1
|
Wang J, Li H, Cecil KM, Altaye M, Parikh NA, He L. DFC-Igloo: A dynamic functional connectome learning framework for identifying neurodevelopmental biomarkers in very preterm infants. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108479. [PMID: 39489076 DOI: 10.1016/j.cmpb.2024.108479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 10/04/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND AND OBJECTIVE Very preterm infants are susceptible to neurodevelopmental impairments, necessitating early detection of prognostic biomarkers for timely intervention. The study aims to explore possible functional biomarkers for very preterm infants at born that relate to their future cognitive and motor development using resting-state fMRI. Prior studies are limited by the sample size and suffer from efficient functional connectome (FC) construction algorithms that can handle the noisy data contained in neonatal time series, leading to equivocal findings. Therefore, we first propose an enhanced functional connectome construction algorithm as a prerequisite step. We then apply the new FC construction algorithm to our large prospective very preterm cohort to explore multi-level neurodevelopmental biomarkers. METHODS There exists an intrinsic relationship between the structural connectome (SC) and FC, with a notable coupling between the two. This observation implies a putative property of graph signal smoothness on the SC as well. Yet, this property has not been fully exploited for constructing intrinsic dFC. In this study, we proposed an advanced dynamic FC (dFC) learning model, dFC-Igloo, which leveraged SC information to iteratively refine dFC estimations by applying graph signal smoothness to both FC and SC. The model was evaluated on artificial small-world graphs and simulated graph signals. RESULTS The proposed model achieved the best and most robust recovery of the ground truth graph across different noise levels and simulated SC pairs from the simulation. The model was further applied to a cohort of very preterm infants from five Neonatal Intensive Care Units, where an enhanced dFC was obtained for each infant. Based on the improved dFC, we identified neurodevelopmental biomarkers for neonates across connectome-wide, regional, and subnetwork scales. CONCLUSION The identified markers correlate with cognitive and motor developmental outcomes, offering insights into early brain development and potential neurodevelopmental challenges.
Collapse
Affiliation(s)
- Junqi Wang
- Imaging research center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hailong Li
- Imaging research center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kim M Cecil
- Imaging research center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mekibib Altaye
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nehal A Parikh
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lili He
- Imaging research center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Computer Science, Biomedical Engineering, Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Mansour L. S, Seguin C, Winkler AM, Noble S, Zalesky A. Topological cluster statistic (TCS): Toward structural connectivity-guided fMRI cluster enhancement. Netw Neurosci 2024; 8:902-925. [PMID: 39355436 PMCID: PMC11424043 DOI: 10.1162/netn_a_00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/08/2024] [Indexed: 10/03/2024] Open
Abstract
Functional magnetic resonance imaging (fMRI) studies most commonly use cluster-based inference to detect local changes in brain activity. Insufficient statistical power and disproportionate false-positive rates reportedly hinder optimal inference. We propose a structural connectivity-guided clustering framework, called topological cluster statistic (TCS), that enhances sensitivity by leveraging white matter anatomical connectivity information. TCS harnesses multimodal information from diffusion tractography and functional imaging to improve task fMRI activation inference. Compared to conventional approaches, TCS consistently improves power over a wide range of effects. This improvement results in a 10%-50% increase in local sensitivity with the greatest gains for medium-sized effects. TCS additionally enables inspection of underlying anatomical networks and thus uncovers knowledge regarding the anatomical underpinnings of brain activation. This novel approach is made available in the PALM software to facilitate usability. Given the increasing recognition that activation reflects widespread, coordinated processes, TCS provides a way to integrate the known structure underlying widespread activations into neuroimaging analyses moving forward.
Collapse
Affiliation(s)
- Sina Mansour L.
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Melbourne, Victoria, Australia
| | - Caio Seguin
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Anderson M. Winkler
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Stephanie Noble
- Department of Psychology, Department of Bioengineering, Center for Cognitive and Brain Health, Northeastern University, Boston MA, United States
| | - Andrew Zalesky
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Fotiadis P, Parkes L, Davis KA, Satterthwaite TD, Shinohara RT, Bassett DS. Structure-function coupling in macroscale human brain networks. Nat Rev Neurosci 2024; 25:688-704. [PMID: 39103609 DOI: 10.1038/s41583-024-00846-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
Precisely how the anatomical structure of the brain gives rise to a repertoire of complex functions remains incompletely understood. A promising manifestation of this mapping from structure to function is the dependency of the functional activity of a brain region on the underlying white matter architecture. Here, we review the literature examining the macroscale coupling between structural and functional connectivity, and we establish how this structure-function coupling (SFC) can provide more information about the underlying workings of the brain than either feature alone. We begin by defining SFC and describing the computational methods used to quantify it. We then review empirical studies that examine the heterogeneous expression of SFC across different brain regions, among individuals, in the context of the cognitive task being performed, and over time, as well as its role in fostering flexible cognition. Last, we investigate how the coupling between structure and function is affected in neurological and psychiatric conditions, and we report how aberrant SFC is associated with disease duration and disease-specific cognitive impairment. By elucidating how the dynamic relationship between the structure and function of the brain is altered in the presence of neurological and psychiatric conditions, we aim to not only further our understanding of their aetiology but also establish SFC as a new and sensitive marker of disease symptomatology and cognitive performance. Overall, this Review collates the current knowledge regarding the regional interdependency between the macroscale structure and function of the human brain in both neurotypical and neuroatypical individuals.
Collapse
Affiliation(s)
- Panagiotis Fotiadis
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Anaesthesiology, University of Michigan, Ann Arbor, MI, USA.
| | - Linden Parkes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Davis
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
4
|
Rajesh A, Seider NA, Newbold DJ, Adeyemo B, Marek S, Greene DJ, Snyder AZ, Shimony JS, Laumann TO, Dosenbach NUF, Gordon EM. Structure-function coupling in highly sampled individual brains. Cereb Cortex 2024; 34:bhae361. [PMID: 39277800 DOI: 10.1093/cercor/bhae361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/17/2024] Open
Abstract
Structural connectivity (SC) between distant regions of the brain support synchronized function known as functional connectivity (FC) and give rise to the large-scale brain networks that enable cognition and behavior. Understanding how SC enables FC is important to understand how injuries to SC may alter brain function and cognition. Previous work evaluating whole-brain SC-FC relationships showed that SC explained FC well in unimodal visual and motor areas, but only weakly in association areas, suggesting a unimodal-heteromodal gradient organization of SC-FC coupling. However, this work was conducted in group-averaged SC/FC data. Thus, it could not account for inter-individual variability in the locations of cortical areas and white matter tracts. We evaluated the correspondence of SC and FC within three highly sampled healthy participants. For each participant, we collected 78 min of diffusion-weighted MRI for SC and 360 min of resting state fMRI for FC. We found that FC was best explained by SC in visual and motor systems, as well as in anterior and posterior cingulate regions. A unimodal-to-heteromodal gradient could not fully explain SC-FC coupling. We conclude that the SC-FC coupling of the anterior-posterior cingulate circuit is more similar to unimodal areas than to heteromodal areas.
