1
|
Hu M, Alkhairy S, Lee I, Pillich RT, Fong D, Smith K, Bachelder R, Ideker T, Pratt D. Evaluation of large language models for discovery of gene set function. Nat Methods 2024:10.1038/s41592-024-02525-x. [PMID: 39609565 DOI: 10.1038/s41592-024-02525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/21/2024] [Indexed: 11/30/2024]
Abstract
Gene set enrichment is a mainstay of functional genomics, but it relies on gene function databases that are incomplete. Here we evaluate five large language models (LLMs) for their ability to discover the common functions represented by a gene set, supported by molecular rationale and a self-confidence assessment. For curated gene sets from Gene Ontology, GPT-4 suggests functions similar to the curated name in 73% of cases, with higher self-confidence predicting higher similarity. Conversely, random gene sets correctly yield zero confidence in 87% of cases. Other LLMs (GPT-3.5, Gemini Pro, Mixtral Instruct and Llama2 70b) vary in function recovery but are falsely confident for random sets. In gene clusters from omics data, GPT-4 identifies common functions for 45% of cases, fewer than functional enrichment but with higher specificity and gene coverage. Manual review of supporting rationale and citations finds these functions are largely verifiable. These results position LLMs as valuable omics assistants.
Collapse
Affiliation(s)
- Mengzhou Hu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sahar Alkhairy
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Ingoo Lee
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Rudolf T Pillich
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Dylan Fong
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kevin Smith
- Department of Physics, University of California San Diego, La Jolla, CA, USA
| | - Robin Bachelder
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.
| | - Dexter Pratt
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Shanmugam R, Majee P, Shi W, Ozturk MB, Vaiyapuri TS, Idzham K, Raju A, Shin SH, Fidan K, Low JL, Chua JY, Kong YC, Qi OY, Tan E, Chok AY, Seow-En I, Wee I, Macalinao DC, Chong DQ, Chang HY, Lee F, Leow WQ, Murata-Hori M, Xiaoqian Z, Shumei C, Tan CS, Dasgupta R, Tan IB, Tergaonkar V. Iron-(Fe3+)-Dependent Reactivation of Telomerase Drives Colorectal Cancers. Cancer Discov 2024; 14:1940-1963. [PMID: 38885349 PMCID: PMC11450372 DOI: 10.1158/2159-8290.cd-23-1379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/15/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Over-consumption of iron-rich red meat and hereditary or genetic iron overload are associated with an increased risk of colorectal carcinogenesis, yet the mechanistic basis of how metal-mediated signaling leads to oncogenesis remains enigmatic. Using fresh colorectal cancer samples we identify Pirin, an iron sensor, that overcomes a rate-limiting step in oncogenesis, by reactivating the dormant human telomerase reverse transcriptase (hTERT) subunit of the telomerase holoenzyme in an iron-(Fe3+)-dependent manner and thereby drives colorectal cancers. Chemical genetic screens combined with isothermal dose-response fingerprinting and mass spectrometry identified a small molecule SP2509 that specifically inhibits Pirin-mediated hTERT reactivation in colorectal cancers by competing with iron-(Fe3+) binding. Our findings, first to document how metal ions reactivate telomerase, provide a molecular mechanism for the well-known association between red meat and increased incidence of colorectal cancers. Small molecules like SP2509 represent a novel modality to target telomerase that acts as a driver of 90% of human cancers and is yet to be targeted in clinic. Significance: We show how iron-(Fe3+) in collusion with genetic factors reactivates telomerase, providing a molecular mechanism for the association between iron overload and increased incidence of colorectal cancers. Although no enzymatic inhibitors of telomerase have entered the clinic, we identify SP2509, a small molecule that targets telomerase reactivation and function in colorectal cancers.
Collapse
Affiliation(s)
- Raghuvaran Shanmugam
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Prativa Majee
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Wei Shi
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Mert B. Ozturk
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Thamil S. Vaiyapuri
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Khaireen Idzham
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Anandhkumar Raju
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Seung H. Shin
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Kerem Fidan
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Joo-Leng Low
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore.
| | - Joelle Y.H. Chua
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Yap C. Kong
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore.
| | - Ong Y. Qi
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Emile Tan
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Republic of Singapore.
| | - Aik Y. Chok
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Republic of Singapore.
| | - Isaac Seow-En
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Republic of Singapore.
| | - Ian Wee
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Republic of Singapore.
| | - Dominique C. Macalinao
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Republic of Singapore.
| | - Dawn Q. Chong
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Republic of Singapore.
| | - Hong Y. Chang
- Experimental Drug Development Center, Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore.
| | - Fiona Lee
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore.
| | - Wei Q. Leow
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Republic of Singapore.
| | - Maki Murata-Hori
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore.
| | - Zhang Xiaoqian
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore.
| | - Chia Shumei
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore.
| | - Chris S.H. Tan
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, China.
| | - Ramanuj Dasgupta
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore.
| | - Iain B. Tan
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore.
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Republic of Singapore.
