1
|
Cheng M, Jiang W, Guo L, Li J, Forbes A. Metrology with a twist: probing and sensing with vortex light. LIGHT, SCIENCE & APPLICATIONS 2025; 14:4. [PMID: 39741132 DOI: 10.1038/s41377-024-01665-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 01/02/2025]
Abstract
Optical metrology is a well-established subject, dating back to early interferometry techniques utilizing light's linear momentum through fringes. In recent years, significant interest has arisen in using vortex light with orbital angular momentum (OAM), where the phase twists around a singular vortex in space or time. This has expanded metrology's boundaries to encompass highly sensitive chiral interactions between light and matter, three-dimensional motion detection via linear and rotational Doppler effects, and modal approaches surpassing the resolution limit for improved profiling and quantification. The intricate structure of vortex light, combined with the integration of artificial intelligence into optical metrology, unlocks new paradigms for expanding measurement frameworks through additional degrees of freedom, offering the potential for more efficient and accurate sensing and metrological advancements. This review aims to provide a comprehensive overview of recent advances and future trends in optical metrology with structured light, specifically focusing on how utilizing vortex beams has revolutionized metrology and remote sensing, transitioning from classical to quantum approaches.
Collapse
Affiliation(s)
- Mingjian Cheng
- School of Physics, Xidian University, South Taibai Road 2, Xi'an, 710071, Shannxi, China
| | - Wenjie Jiang
- School of Physics, Xidian University, South Taibai Road 2, Xi'an, 710071, Shannxi, China
| | - Lixin Guo
- School of Physics, Xidian University, South Taibai Road 2, Xi'an, 710071, Shannxi, China.
| | - Jiangting Li
- School of Physics, Xidian University, South Taibai Road 2, Xi'an, 710071, Shannxi, China
| | - Andrew Forbes
- School of Physics, University of the Witwatersrand, Private Bag 3, Johannesburg, 2050, South Africa.
| |
Collapse
|
2
|
Mazumdar H, Khondakar KR, Das S, Halder A, Kaushik A. Artificial intelligence for personalized nanomedicine; from material selection to patient outcomes. Expert Opin Drug Deliv 2025; 22:85-108. [PMID: 39645588 DOI: 10.1080/17425247.2024.2440618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/15/2024] [Accepted: 12/06/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION Artificial intelligence (AI) is changing the field of nanomedicine by exploring novel nanomaterials for developing therapies of high efficacy. AI works on larger datasets, finding sought-after nano-properties for different therapeutic aims and eventually enhancing nanomaterials' safety and effectiveness. AI leverages patient clinical and genetic data to predict outcomes, guide treatments, and optimize drug dosages and forms, enhancing benefits while minimizing side effects. AI-supported nanomedicine faces challenges like data fusion, ethics, and regulation, requiring better tools and interdisciplinary collaboration. This review highlights the importance of AI regarding patient care and urges scientists, medical professionals, and regulators to adopt AI for better outcomes. AREAS COVERED Personalized Nanomedicine, Material Discovery, AI-Driven Therapeutics, Data Integration, Drug Delivery, Patient Centric Care. EXPERT OPINION Today, AI can improve personalized health wellness through the discovery of new types of drug nanocarriers, nanomedicine of specific properties to tackle targeted medical needs, and an increment in efficacy along with safety. Nevertheless, problems such as ethical issues, data security, or unbalanced data sets need to be addressed. Potential future developments involve using AI and quantum computing together and exploring telemedicine i.e. the Internet-of-Medical-Things (IoMT) approach can enhance the quality of patient care in a personalized manner by timely decision-making.
Collapse
Affiliation(s)
- Hirak Mazumdar
- Department of Computer Science and Engineering, Adamas University, Kolkata, India
| | | | - Suparna Das
- Department of Computer Science and Engineering, BVRIT HYDERABAD College of Engineering for Women, Hyderabad, India
| | - Animesh Halder
- Department of Electrical and Electronics Engineering, Adamas University, Kolkata, India
| | - Ajeet Kaushik
- Nano Biotech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, USA
| |
Collapse
|
3
|
Fan X, Xing Y, Wu Z, Li B, Huang P, Liu L. Electrochemical-Enhanced Charge State Modulation of Nitrogen-Vacancy Centers for Ultrasensitive Biodetection of MicroRNA-155. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39690105 DOI: 10.1021/acsami.4c17823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Sensitive and accurate miRNA detection is important in cancer diagnosis but remains challenging owing to the essential features of miRNAs, such as their small size, high homology, and low abundance. This work proposes a novel electrochemical (EC)-enhanced quantum sensor achieving quantitative detection of miRNA-155 with simultaneous EC sensing. Specifically, fluorescent nanodiamonds/MXene nanocomposites were synthesized and modified with dual-mode signal labels, enabling miRNA-155 concentration measurement via T1 relaxation time of nitrogen-vacancy (NV) centers and EC signals. Quantum sensing was enhanced via external voltage during the EC process, which modulated the negatively charged state of the NV centers, thereby improving the sensitivity and accuracy of miRNA-155 detection. EC sensing improved the accuracy and reliability of miRNA-155 detection while enhancing quantum sensing. The limit of detection (LOD) of the EC-enhanced quantum biosensor reached 10.0 aM, nearly 106 and 10 times lower than the reported LODs of a quantum sensor using bulk diamond and fluorescent sensors, respectively. The LOD of EC sensing was 2.6 aM, aligning with previous reports. The findings of the study indicated that quantum sensing combined with EC sensing can achieve ultrasensitive miRNA-155 detection with high accuracy and reliability, providing an advanced approach for early cancer diagnosis.
Collapse
Affiliation(s)
- Xiaojian Fan
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Suzhou Research Institute of Southeast University, Suzhou 215123, China
| | - Youqiang Xing
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Suzhou Research Institute of Southeast University, Suzhou 215123, China
| | - Ze Wu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Suzhou Research Institute of Southeast University, Suzhou 215123, China
| | - Bingjue Li
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Suzhou Research Institute of Southeast University, Suzhou 215123, China
| | - Peng Huang
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Suzhou Research Institute of Southeast University, Suzhou 215123, China
| | - Lei Liu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Suzhou Research Institute of Southeast University, Suzhou 215123, China
| |
Collapse
|
4
|
Oshimi K, Ishiwata H, Nakashima H, Mandić S, Kobayashi H, Teramoto M, Tsuji H, Nishibayashi Y, Shikano Y, An T, Fujiwara M. Bright Quantum-Grade Fluorescent Nanodiamonds. ACS NANO 2024; 18:35202-35213. [PMID: 39681540 PMCID: PMC11697348 DOI: 10.1021/acsnano.4c03424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
Optically accessible spin-active nanomaterials are promising as quantum nanosensors for probing biological samples. However, achieving bioimaging-level brightness and high-quality spin properties for these materials is challenging and hinders their application in quantum biosensing. Here, we demonstrate bright fluorescent nanodiamonds (NDs) containing 0.6-1.3-ppm negatively charged nitrogen-vacancy (NV) centers by spin-environment engineering via enriching spin-less 12C-carbon isotopes and reducing substitutional nitrogen spin impurities. The NDs, readily introduced into cultured cells, exhibited improved optically detected magnetic resonance (ODMR) spectra; peak splitting (E) was reduced by 2-3 MHz, and microwave excitation power required was 20 times lower to achieve a 3% ODMR contrast, comparable to that of conventional type-Ib NDs. They show average spin-relaxation times of T1 = 0.68 ms and T2 = 3.2 μs (1.6 ms and 5.4 μs maximum) that were 5- and 11-fold longer than those of type-Ib, respectively. Additionally, the extended T2 relaxation times of these NDs enable shot-noise-limited temperature measurements with a sensitivity of approximately 0.28 K / Hz . The combination of bulk-like NV spin properties and enhanced fluorescence significantly improves the sensitivity of ND-based quantum sensors for biological applications.