Collapse
Affiliation(s)
- Aishwarya Rajesh
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA
| | - Nicole A Seider
- Department of Psychiatry, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Dillan J Newbold
- Department of Neurology, New York Langone Medical Center, 550 First Avenue, New York, NY, 10016, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave.St. Louis, MO 63110, USA
| | - Scott Marek
- Department of Psychiatry, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92037, USA
| | - Abraham Z Snyder
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA
- Department of Neurology, New York Langone Medical Center, 550 First Avenue, New York, NY, 10016, USA
| | - Joshua S Shimony
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University, 660 S. Euclid Ave.St. Louis, MO 63110, USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Nico U F Dosenbach
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave.St. Louis, MO 63110, USA
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave.St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, 1 Brookings Drive, St. Louis, MO 63130, USA
- Program in Occupational Therapy, Washington University, 4444 Forest Park Ave, St. Louis, MO 63108, USA
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
5
|
Fukushima M, Leibnitz K. Effects of packetization on communication dynamics in brain networks. Netw Neurosci 2024; 8:418-436. [PMID: 38952819 PMCID: PMC11142457 DOI: 10.1162/netn_a_00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/18/2024] [Indexed: 07/03/2024] Open
Abstract
Computational studies in network neuroscience build models of communication dynamics in the connectome that help us understand the structure-function relationships of the brain. In these models, the dynamics of cortical signal transmission in brain networks are approximated with simple propagation strategies such as random walks and shortest path routing. Furthermore, the signal transmission dynamics in brain networks can be associated with the switching architectures of engineered communication systems (e.g., message switching and packet switching). However, it has been unclear how propagation strategies and switching architectures are related in models of brain network communication. Here, we investigate the effects of the difference between packet switching and message switching (i.e., whether signals are packetized or not) on the transmission completion time of propagation strategies when simulating signal propagation in mammalian brain networks. The results show that packetization in the connectome with hubs increases the time of the random walk strategy and does not change that of the shortest path strategy, but decreases that of more plausible strategies for brain networks that balance between communication speed and information requirements. This finding suggests an advantage of packet-switched communication in the connectome and provides new insights into modeling the communication dynamics in brain networks.
Collapse
Affiliation(s)
- Makoto Fukushima
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Kenji Leibnitz
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
- Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| |
Collapse
|
6
|
Feng G, Wang Y, Huang W, Chen H, Cheng J, Shu N. Spatial and temporal pattern of structure-function coupling of human brain connectome with development. eLife 2024; 13:RP93325. [PMID: 38900563 PMCID: PMC11189631 DOI: 10.7554/elife.93325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Brain structural circuitry shapes a richly patterned functional synchronization, supporting for complex cognitive and behavioural abilities. However, how coupling of structural connectome (SC) and functional connectome (FC) develops and its relationships with cognitive functions and transcriptomic architecture remain unclear. We used multimodal magnetic resonance imaging data from 439 participants aged 5.7-21.9 years to predict functional connectivity by incorporating intracortical and extracortical structural connectivity, characterizing SC-FC coupling. Our findings revealed that SC-FC coupling was strongest in the visual and somatomotor networks, consistent with evolutionary expansion, myelin content, and functional principal gradient. As development progressed, SC-FC coupling exhibited heterogeneous alterations dominated by an increase in cortical regions, broadly distributed across the somatomotor, frontoparietal, dorsal attention, and default mode networks. Moreover, we discovered that SC-FC coupling significantly predicted individual variability in general intelligence, mainly influencing frontoparietal and default mode networks. Finally, our results demonstrated that the heterogeneous development of SC-FC coupling is positively associated with genes in oligodendrocyte-related pathways and negatively associated with astrocyte-related genes. This study offers insight into the maturational principles of SC-FC coupling in typical development.
Collapse
Affiliation(s)
- Guozheng Feng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- BABRI Centre, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| | - Yiwen Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- BABRI Centre, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| | - Weijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- BABRI Centre, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| | - Haojie Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- BABRI Centre, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| | - Jian Cheng
- School of Computer Science and Engineering, Beihang UniversityBeijingChina
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- BABRI Centre, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| |
Collapse
|
7
|
Zhang Z, Wei W, Wang S, Li M, Li X, Li X, Wang Q, Yu H, Zhang Y, Guo W, Ma X, Zhao L, Deng W, Sham PC, Sun Y, Li T. Dynamic structure-function coupling across three major psychiatric disorders. Psychol Med 2024; 54:1629-1640. [PMID: 38084608 DOI: 10.1017/s0033291723003525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
BACKGROUND Convergent evidence has suggested atypical relationships between brain structure and function in major psychiatric disorders, yet how the abnormal patterns coincide and/or differ across different disorders remains largely unknown. Here, we aim to investigate the common and/or unique dynamic structure-function coupling patterns across major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ). METHODS We quantified the dynamic structure-function coupling in 452 patients with psychiatric disorders (MDD/BD/SZ = 166/168/118) and 205 unaffected controls at three distinct brain network levels, such as global, meso-, and local levels. We also correlated dynamic structure-function coupling with the topological features of functional networks to examine how the structure-function relationship facilitates brain information communication over time. RESULTS The dynamic structure-function coupling is preserved for the three disorders at the global network level. Similar abnormalities in the rich-club organization are found in two distinct functional configuration states at the meso-level and are associated with the disease severity of MDD, BD, and SZ. At the local level, shared and unique alterations are observed in the brain regions involving the visual, cognitive control, and default mode networks. In addition, the relationships between structure-function coupling and the topological features of functional networks are altered in a manner indicative of state specificity. CONCLUSIONS These findings suggest both transdiagnostic and illness-specific alterations in the dynamic structure-function relationship of large-scale brain networks across MDD, BD, and SZ, providing new insights and potential biomarkers into the neurodevelopmental basis underlying the behavioral and cognitive deficits observed in these disorders.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Biomedical Engineering, & Department of Neurobiology, Key Laboratory for Biomedical Engineering of Ministry of Education, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University, Hangzhou, China
- School of Physics, Hangzhou Normal University, Hangzhou, China
- Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Wei Wei
- Department of Biomedical Engineering, & Department of Neurobiology, Key Laboratory for Biomedical Engineering of Ministry of Education, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University, Hangzhou, China
- Translational Psychiatry Research Laboratory, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Sujie Wang
- Department of Biomedical Engineering, & Department of Neurobiology, Key Laboratory for Biomedical Engineering of Ministry of Education, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University, Hangzhou, China
| | - Mingli Li
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaojing Li
- Department of Biomedical Engineering, & Department of Neurobiology, Key Laboratory for Biomedical Engineering of Ministry of Education, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University, Hangzhou, China