- Cancer and Stem Cell Biology, Duke-National University of Singapore, Singapore, Republic of Singapore.
| | - Vinay Tergaonkar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Republic of Singapore.
| |
Collapse
|
3
|
Ocampo D, Damon LJ, Sanford L, Holtzen SE, Jones T, Allen MA, Dowell RD, Palmer AE. Cellular zinc status alters chromatin accessibility and binding of p53 to DNA. Life Sci Alliance 2024; 7:e202402638. [PMID: 38969365 PMCID: PMC11231577 DOI: 10.26508/lsa.202402638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024] Open
Abstract
Zn2+ is an essential metal required by approximately 850 human transcription factors. How these proteins acquire their essential Zn2+ cofactor and whether they are sensitive to changes in the labile Zn2+ pool in cells remain open questions. Using ATAC-seq to profile regions of accessible chromatin coupled with transcription factor enrichment analysis, we examined how increases and decreases in the labile zinc pool affect chromatin accessibility and transcription factor enrichment. We found 685 transcription factor motifs were differentially enriched, corresponding to 507 unique transcription factors. The pattern of perturbation and the types of transcription factors were notably different at promoters versus intergenic regions, with zinc-finger transcription factors strongly enriched in intergenic regions in elevated Zn2+ To test whether ATAC-seq and transcription factor enrichment analysis predictions correlate with changes in transcription factor binding, we used ChIP-qPCR to profile six p53 binding sites. We found that for five of the six targets, p53 binding correlates with the local accessibility determined by ATAC-seq. These results demonstrate that changes in labile zinc alter chromatin accessibility and transcription factor binding to DNA.
Collapse
Affiliation(s)
- Daniel Ocampo
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Leah J Damon
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Lynn Sanford
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Samuel E Holtzen
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Taylor Jones
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Mary A Allen
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Robin D Dowell
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Amy E Palmer
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| |
Collapse
|
4
|
Vo NNT, Yang A, Leesutthiphonchai W, Liu Y, Hughes TR, Judelson HS. Transcription factor binding specificities of the oomycete Phytophthora infestans reflect conserved and divergent evolutionary patterns and predict function. BMC Genomics 2024; 25:710. [PMID: 39044130 PMCID: PMC11267843 DOI: 10.1186/s12864-024-10630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Identifying the DNA-binding specificities of transcription factors (TF) is central to understanding gene networks that regulate growth and development. Such knowledge is lacking in oomycetes, a microbial eukaryotic lineage within the stramenopile group. Oomycetes include many important plant and animal pathogens such as the potato and tomato blight agent Phytophthora infestans, which is a tractable model for studying life-stage differentiation within the group. RESULTS Mining of the P. infestans genome identified 197 genes encoding proteins belonging to 22 TF families. Their chromosomal distribution was consistent with family expansions through unequal crossing-over, which were likely ancient since each family had similar sizes in most oomycetes. Most TFs exhibited dynamic changes in RNA levels through the P. infestans life cycle. The DNA-binding preferences of 123 proteins were assayed using protein-binding oligonucleotide microarrays, which succeeded with 73 proteins from 14 families. Binding sites predicted for representatives of the families were validated by electrophoretic mobility shift or chromatin immunoprecipitation assays. Consistent with the substantial evolutionary distance of oomycetes from traditional model organisms, only a subset of the DNA-binding preferences resembled those of human or plant orthologs. Phylogenetic analyses of the TF families within P. infestans often discriminated clades with canonical and novel DNA targets. Paralogs with similar binding preferences frequently had distinct patterns of expression suggestive of functional divergence. TFs were predicted to either drive life stage-specific expression or serve as general activators based on the representation of their binding sites within total or developmentally-regulated promoters. This projection was confirmed for one TF using synthetic and mutated promoters fused to reporter genes in vivo. CONCLUSIONS We established a large dataset of binding specificities for P. infestans TFs, representing the first in the stramenopile group. This resource provides a basis for understanding transcriptional regulation by linking TFs with their targets, which should help delineate the molecular components of processes such as sporulation and host infection. Our work also yielded insight into TF evolution during the eukaryotic radiation, revealing both functional conservation as well as diversification across kingdoms.
Collapse
Affiliation(s)
- Nguyen N T Vo
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Ally Yang
- Department of Molecular Genetics and Donnelly Center, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Wiphawee Leesutthiphonchai
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
- Current address: Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Yulong Liu
- Department of Molecular Genetics and Donnelly Center, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Timothy R Hughes
- Department of Molecular Genetics and Donnelly Center, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
5
|
Damon LJ, Ocampo D, Sanford L, Jones T, Allen MA, Dowell RD, Palmer AE. Cellular zinc status alters chromatin accessibility and binding of transcription factor p53 to genomic sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567954. [PMID: 38045276 PMCID: PMC10690171 DOI: 10.1101/2023.11.20.567954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Zinc (Zn2+) is an essential metal required by approximately 2500 proteins. Nearly half of these proteins act on DNA, including > 850 human transcription factors, polymerases, DNA damage response factors, and proteins involved in chromatin architecture. How these proteins acquire their essential Zn2+ cofactor and whether they are sensitive to changes in the labile Zn2+ pool in cells remain open questions. Here, we examine how changes in the labile Zn2+ pool affect chromatin accessibility and transcription factor binding to DNA. We observed both increases and decreases in accessibility in different chromatin regions via ATAC-seq upon treating MCF10A cells with elevated Zn2+ or the Zn2+-specific chelator tris(2-pyridylmethyl)amine (TPA). Transcription factor enrichment analysis was used to correlate changes in chromatin accessibility with transcription factor motifs, revealing 477 transcription factor motifs that were differentially enriched upon Zn2+ perturbation. 186 of these transcription factor motifs were enriched in Zn2+ and depleted in TPA, and the majority correspond to Zn2+ finger transcription factors. We selected TP53 as a candidate to examine how changes in motif enrichment correlate with changes in transcription factor occupancy by ChIP-qPCR. Using publicly available ChIP-seq and nascent transcription datasets, we narrowed the 50,000+ ATAC-seq peaks to 2164 TP53 targets and subsequently selected 6 high-probability TP53 binding sites for testing. ChIP-qPCR revealed that for 5 of the 6 targets, TP53 binding correlates with the local accessibility determined by ATAC-seq. These results demonstrate that changes in labile zinc directly alter chromatin accessibility and transcription factor binding to DNA.
