tetramer forms of SARS-CoV-2 nsp8. Combined with dynamic light scattering, small-angle neutron scattering and thermo-stability analysis, we found that both dimer and tetramer become loosened and destabilized with decreasing salt concentration, and the dimer form is more stable than the tetramer form. Further investigation showed that nsp8 dimer and tetramer can undergo phase separation but exhibit different phase separation behaviors. Nsp8 dimer can form liquid-like droplets in the buffer with a low concentration of NaCl; phase separation of nsp8 tetramer depends on the assistance of RNA. Our findings on different phase separation behaviors of nsp8 dimer and tetramer may provide insight into the functional studies of nsp8 in coronavirus. The phase separation behaviour of non-structure protein nsp8 of SARS CoV2 in the primer synthesis mechanism is presented, underpinning the replication of coronavirus.
Collapse
|
31
|
Chakravarty AK, McGrail DJ, Lozanoski TM, Dunn BS, Shih DJ, Cirillo KM, Cetinkaya SH, Zheng WJ, Mills GB, Yi SS, Jarosz DF, Sahni N. Biomolecular Condensation: A New Phase in Cancer Research. Cancer Discov 2022; 12:2031-2043. [PMID: 35852417 PMCID: PMC9437557 DOI: 10.1158/2159-8290.cd-21-1605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/06/2022] [Accepted: 06/08/2022] [Indexed: 01/09/2023]
Abstract
Multicellularity was a watershed development in evolution. However, it also meant that individual cells could escape regulatory mechanisms that restrict proliferation at a severe cost to the organism: cancer. From the standpoint of cellular organization, evolutionary complexity scales to organize different molecules within the intracellular milieu. The recent realization that many biomolecules can "phase-separate" into membraneless organelles, reorganizing cellular biochemistry in space and time, has led to an explosion of research activity in this area. In this review, we explore mechanistic connections between phase separation and cancer-associated processes and emerging examples of how these become deranged in malignancy. SIGNIFICANCE One of the fundamental functions of phase separation is to rapidly and dynamically respond to environmental perturbations. Importantly, these changes often lead to alterations in cancer-relevant pathways and processes. This review covers recent advances in the field, including emerging principles and mechanisms of phase separation in cancer.
Collapse
Affiliation(s)
- Anupam K. Chakravarty
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Daniel J. McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, Ohio
| | | | - Brandon S. Dunn
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David J.H. Shih
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, Texas
| | - Kara M. Cirillo
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sueda H. Cetinkaya
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wenjin Jim Zheng
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, Texas
| | - Gordon B. Mills
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health and Sciences University, Portland, Oregon
| | - S. Stephen Yi
- Department of Oncology, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Texas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
- Interdisciplinary Life Sciences Graduate Programs (ILSGP) and Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, Texas
| | - Daniel F. Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Program in Quantitative and Computational Biosciences (QCB), Baylor College of Medicine, Houston, Texas
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
32
|
Peng Q, Tan S, Xia L, Wu N, Oyang L, Tang Y, Su M, Luo X, Wang Y, Sheng X, Zhou Y, Liao Q. Phase separation in Cancer: From the Impacts and Mechanisms to Treatment potentials. Int J Biol Sci 2022; 18:5103-5122. [PMID: 35982902 PMCID: PMC9379413 DOI: 10.7150/ijbs.75410] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/16/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is a public health problem of great concern, and it is also one of the main causes of death in the world. Cancer is a disease characterized by dysregulation of diverse cellular processes, including avoiding growth inhibitory factors, avoiding immune damage and promoting metastasis, etc. However, the precise mechanism of tumorigenesis and tumor progression still needs to be further elucidated. Formations of liquid-liquid phase separation (LLPS) condensates are a common strategy for cells to achieve diverse functions, such as chromatin organization, signal transduction, DNA repair and transcriptional regulation, etc. The biomolecular aggregates formed by LLPS are mainly driven by multivalent weak interactions mediated by intrinsic disordered regions (IDRs) in proteins. In recent years, aberrant phase separations and transition have been reported to be related to the process of various diseases, such as neurodegenerative diseases and cancer. Herein, we discussed recent findings that phase separation regulates tumor-related signaling pathways and thus contributes to tumor progression. We also reviewed some tumor virus-associated proteins to regulate the development of virus-associated tumors via phase separation. Finally, we discussed some possible strategies for treating tumors by targeting phase separation.