- Translational Psychiatry Research Laboratory, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Xiaoyu Li
- Department of Biomedical Engineering, & Department of Neurobiology, Key Laboratory for Biomedical Engineering of Ministry of Education, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University, Hangzhou, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Hua Yu
- Department of Biomedical Engineering, & Department of Neurobiology, Key Laboratory for Biomedical Engineering of Ministry of Education, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University, Hangzhou, China
- Translational Psychiatry Research Laboratory, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Yamin Zhang
- Department of Biomedical Engineering, & Department of Neurobiology, Key Laboratory for Biomedical Engineering of Ministry of Education, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University, Hangzhou, China
- Translational Psychiatry Research Laboratory, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Wanjun Guo
- Department of Biomedical Engineering, & Department of Neurobiology, Key Laboratory for Biomedical Engineering of Ministry of Education, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University, Hangzhou, China
- Translational Psychiatry Research Laboratory, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Xiaohong Ma
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Deng
- Department of Biomedical Engineering, & Department of Neurobiology, Key Laboratory for Biomedical Engineering of Ministry of Education, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University, Hangzhou, China
- Translational Psychiatry Research Laboratory, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Pak C Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Yu Sun
- Department of Biomedical Engineering, & Department of Neurobiology, Key Laboratory for Biomedical Engineering of Ministry of Education, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University, Hangzhou, China
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Li
- Department of Biomedical Engineering, & Department of Neurobiology, Key Laboratory for Biomedical Engineering of Ministry of Education, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University, Hangzhou, China
- Translational Psychiatry Research Laboratory, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Liao QM, Zhang ZJ, Yang X, Wei JX, Wang M, Dou YK, Du Y, Ma XH. Changes of structural functional connectivity coupling and its correlations with cognitive function in patients with major depressive disorder. J Affect Disord 2024; 351:259-267. [PMID: 38266932 DOI: 10.1016/j.jad.2024.01.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Previous neuroimaging studies have reported structural and functional brain abnormalities in major depressive disorder (MDD). This study aimed to explore whether the coherence of structural-functional networks was affected by disease and investigate its correlation with clinical manifestations. METHODS The severity of symptoms and cognitive function of 121 MDD patients and 139 healthy controls (HC) were assessed, and imaging data, including diffusion tensor imaging, T1 structural magnetic resonance imaging (MRI) and resting-state functional MRI, were collected. Spearman correlation coefficients of Kullback-Leibler similarity (KLS), fiber number (FN), fractional anisotropy (FA) and functional connectivity (FC) were calculated as coupling coefficients. Double-weight median correlation analysis was conducted to investigate the correlations between differences in brain networks and clinical assessments. RESULTS The percentage of total correct response of delayed matching to sample and the percentage of delayed correct response of pattern recognition memory was lower in MDD. Compared with the HC, KLS-FC coupling between the parietal lobe and subcortical area, FA-FC coupling between the temporal and parietal lobe, and FN-FC coupling in the frontal lobe was lower in MDD. Several correlations between structural-functional connectivity and clinical manifestations were identified. LIMITATIONS First, our study lacks longitudinal follow-up data. Second, the sample size was relatively small. Moreover, we only used the Anatomical Automatic Labeling template to construct the brain network. Finally, the validation of the causal relationship of neuroimaging-behavior factors was still insufficient. CONCLUSIONS The alternation in structural-functional coupling were related to clinical characterization and might be involved in the neuropathology of depression.
Collapse
Affiliation(s)
- Qi-Meng Liao
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Zi-Jian Zhang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Yang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jin-Xue Wei
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Min Wang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yi-Kai Dou
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yue Du
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao-Hong Ma
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Greaves MD, Novelli L, Razi A. Structurally informed resting-state effective connectivity recapitulates cortical hierarchy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587831. [PMID: 38617335 PMCID: PMC11014588 DOI: 10.1101/2024.04.03.587831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Interregional brain communication is mediated by the brain's physical wiring (i.e., structural connectivity). Yet, it remains unclear whether models describing directed, functional interactions between latent neuronal populations-effective connectivity-benefit from incorporating macroscale structural connectivity. Here, we assess a hierarchical empirical Bayes method: structural connectivity-based priors constrain the inversion of group-level resting-state effective connectivity, using subject-level posteriors as input; subsequently, group-level posteriors serve as empirical priors for re-evaluating subject-level effective connectivity. This approach permits knowledge of the brain's structure to inform inference of (multilevel) effective connectivity. In 17 resting-state brain networks, we find that a positive, monotonic relationship between structural connectivity and the prior probability of group-level effective connectivity generalizes across sessions and samples. Providing further validation, we show that inter-network differences in the coupling between structural and effective connectivity recapitulate a well-known unimodal-transmodal hierarchy. Thus, our results provide support for the use of our method over structurally uninformed alternatives.
Collapse
Affiliation(s)
- Matthew D. Greaves
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, 3800, Australia
- Monash Biomedical Imaging, Monash University, Clayton, 3800, Australia
| | - Leonardo Novelli
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, 3800, Australia
- Monash Biomedical Imaging, Monash University, Clayton, 3800, Australia
| | - Adeel Razi
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, 3800, Australia
- Monash Biomedical Imaging, Monash University, Clayton, 3800, Australia
- Wellcome Centre for Human Neuroimaging, University College London, London, WC1N 3AR, United Kingdom
- CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, M5G 1M1, Canada
| |
Collapse
|
10
|
Feng G, Wang Y, Huang W, Chen H, Cheng J, Shu N. Spatial and temporal pattern of structure-function coupling of human brain connectome with development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.11.557107. [PMID: 38559278 PMCID: PMC10979860 DOI: 10.1101/2023.09.11.557107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Brain structural circuitry shapes a richly patterned functional synchronization, supporting for complex cognitive and behavioural abilities. However, how coupling of structural connectome (SC) and functional connectome (FC) develops and its relationships with cognitive functions and transcriptomic architecture remain unclear. We used multimodal magnetic resonance imaging data from 439 participants aged 5.7 to 21.9 years to predict functional connectivity by incorporating intracortical and extracortical structural connectivity, characterizing SC-FC coupling. Our findings revealed that SC-FC coupling was strongest in the visual and somatomotor networks, consistent with evolutionary expansion, myelin content, and functional principal gradient. As development progressed, SC-FC coupling exhibited heterogeneous alterations dominated by an increase in cortical regions, broadly distributed across the somatomotor, frontoparietal, dorsal attention, and default mode networks. Moreover, we discovered that SC-FC coupling significantly predicted individual variability in general intelligence, mainly influencing frontoparietal and default mode networks. Finally, our results demonstrated that the heterogeneous development of SC-FC coupling is positively associated with genes in oligodendrocyte-related pathways and negatively associated with astrocyte-related genes. This study offers insight into the maturational principles of SC-FC coupling in typical development.