Collapse
Affiliation(s)
- Leah J. Damon
- Department of Biochemistry, University of Colorado, Boulder, CO 80303
| | - Daniel Ocampo
- Department of Biochemistry, University of Colorado, Boulder, CO 80303
| | - Lynn Sanford
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, 80309
| | - Taylor Jones
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, 80309
| | - Mary A. Allen
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, 80309
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303
| | - Robin D. Dowell
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, 80309
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303
| | - Amy E. Palmer
- Department of Biochemistry, University of Colorado, Boulder, CO 80303
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303
| |
Collapse
|
6
|
Ramirez D, B Chuong E, D Dowell R. Nascent transcription upon interferon-α2 stimulation on human and rhesus macaque lymphoblastoid cell lines. BMC Res Notes 2023; 16:292. [PMID: 37885027 PMCID: PMC10604760 DOI: 10.1186/s13104-023-06465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 08/18/2023] [Indexed: 10/28/2023] Open
Abstract
OBJECTIVES The interferon-triggered innate immune response has been observed to be under strong diversifying selection to counteract the many pathogens hosts have to defend against. In particular, rewiring of gene transcription regulation allows organisms to rapidly acquire new phenotypes by removing and adding genes into the innate immune gene network. Dissecting the molecular processes by which this rewiring takes place, either by changing the DNA regulatory elements or by changing the activity of the regulators across species, is key to better understand this evolutionary process. DATA DESCRIPTION To better comprehend the evolutionary dynamics that have occurred in the initial transcriptional response to interferon in primates, we present Precision Run-On (PRO-seq) datasets made after 1 h of interferon-α2 stimulation on human and rhesus macaque lymphoblastoid cell lines. Further, we tested the difference between using either species' cognate interferon versus using the other orthologous interferon to account for any potential impacts in the interaction of the orthologous interferons with their cellular membrane receptors. This data provides insights into the regulatory mechanisms that drive species-specific responses to environmental perturbations, such as the one driven by the interactions of pathogens and their hosts.
Collapse
Affiliation(s)
- Daniel Ramirez
- Department of Molecular, Cellular, and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Edward B Chuong
- Department of Molecular, Cellular, and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Robin D Dowell
- Department of Molecular, Cellular, and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
7
|
Ding Y, Wu X, Yang X. Identification of miRNAs and target genes associated with lymph node metastasis in cervical cancer using bioinformatics analysis. Toxicol Mech Methods 2023; 33:625-635. [PMID: 37125668 DOI: 10.1080/15376516.2023.2207644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/02/2023]
Abstract
This study was designed to identify the differentially expressed miRNAs (DEMs) and genes (DEGs) in metastatic cervical cancer using bioinformatic tools. In this study, fifty-seven DEMs (48 downregulated and 9 upregulated) were identified, among which miR-4459 and miR-3195 expression was negatively associated with overall survival of cervical cancer patients. Then, 476 target DEGs were determined, and protein-protein interaction (PPI) network was constructed. Seventeen hub genes (LONRF2, CCNE2, AURKA, SYT1, NEGR1, PPP1R12B, GABRP, RAD51, CDK1, FBLN5, PRKG1, CDC6, CACNA1C, MEOX2, ANLN, MYLK, and EDNRB) were finally selected to construct the miRNA-hub gene network. Overall, our study discovered the key miRNAs and mRNAs related to lymph node metastasis (LNM) in cervical cancer, which helps discover candidate therapeutic targets for cervical cancer.
Collapse
Affiliation(s)
- Yishan Ding
- Department of Gynecology, Ankang City Central Hospital, Ankang, PR China
| | - Xiaorong Wu
- Ankang City Central Hospital, Ankang, PR China
| | - Xiaofeng Yang
- Department of Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| |
Collapse
|
8
|
Li M, Yao T, Lin W, Hinckley WE, Galli M, Muchero W, Gallavotti A, Chen JG, Huang SSC. Double DAP-seq uncovered synergistic DNA binding of interacting bZIP transcription factors. Nat Commun 2023; 14:2600. [PMID: 37147307 PMCID: PMC10163045 DOI: 10.1038/s41467-023-38096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/15/2023] [Indexed: 05/07/2023] Open
Abstract
Many eukaryotic transcription factors (TF) form homodimer or heterodimer complexes to regulate gene expression. Dimerization of BASIC LEUCINE ZIPPER (bZIP) TFs are critical for their functions, but the molecular mechanism underlying the DNA binding and functional specificity of homo- versus heterodimers remains elusive. To address this gap, we present the double DNA Affinity Purification-sequencing (dDAP-seq) technique that maps heterodimer binding sites on endogenous genomic DNA. Using dDAP-seq we profile twenty pairs of C/S1 bZIP heterodimers and S1 homodimers in Arabidopsis and show that heterodimerization significantly expands the DNA binding preferences of these TFs. Analysis of dDAP-seq binding sites reveals the function of bZIP9 in abscisic acid response and the role of bZIP53 heterodimer-specific binding in seed maturation. The C/S1 heterodimers show distinct preferences for the ACGT elements recognized by plant bZIPs and motifs resembling the yeast GCN4 cis-elements. This study demonstrates the potential of dDAP-seq in deciphering the DNA binding specificities of interacting TFs that are key for combinatorial gene regulation.