Collapse
Affiliation(s)
- Keisuke Oshimi
- Department
of Chemistry, Graduate School of Life, Environmental, Natural Science
and Technology, Okayama University, Okayama 700-8530, Japan
| | - Hitoshi Ishiwata
- The
National Institutes for Quantum Science and Technology (QST), Institute
for Quantum Life Science (iQLS), Chiba 263-8555, Japan
| | - Hiromu Nakashima
- Department
of Chemistry, Graduate School of Life, Environmental, Natural Science
and Technology, Okayama University, Okayama 700-8530, Japan
| | - Sara Mandić
- Department
of Chemistry, Graduate School of Life, Environmental, Natural Science
and Technology, Okayama University, Okayama 700-8530, Japan
| | - Hina Kobayashi
- Department
of Chemistry, Graduate School of Life, Environmental, Natural Science
and Technology, Okayama University, Okayama 700-8530, Japan
| | - Minori Teramoto
- Advanced
Materials Laboratory, Sumitomo Electric
Industries, Ltd., Hyogo 664-0016, Japan
| | - Hirokazu Tsuji
- Advanced
Materials Laboratory, Sumitomo Electric
Industries, Ltd., Hyogo 664-0016, Japan
| | - Yoshiki Nishibayashi
- Advanced
Materials Laboratory, Sumitomo Electric
Industries, Ltd., Hyogo 664-0016, Japan
| | - Yutaka Shikano
- Institute
of Systems and Information Engineering, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
- Center
for Artificial Intelligence Research (C-AIR), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- Institute
for Quantum Studies, Chapman University, Orange, California 92866, United States
| | - Toshu An
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Masazumi Fujiwara
- Department
of Chemistry, Graduate School of Life, Environmental, Natural Science
and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
5
|
Hansen SH, Buch CD, Petersen JB, Rix M, Ubach I Cervera M, Strandfelt A, Winpenny REP, McInnes EJL, Piligkos S. Probing decoherence in molecular 4f qubits. Chem Sci 2024; 15:20328-20337. [PMID: 39568949 PMCID: PMC11575486 DOI: 10.1039/d4sc05304d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
We probe herein the fundamental factors that induce decoherence in ensembles of molecular magnetic materials. This is done by pulse Electron Paramagnetic Resonance measurements at X-band (∼9.6 GHz) on single crystals of Gd@Y(trensal) at 0.5, 10-1, 10-2 and 10-3% doping levels, using Hahn echo, partial refocusing and CPMG sequences. The phase memory time, T m, obtained by the Hahn echo sequence at X-band is compared to the one previously determined at higher frequency/magnetic field (∼240 GHz). The combined information from these experiments allows to gain insight into the contributions to decoherence originating from various relaxation mechanisms such as spin-lattice relaxation, electron and nuclear spin diffusion and instantaneous diffusion. We show that while at high magnetic fields T m is limited by spin-lattice relaxation seemingly attributed to a direct process, at lower fields the limiting factor is spectral diffusion. At X-band, for Gd@Y(trensal) we determine a T m in the range 1-12 μs, at 5 K, depending on the magnetic field and concentration of Gd(trensal) in the isostructural diamagnetic host Y(trensal). Importantly, Gd@Y(trensal) displays measurable coherence at temperatures above liquid nitrogen ones, with 125 K being the upper limit. At the lowest dilution level of 10-3% and under dynamic decoupling conditions, the ratio of T m versus the time it takes to implement a quantum gate, T G, reaches the order of 104, in the example of a single qubit π-rotation, which corresponds to an upper limit of gate fidelity of the order of 99.99%, reaching thus the lower limit of qubit figure of merit required for implementations in quantum information technologies.
Collapse
Affiliation(s)
- Steen H Hansen
- Department of Chemistry, University of Copenhagen DK-2100 Copenhagen Denmark
| | - Christian D Buch
- Department of Chemistry, University of Copenhagen DK-2100 Copenhagen Denmark
| | - Jonatan B Petersen
- Department of Chemistry, School of Natural Science, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Michelle Rix
- Department of Chemistry, University of Copenhagen DK-2100 Copenhagen Denmark
| | | | - Asger Strandfelt
- Department of Chemistry, University of Copenhagen DK-2100 Copenhagen Denmark
| | - Richard E P Winpenny
- Department of Chemistry, School of Natural Science, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Eric J L McInnes
- Department of Chemistry, School of Natural Science, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stergios Piligkos
- Department of Chemistry, University of Copenhagen DK-2100 Copenhagen Denmark
| |
Collapse
|
6
|
Chow JCL. Quantum Computing in Medicine. Med Sci (Basel) 2024; 12:67. [PMID: 39584917 PMCID: PMC11586987 DOI: 10.3390/medsci12040067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024] Open
Abstract
Quantum computing (QC) represents a paradigm shift in computational power, offering unique capabilities for addressing complex problems that are infeasible for classical computers. This review paper provides a detailed account of the current state of QC, with a particular focus on its applications within medicine. It explores fundamental concepts such as qubits, superposition, and entanglement, as well as the evolution of QC from theoretical foundations to practical advancements. The paper covers significant milestones where QC has intersected with medical research, including breakthroughs in drug discovery, molecular modeling, genomics, and medical diagnostics. Additionally, key quantum techniques such as quantum algorithms, quantum machine learning (QML), and quantum-enhanced imaging are explained, highlighting their relevance in healthcare. The paper also addresses challenges in the field, including hardware limitations, scalability, and integration within clinical environments. Looking forward, the paper discusses the potential for quantum-classical hybrid systems and emerging innovations in quantum hardware, suggesting how these advancements may accelerate the adoption of QC in medical research and clinical practice. By synthesizing reliable knowledge and presenting it through a comprehensive lens, this paper serves as a valuable reference for researchers interested in the transformative potential of QC in medicine.
Collapse
Affiliation(s)
- James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada; ; Tel.: +1-416-946-4501
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
7
|
Fang HH, Wang XJ, Marie X, Sun HB. Quantum sensing with optically accessible spin defects in van der Waals layered materials. LIGHT, SCIENCE & APPLICATIONS 2024; 13:303. [PMID: 39496613 PMCID: PMC11535532 DOI: 10.1038/s41377-024-01630-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 11/06/2024]
Abstract
Quantum sensing has emerged as a powerful technique to detect and measure physical and chemical parameters with exceptional precision. One of the methods is to use optically active spin defects within solid-state materials. These defects act as sensors and have made significant progress in recent years, particularly in the realm of two-dimensional (2D) spin defects. In this article, we focus on the latest trends in quantum sensing that use spin defects in van der Waals (vdW) materials. We discuss the benefits of combining optically addressable spin defects with 2D vdW materials while highlighting the challenges and opportunities to use these defects. To make quantum sensing practical and applicable, the article identifies some areas worth further exploration. These include identifying spin defects with properties suitable for quantum sensing, generating quantum defects on demand with control of their spatial localization, understanding the impact of layer thickness and interface on quantum sensing, and integrating spin defects with photonic structures for new functionalities and higher emission rates. The article explores the potential applications of quantum sensing in several fields, such as superconductivity, ferromagnetism, 2D nanoelectronics, and biology. For instance, combining nanoscale microfluidic technology with nanopore and quantum sensing may lead to a new platform for DNA sequencing. As materials technology continues to evolve, and with the advancement of defect engineering techniques, 2D spin defects are expected to play a vital role in quantum sensing.