Collapse
Affiliation(s)
- Guozheng Feng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Yiwen Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Weijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Haojie Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Jian Cheng
- School of Computer Science and Engineering, Beihang University, Beijing, China
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| |
Collapse
|
11
|
Xu M, Li X, Teng T, Huang Y, Liu M, Long Y, Lv F, Zhi D, Li X, Feng A, Yu S, Calhoun V, Zhou X, Sui J. Reconfiguration of Structural and Functional Connectivity Coupling in Patient Subgroups With Adolescent Depression. JAMA Netw Open 2024; 7:e241933. [PMID: 38470418 PMCID: PMC10933730 DOI: 10.1001/jamanetworkopen.2024.1933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Importance Adolescent major depressive disorder (MDD) is associated with serious adverse implications for brain development and higher rates of self-injury and suicide, raising concerns about its neurobiological mechanisms in clinical neuroscience. However, most previous studies regarding the brain alterations in adolescent MDD focused on single-modal images or analyzed images of different modalities separately, ignoring the potential role of aberrant interactions between brain structure and function in the psychopathology. Objective To examine alterations of structural and functional connectivity (SC-FC) coupling in adolescent MDD by integrating both diffusion magnetic resonance imaging (MRI) and resting-state functional MRI data. Design, Setting, and Participants This cross-sectional study recruited participants aged 10 to 18 years from January 2, 2020, to December 28, 2021. Patients with first-episode MDD were recruited from the outpatient psychiatry clinics at The First Affiliated Hospital of Chongqing Medical University. Healthy controls were recruited by local media advertisement from the general population in Chongqing, China. The sample was divided into 5 subgroup pairs according to different environmental stressors and clinical characteristics. Data were analyzed from January 10, 2022, to February 20, 2023. Main Outcomes and Measures The SC-FC coupling was calculated for each brain region of each participant using whole-brain SC and FC. Primary analyses included the group differences in SC-FC coupling and clinical symptom associations between SC-FC coupling and participants with adolescent MDD and healthy controls. Secondary analyses included differences among 5 types of MDD subgroups: with or without suicide attempt, with or without nonsuicidal self-injury behavior, with or without major life events, with or without childhood trauma, and with or without school bullying. Results Final analyses examined SC-FC coupling of 168 participants with adolescent MDD (mean [mean absolute deviation (MAD)] age, 16.0 [1.7] years; 124 females [73.8%]) and 101 healthy controls (mean [MAD] age, 15.1 [2.4] years; 61 females [60.4%]). Adolescent MDD showed increased SC-FC coupling in the visual network, default mode network, and insula (Cohen d ranged from 0.365 to 0.581; false discovery rate [FDR]-corrected P < .05). Some subgroup-specific alterations were identified via subgroup analyses, particularly involving parahippocampal coupling decrease in participants with suicide attempt (partial η2 = 0.069; 90% CI, 0.025-0.121; FDR-corrected P = .007) and frontal-limbic coupling increase in participants with major life events (partial η2 ranged from 0.046 to 0.068; FDR-corrected P < .05). Conclusions and Relevance Results of this cross-sectional study suggest increased SC-FC coupling in adolescent MDD, especially involving hub regions of the default mode network, visual network, and insula. The findings enrich knowledge of the aberrant brain SC-FC coupling in the psychopathology of adolescent MDD, underscoring the vulnerability of frontal-limbic SC-FC coupling to external stressors and the parahippocampal coupling in shaping future-minded behavior.
Collapse
Affiliation(s)
- Ming Xu
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Teng Teng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Huang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mengqi Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yicheng Long
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dongmei Zhi
- International Data Group (IDG)/McGovern Institute for Brain Research, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Xiang Li
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Aichen Feng
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Shan Yu
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Vince Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Emory University and Georgia State University, Atlanta, Georgia
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Sui
- International Data Group (IDG)/McGovern Institute for Brain Research, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| |
Collapse
|
12
|
Schindler H, Jawinski P, Arnatkevičiūtė A, Markett S. Molecular signatures of attention networks. Hum Brain Mapp 2024; 45:e26588. [PMID: 38401136 PMCID: PMC10893969 DOI: 10.1002/hbm.26588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/10/2023] [Accepted: 12/22/2023] [Indexed: 02/26/2024] Open
Abstract
Attention network theory proposes three distinct types of attention-alerting, orienting, and control-that are supported by separate brain networks and modulated by different neurotransmitters, that is, norepinephrine, acetylcholine, and dopamine. Here, we explore the extent of cortical, genetic, and molecular dissociation of these three attention systems using multimodal neuroimaging. We evaluated the spatial overlap between fMRI activation maps from the attention network test (ANT) and cortex-wide gene expression data from the Allen Human Brain Atlas. The goal was to identify genes associated with each of the attention networks in order to determine whether specific groups of genes were co-expressed with the corresponding attention networks. Furthermore, we analyzed publicly available PET-maps of neurotransmitter receptors and transporters to investigate their spatial overlap with the attention networks. Our analyses revealed a substantial number of genes (3871 for alerting, 6905 for orienting, 2556 for control) whose cortex-wide expression co-varied with the activation maps, prioritizing several molecular functions such as the regulation of protein biosynthesis, phosphorylation, and receptor binding. Contrary to the hypothesized associations, the ANT activation maps neither aligned with the distribution of norepinephrine, acetylcholine, and dopamine receptor and transporter molecules, nor with transcriptomic profiles that would suggest clearly separable networks. Independence of the attention networks appeared additionally constrained by a high level of spatial dependency between the network maps. Future work may need to reconceptualize the attention networks in terms of their segregation and reevaluate the presumed independence at the neural and neurochemical level.
Collapse
Affiliation(s)
| | | | - Aurina Arnatkevičiūtė
- Turner Institute for Brain and Mental Health, School of Psychological SciencesMonash UniversityMelbourneAustralia
| | | |
Collapse
|
13
|
Ragone E, Tanner J, Jo Y, Zamani Esfahlani F, Faskowitz J, Pope M, Coletta L, Gozzi A, Betzel R. Modular subgraphs in large-scale connectomes underpin spontaneous co-fluctuation events in mouse and human brains. Commun Biol 2024; 7:126. [PMID: 38267534 PMCID: PMC10810083 DOI: 10.1038/s42003-024-05766-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
Previous studies have adopted an edge-centric framework to study fine-scale network dynamics in human fMRI. To date, however, no studies have applied this framework to data collected from model organisms. Here, we analyze structural and functional imaging data from lightly anesthetized mice through an edge-centric lens. We find evidence of "bursty" dynamics and events - brief periods of high-amplitude network connectivity. Further, we show that on a per-frame basis events best explain static FC and can be divided into a series of hierarchically-related clusters. The co-fluctuation patterns associated with each cluster centroid link distinct anatomical areas and largely adhere to the boundaries of algorithmically detected functional brain systems. We then investigate the anatomical connectivity undergirding high-amplitude co-fluctuation patterns. We find that events induce modular bipartitions of the anatomical network of inter-areal axonal projections. Finally, we replicate these same findings in a human imaging dataset. In summary, this report recapitulates in a model organism many of the same phenomena observed in previously edge-centric analyses of human imaging data. However, unlike human subjects, the murine nervous system is amenable to invasive experimental perturbations. Thus, this study sets the stage for future investigation into the causal origins of fine-scale brain dynamics and high-amplitude co-fluctuations. Moreover, the cross-species consistency of the reported findings enhances the likelihood of future translation.