Collapse
Affiliation(s)
- Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Ying Wang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xiaowu Sheng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha 410013, Hunan, China
| |
Collapse
|
33
|
Luzak V. Nuclear Condensates: New Targets to Combat Parasite Immune Evasion? Front Cell Infect Microbiol 2022; 12:942200. [PMID: 35903200 PMCID: PMC9314548 DOI: 10.3389/fcimb.2022.942200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vanessa Luzak
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute of Experimental Parasitology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
- *Correspondence: Vanessa Luzak,
| |
Collapse
|
34
|
Garaizar A, Espinosa JR, Joseph JA, Collepardo-Guevara R. Kinetic interplay between droplet maturation and coalescence modulates shape of aged protein condensates. Sci Rep 2022; 12:4390. [PMID: 35293386 PMCID: PMC8924231 DOI: 10.1038/s41598-022-08130-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/07/2022] [Indexed: 12/29/2022] Open
Abstract
Biomolecular condensates formed by the process of liquid-liquid phase separation (LLPS) play diverse roles inside cells, from spatiotemporal compartmentalisation to speeding up chemical reactions. Upon maturation, the liquid-like properties of condensates, which underpin their functions, are gradually lost, eventually giving rise to solid-like states with potential pathological implications. Enhancement of inter-protein interactions is one of the main mechanisms suggested to trigger the formation of solid-like condensates. To gain a molecular-level understanding of how the accumulation of stronger interactions among proteins inside condensates affect the kinetic and thermodynamic properties of biomolecular condensates, and their shapes over time, we develop a tailored coarse-grained model of proteins that transition from establishing weak to stronger inter-protein interactions inside condensates. Our simulations reveal that the fast accumulation of strongly binding proteins during the nucleation and growth stages of condensate formation results in aspherical solid-like condensates. In contrast, when strong inter-protein interactions appear only after the equilibrium condensate has been formed, or when they accumulate slowly over time with respect to the time needed for droplets to fuse and grow, spherical solid-like droplets emerge. By conducting atomistic potential-of-mean-force simulations of NUP-98 peptides-prone to forming inter-protein [Formula: see text]-sheets-we observe that formation of inter-peptide [Formula: see text]-sheets increases the strength of the interactions consistently with the loss of liquid-like condensate properties we observe at the coarse-grained level. Overall, our work aids in elucidating fundamental molecular, kinetic, and thermodynamic mechanisms linking the rate of change in protein interaction strength to condensate shape and maturation during ageing.
Collapse
Affiliation(s)
- Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jerelle A Joseph
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK.