Collapse
Affiliation(s)
- Miaomiao Li
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Tao Yao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Wanru Lin
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Will E Hinckley
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Shao-Shan Carol Huang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA.
| |
Collapse
|
9
|
Lam MTY, Duttke SH, Odish MF, Le HD, Hansen EA, Nguyen CT, Trescott S, Kim R, Deota S, Chang MW, Patel A, Hepokoski M, Alotaibi M, Rolfsen M, Perofsky K, Warden AS, Foley J, Ramirez SI, Dan JM, Abbott RK, Crotty S, Crotty Alexander LE, Malhotra A, Panda S, Benner CW, Coufal NG. Dynamic activity in cis-regulatory elements of leukocytes identifies transcription factor activation and stratifies COVID-19 severity in ICU patients. Cell Rep Med 2023; 4:100935. [PMID: 36758547 PMCID: PMC9874047 DOI: 10.1016/j.xcrm.2023.100935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/08/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
Transcription factor programs mediating the immune response to coronavirus disease 2019 (COVID-19) are not fully understood. Capturing active transcription initiation from cis-regulatory elements such as enhancers and promoters by capped small RNA sequencing (csRNA-seq), in contrast to capturing steady-state transcripts by conventional RNA-seq, allows unbiased identification of the underlying transcription factor activity and regulatory pathways. Here, we profile transcription initiation in critically ill COVID-19 patients, identifying transcription factor motifs that correlate with clinical lung injury and disease severity. Unbiased clustering reveals distinct subsets of cis-regulatory elements that delineate the cell type, pathway-specific, and combinatorial transcription factor activity. We find evidence of critical roles of regulatory networks, showing that STAT/BCL6 and E2F/MYB regulatory programs from myeloid cell populations are activated in patients with poor disease outcomes and associated with COVID-19 susceptibility genetic variants. More broadly, we demonstrate how capturing acute, disease-mediated changes in transcription initiation can provide insight into the underlying molecular mechanisms and stratify patient disease severity.
Collapse
Affiliation(s)
- Michael Tun Yin Lam
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Laboratory of Regulatory Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Pulmonary and Critical Care Section, VA San Diego Healthcare System, La Jolla, CA 92161, USA.
| | - Sascha H Duttke
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA
| | - Mazen F Odish
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hiep D Le
- Laboratory of Regulatory Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Emily A Hansen
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Celina T Nguyen
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Samantha Trescott
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Roy Kim
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Shaunak Deota
- Laboratory of Regulatory Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Max W Chang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Arjun Patel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark Hepokoski
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mona Alotaibi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark Rolfsen
- Internal Medicine Residency Program, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katherine Perofsky
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Anna S Warden
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | | | - Sydney I Ramirez
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Center for Infectious Diseases and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Jennifer M Dan
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Center for Infectious Diseases and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Robert K Abbott
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shane Crotty
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Center for Infectious Diseases and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Laura E Crotty Alexander
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Pulmonary and Critical Care Section, VA San Diego Healthcare System, La Jolla, CA 92161, USA
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Satchidananda Panda
- Laboratory of Regulatory Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Christopher W Benner
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole G Coufal
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| |
Collapse
|
10
|
Delos Santos NP, Duttke S, Heinz S, Benner C. MEPP: more transparent motif enrichment by profiling positional correlations. NAR Genom Bioinform 2022; 4:lqac075. [PMID: 36267125 PMCID: PMC9575187 DOI: 10.1093/nargab/lqac075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/18/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022] Open
Abstract
Score-based motif enrichment analysis (MEA) is typically applied to regulatory DNA to infer transcription factors (TFs) that may modulate transcription and chromatin state in different conditions. Most MEA methods determine motif enrichment independent of motif position within a sequence, even when those sequences harbor anchor points that motifs and their bound TFs may functionally interact with in a distance-dependent fashion, such as other TF binding motifs, transcription start sites (TSS), sequencing assay cleavage sites, or other biologically meaningful features. We developed motif enrichment positional profiling (MEPP), a novel MEA method that outputs a positional enrichment profile of a given TF's binding motif relative to key anchor points (e.g. transcription start sites, or other motifs) within the analyzed sequences while accounting for lower-order nucleotide bias. Using transcription initiation and TF binding as test cases, we demonstrate MEPP's utility in determining the sequence positions where motif presence correlates with measures of biological activity, inferring positional dependencies of binding site function. We demonstrate how MEPP can be applied to interpretation and hypothesis generation from experiments that quantify transcription initiation, chromatin structure, or TF binding measurements. MEPP is available for download from https://github.com/npdeloss/mepp.
Collapse
Affiliation(s)
- Nathaniel P Delos Santos
- Department of Biomedical Informatics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | - Sascha Duttke
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Sven Heinz
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | - Christopher Benner
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| |
Collapse
|
11
|
Damon LJ, Aaron J, Palmer AE. Single molecule microscopy to profile the effect of zinc status on transcription factor dynamics. Sci Rep 2022; 12:17789. [PMID: 36273101 PMCID: PMC9588069 DOI: 10.1038/s41598-022-22634-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/18/2022] [Indexed: 01/19/2023] Open
Abstract
The regulation of transcription is a complex process that involves binding of transcription factors (TFs) to specific sequences, recruitment of cofactors and chromatin remodelers, assembly of the pre-initiation complex and recruitment of RNA polymerase II. Increasing evidence suggests that TFs are highly dynamic and interact only transiently with DNA. Single molecule microscopy techniques are powerful approaches for tracking individual TF molecules as they diffuse in the nucleus and interact with DNA. Here we employ multifocus microscopy and highly inclined laminated optical sheet microscopy to track TF dynamics in response to perturbations in labile zinc inside cells. We sought to define whether zinc-dependent TFs sense changes in the labile zinc pool by determining whether their dynamics and DNA binding can be modulated by zinc. We used fluorescently tagged versions of the glucocorticoid receptor (GR), with two C4 zinc finger domains, and CCCTC-binding factor (CTCF), with eleven C2H2 zinc finger domains. We found that GR was largely insensitive to perturbations of zinc, whereas CTCF was significantly affected by zinc depletion and its dwell time was affected by zinc elevation. These results indicate that at least some transcription factors are sensitive to zinc dynamics, revealing a potential new layer of transcriptional regulation.