Collapse
Affiliation(s)
| | - Jacob Tanner
- Cognitive Science Program, Indiana University, Bloomington, IN, 47401, USA
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47401, USA
| | - Youngheun Jo
- Department of Psychological and Brain Sciences and Cognitive Science Program, Indiana University, Bloomington, IN, 47401, USA
| | - Farnaz Zamani Esfahlani
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK, 73019, USA
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences and Cognitive Science Program, Indiana University, Bloomington, IN, 47401, USA
| | - Maria Pope
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47401, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47401, USA
| | | | - Alessandro Gozzi
- Functional Neuroimaging Lab, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy
| | - Richard Betzel
- Cognitive Science Program, Indiana University, Bloomington, IN, 47401, USA.
- Department of Psychological and Brain Sciences and Cognitive Science Program, Indiana University, Bloomington, IN, 47401, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47401, USA.
| |
Collapse
|
14
|
Nelson MC, Royer J, Lu WD, Leppert IR, Campbell JSW, Schiavi S, Jin H, Tavakol S, Vos de Wael R, Rodriguez-Cruces R, Pike GB, Bernhardt BC, Daducci A, Misic B, Tardif CL. The human brain connectome weighted by the myelin content and total intra-axonal cross-sectional area of white matter tracts. Netw Neurosci 2023; 7:1363-1388. [PMID: 38144691 PMCID: PMC10697181 DOI: 10.1162/netn_a_00330] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/19/2023] [Indexed: 12/26/2023] Open
Abstract
A central goal in neuroscience is the development of a comprehensive mapping between structural and functional brain features, which facilitates mechanistic interpretation of brain function. However, the interpretability of structure-function brain models remains limited by a lack of biological detail. Here, we characterize human structural brain networks weighted by multiple white matter microstructural features including total intra-axonal cross-sectional area and myelin content. We report edge-weight-dependent spatial distributions, variance, small-worldness, rich club, hubs, as well as relationships with function, edge length, and myelin. Contrasting networks weighted by the total intra-axonal cross-sectional area and myelin content of white matter tracts, we find opposite relationships with functional connectivity, an edge-length-independent inverse relationship with each other, and the lack of a canonical rich club in myelin-weighted networks. When controlling for edge length, networks weighted by either fractional anisotropy, radial diffusivity, or neurite density show no relationship with whole-brain functional connectivity. We conclude that the co-utilization of structural networks weighted by total intra-axonal cross-sectional area and myelin content could improve our understanding of the mechanisms mediating the structure-function brain relationship.
Collapse
Affiliation(s)
- Mark C. Nelson
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Jessica Royer
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Wen Da Lu
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Ilana R. Leppert
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Jennifer S. W. Campbell
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Hyerang Jin
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Shahin Tavakol
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Reinder Vos de Wael
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Raul Rodriguez-Cruces
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - G. Bruce Pike
- Hotchkiss Brain Institute and Departments of Radiology and Clinical Neuroscience, University of Calgary, Calgary, Canada
| | - Boris C. Bernhardt
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | | | - Bratislav Misic
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Christine L. Tardif
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
15
|
Hong Y, Cornea E, Girault JB, Bagonis M, Foster M, Kim SH, Prieto JC, Chen H, Gao W, Styner MA, Gilmore JH. Structural and functional connectome relationships in early childhood. Dev Cogn Neurosci 2023; 64:101314. [PMID: 37898019 PMCID: PMC10630618 DOI: 10.1016/j.dcn.2023.101314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
There is strong evidence that the functional connectome is highly related to the white matter connectome in older children and adults, though little is known about structure-function relationships in early childhood. We investigated the development of cortical structure-function coupling in children longitudinally scanned at 1, 2, 4, and 6 years of age (N = 360) and in a comparison sample of adults (N = 89). We also applied a novel graph convolutional neural network-based deep learning model with a new loss function to better capture inter-subject heterogeneity and predict an individual's functional connectivity from the corresponding structural connectivity. We found regional patterns of structure-function coupling in early childhood that were consistent with adult patterns. In addition, our deep learning model improved the prediction of individual functional connectivity from its structural counterpart compared to existing models.
Collapse
Affiliation(s)
- Yoonmi Hong
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America.
| | - Emil Cornea
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America
| | - Jessica B Girault
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, United States of America
| | - Maria Bagonis
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America
| | - Mark Foster
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America
| | - Sun Hyung Kim
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America
| | - Juan Carlos Prieto
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America
| | - Haitao Chen
- Biomedical Imaging Research Institute (BIRI), Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, United States of America
| | - Wei Gao
- Biomedical Imaging Research Institute (BIRI), Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, United States of America
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America; Department of Computer Science, University of North Carolina at Chapel Hill, United States of America
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America
| |
Collapse
|
16
|
Betzel RF, Faskowitz J, Sporns O. Living on the edge: network neuroscience beyond nodes. Trends Cogn Sci 2023; 27:1068-1084. [PMID: 37716895 PMCID: PMC10592364 DOI: 10.1016/j.tics.2023.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 09/18/2023]
Abstract
Network neuroscience has emphasized the connectional properties of neural elements - cells, populations, and regions. This has come at the expense of the anatomical and functional connections that link these elements to one another. A new perspective - namely one that emphasizes 'edges' - may prove fruitful in addressing outstanding questions in network neuroscience. We highlight one recently proposed 'edge-centric' method and review its current applications, merits, and limitations. We also seek to establish conceptual and mathematical links between this method and previously proposed approaches in the network science and neuroimaging literature. We conclude by presenting several avenues for future work to extend and refine existing edge-centric analysis.