Collapse
Affiliation(s)
- Hong-Hua Fang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China.
| | - Xiao-Jie Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China
| | - Xavier Marie
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, 31077, Toulouse, France
- Institut Universitaire de France, 75231, Paris, France
| | - Hong-Bo Sun
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
8
|
Hu J, Liang Z, Zhou P, Liu L, Hu G, Ye M. Integrated optical probing scheme enabled by localized-interference metasurface for chip-scale atomic magnetometer. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:4231-4242. [PMID: 39678115 PMCID: PMC11636512 DOI: 10.1515/nanoph-2024-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/13/2024] [Indexed: 12/17/2024]
Abstract
Emerging miniaturized atomic sensors such as optically pumped magnetometers (OPMs) have attracted widespread interest due to their application in high-spatial-resolution biomagnetism imaging. While optical probing systems in conventional OPMs require bulk optical devices including linear polarizers and lenses for polarization conversion and wavefront shaping, which are challenging for chip-scale integration. In this study, an integrated optical probing scheme based on localized-interference metasurface for chip-scale OPM is developed. Our monolithic metasurface allows tailorable linear polarization conversion and wavefront manipulation. Two silicon-based metasurfaces namely meta-polarizer and meta-polarizer-lens are fabricated and characterized, with maximum transmission efficiency and extinction ratio (ER) of 86.29 % and 14.2 dB for the meta-polarizer as well as focusing efficiency and ER of 72.79 % and 6.4 dB for the meta-polarizer-lens, respectively. A miniaturized vapor cell with 4 × 4 × 4 mm3 dimension containing 87Rb and N2 is combined with the meta-polarizer to construct a compact zero-field resonance OPM for proof of concept. The sensitivity of this sensor reaches approximately 9 fT/Hz1/2 with a dynamic range near zero magnetic field of about ±2.3 nT. This study provides a promising solution for chip-scale optical probing, which holds potential for the development of chip-integrated OPMs as well as other advanced atomic devices where the integration of optical probing system is expected.
Collapse
Affiliation(s)
- Jinsheng Hu
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou310051, China
| | - Zihua Liang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou310051, China
| | - Peng Zhou
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou310051, China
| | - Lu Liu
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou310051, China
| | - Gen Hu
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou310051, China
| | - Mao Ye
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou310051, China
- Hangzhou Institute of Extremely-Weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou310051, China
- Hefei National Laboratory, Hefei230088, China
| |
Collapse
|
9
|
Kopp SM, Nakamura S, Phelan BT, Poh YR, Tyndall SB, Brown PJ, Huang Y, Yuen-Zhou J, Krzyaniak MD, Wasielewski MR. Luminescent Organic Triplet Diradicals as Optically Addressable Molecular Qubits. J Am Chem Soc 2024; 146:27935-27945. [PMID: 39332019 DOI: 10.1021/jacs.4c11116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Optical-spin interfaces that enable the photoinitialization, coherent microwave manipulation, and optical read-out of ground state spins have been studied extensively in solid-state defects such as diamond nitrogen vacancy (NV) centers and are promising for quantum information science applications. Molecular quantum bits (qubits) offer many advantages over solid-state spin centers through synthetic control of their optical and spin properties and their scalability into well-defined multiqubit arrays. In this work, we report an optical-spin interface in an organic molecular qubit consisting of two luminescent tris(2,4,6-trichlorophenyl)methyl (TTM) radicals connected via the meta-positions of a phenyl linker. The triplet ground state of this system can be photoinitialized in its |T0⟩ state by shelving triplet populations as singlets through spin-selective excited-state intersystem crossing with 80% selectivity from |T+⟩ and |T-⟩. The fluorescence intensity in the triplet manifold is determined by the ground-state polarization, and we show successful optical read-out of the ground-state spin following microwave manipulations by fluorescence-detected magnetic resonance spectroscopy. At 85 K, the lifetime of the polarized ground state is 45 ± 3 μs, and the ground state phase memory time is Tm = 5.9 ± 0.1 μs, which increases to 26.8 ± 1.6 μs at 5 K. These results show that luminescent diradicals with triplet ground states can serve as optically addressable molecular qubits with long spin coherence times, which marks an important step toward the rational design of spin-optical interfaces in organic materials.
Collapse
Affiliation(s)
- Sebastian M Kopp
- Department of Chemistry and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113 United States
| | - Shunta Nakamura
- Department of Chemistry and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113 United States
| | - Brian T Phelan
- Department of Chemistry and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113 United States
| | - Yong Rui Poh
- Department of Chemistry and Biochemistry and Center for Molecular Quantum Transduction, University of California San Diego, La Jolla, California 92093 United States
| | - Samuel B Tyndall
- Department of Chemistry and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113 United States
| | - Paige J Brown
- Department of Chemistry and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113 United States
| | - Yuheng Huang
- Department of Chemistry and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113 United States
| | - Joel Yuen-Zhou
- Department of Chemistry and Biochemistry and Center for Molecular Quantum Transduction, University of California San Diego, La Jolla, California 92093 United States
| | - Matthew D Krzyaniak
- Department of Chemistry and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113 United States
| | - Michael R Wasielewski
- Department of Chemistry and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113 United States
| |
Collapse
|
10
|
Chen XD, Zang HX, Dong Y, Liu ZW, Ma MQ, Zhang SC, Zheng Y, Guo GC, Sun FW. Microwave Remote Sensing with Hybrid Quantum Receiver. ACS NANO 2024; 18:27393-27400. [PMID: 39344122 DOI: 10.1021/acsnano.4c07131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Detecting a microwave signal that is emitted or reflected by distant targets is a powerful tool in fundamental science and industrial technology. Solid-state spins provide an opportunity to realize quantum-enhanced remote sensing under ambient conditions. However, the weak interaction between the free-space signal and atomic size sensor limits the sensitivity. This hinders the realization of practical quantum remote sensing. Here, we demonstrate active microwave remote sensing with a diamond-based hybrid quantum receiver by combining electromagnetic field localization at nanoscale with quantum spin manipulation. A method of differential spin refocusing (DSR) is developed to overcome the challenge of reducing the impact of inhomogeneities in spin-signal interaction, while the strength of interaction is enhanced by more than 3 orders with nanostructure. It improves the coherent interaction time of quantum receiver by 30-fold, substantially enhancing the sensitivity and stability. By detecting the reflected microwave with picotesla sensitivity, diamond remote sensing monitors the real-time status of a centimeter-sized target at 2 m distance. Our method is general to various solid-state spins. The results will expand the applications of solid-state spin quantum sensors in areas ranging from medical imaging to resource survey.
Collapse
Affiliation(s)
- Xiang-Dong Chen
- CAS Key Laboratory of Quantum Information, School of Physical Sciences, University of Science and Technology of China, Hefei 230026, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, P. R. China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, P. R. China
| | - Han-Xiang Zang
- CAS Key Laboratory of Quantum Information, School of Physical Sciences, University of Science and Technology of China, Hefei 230026, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yang Dong
- CAS Key Laboratory of Quantum Information, School of Physical Sciences, University of Science and Technology of China, Hefei 230026, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhi-Wei Liu
- CAS Key Laboratory of Quantum Information, School of Physical Sciences, University of Science and Technology of China, Hefei 230026, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Meng-Qi Ma
- CAS Key Laboratory of Quantum Information, School of Physical Sciences, University of Science and Technology of China, Hefei 230026, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shao-Chun Zhang
- CAS Key Laboratory of Quantum Information, School of Physical Sciences, University of Science and Technology of China, Hefei 230026, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yu Zheng
- CAS Key Laboratory of Quantum Information, School of Physical Sciences, University of Science and Technology of China, Hefei 230026, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Guang-Can Guo
- CAS Key Laboratory of Quantum Information, School of Physical Sciences, University of Science and Technology of China, Hefei 230026, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, P. R. China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, P. R. China
| | - Fang-Wen Sun
- CAS Key Laboratory of Quantum Information, School of Physical Sciences, University of Science and Technology of China, Hefei 230026, P. R. China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, P. R. China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, P. R. China
| |
Collapse
|
11
|
Althumayri M, Das R, Banavath R, Beker L, Achim AM, Ceylan Koydemir H. Recent Advances in Transparent Electrodes and Their Multimodal Sensing Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405099. [PMID: 39120484 PMCID: PMC11481197 DOI: 10.1002/advs.202405099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/24/2024] [Indexed: 08/10/2024]
Abstract
This review examines the recent advancements in transparent electrodes and their crucial role in multimodal sensing technologies. Transparent electrodes, notable for their optical transparency and electrical conductivity, are revolutionizing sensors by enabling the simultaneous detection of diverse physical, chemical, and biological signals. Materials like graphene, carbon nanotubes, and conductive polymers, which offer a balance between optical transparency, electrical conductivity, and mechanical flexibility, are at the forefront of this development. These electrodes are integral in various applications, from healthcare to solar cell technologies, enhancing sensor performance in complex environments. The paper addresses challenges in applying these electrodes, such as the need for mechanical flexibility, high optoelectronic performance, and biocompatibility. It explores new materials and innovative techniques to overcome these hurdles, aiming to broaden the capabilities of multimodal sensing devices. The review provides a comparative analysis of different transparent electrode materials, discussing their applications and the ongoing development of novel electrode systems for multimodal sensing. This exploration offers insights into future advancements in transparent electrodes, highlighting their transformative potential in bioelectronics and multimodal sensing technologies.