Collapse
Affiliation(s)
- Leah J. Damon
- grid.266190.a0000000096214564Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303 USA
| | - Jesse Aaron
- grid.443970.dAdvanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147 USA
| | - Amy E. Palmer
- grid.266190.a0000000096214564Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303 USA
| |
Collapse
|
12
|
Gupta A, Sasse SK, Berman R, Gruca MA, Dowell RD, Chu HW, Downey GP, Gerber AN. Integrated genomics approaches identify transcriptional mediators and epigenetic responses to Afghan desert particulate matter in small airway epithelial cells. Physiol Genomics 2022; 54:389-401. [PMID: 36062885 PMCID: PMC9550581 DOI: 10.1152/physiolgenomics.00063.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/15/2022] [Accepted: 08/29/2022] [Indexed: 01/14/2023] Open
Abstract
Military Deployment to Southwest Asia and Afghanistan and exposure to toxic airborne particulates have been associated with an increased risk of developing respiratory disease, collectively termed deployment-related respiratory diseases (DRRDs). Our knowledge about how particulates mediate respiratory disease is limited, precluding the appropriate recognition or management. Central to this limitation is the lack of understanding of how exposures translate into dysregulated cell identity with dysregulated transcriptional programs. The small airway epithelium is involved in both the pathobiology of DRRD and fine particulate matter deposition. To characterize small airway epithelial cell epigenetic and transcriptional responses to Afghan desert particulate matter (APM) and investigate the functional interactions of transcription factors that mediate these responses, we applied two genomics assays, the assay for transposase accessible chromatin with sequencing (ATAC-seq) and Precision Run-on sequencing (PRO-seq). We identified activity changes in a series of transcriptional pathways as candidate regulators of susceptibility to subsequent insults, including signal-dependent pathways, such as loss of cytochrome P450 or P53/P63, and lineage-determining transcription factors, such as GRHL2 loss or TEAD3 activation. We further demonstrated that TEAD3 activation was unique to APM exposure despite similar inflammatory responses when compared with wood smoke particle exposure and that P53/P63 program loss was uniquely positioned at the intersection of signal-dependent and lineage-determining transcriptional programs. Our results establish the utility of an integrated genomics approach in characterizing responses to exposures and identifying genomic targets for the advanced investigation of the pathogenesis of DRRD.
Collapse
Affiliation(s)
- Arnav Gupta
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Sarah K Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Reena Berman
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Margaret A Gruca
- Biofrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Robin D Dowell
- Biofrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Gregory P Downey
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Anthony N Gerber
- Department of Medicine, National Jewish Health, Denver, Colorado
| |
Collapse
|
13
|
Walker CJ, Batan D, Bishop CT, Ramirez D, Aguado BA, Schroeder ME, Crocini C, Schwisow J, Moulton K, Macdougall L, Weiss RM, Allen MA, Dowell R, Leinwand LA, Anseth KS. Extracellular matrix stiffness controls cardiac valve myofibroblast activation through epigenetic remodeling. Bioeng Transl Med 2022; 7:e10394. [PMID: 36176599 PMCID: PMC9472021 DOI: 10.1002/btm2.10394] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Aortic valve stenosis (AVS) is a progressive fibrotic disease that is caused by thickening and stiffening of valve leaflets. At the cellular level, quiescent valve interstitial cells (qVICs) activate to myofibroblasts (aVICs) that persist within the valve tissue. Given the persistence of myofibroblasts in AVS, epigenetic mechanisms have been implicated. Here, we studied changes that occur in VICs during myofibroblast activation by using a hydrogel matrix to recapitulate different stiffnesses in the valve leaflet during fibrosis. We first compared the chromatin landscape of qVICs cultured on soft hydrogels and aVICs cultured on stiff hydrogels, representing the native and diseased phenotypes respectively. Using assay for transposase-accessible chromatin sequencing (ATAC-Seq), we found that open chromatin regions in aVICs were enriched for transcription factor binding motifs associated with mechanosensing pathways compared to qVICs. Next, we used RNA-Seq to show that the open chromatin regions in aVICs correlated with pro-fibrotic gene expression, as aVICs expressed higher levels of contractile fiber genes, including myofibroblast markers such as alpha smooth muscle actin (αSMA), compared to qVICs. In contrast, chromatin remodeling genes were downregulated in aVICs compared to qVICs, indicating qVICs may be protected from myofibroblast activation through epigenetic mechanisms. Small molecule inhibition of one of these remodelers, CREB Binding Protein (CREBBP), prevented qVICs from activating to aVICs. Notably, CREBBP is more abundant in valves from healthy patients compared to fibrotic valves. Our findings reveal the role of mechanical regulation in chromatin remodeling during VIC activation and quiescence and highlight one potential therapeutic target for treating AVS.