| |
Collapse
|
35
|
Zhang H, Romero H, Schmidt A, Gagova K, Qin W, Bertulat B, Lehmkuhl A, Milden M, Eck M, Meckel T, Leonhardt H, Cardoso MC. MeCP2-induced heterochromatin organization is driven by oligomerization-based liquid–liquid phase separation and restricted by DNA methylation. Nucleus 2022; 13:1-34. [PMID: 35156529 PMCID: PMC8855868 DOI: 10.1080/19491034.2021.2024691] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Hui Zhang
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Hector Romero
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Annika Schmidt
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Katalina Gagova
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Weihua Qin
- Faculty of Biology, Ludwig Maximilians University Munich, Munich, Germany
| | - Bianca Bertulat
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Anne Lehmkuhl
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Manuela Milden
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Malte Eck
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Tobias Meckel
- Department of Chemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Heinrich Leonhardt
- Faculty of Biology, Ludwig Maximilians University Munich, Munich, Germany
| | - M. Cristina Cardoso
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
36
|
Han D, Longhini AP, Zhang X, Hoang V, Wilson MZ, Kosik KS. Dynamic assembly of the mRNA m6A methyltransferase complex is regulated by METTL3 phase separation. PLoS Biol 2022; 20:e3001535. [PMID: 35143475 PMCID: PMC8865655 DOI: 10.1371/journal.pbio.3001535] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 02/23/2022] [Accepted: 01/11/2022] [Indexed: 11/18/2022] Open
Abstract
m6A methylation is the most abundant and reversible chemical modification on mRNA with approximately one-fourth of eukaryotic mRNAs harboring at least one m6A-modified base. The recruitment of the mRNA m6A methyltransferase writer complex to phase-separated nuclear speckles is likely to be crucial in its regulation; however, control over the activity of the complex remains unclear. Supported by our observation that a core catalytic subunit of the methyltransferase complex, METTL3, is endogenously colocalized within nuclear speckles as well as in noncolocalized puncta, we tracked the components of the complex with a Cry2-METTL3 fusion construct to disentangle key domains and interactions necessary for the phase separation of METTL3. METTL3 is capable of self-interaction and likely provides the multivalency to drive condensation. Condensates in cells necessarily contain myriad components, each with partition coefficients that establish an entropic barrier that can regulate entry into the condensate. In this regard, we found that, in contrast to the constitutive binding of METTL14 to METTL3 in both the diffuse and the dense phase, WTAP only interacts with METTL3 in dense phase and thereby distinguishes METTL3/METTL14 single complexes in the dilute phase from METTL3/METTL14 multicomponent condensates. Finally, control over METTL3/METTL14 condensation is determined by its small molecule cofactor, S-adenosylmethionine (SAM), which regulates conformations of two gate loops, and some cancer-associated mutations near gate loops can impair METTL3 condensation. Therefore, the link between SAM binding and the control of writer complex phase state suggests that the regulation of its phase state is a potentially critical facet of its functional regulation.
Collapse
Affiliation(s)
- Dasol Han
- Neuroscience Research Institute, University of California, Santa Barbara, California, United States of America
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, United States of America
| | - Andrew P. Longhini
- Neuroscience Research Institute, University of California, Santa Barbara, California, United States of America
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, United States of America
| | - Xuemei Zhang
- Neuroscience Research Institute, University of California, Santa Barbara, California, United States of America
| | - Vivian Hoang
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, United States of America
| | - Maxwell Z. Wilson
- Neuroscience Research Institute, University of California, Santa Barbara, California, United States of America
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, United States of America
| | - Kenneth S. Kosik
- Neuroscience Research Institute, University of California, Santa Barbara, California, United States of America
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, United States of America
| |
Collapse
|
37
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
38
|
Lyonnais S, Sadiq SK, Lorca-Oró C, Dufau L, Nieto-Marquez S, Escribà T, Gabrielli N, Tan X, Ouizougun-Oubari M, Okoronkwo J, Reboud-Ravaux M, Gatell JM, Marquet R, Paillart JC, Meyerhans A, Tisné C, Gorelick RJ, Mirambeau G. The HIV-1 Nucleocapsid Regulates Its Own Condensation by Phase-Separated Activity-Enhancing Sequestration of the Viral Protease during Maturation. Viruses 2021; 13:v13112312. [PMID: 34835118 PMCID: PMC8625067 DOI: 10.3390/v13112312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023] Open
Abstract
A growing number of studies indicate that mRNAs and long ncRNAs can affect protein populations by assembling dynamic ribonucleoprotein (RNP) granules. These phase-separated molecular ‘sponges’, stabilized by quinary (transient and weak) interactions, control proteins involved in numerous biological functions. Retroviruses such as HIV-1 form by self-assembly when their genomic RNA (gRNA) traps Gag and GagPol polyprotein precursors. Infectivity requires extracellular budding of the particle followed by maturation, an ordered processing of ∼2400 Gag and ∼120 GagPol by the viral protease (PR). This leads to a condensed gRNA-NCp7 nucleocapsid and a CAp24-self-assembled capsid surrounding the RNP. The choreography by which all of these components dynamically interact during virus maturation is one of the missing milestones to fully depict the HIV life cycle. Here, we describe how HIV-1 has evolved a dynamic RNP granule with successive weak–strong–moderate quinary NC-gRNA networks during the sequential processing of the GagNC domain. We also reveal two palindromic RNA-binding triads on NC, KxxFxxQ and QxxFxxK, that provide quinary NC-gRNA interactions. Consequently, the nucleocapsid complex appears properly aggregated for capsid reassembly and reverse transcription, mandatory processes for viral infectivity. We show that PR is sequestered within this RNP and drives its maturation/condensation within minutes, this process being most effective at the end of budding. We anticipate such findings will stimulate further investigations of quinary interactions and emergent mechanisms in crowded environments throughout the wide and growing array of RNP granules.