Collapse
Affiliation(s)
- Majed Althumayri
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTX77843USA
- Center for Remote Health Technologies and SystemsTexas A&M Engineering Experiment StationCollege StationTX77843USA
| | - Ritu Das
- Department of Mechanical EngineeringKoç UniversitySariyerIstanbul34450Turkey
| | - Ramu Banavath
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTX77843USA
- Center for Remote Health Technologies and SystemsTexas A&M Engineering Experiment StationCollege StationTX77843USA
| | - Levent Beker
- Department of Mechanical EngineeringKoç UniversitySariyerIstanbul34450Turkey
| | - Alin M. Achim
- School of Computer ScienceUniversity of BristolBristolBS8 1QUUK
| | - Hatice Ceylan Koydemir
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTX77843USA
- Center for Remote Health Technologies and SystemsTexas A&M Engineering Experiment StationCollege StationTX77843USA
| |
Collapse
|
12
|
Faccio D. The future of quantum technologies for brain imaging. PLoS Biol 2024; 22:e3002824. [PMID: 39466721 PMCID: PMC11515994 DOI: 10.1371/journal.pbio.3002824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
The neurosciences have pioneered the use of quantum technologies for sensing and imaging the brain. Next-generation technologies promise routes towards low-cost, wearable imaging devices with high spatial and temporal resolution.
Collapse
Affiliation(s)
- Daniele Faccio
- School of Physics & Astronomy, Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
13
|
Zhou A, Sun Z, Sun L. Stable organic radical qubits and their applications in quantum information science. Innovation (N Y) 2024; 5:100662. [PMID: 39091459 PMCID: PMC11292369 DOI: 10.1016/j.xinn.2024.100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/20/2024] [Indexed: 08/04/2024] Open
Abstract
The past century has witnessed the flourishing of organic radical chemistry. Stable organic radicals are highly valuable for quantum technologies thanks to their inherent room temperature quantum coherence, atomic-level designability, and fine tunability. In this comprehensive review, we highlight the potential of stable organic radicals as high-temperature qubits and explore their applications in quantum information science, which remain largely underexplored. Firstly, we summarize known spin dynamic properties of stable organic radicals and examine factors that influence their electron spin relaxation and decoherence times. This examination reveals their design principles and optimal operating conditions. We further discuss their integration in solid-state materials and surface structures, and present their state-of-the-art applications in quantum computing, quantum memory, and quantum sensing. Finally, we analyze the primary challenges associated with stable organic radical qubits and provide tentative insights to future research directions.
Collapse
Affiliation(s)
- Aimei Zhou
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Zhecheng Sun
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Lei Sun
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, Hangzhou 310030, China
| |
Collapse
|
14
|
Gao X, Vaidya S, Dikshit S, Ju P, Shen K, Jin Y, Zhang S, Li T. Nanotube spin defects for omnidirectional magnetic field sensing. Nat Commun 2024; 15:7697. [PMID: 39227570 PMCID: PMC11372065 DOI: 10.1038/s41467-024-51941-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
Optically addressable spin defects in three-dimensional (3D) crystals and two-dimensional (2D) van der Waals (vdW) materials are revolutionizing nanoscale quantum sensing. Spin defects in one-dimensional (1D) vdW nanotubes will provide unique opportunities due to their small sizes in two dimensions and absence of dangling bonds on side walls. However, optically detected magnetic resonance of localized spin defects in a nanotube has not been observed. Here, we report the observation of single spin color centers in boron nitride nanotubes (BNNTs) at room temperature. Our findings suggest that these BNNT spin defects possess a spin S = 1/2 ground state without an intrinsic quantization axis, leading to orientation-independent magnetic field sensing. We harness this unique feature to observe anisotropic magnetization of a 2D magnet in magnetic fields along orthogonal directions, a challenge for conventional spin S = 1 defects such as diamond nitrogen-vacancy centers. Additionally, we develop a method to deterministically transfer a BNNT onto a cantilever and use it to demonstrate scanning probe magnetometry. Further refinement of our approach will enable atomic scale quantum sensing of magnetic fields in any direction.
Collapse
Affiliation(s)
- Xingyu Gao
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Sumukh Vaidya
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Saakshi Dikshit
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Peng Ju
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Kunhong Shen
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Yuanbin Jin
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Shixiong Zhang
- Department of Physics, Indiana University, Bloomington, IN, 47405, USA
- Quantum Science and Engineering Center, Indiana University, Bloomington, IN, 47405, USA
| | - Tongcang Li
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA.
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN, 47907, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
15
|
Zhai Y, Cheng L, Song Y, Li J, Yu Z, Tian Y, Xu N. Concurrent sensing of vector magnetic field based on diamond nitrogen-vacancy ensemble using a time-divided hardware-synchronized protocol. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:095001. [PMID: 39240153 DOI: 10.1063/5.0217402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/15/2024] [Indexed: 09/07/2024]
Abstract
A diamond nitrogen-vacancy (NV) ensemble has been developed as a vector magnetometry platform for sensing external time-varying magnetic fields. However, due to the complexity of manipulating electron spins along different directions, a current vector NV magnetometer often needs a large amount of supporting equipment, preventing its applications in a compact circumstance. Here, we develop a hardware-level protocol to realize a multi-axis NV magnetometer using only a single channel of microwave generation and signal detection resources. This mechanism is to monitor each resonance serialized in a sequence and measure the electron-spin frequency shifts concurrently in real time. The functionality is realized by a home-made control system with an on-chip direct digital synthesis generator and signal processor. We finally achieve a vector sensitivity of around 14 nT/Hz on four different axes at the same time. We also analyze the phase delay of the sensing signal between different axes induced by the protocol. This protocol is compatible with other schemes to further improve the performance, such as hyperfine driving, balanced detection, and high-efficiency photon collection methods.