Collapse
Affiliation(s)
- Richard F Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Cognitive Science Program, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA; Network Science Institute, Indiana University, Bloomington, IN 47405, USA.
| | - Joshua Faskowitz
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Cognitive Science Program, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA; Network Science Institute, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
17
|
Uddin LQ, Betzel RF, Cohen JR, Damoiseaux JS, De Brigard F, Eickhoff SB, Fornito A, Gratton C, Gordon EM, Laird AR, Larson-Prior L, McIntosh AR, Nickerson LD, Pessoa L, Pinho AL, Poldrack RA, Razi A, Sadaghiani S, Shine JM, Yendiki A, Yeo BTT, Spreng RN. Controversies and progress on standardization of large-scale brain network nomenclature. Netw Neurosci 2023; 7:864-905. [PMID: 37781138 PMCID: PMC10473266 DOI: 10.1162/netn_a_00323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/10/2023] [Indexed: 10/03/2023] Open
Abstract
Progress in scientific disciplines is accompanied by standardization of terminology. Network neuroscience, at the level of macroscale organization of the brain, is beginning to confront the challenges associated with developing a taxonomy of its fundamental explanatory constructs. The Workgroup for HArmonized Taxonomy of NETworks (WHATNET) was formed in 2020 as an Organization for Human Brain Mapping (OHBM)-endorsed best practices committee to provide recommendations on points of consensus, identify open questions, and highlight areas of ongoing debate in the service of moving the field toward standardized reporting of network neuroscience results. The committee conducted a survey to catalog current practices in large-scale brain network nomenclature. A few well-known network names (e.g., default mode network) dominated responses to the survey, and a number of illuminating points of disagreement emerged. We summarize survey results and provide initial considerations and recommendations from the workgroup. This perspective piece includes a selective review of challenges to this enterprise, including (1) network scale, resolution, and hierarchies; (2) interindividual variability of networks; (3) dynamics and nonstationarity of networks; (4) consideration of network affiliations of subcortical structures; and (5) consideration of multimodal information. We close with minimal reporting guidelines for the cognitive and network neuroscience communities to adopt.
Collapse
Affiliation(s)
- Lucina Q. Uddin
- Department of Psychiatry and Biobehavioral Sciences and Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Richard F. Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Jessica R. Cohen
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Jessica S. Damoiseaux
- Institute of Gerontology and Department of Psychology, Wayne State University, Detroit, MI, USA
| | | | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Evan M. Gordon
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Angela R. Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Linda Larson-Prior
- Deptartment of Psychiatry and Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - A. Randal McIntosh
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Vancouver, BC, Canada
| | | | - Luiz Pessoa
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Ana Luísa Pinho
- Brain and Mind Institute, Western University, London, Ontario, Canada
| | | | - Adeel Razi
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Sepideh Sadaghiani
- Department of Psychology, University of Illinois, Urbana Champaign, IL, USA
| | - James M. Shine
- Brain and Mind Center, University of Sydney, Sydney, Australia
| | - Anastasia Yendiki
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - B. T. Thomas Yeo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - R. Nathan Spreng
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| |
Collapse
|
18
|
Milisav F, Bazinet V, Iturria-Medina Y, Misic B. Resolving inter-regional communication capacity in the human connectome. Netw Neurosci 2023; 7:1051-1079. [PMID: 37781139 PMCID: PMC10473316 DOI: 10.1162/netn_a_00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/03/2023] [Indexed: 10/03/2023] Open
Abstract
Applications of graph theory to the connectome have inspired several models of how neural signaling unfolds atop its structure. Analytic measures derived from these communication models have mainly been used to extract global characteristics of brain networks, obscuring potentially informative inter-regional relationships. Here we develop a simple standardization method to investigate polysynaptic communication pathways between pairs of cortical regions. This procedure allows us to determine which pairs of nodes are topologically closer and which are further than expected on the basis of their degree. We find that communication pathways delineate canonical functional systems. Relating nodal communication capacity to meta-analytic probabilistic patterns of functional specialization, we also show that areas that are most closely integrated within the network are associated with higher order cognitive functions. We find that these regions' proclivity towards functional integration could naturally arise from the brain's anatomical configuration through evenly distributed connections among multiple specialized communities. Throughout, we consider two increasingly constrained null models to disentangle the effects of the network's topology from those passively endowed by spatial embedding. Altogether, the present findings uncover relationships between polysynaptic communication pathways and the brain's functional organization across multiple topological levels of analysis and demonstrate that network integration facilitates cognitive integration.
Collapse
Affiliation(s)
- Filip Milisav
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Vincent Bazinet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Yasser Iturria-Medina
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| |
Collapse
|
19
|
Seguin C, Sporns O, Zalesky A. Brain network communication: concepts, models and applications. Nat Rev Neurosci 2023; 24:557-574. [PMID: 37438433 DOI: 10.1038/s41583-023-00718-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Understanding communication and information processing in nervous systems is a central goal of neuroscience. Over the past two decades, advances in connectomics and network neuroscience have opened new avenues for investigating polysynaptic communication in complex brain networks. Recent work has brought into question the mainstay assumption that connectome signalling occurs exclusively via shortest paths, resulting in a sprawling constellation of alternative network communication models. This Review surveys the latest developments in models of brain network communication. We begin by drawing a conceptual link between the mathematics of graph theory and biological aspects of neural signalling such as transmission delays and metabolic cost. We organize key network communication models and measures into a taxonomy, aimed at helping researchers navigate the growing number of concepts and methods in the literature. The taxonomy highlights the pros, cons and interpretations of different conceptualizations of connectome signalling. We showcase the utility of network communication models as a flexible, interpretable and tractable framework to study brain function by reviewing prominent applications in basic, cognitive and clinical neurosciences. Finally, we provide recommendations to guide the future development, application and validation of network communication models.
Collapse
Affiliation(s)
- Caio Seguin
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Program in Cognitive Science, Indiana University, Bloomington, IN, USA
- Indiana University Network Science Institute, Indiana University, Bloomington, IN, USA
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia
- Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Robinson B, Bhamidi S, Dayan E. The spatial distribution of coupling between tau and neurodegeneration in amyloid-β positive mild cognitive impairment. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.13.23288533. [PMID: 37131677 PMCID: PMC10153340 DOI: 10.1101/2023.04.13.23288533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Synergies between amyloid-β (Aβ), tau, and neurodegeneration persist along the Alzheimer's disease (AD) continuum. This study aimed to evaluate the extent of spatial coupling between tau and neurodegeneration (atrophy) and its relation to Aβ positivity in mild cognitive impairment (MCI). Data from 409 subjects were included (95 cognitively normal controls, 158 Aβ positive (Aβ+) MCI, and 156 Aβ negative (Aβ-) MCI) Florbetapir PET, Flortaucipir PET, and structural MRI were used as biomarkers for Aβ, tau and atrophy, respectively. Individual correlation matrices for tau load and atrophy were used to layer a multilayer network, with separate layers for tau and atrophy. A measure of coupling between corresponding regions of interest/nodes in the tau and atrophy layers was computed, as a function of Aβ positivity. The extent to which tau-atrophy coupling mediated associations between Aβ burden and cognitive decline was also evaluated. Heightened coupling between tau and atrophy in Aβ+ MCI was found primarily in the entorhinal and hippocampal regions (i.e., in regions corresponding to Braak stages I/II), and to a lesser extent in limbic and neocortical regions (i.e., corresponding to later Braak stages). Coupling strengths in the right middle temporal and inferior temporal gyri mediated the association between Aβ burden and cognition in this sample. Higher coupling between tau and atrophy in Aβ+ MCI is primarily evident in regions corresponding to early Braak stages and relates to overall cognitive decline. Coupling in neocortical regions is more restricted in MCI.