Collapse
Affiliation(s)
- Sébastien Lyonnais
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
- Centre d’Etudes des Maladies Infectieuses et Pharmacologie Anti-Infectieuse (CEMIPAI), CNRS UAR 3725, Université de Montpellier, 1919 Route de Mende, CEDEX 05, 34293 Montpellier, France
- Correspondence: (S.L.); (S.K.S.); (G.M.)
| | - S. Kashif Sadiq
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Carrer Doctor Aiguader 88, 08003 Barcelona, Spain;
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Correspondence: (S.L.); (S.K.S.); (G.M.)
| | - Cristina Lorca-Oró
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
| | - Laure Dufau
- Biological Adaptation and Ageing (B2A), CNRS UMR 8256 & INSERM ERL U1164, Institut de Biologie Paris-Seine (IBPS), Faculté des Sciences et d’Ingénierie (FSI), Sorbonne Université, 7 Quai St Bernard, CEDEX 05, 75252 Paris, France; (L.D.); (M.R.-R.)
| | - Sara Nieto-Marquez
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
| | - Tuixent Escribà
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
| | - Natalia Gabrielli
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
| | - Xiao Tan
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
- Biological Adaptation and Ageing (B2A), CNRS UMR 8256 & INSERM ERL U1164, Institut de Biologie Paris-Seine (IBPS), Faculté des Sciences et d’Ingénierie (FSI), Sorbonne Université, 7 Quai St Bernard, CEDEX 05, 75252 Paris, France; (L.D.); (M.R.-R.)
| | - Mohamed Ouizougun-Oubari
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
| | - Josephine Okoronkwo
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
| | - Michèle Reboud-Ravaux
- Biological Adaptation and Ageing (B2A), CNRS UMR 8256 & INSERM ERL U1164, Institut de Biologie Paris-Seine (IBPS), Faculté des Sciences et d’Ingénierie (FSI), Sorbonne Université, 7 Quai St Bernard, CEDEX 05, 75252 Paris, France; (L.D.); (M.R.-R.)
| | - José Maria Gatell
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
- Facultat de Medicina y Ciencias de la Salud, Universitat de Barcelona, Carrer de Casanova 143, 08036 Barcelona, Spain
| | - Roland Marquet
- Architecture et Réactivité de l’ARN, CNRS UPR 9002, Université de Strasbourg, 2 Allée Conrad Roentgen, 67000 Strasbourg, France; (R.M.); (J.-C.P.)
| | - Jean-Christophe Paillart
- Architecture et Réactivité de l’ARN, CNRS UPR 9002, Université de Strasbourg, 2 Allée Conrad Roentgen, 67000 Strasbourg, France; (R.M.); (J.-C.P.)