Collapse
Affiliation(s)
- Yunpeng Zhai
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Luheng Cheng
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yumeng Song
- College of Metrology Measurement and Instrumentation, China Jiliang University, Hangzhou 310018, China
| | - Jiajun Li
- College of Metrology Measurement and Instrumentation, China Jiliang University, Hangzhou 310018, China
| | - Zhiyang Yu
- College of Agriculture and Biotechnology, Institute of Nuclear-Agricultural Science Accelerator Center of Zhejiang University, Zhejiang University, Hangzhou 310027, China
| | - Yu Tian
- College of Metrology Measurement and Instrumentation, China Jiliang University, Hangzhou 310018, China
| | - Nanyang Xu
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
16
|
Shin AJ, Zhao C, Shen Y, Dickerson CE, Li B, Roshandel H, Bím D, Atallah TL, Oyala PH, He Y, Alson LK, Kerr TA, Alexandrova AN, Diaconescu PL, Campbell WC, Caram JR. Toward liquid cell quantum sensing: Ytterbium complexes with ultranarrow absorption. Science 2024; 385:651-656. [PMID: 39116250 DOI: 10.1126/science.adf7577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/02/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024]
Abstract
The energetic disorder induced by fluctuating liquid environments acts in opposition to the precise control required for coherence-based sensing. Overcoming fluctuations requires a protected quantum subspace that only weakly interacts with the local environment. We report a ytterbium complex that exhibited an ultranarrow absorption linewidth in solution at room temperature with a full width at half maximum of 0.625 milli-electron volts. Using spectral hole burning, we measured an even narrower linewidth of 410 pico-electron volts at 77 kelvin. Narrow linewidths allowed low-field magnetic circular dichroism at room temperature, used to sense Earth-scale magnetic fields. These results demonstrated that ligand protection in lanthanide complexes could substantially diminish electronic state fluctuations. We have termed this system an "atomlike molecular sensor" (ALMS) and proposed approaches to improve its performance.
Collapse
Affiliation(s)
- Ashley J Shin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Changling Zhao
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Shen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Claire E Dickerson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Barry Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hootan Roshandel
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel Bím
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Timothy L Atallah
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, Denison University, Granville, OH 43023, USA
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91103, USA
| | - Yongjia He
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lianne K Alson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tyler A Kerr
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Paula L Diaconescu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wesley C Campbell
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Justin R Caram
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Almutlaq J, Liu Y, Mir WJ, Sabatini RP, Englund D, Bakr OM, Sargent EH. Engineering colloidal semiconductor nanocrystals for quantum information processing. NATURE NANOTECHNOLOGY 2024; 19:1091-1100. [PMID: 38514820 DOI: 10.1038/s41565-024-01606-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/10/2024] [Indexed: 03/23/2024]
Abstract
Quantum information processing-which relies on spin defects or single-photon emission-has shown quantum advantage in proof-of-principle experiments including microscopic imaging of electromagnetic fields, strain and temperature in applications ranging from battery research to neuroscience. However, critical gaps remain on the path to wider applications, including a need for improved functionalization, deterministic placement, size homogeneity and greater programmability of multifunctional properties. Colloidal semiconductor nanocrystals can close these gaps in numerous application areas, following years of rapid advances in synthesis and functionalization. In this Review, we specifically focus on three key topics: optical interfaces to long-lived spin states, deterministic placement and delivery for sensing beyond the standard quantum limit, and extensions to multifunctional colloidal quantum circuits.
Collapse
Affiliation(s)
- Jawaher Almutlaq
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuan Liu
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
| | - Wasim J Mir
- KAUST Catalysis Center, Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Randy P Sabatini
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
| | - Dirk Englund
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Osman M Bakr
- KAUST Catalysis Center, Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
18
|
Prajapati SK, Pathak A, Samaiya PK. Alzheimer's disease: from early pathogenesis to novel therapeutic approaches. Metab Brain Dis 2024; 39:1231-1254. [PMID: 39046584 DOI: 10.1007/s11011-024-01389-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
The mainstay behind Alzheimer's disease (AD) remains unknown due to the elusive pathophysiology of the disease. Beta-amyloid and phosphorylated Tau is still widely incorporated in various research studies while studying AD. However, they are not sufficient. Therefore, many scientists and researchers have dug into AD studies to deliver many innovations in this field. Many novel biomarkers, such as phosphoglycerate-dehydrogenase, clusterin, microRNA, and a new peptide ratio (Aβ37/Aβ42) in cerebral-spinal fluid, plasma glial-fibrillary-acidic-protein, and lipid peroxidation biomarkers, are mushrooming. They are helping scientists find breakthroughs and substantiating their research on the early detection of AD. Neurovascular unit dysfunction in AD is a significant discovery that can help us understand the relationship between neuronal activity and cerebral blood flow. These new biomarkers are promising and can take these AD studies to another level. There have also been big steps forward in diagnosing and finding AD. One example is self-administered-gerocognitive-examination, which is less expensive and better at finding AD early on than mini-mental-state-examination. Quantum brain sensors and electrochemical biosensors are innovations in the detection field that must be explored and incorporated into the studies. Finally, novel innovations in AD studies like nanotheranostics are the future of AD treatment, which can not only diagnose and detect AD but also offer treatment. Non-pharmacological strategies to treat AD have also yielded interesting results. Our literature review spans from 1957 to 2022, capturing research and trends in the field over six decades. This review article is an update not only on the recent advances in the search for credible biomarkers but also on the newer detection techniques and therapeutic approaches targeting AD.
Collapse
Affiliation(s)
- Santosh Kumar Prajapati
- Bhavdiya Institute of Pharmaceutical Sciences and Research, Ayodhya, UP, India
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, 33613, USA
| | - Arjit Pathak
- Department of Pharmacy Shri G.S. Institute of Technology and Science, Indore, 452003, Madhya Pradesh, India
| | - Puneet K Samaiya
- Department of Pharmacy Shri G.S. Institute of Technology and Science, Indore, 452003, Madhya Pradesh, India.
| |
Collapse
|
19
|
Liang X, Wang R, Wu H, Ma Y, Liu C, Gao Y, Yu D, Ning X. A Novel Time-Frequency Parameterization Method for Oscillations in Specific Frequency Bands and Its Application on OPM-MEG. Bioengineering (Basel) 2024; 11:773. [PMID: 39199731 PMCID: PMC11351447 DOI: 10.3390/bioengineering11080773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Time-frequency parameterization for oscillations in specific frequency bands reflects the dynamic changes in the brain. It is related to cognitive behavior and diseases and has received significant attention in neuroscience. However, many studies do not consider the impact of the aperiodic noise and neural activity, including their time-varying fluctuations. Some studies are limited by the low resolution of the time-frequency spectrum and parameter-solved operation. Therefore, this paper proposes super-resolution time-frequency periodic parameterization of (transient) oscillation (STPPTO). STPPTO obtains a super-resolution time-frequency spectrum with Superlet transform. Then, the time-frequency representation of oscillations is obtained by removing the aperiodic component fitted in a time-resolved way. Finally, the definition of transient events is used to parameterize oscillations. The performance of this method is validated on simulated data and its reliability is demonstrated on magnetoencephalography. We show how it can be used to explore and analyze oscillatory activity under rhythmic stimulation.
Collapse
Affiliation(s)
- Xiaoyu Liang
- School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China; (X.L.); (R.W.); (H.W.); (Y.M.); (C.L.); (Y.G.)
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Hefei National Laboratory, Hefei 230088, China
| | - Ruonan Wang
- School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China; (X.L.); (R.W.); (H.W.); (Y.M.); (C.L.); (Y.G.)
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Huanqi Wu
- School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China; (X.L.); (R.W.); (H.W.); (Y.M.); (C.L.); (Y.G.)
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Yuyu Ma
- School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China; (X.L.); (R.W.); (H.W.); (Y.M.); (C.L.); (Y.G.)
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Changzeng Liu
- School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China; (X.L.); (R.W.); (H.W.); (Y.M.); (C.L.); (Y.G.)
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Yang Gao
- School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China; (X.L.); (R.W.); (H.W.); (Y.M.); (C.L.); (Y.G.)
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Institute of Large-Scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, Hangzhou 310051, China
- National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310051, China
| | - Dexin Yu
- Shandong Key Laboratory: Magnetic Field-Free Medicine & Functional Imaging, Qilu Hospital of Shandong University, Jinan 250012, China;
| | - Xiaolin Ning
- School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China; (X.L.); (R.W.); (H.W.); (Y.M.); (C.L.); (Y.G.)