Collapse
Affiliation(s)
- Cierra J. Walker
- Materials Science and Engineering ProgramUniversity of Colorado BoulderBoulderColoradoUSA
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
| | - Dilara Batan
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Biochemistry DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Carrie T. Bishop
- Chemical and Biological Engineering DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Daniel Ramirez
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Molecular, Cellular, and Developmental Biology DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Brian A. Aguado
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Chemical and Biological Engineering DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Megan E. Schroeder
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Chemical and Biological Engineering DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Claudia Crocini
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Molecular, Cellular, and Developmental Biology DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Jessica Schwisow
- Division of CardiologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Karen Moulton
- Division of CardiologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Laura Macdougall
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Chemical and Biological Engineering DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Robert M. Weiss
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
| | - Mary A. Allen
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Molecular, Cellular, and Developmental Biology DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Robin Dowell
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Molecular, Cellular, and Developmental Biology DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Leslie A. Leinwand
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Molecular, Cellular, and Developmental Biology DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| | - Kristi S. Anseth
- BioFrontiers Institute, University of Colorado BoulderBoulderColoradoUSA
- Chemical and Biological Engineering DepartmentUniversity of Colorado BoulderBoulderColoradoUSA
| |
Collapse
|
14
|
El Kharbili M, Aviszus K, Sasse SK, Zhao X, Serban KA, Majka SM, Gerber AN, Gally F. Macrophage programming is regulated by a cooperative interaction between fatty acid binding protein 5 and peroxisome proliferator-activated receptor γ. FASEB J 2022; 36:e22300. [PMID: 35436029 PMCID: PMC9320869 DOI: 10.1096/fj.202200128r] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/07/2022] [Accepted: 03/24/2022] [Indexed: 11/11/2022]
Abstract
Resolution of inflammation is an active process that is tightly regulated to achieve repair and tissue homeostasis. In the absence of resolution, persistent inflammation underlies the pathogenesis of chronic lung disease such as chronic obstructive pulmonary disease (COPD) with recurrent exacerbations. Over the course of inflammation, macrophage programming transitions from pro-inflammatory to pro-resolving, which is in part regulated by the nuclear receptor Peroxisome Proliferator-Activated Receptor γ (PPARγ). Our previous work demonstrated an association between Fatty Acid Binding Protein 5 (FABP5) expression and PPARγ activity in peripheral blood mononuclear cells of healthy and COPD patients. However, a role for FABP5 in macrophage programming has not been examined. Here, using a combination of in vitro and in vivo approaches, we demonstrate that FABP5 is necessary for PPARγ activation. In turn, PPARγ acts directly to increase FABP5 expression in primary human alveolar macrophages. We further illustrate that lack of FABP5 expression promotes a pro-inflammatory macrophage programming with increased secretion of pro-inflammatory cytokines and increased chromatin accessibility for pro-inflammatory transcription factors (e.g., NF-κB and MAPK). And finally, real-time cell metabolic analysis using the Seahorse technology shows an inhibition of oxidative phosphorylation in FABP5-deficient macrophages. Taken together, our data indicate that FABP5 and PPARγ reciprocally regulate each other's expression and function, consistent with a novel positive feedback loop between the two factors that mediates macrophage pro-resolving programming. Our studies highlight the importance of defining targets and regulatory mechanisms that control the resolution of inflammation and may serve to inform novel interventional strategies directed towards COPD.
Collapse
Affiliation(s)
- Manale El Kharbili
- Department of Immunology and Genomic MedicineNational Jewish HealthDenverColoradoUSA
| | - Katja Aviszus
- Department of Immunology and Genomic MedicineNational Jewish HealthDenverColoradoUSA
| | - Sarah K. Sasse
- Department of MedicineNational Jewish HealthDenverColoradoUSA
| | - Xiaoyun Zhao
- Department of Immunology and Genomic MedicineNational Jewish HealthDenverColoradoUSA
| | - Karina A. Serban
- Department of MedicineNational Jewish HealthDenverColoradoUSA
- Department of MedicineUniversity of ColoradoAuroraColoradoUSA
| | - Susan M. Majka
- Department of Immunology and Genomic MedicineNational Jewish HealthDenverColoradoUSA
- Department of MedicineNational Jewish HealthDenverColoradoUSA
- Department of MedicineUniversity of ColoradoAuroraColoradoUSA
| | - Anthony N. Gerber
- Department of Immunology and Genomic MedicineNational Jewish HealthDenverColoradoUSA
- Department of MedicineNational Jewish HealthDenverColoradoUSA
- Department of MedicineUniversity of ColoradoAuroraColoradoUSA
| | - Fabienne Gally
- Department of Immunology and Genomic MedicineNational Jewish HealthDenverColoradoUSA
- Department of MedicineUniversity of ColoradoAuroraColoradoUSA
| |
Collapse
|
15
|
Hunter S, Sigauke RF, Stanley JT, Allen MA, Dowell RD. Protocol variations in run-on transcription dataset preparation produce detectable signatures in sequencing libraries. BMC Genomics 2022; 23:187. [PMID: 35255806 PMCID: PMC8900324 DOI: 10.1186/s12864-022-08352-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 01/25/2022] [Indexed: 11/20/2022] Open
Abstract
Background A variety of protocols exist for producing whole genome run-on transcription datasets. However, little is known about how differences between these protocols affect the signal within the resulting libraries. Results Using run-on transcription datasets generated from the same biological system, we show that a variety of GRO- and PRO-seq preparation methods leave identifiable signatures within each library. Specifically we show that the library preparation method results in differences in quality control metrics, as well as differences in the signal distribution at the 5 ′ end of transcribed regions. These shifts lead to disparities in eRNA identification, but do not impact analyses aimed at inferring the key regulators involved in changes to transcription. Conclusions Run-on sequencing protocol variations result in technical signatures that can be used to identify both the enrichment and library preparation method of a particular data set. These technical signatures are batch effects that limit detailed comparisons of pausing ratios and eRNAs identified across protocols. However, these batch effects have only limited impact on our ability to infer which regulators underlie the observed transcriptional changes. Supplementary Information The online version contains supplementary material available at (10.1186/s12864-022-08352-8).