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Carrer Doctor Aiguader 88, 08003 Barcelona, Spain;
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys 23, 08010 Barcelona, Spain
| | - Carine Tisné
- Expression Génétique Microbienne, CNRS UMR 8261, Institut de Biologie Physico-Chimique (IBPC), Université de Paris, 13 Rue Pierre et Marie Curie, 75005 Paris, France;
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA;
| | - Gilles Mirambeau
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
- Biologie Intégrative des Organismes Marins (BIOM), CNRS UMR 7232, Observatoire Océanologique de Banyuls (OOB), Faculté des Sciences et d’Ingénierie (FSI), Sorbonne Université, 1 Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France
- Correspondence: (S.L.); (S.K.S.); (G.M.)
| |
Collapse
|
39
|
Alshareedah I, Moosa MM, Pham M, Potoyan DA, Banerjee PR. Programmable viscoelasticity in protein-RNA condensates with disordered sticker-spacer polypeptides. Nat Commun 2021; 12:6620. [PMID: 34785657 PMCID: PMC8595643 DOI: 10.1038/s41467-021-26733-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/20/2021] [Indexed: 01/02/2023] Open
Abstract
Liquid-liquid phase separation of multivalent proteins and RNAs drives the formation of biomolecular condensates that facilitate membrane-free compartmentalization of subcellular processes. With recent advances, it is becoming increasingly clear that biomolecular condensates are network fluids with time-dependent material properties. Here, employing microrheology with optical tweezers, we reveal molecular determinants that govern the viscoelastic behavior of condensates formed by multivalent Arg/Gly-rich sticker-spacer polypeptides and RNA. These condensates behave as Maxwell fluids with an elastically-dominant rheological response at shorter timescales and a liquid-like behavior at longer timescales. The viscous and elastic regimes of these condensates can be tuned by the polypeptide and RNA sequences as well as their mixture compositions. Our results establish a quantitative link between the sequence- and structure-encoded biomolecular interactions at the microscopic scale and the rheological properties of the resulting condensates at the mesoscale, enabling a route to systematically probe and rationally engineer biomolecular condensates with programmable mechanics.
Collapse
Affiliation(s)
| | | | - Matthew Pham
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Davit A Potoyan
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.
| | - Priya R Banerjee
- Department of Physics, University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
40
|
Hidaka T, Wee WA, Yum JH, Sugiyama H, Park S. Photo-Controllable Phase Transition of Arylazopyrazole-Conjugated Oligonucleotides. Bioconjug Chem 2021; 32:2129-2133. [PMID: 34498851 DOI: 10.1021/acs.bioconjchem.1c00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phase transition is a promising aspect of DNA as biopolymers. Anionic DNA oligonucleotides easily form complexes with cationic polypeptides such as polylysine, and duplex formation significantly influences their complexation and resulting microcompartments. In this study, phase transition of microcompartments containing DNA and polylysine was systematically induced by modulating duplex formation of arylazopyrazole-conjugated oligonucleotides with light. We demonstrated that UV irradiation destabilized DNA duplex and generated isotropic coacervates, while duplex stabilization by visible light irradiation caused the formation of liquid crystalline coacervates. This photocontrol of phase transition was highly repeatable, and similar changes were observed even after ten cycles of light irradiation. Our approach would provide a robust control layer to the development of tailor-made microcompartments.