Collapse
|
21
|
Sasse L, Larabi DI, Omidvarnia A, Jung K, Hoffstaedter F, Jocham G, Eickhoff SB, Patil KR. Intermediately synchronised brain states optimise trade-off between subject specificity and predictive capacity. Commun Biol 2023; 6:705. [PMID: 37429937 PMCID: PMC10333234 DOI: 10.1038/s42003-023-05073-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
Functional connectivity (FC) refers to the statistical dependencies between activity of distinct brain areas. To study temporal fluctuations in FC within the duration of a functional magnetic resonance imaging (fMRI) scanning session, researchers have proposed the computation of an edge time series (ETS) and their derivatives. Evidence suggests that FC is driven by a few time points of high-amplitude co-fluctuation (HACF) in the ETS, which may also contribute disproportionately to interindividual differences. However, it remains unclear to what degree different time points actually contribute to brain-behaviour associations. Here, we systematically evaluate this question by assessing the predictive utility of FC estimates at different levels of co-fluctuation using machine learning (ML) approaches. We demonstrate that time points of lower and intermediate co-fluctuation levels provide overall highest subject specificity as well as highest predictive capacity of individual-level phenotypes.
Collapse
Affiliation(s)
- Leonard Sasse
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Stephanstrasse 1a, Leipzig, Germany
| | - Daouia I Larabi
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Amir Omidvarnia
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kyesam Jung
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Gerhard Jocham
- Institute for Experimental Psychology, Faculty of Mathematics and Natural Sciences, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
22
|
Wu D, Li X. Graph propagation network captures individual specificity of the relationship between functional and structural connectivity. Hum Brain Mapp 2023; 44:3885-3896. [PMID: 37186004 PMCID: PMC10203799 DOI: 10.1002/hbm.26320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Functional connectivity (FC) network characterizes the functional interactions between brain regions and is considered to root in the underlying structural connectivity (SC) network. If this is the case, individual variations in SC should cause corresponding individual variations in FC. However, divergences exist in the correspondence between direct SC and FC and researchers still cannot capture individual differences in FC via direct SC. As brain regions may interact through multi-hop indirect SC pathways, we conceived that one can capture the individual specific SC-FC relationship via incorporating indirect SC pathways appropriately. In this study, we designed graph propagation network (GPN) that models the information propagation between brain regions based on the SC network. Effects of interactions through multi-hop SC pathways naturally emerge from the multilayer information propagation in GPN. We predicted the individual differences in FC network based on SC network via multilayer GPN and results indicate that multilayer GPN incorporating effects of multi-hop indirect SCs greatly enhances the ability to predict individual FC network. Furthermore, the SC-FC relationship evaluated via the prediction accuracy is negatively correlated with the functional gradient, suggesting that the SC-FC relationship gradually uncouples along the functional hierarchy spanning from unimodal to transmodal cortex. We also revealed important intermediate brain regions along multi-hop SC pathways involving in the individual SC-FC relationship. These results suggest that multilayer GPN can serve as a method to establish individual SC-FC relationship at the macroneuroimaging level.
Collapse
Affiliation(s)
- Dongya Wu
- School of Information Science and TechnologyNorthwest UniversityXi'anChina
| | - Xin Li
- School of MathematicsNorthwest UniversityXi'anChina
| |
Collapse
|
23
|
Bazinet V, Hansen JY, Vos de Wael R, Bernhardt BC, van den Heuvel MP, Misic B. Assortative mixing in micro-architecturally annotated brain connectomes. Nat Commun 2023; 14:2850. [PMID: 37202416 DOI: 10.1038/s41467-023-38585-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 05/08/2023] [Indexed: 05/20/2023] Open
Abstract
The wiring of the brain connects micro-architecturally diverse neuronal populations, but the conventional graph model, which encodes macroscale brain connectivity as a network of nodes and edges, abstracts away the rich biological detail of each regional node. Here, we annotate connectomes with multiple biological attributes and formally study assortative mixing in annotated connectomes. Namely, we quantify the tendency for regions to be connected based on the similarity of their micro-architectural attributes. We perform all experiments using four cortico-cortical connectome datasets from three different species, and consider a range of molecular, cellular, and laminar annotations. We show that mixing between micro-architecturally diverse neuronal populations is supported by long-distance connections and find that the arrangement of connections with respect to biological annotations is associated to patterns of regional functional specialization. By bridging scales of cortical organization, from microscale attributes to macroscale connectivity, this work lays the foundation for next-generation annotated connectomics.
Collapse
Affiliation(s)
- Vincent Bazinet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Justine Y Hansen
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Martijn P van den Heuvel
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
| |
Collapse
|
24
|
Seguin C, Jedynak M, David O, Mansour S, Sporns O, Zalesky A. Communication dynamics in the human connectome shape the cortex-wide propagation of direct electrical stimulation. Neuron 2023; 111:1391-1401.e5. [PMID: 36889313 DOI: 10.1016/j.neuron.2023.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/28/2022] [Accepted: 01/30/2023] [Indexed: 03/09/2023]
Abstract
Communication between gray matter regions underpins all facets of brain function. We study inter-areal communication in the human brain using intracranial EEG recordings, acquired following 29,055 single-pulse direct electrical stimulations in a total of 550 individuals across 20 medical centers (average of 87 ± 37 electrode contacts per subject). We found that network communication models-computed on structural connectivity inferred from diffusion MRI-can explain the causal propagation of focal stimuli, measured at millisecond timescales. Building on this finding, we show that a parsimonious statistical model comprising structural, functional, and spatial factors can accurately and robustly predict cortex-wide effects of brain stimulation (R2=46% in data from held-out medical centers). Our work contributes toward the biological validation of concepts in network neuroscience and provides insight into how connectome topology shapes polysynaptic inter-areal signaling. We anticipate that our findings will have implications for research on neural communication and the design of brain stimulation paradigms.