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Hefei National Laboratory, Hefei 230088, China
- Institute of Large-Scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, Hangzhou 310051, China
- National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310051, China
| |
Collapse
|
20
|
Cook H, Bezsudnova Y, Koponen LM, Jensen O, Barontini G, Kowalczyk AU. An optically pumped magnetic gradiometer for the detection of human biomagnetism. QUANTUM SCIENCE AND TECHNOLOGY 2024; 9:035016. [PMID: 38680502 PMCID: PMC11047143 DOI: 10.1088/2058-9565/ad3d81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
We realise an intrinsic optically pumped magnetic gradiometer based on non-linear magneto-optical rotation. We show that our sensor can reach a gradiometric sensitivity of 18 fT cm - 1 Hz - 1 and can reject common mode homogeneous magnetic field noise with up to 30 dB attenuation. We demonstrate that our magnetic field gradiometer is sufficiently sensitive and resilient to be employed in biomagnetic applications. In particular, we are able to record the auditory evoked response of the human brain, and to perform real-time magnetocardiography in the presence of external magnetic field disturbances. Our gradiometer provides complementary capabilities in human biomagnetic sensing to optically pumped magnetometers, and opens new avenues in the detection of human biomagnetism.
Collapse
Affiliation(s)
- Harry Cook
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Yulia Bezsudnova
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Lari M Koponen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2SA, United Kingdom
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2SA, United Kingdom
| | - Giovanni Barontini
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2SA, United Kingdom
| | - Anna U Kowalczyk
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2SA, United Kingdom
| |
Collapse
|
21
|
Hapuarachchi H, Campaioli F, Jelezko F, Cole JH. Plasmonically engineered nitrogen-vacancy spin readout. OPTICS EXPRESS 2024; 32:22352-22361. [PMID: 39538723 DOI: 10.1364/oe.525337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/18/2024] [Indexed: 11/16/2024]
Abstract
Ultra-precise readout of single nitrogen-vacancy (NV) spins holds promise for major advancements in quantum sensing, computing, and communication technologies. Here we present a rigorous open quantum theory capable of simultaneously capturing the optical, vibronic, and spin interactions of the negatively charged NV center, both in the presence and absence of plasmonic interaction. Our theory is verified against existing experiments in the literature. We predict orders of magnitude brightness and contrast enhancements in optically detected magnetic resonance (ODMR) and NV spin qubit readout arising from plasmonic interaction. Such optimal enhancements occur in carefully engineered parameter regions, necessitating rigorous modelling prior to experimentation. Our theory equips the community with a tool to identify such regions.
Collapse
|
22
|
Yang J, Van Gasse K, Lukin DM, Guidry MA, Ahn GH, White AD, Vučković J. Titanium:sapphire-on-insulator integrated lasers and amplifiers. Nature 2024; 630:853-859. [PMID: 38926612 DOI: 10.1038/s41586-024-07457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/23/2024] [Indexed: 06/28/2024]
Abstract
Titanium:sapphire (Ti:sapphire) lasers have been essential for advancing fundamental research and technological applications, including the development of the optical frequency comb1, two-photon microscopy2 and experimental quantum optics3,4. Ti:sapphire lasers are unmatched in bandwidth and tuning range, yet their use is restricted because of their large size, cost and need for high optical pump powers5. Here we demonstrate a monocrystalline titanium:sapphire-on-insulator (Ti:SaOI) photonics platform that enables dramatic miniaturization, cost reduction and scalability of Ti:sapphire technology. First, through the fabrication of low-loss whispering-gallery-mode resonators, we realize a Ti:sapphire laser operating with an ultralow, sub-milliwatt lasing threshold. Then, through orders-of-magnitude improvement in mode confinement in Ti:SaOI waveguides, we realize an integrated solid-state (that is, non-semiconductor) optical amplifier operating below 1 μm. We demonstrate unprecedented distortion-free amplification of picosecond pulses to peak powers reaching 1.0 kW. Finally, we demonstrate a tunable integrated Ti:sapphire laser, which can be pumped with low-cost, miniature, off-the-shelf green laser diodes. This opens the doors to new modalities of Ti:sapphire lasers, such as massively scalable Ti:sapphire laser-array systems for several applications. As a proof-of-concept demonstration, we use a Ti:SaOI laser array as the sole optical control for a cavity quantum electrodynamics experiment with artificial atoms in silicon carbide6. This work is a key step towards the democratization of Ti:sapphire technology through a three-orders-of-magnitude reduction in cost and footprint and introduces solid-state broadband amplification of sub-micron wavelength light.
Collapse
Affiliation(s)
- Joshua Yang
- E. L. Ginzton Laboratory, Stanford University, Stanford, CA, USA
| | - Kasper Van Gasse
- E. L. Ginzton Laboratory, Stanford University, Stanford, CA, USA
- Photonics Research Group, Ghent University-imec, Ghent, Belgium
| | - Daniil M Lukin
- E. L. Ginzton Laboratory, Stanford University, Stanford, CA, USA
| | - Melissa A Guidry
- E. L. Ginzton Laboratory, Stanford University, Stanford, CA, USA
| | - Geun Ho Ahn
- E. L. Ginzton Laboratory, Stanford University, Stanford, CA, USA
| | | | - Jelena Vučković
- E. L. Ginzton Laboratory, Stanford University, Stanford, CA, USA.
| |
Collapse
|
23
|
Ramesh S, Tomesh T, Riesenfeld SJ, Chong FT, Pearson AT. Quantum computing for oncology. NATURE CANCER 2024; 5:811-816. [PMID: 38760645 DOI: 10.1038/s43018-024-00770-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Affiliation(s)
- Siddhi Ramesh
- Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Samantha J Riesenfeld
- Pritzker School of Molecular Engineering, Univeristy of Chicago, Chicago, IL, USA
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Frederic T Chong
- Infleqtion, Chicago, IL, USA.
- Department of Computer Science, University of Chicago, Chicago, IL, USA.
| | | |
Collapse
|
24
|
Zalieckas J, Greve MM, Bellucci L, Sacco G, Håkonsen V, Tozzini V, Nifosì R. Quantum sensing of microRNAs with nitrogen-vacancy centers in diamond. Commun Chem 2024; 7:101. [PMID: 38710926 DOI: 10.1038/s42004-024-01182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Label-free detection of nucleic acids such as microRNAs holds great potential for early diagnostics of various types of cancers. Measuring intrinsic biomolecular charge using methods based on field effect has been a promising way to accomplish label-free detection. However, the charges of biomolecules are screened by counter ions in solutions over a short distance (Debye length), thereby limiting the sensitivity of these methods. Here, we measure the intrinsic magnetic noise of paramagnetic counter ions, such as Mn2+, interacting with microRNAs using nitrogen-vacancy (NV) centers in diamond. All-atom molecular dynamics simulations show that microRNA interacts with the diamond surface resulting in excess accumulation of Mn ions and stronger magnetic noise. We confirm this prediction by observing an increase in spin relaxation contrast of the NV centers, indicating higher Mn2+ local concentration. This opens new possibilities for next-generation quantum sensing of charged biomolecules, overcoming limitations due to the Debye screening.
Collapse
Affiliation(s)
- Justas Zalieckas
- Department of Physics and Technology, University of Bergen, Bergen, Norway.
| | - Martin M Greve
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Luca Bellucci
- Istituto Nanoscienze - CNR, Pisa, Italy
- Lab NEST Scuola Normale Superiore, Pisa, Italy
| | - Giuseppe Sacco
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Verner Håkonsen
- NTNU NanoLab, Norwegian University of Science and Technology, Trondheim, Norway
| | - Valentina Tozzini
- Istituto Nanoscienze - CNR, Pisa, Italy
- Lab NEST Scuola Normale Superiore, Pisa, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), sezione Pisa, Pisa, Italy
| | - Riccardo Nifosì
- Istituto Nanoscienze - CNR, Pisa, Italy.