Collapse
Affiliation(s)
- Takuya Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Wen Ann Wee
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Ji Hye Yum
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8501, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
41
|
Van Rechem C, Ji F, Chakraborty D, Black JC, Sadreyev RI, Whetstine JR. Collective regulation of chromatin modifications predicts replication timing during cell cycle. Cell Rep 2021; 37:109799. [PMID: 34610305 PMCID: PMC8530517 DOI: 10.1016/j.celrep.2021.109799] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/16/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Replication timing (RT) associates with genome architecture, while having a mixed relationship to histone marks. By profiling replication at high resolution and assessing broad histone marks across the cell cycle at the resolution of RT with and without genetic perturbation, we address the causal relationship between histone marks and RT. Four primary chromatin states, including an uncharacterized H3K36me2 state, emerge and define 97% of the mappable genome. RT and local replication patterns (e.g., initiation zones) quantitatively associate with chromatin states, histone mark dynamics, and spatial chromatin structure. Manipulation of broad histone marks and enhancer elements by overexpressing the histone H3 lysine 9/36 tri-demethylase KDM4A impacts RT across 11% of the genome. Broad histone modification changes were strong predictors of the observed RT alterations. Lastly, replication within H3K36me2-enriched neighborhoods is sensitive to KDM4A overexpression and is controlled at a megabase scale. These studies establish a role for collective chromatin mark regulation in modulating RT.
Collapse
Affiliation(s)
- Capucine Van Rechem
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Stanford Medicine, Stanford, CA 94305, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Damayanti Chakraborty
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Joshua C Black
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Johnathan R Whetstine
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA; Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
42
|
Tarczewska A, Kolonko-Adamska M, Zarębski M, Dobrucki J, Ożyhar A, Greb-Markiewicz B. The method utilized to purify the SARS-CoV-2 N protein can affect its molecular properties. Int J Biol Macromol 2021; 188:391-403. [PMID: 34371045 PMCID: PMC8343380 DOI: 10.1016/j.ijbiomac.2021.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022]
Abstract
One of the main structural proteins of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the nucleocapsid protein (N). The basic function of this protein is to bind genomic RNA and to form a protective nucleocapsid in the mature virion. The intrinsic ability of the N protein to interact with nucleic acids makes its purification very challenging. Therefore, typically employed purification methods appear to be insufficient for removing nucleic acid contamination. In this study, we present a novel purification protocol that enables the N protein to be prepared without any bound nucleic acids. We also performed comparative structural analysis of the N protein contaminated with nucleic acids and free of contamination and showed significant differences in the structural and phase separation properties of the protein. These results indicate that nucleic-acid contamination may severely affect molecular properties of the purified N protein. In addition, the notable ability of the N protein to form condensates whose morphology and behaviour suggest more ordered forms resembling gel-like or solid structures is described.
Collapse
Affiliation(s)
- Aneta Tarczewska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Marta Kolonko-Adamska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Mirosław Zarębski
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Jurek Dobrucki
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Beata Greb-Markiewicz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
43
|
Spegg V, Altmeyer M. Biomolecular condensates at sites of DNA damage: More than just a phase. DNA Repair (Amst) 2021; 106:103179. [PMID: 34311273 PMCID: PMC7612016 DOI: 10.1016/j.dnarep.2021.103179] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022]
Abstract
Protein recruitment to DNA break sites is an integral part of the DNA damage response (DDR). Elucidation of the hierarchy and temporal order with which DNA damage sensors as well as repair and signaling factors assemble around chromosome breaks has painted a complex picture of tightly regulated macromolecular interactions that build specialized compartments to facilitate repair and maintenance of genome integrity. While many of the underlying interactions, e.g. between repair factors and damage-induced histone marks, can be explained by lock-and-key or induced fit binding models assuming fixed stoichiometries, structurally less well defined interactions, such as the highly dynamic multivalent interactions implicated in phase separation, also participate in the formation of multi-protein assemblies in response to genotoxic stress. Although much remains to be learned about these types of cooperative and highly dynamic interactions and their functional roles, the rapidly growing interest in material properties of biomolecular condensates and in concepts from polymer chemistry and soft matter physics to understand biological processes at different scales holds great promises. Here, we discuss nuclear condensates in the context of genome integrity maintenance, highlighting the cooperative potential between clustered stoichiometric binding and phase separation. Rather than viewing them as opposing scenarios, their combined effects can balance structural specificity with favorable physicochemical properties relevant for the regulation and function of multilayered nuclear condensates.