Collapse
Affiliation(s)
- Caio Seguin
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
| | - Maciej Jedynak
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Olivier David
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Sina Mansour
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Cognitive Science Program, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Network Science Institute, Indiana University, Bloomington, IN, USA
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Cao T, Pang JC, Segal A, Chen YC, Aquino KM, Breakspear M, Fornito A. Mode-based morphometry: A multiscale approach to mapping human neuroanatomy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.529328. [PMID: 36909539 PMCID: PMC10002616 DOI: 10.1101/2023.02.26.529328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Voxel-based morphometry (VBM) and surface-based morphometry (SBM) are two widely used neuroimaging techniques for investigating brain anatomy. These techniques rely on statistical inferences at individual points (voxels or vertices), clusters of points, or a priori regions-of-interest. They are powerful tools for describing brain anatomy, but offer little insights into the generative processes that shape a particular set of findings. Moreover, they are restricted to a single spatial resolution scale, precluding the opportunity to distinguish anatomical variations that are expressed across multiple scales. Drawing on concepts from classical physics, here we develop an approach, called mode-based morphometry (MBM), that can describe any empirical map of anatomical variations in terms of the fundamental, resonant modes--eigenmodes--of brain anatomy, each tied to a specific spatial scale. Hence, MBM naturally yields a multiscale characterization of the empirical map, affording new opportunities for investigating the spatial frequency content of neuroanatomical variability. Using simulated and empirical data, we show that the validity and reliability of MBM are either comparable or superior to classical vertex-based SBM for capturing differences in cortical thickness maps between two experimental groups. Our approach thus offers a robust, accurate, and informative method for characterizing empirical maps of neuroanatomical variability that can be directly linked to a generative physical process.
Collapse
Affiliation(s)
- Trang Cao
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, 762-772 Blackburn Rd, Clayton VIC 3168, Australia
| | - James C Pang
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, 762-772 Blackburn Rd, Clayton VIC 3168, Australia
| | - Ashlea Segal
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, 762-772 Blackburn Rd, Clayton VIC 3168, Australia
| | - Yu-Chi Chen
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, 762-772 Blackburn Rd, Clayton VIC 3168, Australia
| | - Kevin M Aquino
- School of Physics, University of Sydney, Physics Rd, Camperdown NSW 2006, Australia
| | - Michael Breakspear
- School of Psychological Sciences, University of Newcastle, University Dr, Callaghan NSW 2308, Australia
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, 762-772 Blackburn Rd, Clayton VIC 3168, Australia
| |
Collapse
|
26
|
Benozzo D, Baron G, Coletta L, Chiuso A, Gozzi A, Bertoldo A. Macroscale coupling between structural and effective connectivity in the mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529400. [PMID: 36865122 PMCID: PMC9980133 DOI: 10.1101/2023.02.22.529400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
How the emergent functional connectivity (FC) relates to the underlying anatomy (structural connectivity, SC) is one of the biggest questions of modern neuroscience. At the macro-scale level, no one-to-one correspondence between structural and functional links seems to exist. And we posit that to better understand their coupling, two key aspects should be taken into account: the directionality of the structural connectome and the limitations of describing network functions in terms of FC. Here, we employed an accurate directed SC of the mouse brain obtained by means of viral tracers, and related it with single-subject effective connectivity (EC) matrices computed by applying a recently developed DCM to whole-brain resting-state fMRI data. We analyzed how SC deviates from EC and quantified their couplings by conditioning both on the strongest SC links and EC links. We found that when conditioning on the strongest EC links, the obtained coupling follows the unimodal-transmodal functional hierarchy. Whereas the reverse is not true, as there are strong SC links within high-order cortical areas with no corresponding strong EC links. This mismatch is even more clear across networks. Only the connections within sensory motor networks align both in terms of effective and structural strength.
Collapse
Affiliation(s)
- Danilo Benozzo
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Giorgia Baron
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Ludovico Coletta
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Alessandro Chiuso
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Alessandra Bertoldo
- Department of Information Engineering, University of Padova, Padova, Italy
- Padova Neuroscience Center, Padova, Italy
| |
Collapse
|
27
|
Hansen JY, Shafiei G, Vogel JW, Smart K, Bearden CE, Hoogman M, Franke B, van Rooij D, Buitelaar J, McDonald CR, Sisodiya SM, Schmaal L, Veltman DJ, van den Heuvel OA, Stein DJ, van Erp TGM, Ching CRK, Andreassen OA, Hajek T, Opel N, Modinos G, Aleman A, van der Werf Y, Jahanshad N, Thomopoulos SI, Thompson PM, Carson RE, Dagher A, Misic B. Local molecular and global connectomic contributions to cross-disorder cortical abnormalities. Nat Commun 2022; 13:4682. [PMID: 35948562 PMCID: PMC9365855 DOI: 10.1038/s41467-022-32420-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/28/2022] [Indexed: 12/21/2022] Open
Abstract
Numerous brain disorders demonstrate structural brain abnormalities, which are thought to arise from molecular perturbations or connectome miswiring. The unique and shared contributions of these molecular and connectomic vulnerabilities to brain disorders remain unknown, and has yet to be studied in a single multi-disorder framework. Using MRI morphometry from the ENIGMA consortium, we construct maps of cortical abnormalities for thirteen neurodevelopmental, neurological, and psychiatric disorders from N = 21,000 participants and N = 26,000 controls, collected using a harmonised processing protocol. We systematically compare cortical maps to multiple micro-architectural measures, including gene expression, neurotransmitter density, metabolism, and myelination (molecular vulnerability), as well as global connectomic measures including number of connections, centrality, and connection diversity (connectomic vulnerability). We find a relationship between molecular vulnerability and white-matter architecture that drives cortical disorder profiles. Local attributes, particularly neurotransmitter receptor profiles, constitute the best predictors of both disorder-specific cortical morphology and cross-disorder similarity. Finally, we find that cross-disorder abnormalities are consistently subtended by a small subset of network epicentres in bilateral sensory-motor, inferior temporal lobe, precuneus, and superior parietal cortex. Collectively, our results highlight how local molecular attributes and global connectivity jointly shape cross-disorder cortical abnormalities.
Collapse
Affiliation(s)
- Justine Y Hansen
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Golia Shafiei
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Jacob W Vogel
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Smart
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Carrie E Bearden
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Martine Hoogman
- Departments of Psychiatry and Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Barbara Franke
- Departments of Psychiatry and Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Daan van Rooij
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Jan Buitelaar
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Carrie R McDonald
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Lianne Schmaal
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Odile A van den Heuvel
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Anatomy & Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Dan J Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Dept of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, & Center for the Neurobiology of Leaning and Memory, University of California Irvine, 309 Qureshey Research Lab, Irvine, CA, USA
| | - Christopher R K Ching
- Keck School of Medicine, Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Nils Opel
- Institute of Translational Psychiatry, University of Münster, Münster, Germany & Department of Psychiatry, Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
| | - Gemma Modinos
- Department of Psychosis Studies & MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, Groningen, The Netherlands
| | - Ysbrand van der Werf
- Department of Anatomy & Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Neda Jahanshad
- Keck School of Medicine, Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Sophia I Thomopoulos
- Keck School of Medicine, Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Paul M Thompson
- Keck School of Medicine, Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Alain Dagher
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada.
| |
Collapse
|