- Lab NEST Scuola Normale Superiore, Pisa, Italy.
| |
Collapse
|
25
|
Shen L, Xiao D, Cao T. Proximity-Induced Exchange Interaction: A New Pathway for Quantum Sensing Using Spin Centers in Hexagonal Boron Nitride. J Phys Chem Lett 2024; 15:4359-4366. [PMID: 38619851 DOI: 10.1021/acs.jpclett.4c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Defects in hexagonal boron nitride (hBN), a two-dimensional van der Waals material, have attracted a great deal of interest because of its potential in various quantum applications. Due to hBN's two-dimensional nature, the spin center in hBN can be engineered in the proximity of the target material, providing advantages over its three-dimensional counterparts, such as the nitrogen-vacancy center in diamond. Here we propose a novel quantum sensing protocol driven by exchange interaction between the spin center in hBN and the underlying magnetic substrate induced by the magnetic proximity effect. By first-principles calculation, we demonstrate that the induced exchange interaction dominates over the dipole-dipole interaction by orders of magnitude when in the proximity. The interaction remains antiferromagnetic across all stacking configurations between the spin center in hBN and the target van der Waals magnets. Additionally, we explored the scaling behavior of the exchange field as a function of the spatial separation between the spin center and the targets.
Collapse
Affiliation(s)
- Lingnan Shen
- Department of Physics, University of Washington, Seattle, Washington 98195-1560, United States
| | - Di Xiao
- Department of Physics, University of Washington, Seattle, Washington 98195-1560, United States
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195-2120, United States
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ting Cao
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195-2120, United States
| |
Collapse
|
26
|
Jiang M, Hong T, Hu D, Chen Y, Yang F, Hu T, Yang X, Shu J, Zhao Y, Peng X, Du J. Long-baseline quantum sensor network as dark matter haloscope. Nat Commun 2024; 15:3331. [PMID: 38637491 PMCID: PMC11026481 DOI: 10.1038/s41467-024-47566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
Ultralight dark photons constitute a well-motivated candidate for dark matter. A coherent electromagnetic wave is expected to be induced by dark photons when coupled with Standard-Model photons through kinetic mixing mechanism, and should be spatially correlated within the de Broglie wavelength of dark photons. Here we report the first search for correlated dark-photon signals using a long-baseline network of 15 atomic magnetometers, which are situated in two separated meter-scale shield rooms with a distance of about 1700 km. Both the network's multiple sensors and the shields large size significantly enhance the expected dark-photon electromagnetic signals, and long-baseline measurements confidently reduce many local noise sources. Using this network, we constrain the kinetic mixing coefficient of dark photon dark matter over the mass range 4.1 feV-2.1 peV, which represents the most stringent constraints derived from any terrestrial experiments operating over the aforementioned mass range. Our prospect indicates that future data releases may go beyond the astrophysical constraints from the cosmic microwave background and the plasma heating.
Collapse
Affiliation(s)
- Min Jiang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| | - Taizhou Hong
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| | - Dongdong Hu
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yifan Chen
- Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, Copenhagen, 2100, Denmark
| | - Fengwei Yang
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT, 84112, USA
| | - Tao Hu
- Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Xiaodong Yang
- Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Jing Shu
- School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871, China.
- Center for High Energy Physics, Peking University, Beijing, 100871, China.
- Beijing Laser Acceleration Innovation Center, Huairou, Beijing, 101400, China.
| | - Yue Zhao
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Xinhua Peng
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China.
| | - Jiangfeng Du
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
- Institute of Quantum Sensing and School of Physics, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
27
|
Ma YY, Gao Y, Wu HQ, Liang XY, Li Y, Lu H, Liu CZ, Ning XL. OPM-MEG Measuring Phase Synchronization on Source Time Series: Application in Rhythmic Median Nerve Stimulation. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1426-1434. [PMID: 38530717 DOI: 10.1109/tnsre.2024.3381173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The magnetoencephalogram (MEG) based on array optically pumped magnetometers (OPMs) has the potential of replacing conventional cryogenic superconducting quantum interference device. Phase synchronization is a common method for measuring brain oscillations and functional connectivity. Verifying the feasibility and fidelity of OPM-MEG in measuring phase synchronization will help its widespread application in the study of aforementioned neural mechanisms. The analysis method on source-level time series can weaken the influence of instantaneous field spread effect. In this paper, the OPM-MEG was used for measuring the evoked responses of 20Hz rhythmic and arrhythmic median nerve stimulation, and the inter-trial phase synchronization (ITPS) and inter-reginal phase synchronization (IRPS) of primary somatosensory cortex (SI) and secondary somatosensory cortex (SII) were analysed. The results find that under rhythmic condition, the evoked responses of SI and SII show continuous oscillations and the effect of resetting phase. The values of ITPS and IRPS significantly increase at the stimulation frequency of 20Hz and its harmonic of 40Hz, whereas the arrhythmic stimulation does not exhibit this phenomenon. Moreover, in the initial stage of stimulation, the ITPS and IRPS values are significantly higher at Mu rhythm in the rhythmic condition compared to arrhythmic. In conclusion, the results demonstrate the ability of OPM-MEG in measuring phase pattern and functional connectivity on source-level, and may also prove beneficial for the study on the mechanism of rhythmic stimulation therapy for rehabilitation.
Collapse
|
28
|
Kumar R, Mahajan S, Donaldson F, Dhomkar S, Lancaster HJ, Kalha C, Riaz AA, Zhu Y, Howard CA, Regoutz A, Morton JJL. Stability of Near-Surface Nitrogen Vacancy Centers Using Dielectric Surface Passivation. ACS PHOTONICS 2024; 11:1244-1251. [PMID: 38523744 PMCID: PMC10958592 DOI: 10.1021/acsphotonics.3c01773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 03/26/2024]
Abstract
We study the photophysical stability of ensemble near-surface nitrogen vacancy (NV) centers in diamond under vacuum and air. The optically detected magnetic resonance contrast of the NV centers was measured following exposure to laser illumination, showing opposing trends in air compared to vacuum (increasing by up to 9% and dropping by up to 25%, respectively). Characterization using X-ray photoelectron spectroscopy (XPS) suggests a surface reconstruction: In air, atmospheric oxygen adsorption on a surface leads to an increase in NV- fraction, whereas in vacuum, net oxygen desorption increases the NV0 fraction. NV charge state switching is confirmed by photoluminescence spectroscopy. Deposition of ∼2 nm alumina (Al2O3) over the diamond surface was shown to stabilize the NV charge state under illumination in either environment, attributed to a more stable surface electronegativity. The use of an alumina coating on diamond is therefore a promising approach to improve the resilience of NV sensors.
Collapse
Affiliation(s)
- Ravi Kumar
- London
Centre for Nanotechnology, UCL, London WC1H 0AH, U.K.
| | - Saksham Mahajan
- Department
of Electronic & Electrical Engineering, UCL, London WC1E 7JE, U.K.
| | - Felix Donaldson
- London
Centre for Nanotechnology, UCL, London WC1H 0AH, U.K.
| | - Siddharth Dhomkar
- London
Centre for Nanotechnology, UCL, London WC1H 0AH, U.K.
- Department
of Physics, IIT Madras, Chennai 600036, India
- Center for
Quantum Information, Communication and Computing, IIT Madras, Chennai 600036, India
| | | | - Curran Kalha
- Department
of Chemistry, UCL, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Aysha A. Riaz
- Department
of Chemistry, UCL, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Yujiang Zhu
- Department
of Chemistry, UCL, 20 Gordon Street, London WC1H 0AJ, U.K.
| | | | - Anna Regoutz
- Department
of Chemistry, UCL, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - John J. L. Morton
- London
Centre for Nanotechnology, UCL, London WC1H 0AH, U.K.