Collapse
Affiliation(s)
- Vincent Spegg
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
44
|
Stanic M, Mekhail K. Integration of DNA damage responses with dynamic spatial genome organization. Trends Genet 2021; 38:290-304. [PMID: 34598804 DOI: 10.1016/j.tig.2021.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/28/2022]
Abstract
The maintenance of genome stability and cellular homeostasis depends on the temporal and spatial coordination of successive events constituting the classical DNA damage response (DDR). Recent findings suggest close integration and coordination of DDR signaling with specific cellular processes. The mechanisms underlying such coordination remain unclear. We review emerging crosstalk between DNA repair factors, chromatin remodeling, replication, transcription, spatial genome organization, cytoskeletal forces, and liquid-liquid phase separation (LLPS) in mediating DNA repair. We present an overarching DNA repair framework within which these dynamic processes intersect in nuclear space over time. Collectively, this interplay ensures the efficient assembly of DNA repair proteins onto shifting genome structures to preserve genome stability and cell survival.
Collapse
Affiliation(s)
- Mia Stanic
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, MaRS Centre, West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, MaRS Centre, West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada; Canada Research Chairs Program, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
45
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
46
|
Mimura M, Tomita S, Sugai H, Shinkai Y, Ishihara S, Kurita R. Uncharged Components of Single-Stranded DNA Modulate Liquid-Liquid Phase Separation With Cationic Linker Histone H1. Front Cell Dev Biol 2021; 9:710729. [PMID: 34422830 PMCID: PMC8371396 DOI: 10.3389/fcell.2021.710729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/14/2021] [Indexed: 11/15/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) of proteins and DNAs has been recognized as a fundamental mechanism for the formation of intracellular biomolecular condensates. Here, we show the role of the constituent DNA components, i.e., the phosphate groups, deoxyribose sugars, and nucleobases, in LLPS with a polycationic peptide, linker histone H1, a known key regulator of chromatin condensation. A comparison of the phase behavior of mixtures of H1 and single-stranded DNA-based oligomers in which one or more of the constituent moieties of DNA were removed demonstrated that not only the electrostatic interactions between the anionic phosphate groups of the oligomers and the cationic residues of H1, but also the interactions involving nucleobases and deoxyriboses (i) promoted the generation of spherical liquid droplets via LLPS as well as (ii) increased the density of DNA and decreased its fluidity within the droplets under low-salt conditions. Furthermore, we found the formation of non-spherical assemblies with both mobile and immobile fractions at relatively higher concentrations of H1 for all the oligomers. The roles of the DNA components that promote phase separation and modulate droplet characteristics revealed in this study will facilitate our understanding of the formation processes of the various biomolecular condensates containing nucleic acids, such as chromatin organization.
Collapse
Affiliation(s)
- Masahiro Mimura
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Shunsuke Tomita
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hiroka Sugai
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yoichi Shinkai
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Sayaka Ishihara
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Ryoji Kurita
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
47
|
Kato S, Garenne D, Noireaux V, Maeda YT. Phase Separation and Protein Partitioning in Compartmentalized Cell-Free Expression Reactions. Biomacromolecules 2021; 22:3451-3459. [PMID: 34258998 DOI: 10.1021/acs.biomac.1c00546] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Liquid-liquid phase separation (LLPS) is important to control a wide range of reactions from gene expression to protein degradation in a cell-sized space. To bring a better understanding of the compatibility of such phase-separated structures with protein synthesis, we study emergent LLPS in a cell-free transcription-translation (TXTL) reaction. When the TXTL reaction composed of many proteins is concentrated, the uniformly mixed state becomes unstable, and membrane-less phases form spontaneously. This LLPS droplet formation is induced when the TXTL reaction is enclosed in water-in-oil emulsion droplets, in which water evaporates from the surface. As the emulsion droplets shrink, smaller LLPS droplets appear inside the emulsion droplets and coalesce into large phase-separated domains that partition the localization of synthesized reporter proteins. The presence of PEG in the TXTL reaction is important not only for versatile cell-free protein synthesis but also for the formation of two large domains capable of protein partitioning. Our results may shed light on the dynamic interplay of LLPS formation and cell-free protein synthesis toward the construction of synthetic organelles.