Collapse
Affiliation(s)
- Samuel Hunter
- BioFrontiers Institute, University of Colorado, Boulder, 80309, USA
| | - Rutendo F Sigauke
- Computational Bioscience Program, Anschutz Medical Campus, University of Colorado, Aurora, 80045, USA
| | - Jacob T Stanley
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, 80301, USA
| | - Mary A Allen
- BioFrontiers Institute, University of Colorado, Boulder, 80309, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado, Boulder, 80309, USA. .,Computational Bioscience Program, Anschutz Medical Campus, University of Colorado, Aurora, 80045, USA. .,Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, 80301, USA. .,Department of Computer Science, University of Colorado, Boulder, 80309, USA.
| |
Collapse
|
16
|
Lam MTY, Duttke SH, Odish MF, Le HD, Hansen EA, Nguyen CT, Trescott S, Kim R, Deota S, Chang MW, Patel A, Hepokoski M, Alotaibi M, Rolfsen M, Perofsky K, Warden AS, Foley J, Ramirez SI, Dan JM, Abbott RK, Crotty S, Crotty Alexander LE, Malhotra A, Panda S, Benner CW, Coufal NG. Profiling Transcription Initiation in Peripheral Leukocytes Reveals Severity-Associated Cis-Regulatory Elements in Critical COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.08.24.457187. [PMID: 34462742 PMCID: PMC8404884 DOI: 10.1101/2021.08.24.457187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The contribution of transcription factors (TFs) and gene regulatory programs in the immune response to COVID-19 and their relationship to disease outcome is not fully understood. Analysis of genome-wide changes in transcription at both promoter-proximal and distal cis-regulatory DNA elements, collectively termed the 'active cistrome,' offers an unbiased assessment of TF activity identifying key pathways regulated in homeostasis or disease. Here, we profiled the active cistrome from peripheral leukocytes of critically ill COVID-19 patients to identify major regulatory programs and their dynamics during SARS-CoV-2 associated acute respiratory distress syndrome (ARDS). We identified TF motifs that track the severity of COVID- 19 lung injury, disease resolution, and outcome. We used unbiased clustering to reveal distinct cistrome subsets delineating the regulation of pathways, cell types, and the combinatorial activity of TFs. We found critical roles for regulatory networks driven by stimulus and lineage determining TFs, showing that STAT and E2F/MYB regulatory programs targeting myeloid cells are activated in patients with poor disease outcomes and associated with single nucleotide genetic variants implicated in COVID-19 susceptibility. Integration with single-cell RNA-seq found that STAT and E2F/MYB activation converged in specific neutrophils subset found in patients with severe disease. Collectively we demonstrate that cistrome analysis facilitates insight into disease mechanisms and provides an unbiased approach to evaluate global changes in transcription factor activity and stratify patient disease severity.
Collapse
Affiliation(s)
- Michael Tun Yin Lam
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, CA USA
- Laboratory of Regulatory Biology, Salk Institute of Biological Studies, La Jolla, CA, USA
| | - Sascha H. Duttke
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, USA
| | - Mazen F. Odish
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, CA USA
| | - Hiep D. Le
- Laboratory of Regulatory Biology, Salk Institute of Biological Studies, La Jolla, CA, USA
| | - Emily A. Hansen
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
| | | | - Samantha Trescott
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Roy Kim
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Shaunak Deota
- Laboratory of Regulatory Biology, Salk Institute of Biological Studies, La Jolla, CA, USA
| | - Max W. Chang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, USA
| | - Arjun Patel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, CA USA
| | - Mark Hepokoski
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, CA USA
| | - Mona Alotaibi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, CA USA
| | - Mark Rolfsen
- Internal Medicine Residency Program, Department of Medicine, UC San Diego, CA, USA
| | - Katherine Perofsky
- Department of Pediatrics, University of California, San Diego, CA, USA
- Rady Children’s Hospital, San Diego, CA
| | - Anna S. Warden
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, USA
| | | | - Sydney I Ramirez
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego
- Center for Infectious Diseases and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA
| | - Jennifer M. Dan
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego
- Center for Infectious Diseases and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA
| | - Robert K Abbott
- Center for Infectious Diseases and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA
- Consortium for HIV/AIDS Vaccine Development (CHVAD), The Scripps Research Institute, La Jolla, CA, USA
| | - Shane Crotty
- Center for Infectious Diseases and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA
| | - Laura E Crotty Alexander
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, CA USA
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, CA USA
| | - Satchidananda Panda
- Laboratory of Regulatory Biology, Salk Institute of Biological Studies, La Jolla, CA, USA
| | - Christopher W. Benner
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, USA
| | - Nicole G. Coufal
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
- Rady Children’s Hospital, San Diego, CA
| |
Collapse
|
17
|
Lam MTY, Duttke SH, Odish MF, Le HD, Hansen EA, Nguyen CT, Trescott S, Kim R, Deota S, Chang MW, Patel A, Hepokoski M, Alotaibi M, Rolfsen M, Perofsky K, Warden AS, Foley J, Ramirez SI, Dan JM, Abbott RK, Crotty S, Crotty Alexander LE, Malhotra A, Panda S, Benner CW, Coufal NG. Profiling Transcription Initiation in Peripheral Leukocytes Reveals Severity-Associated Cis-Regulatory Elements in Critical COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.08.24.457187. [PMID: 34462742 DOI: 10.1101/2021.10.28.466336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The contribution of transcription factors (TFs) and gene regulatory programs in the immune response to COVID-19 and their relationship to disease outcome is not fully understood. Analysis of genome-wide changes in transcription at both promoter-proximal and distal cis-regulatory DNA elements, collectively termed the 'active cistrome,' offers an unbiased assessment of TF activity identifying key pathways regulated in homeostasis or disease. Here, we profiled the active cistrome from peripheral leukocytes of critically ill COVID-19 patients to identify major regulatory programs and their dynamics during SARS-CoV-2 associated acute respiratory distress syndrome (ARDS). We identified TF motifs that track the severity of COVID- 19 lung injury, disease resolution, and outcome. We used unbiased clustering to reveal distinct cistrome subsets delineating the regulation of pathways, cell types, and the combinatorial activity of TFs. We found critical roles for regulatory networks driven by stimulus and lineage determining TFs, showing that STAT and E2F/MYB regulatory programs targeting myeloid cells are activated in patients with poor disease outcomes and associated with single nucleotide genetic variants implicated in COVID-19 susceptibility. Integration with single-cell RNA-seq found that STAT and E2F/MYB activation converged in specific neutrophils subset found in patients with severe disease. Collectively we demonstrate that cistrome analysis facilitates insight into disease mechanisms and provides an unbiased approach to evaluate global changes in transcription factor activity and stratify patient disease severity.