Collapse
Affiliation(s)
- Shuzo Kato
- Department of Physics, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - David Garenne
- School of Physics and Astronomy, University of Minnesota, 115 Union Street Se, Minneapolis, Minnesota 55455, United States
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, 115 Union Street Se, Minneapolis, Minnesota 55455, United States
| | - Yusuke T Maeda
- Department of Physics, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| |
Collapse
|
48
|
Abstract
In eukaryotes, the genome is hierarchically packed inside the nucleus, which facilitates physical contact between cis-regulatory elements (CREs), such as enhancers and promoters. Accumulating evidence highlights the critical role of higher-order chromatin structure in precise regulation of spatiotemporal gene expression under diverse biological contexts including lineage commitment and cell activation by external stimulus. Genomics and imaging-based technologies, such as Hi-C and DNA fluorescence in situ hybridization (FISH), have revealed the key principles of genome folding, while newly developed tools focus on improvement in resolution, throughput and modality at single-cell and population levels, and challenge the knowledge obtained through conventional approaches. In this review, we discuss recent advances in our understanding of principles of higher-order chromosome conformation and technologies to investigate 4D chromatin interactions.
Collapse
Affiliation(s)
- Namyoung Jung
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Tae-Kyung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Yonsei University, Seoul 03722, Korea
| |
Collapse
|
49
|
Wessén J, Pal T, Das S, Lin YH, Chan HS. A Simple Explicit-Solvent Model of Polyampholyte Phase Behaviors and Its Ramifications for Dielectric Effects in Biomolecular Condensates. J Phys Chem B 2021; 125:4337-4358. [PMID: 33890467 DOI: 10.1021/acs.jpcb.1c00954] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomolecular condensates such as membraneless organelles, underpinned by liquid-liquid phase separation (LLPS), are important for physiological function, with electrostatics, among other interaction types, being a prominent force in their assembly. Charge interactions of intrinsically disordered proteins (IDPs) and other biomolecules are sensitive to the aqueous dielectric environment. Because the relative permittivity of protein is significantly lower than that of water, the interior of an IDP condensate is expected to be a relatively low-dielectric regime, which aside from its possible functional effects on client molecules should facilitate stronger electrostatic interactions among the scaffold IDPs. To gain insight into this LLPS-induced dielectric heterogeneity, addressing in particular whether a low-dielectric condensed phase entails more favorable LLPS than that posited by assuming IDP electrostatic interactions are uniformly modulated by the higher dielectric constant of the pure solvent, we consider a simplified multiple-chain model of polyampholytes immersed in explicit solvents that are either polarizable or possess a permanent dipole. Notably, simulated phase behaviors of these systems exhibit only minor to moderate differences from those obtained using implicit-solvent models with a uniform relative permittivity equals to that of pure solvent. Buttressed by theoretical treatments developed here using random phase approximation and polymer field-theoretic simulations, these observations indicate a partial compensation of effects between favorable solvent-mediated interactions among the polyampholytes in the condensed phase and favorable polyampholyte-solvent interactions in the dilute phase, often netting only a minor enhancement of overall LLPS propensity from the very dielectric heterogeneity that arises from the LLPS itself. Further ramifications of this principle are discussed.
Collapse
Affiliation(s)
- Jonas Wessén
- Department of Biochemistry, University of Toronto, Medical Sciences Building-5th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Tanmoy Pal
- Department of Biochemistry, University of Toronto, Medical Sciences Building-5th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Suman Das
- Department of Biochemistry, University of Toronto, Medical Sciences Building-5th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Yi-Hsuan Lin
- Department of Biochemistry, University of Toronto, Medical Sciences Building-5th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.,Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Medical Sciences Building-5th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|