Collapse
Affiliation(s)
- Michael Tun Yin Lam
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, CA USA
- Laboratory of Regulatory Biology, Salk Institute of Biological Studies, La Jolla, CA, USA
| | - Sascha H Duttke
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, USA
| | - Mazen F Odish
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, CA USA
| | - Hiep D Le
- Laboratory of Regulatory Biology, Salk Institute of Biological Studies, La Jolla, CA, USA
| | - Emily A Hansen
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Celina T Nguyen
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Samantha Trescott
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Roy Kim
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Shaunak Deota
- Laboratory of Regulatory Biology, Salk Institute of Biological Studies, La Jolla, CA, USA
| | - Max W Chang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, USA
| | - Arjun Patel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, CA USA
| | - Mark Hepokoski
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, CA USA
| | - Mona Alotaibi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, CA USA
| | - Mark Rolfsen
- Internal Medicine Residency Program, Department of Medicine, UC San Diego, CA, USA
| | - Katherine Perofsky
- Department of Pediatrics, University of California, San Diego, CA, USA
- Rady Children's Hospital, San Diego, CA
| | - Anna S Warden
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, USA
| | | | - Sydney I Ramirez
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego
- Center for Infectious Diseases and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA
| | - Jennifer M Dan
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego
- Center for Infectious Diseases and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA
| | - Robert K Abbott
- Center for Infectious Diseases and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA
- Consortium for HIV/AIDS Vaccine Development (CHVAD), The Scripps Research Institute, La Jolla, CA, USA
| | - Shane Crotty
- Center for Infectious Diseases and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA
| | - Laura E Crotty Alexander
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, CA USA
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, CA USA
| | - Satchidananda Panda
- Laboratory of Regulatory Biology, Salk Institute of Biological Studies, La Jolla, CA, USA
| | - Christopher W Benner
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, USA
| | - Nicole G Coufal
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
- Rady Children's Hospital, San Diego, CA
| |
Collapse
|
18
|
The Δ40p53 isoform inhibits p53-dependent eRNA transcription and enables regulation by signal-specific transcription factors during p53 activation. PLoS Biol 2021; 19:e3001364. [PMID: 34351910 PMCID: PMC8370613 DOI: 10.1371/journal.pbio.3001364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 08/17/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022] Open
Abstract
The naturally occurring Δ40p53 isoform heterotetramerizes with wild-type p53 (WTp53) to regulate development, aging, and stress responses. How Δ40p53 alters WTp53 function remains enigmatic because their co-expression causes tetramer heterogeneity. We circumvented this issue with a well-tested strategy that expressed Δ40p53:WTp53 as a single transcript, ensuring a 2:2 tetramer stoichiometry. Human MCF10A cell lines expressing Δ40p53:WTp53, WTp53, or WTp53:WTp53 (as controls) from the native TP53 locus were examined with transcriptomics (precision nuclear run-on sequencing [PRO-seq] and RNA sequencing [RNA-seq]), metabolomics, and other methods. Δ40p53:WTp53 was transcriptionally active, and, although phenotypically similar to WTp53 under normal conditions, it failed to induce growth arrest upon Nutlin-induced p53 activation. This occurred via Δ40p53:WTp53-dependent inhibition of enhancer RNA (eRNA) transcription and subsequent failure to induce mRNA biogenesis, despite similar genomic occupancy to WTp53. A different stimulus (5-fluorouracil [5FU]) also showed Δ40p53:WTp53-specific changes in mRNA induction; however, other transcription factors (TFs; e.g., E2F2) could then drive the response, yielding similar outcomes vs. WTp53. Our results establish that Δ40p53 tempers WTp53 function to enable compensatory responses by other stimulus-specific TFs. Such modulation of WTp53 activity may be an essential physiological function for Δ40p53. Moreover, Δ40p53:WTp53 functional distinctions uncovered herein suggest an eRNA requirement for mRNA biogenesis and that human p53 evolved as a tetramer to support eRNA transcription. How does Δ40p53, a naturally occurring isoform of p53 that is linked to accelerated aging, alter WTp53 function? Using an innovative approach, this study reveals that Δ40p53 suppresses enhancer RNA transcription and allows other stimulus-specific transcription factors to modulate the p53 transcriptional response.
Collapse
|