- Department
of Electronic & Electrical Engineering, UCL, London WC1E 7JE, U.K.
| |
Collapse
|
29
|
Aguida B, Babo J, Baouz S, Jourdan N, Procopio M, El-Esawi MA, Engle D, Mills S, Wenkel S, Huck A, Berg-Sørensen K, Kampranis SC, Link J, Ahmad M. 'Seeing' the electromagnetic spectrum: spotlight on the cryptochrome photocycle. FRONTIERS IN PLANT SCIENCE 2024; 15:1340304. [PMID: 38495372 PMCID: PMC10940379 DOI: 10.3389/fpls.2024.1340304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/12/2024] [Indexed: 03/19/2024]
Abstract
Cryptochromes are widely dispersed flavoprotein photoreceptors that regulate numerous developmental responses to light in plants, as well as to stress and entrainment of the circadian clock in animals and humans. All cryptochromes are closely related to an ancient family of light-absorbing flavoenzymes known as photolyases, which use light as an energy source for DNA repair but themselves have no light sensing role. Here we review the means by which plant cryptochromes acquired a light sensing function. This transition involved subtle changes within the flavin binding pocket which gave rise to a visual photocycle consisting of light-inducible and dark-reversible flavin redox state transitions. In this photocycle, light first triggers flavin reduction from an initial dark-adapted resting state (FADox). The reduced state is the biologically active or 'lit' state, correlating with biological activity. Subsequently, the photoreduced flavin reoxidises back to the dark adapted or 'resting' state. Because the rate of reoxidation determines the lifetime of the signaling state, it significantly modulates biological activity. As a consequence of this redox photocycle Crys respond to both the wavelength and the intensity of light, but are in addition regulated by factors such as temperature, oxygen concentration, and cellular metabolites that alter rates of flavin reoxidation even independently of light. Mechanistically, flavin reduction is correlated with conformational change in the protein, which is thought to mediate biological activity through interaction with biological signaling partners. In addition, a second, entirely independent signaling mechanism arises from the cryptochrome photocycle in the form of reactive oxygen species (ROS). These are synthesized during flavin reoxidation, are known mediators of biotic and abiotic stress responses, and have been linked to Cry biological activity in plants and animals. Additional special properties arising from the cryptochrome photocycle include responsivity to electromagnetic fields and their applications in optogenetics. Finally, innovations in methodology such as the use of Nitrogen Vacancy (NV) diamond centers to follow cryptochrome magnetic field sensitivity in vivo are discussed, as well as the potential for a whole new technology of 'magneto-genetics' for future applications in synthetic biology and medicine.
Collapse
Affiliation(s)
- Blanche Aguida
- Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
| | - Jonathan Babo
- Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
| | - Soria Baouz
- Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
| | - Nathalie Jourdan
- Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
| | - Maria Procopio
- Department of Biophysics, Faculty of Arts and Sciences, Johns Hopkins University, Baltimore, MD, United States
| | | | - Dorothy Engle
- Biology Department, Xavier University, Cincinnati, OH, United States
| | - Stephen Mills
- Chemistry Department, Xavier University, Cincinnati, OH, United States
| | - Stephan Wenkel
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Alexander Huck
- DTU Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Sotirios C. Kampranis
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Justin Link
- Physics and Engineering Department, Cincinnati, OH, United States
| | - Margaret Ahmad
- Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
- Biology Department, Xavier University, Cincinnati, OH, United States
| |
Collapse
|
30
|
Sandoghdar V. Essay: Exploring the Physics of Basic Medical Research. PHYSICAL REVIEW LETTERS 2024; 132:090001. [PMID: 38489629 DOI: 10.1103/physrevlett.132.090001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Indexed: 03/17/2024]
Abstract
The 20th century witnessed the emergence of many paradigm-shifting technologies from the physics community, which have revolutionized medical diagnostics and patient care. However, fundamental medical research has been mostly guided by methods from areas such as cell biology, biochemistry, and genetics, with fairly small contributions from physicists. In this Essay, I outline some key phenomena in the human body that are based on physical principles and yet govern our health over a vast range of length and time scales. I advocate that research in life sciences can greatly benefit from the methodology, know-how, and mindset of the physics community and that the pursuit of basic research in medicine is compatible with the mission of physics. Part of a series of Essays that concisely present author visions for the future of their field.
Collapse
Affiliation(s)
- Vahid Sandoghdar
- Max Planck Institute for the Science of Light, Staudtstr. 2, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, Kußmaulallee 2, 91054 Erlangen, Germany; and Department of Physics, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
31
|
Mosavian N, Hubert F, Smits J, Kehayias P, Silani Y, Richards BA, Acosta VM. Super-Resolution Diamond Magnetic Microscopy of Superparamagnetic Nanoparticles. ACS NANO 2024; 18:6523-6532. [PMID: 38369724 DOI: 10.1021/acsnano.3c12283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Scanning-probe and wide-field magnetic microscopes based on nitrogen-vacancy (NV) centers in diamond have enabled advances in the study of biology and materials, but each method has drawbacks. Here, we implement an alternative method for nanoscale magnetic microscopy based on optical control of the charge state of NV centers in a dense layer near the diamond surface. By combining a donut-beam super-resolution technique with optically detected magnetic resonance spectroscopy, we imaged the magnetic fields produced by single 30 nm iron-oxide nanoparticles. The magnetic microscope has a lateral spatial resolution of ∼100 nm, and it resolves the individual magnetic dipole features from clusters of nanoparticles with interparticle spacings down to ∼190 nm. The magnetic feature amplitudes are more than an order of magnitude larger than those obtained by confocal magnetic microscopy due to the narrower optical point-spread function and the shallow depth of NV centers. We analyze the magnetic nanoparticle images and sensitivity as a function of the microscope's spatial resolution and show that the signal-to-noise ratio for nanoparticle detection does not degrade as the spatial resolution improves. We identify sources of background fluorescence that limit the present performance, including diamond second-order Raman emission and imperfect NV charge state control. Our method, which uses <10 mW laser power and can be parallelized by patterned illumination, introduces a promising format for nanoscale magnetic imaging.
Collapse
Affiliation(s)
- Nazanin Mosavian
- Center for High Technology Materials and Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87106, United States
| | - Forrest Hubert
- Center for High Technology Materials and Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87106, United States
| | - Janis Smits
- Center for High Technology Materials and Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87106, United States
| | - Pauli Kehayias
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Yaser Silani
- Center for High Technology Materials and Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87106, United States
| | - Bryan A Richards
- Center for High Technology Materials and Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87106, United States
| | - Victor M Acosta
- Center for High Technology Materials and Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87106, United States
| |
Collapse
|
32
|
Xu F, Zhang S, Ma L, Hou Y, Li J, Denisenko A, Li Z, Spatz J, Wrachtrup J, Lei H, Cao Y, Wei Q, Chu Z. Quantum-enhanced diamond molecular tension microscopy for quantifying cellular forces. SCIENCE ADVANCES 2024; 10:eadi5300. [PMID: 38266085 PMCID: PMC10807811 DOI: 10.1126/sciadv.adi5300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
The constant interplay and information exchange between cells and the microenvironment are essential to their survival and ability to execute biological functions. To date, a few leading technologies such as traction force microscopy, optical/magnetic tweezers, and molecular tension-based fluorescence microscopy are broadly used in measuring cellular forces. However, the considerable limitations, regarding the sensitivity and ambiguities in data interpretation, are hindering our thorough understanding of mechanobiology. Here, we propose an innovative approach, namely, quantum-enhanced diamond molecular tension microscopy (QDMTM), to precisely quantify the integrin-based cell adhesive forces. Specifically, we construct a force-sensing platform by conjugating the magnetic nanotags labeled, force-responsive polymer to the surface of a diamond membrane containing nitrogen-vacancy centers. Notably, the cellular forces will be converted into detectable magnetic variations in QDMTM. After careful validation, we achieved the quantitative cellular force mapping by correlating measurement with the established theoretical model. We anticipate our method can be routinely used in studies like cell-cell or cell-material interactions and mechanotransduction.
Collapse
Affiliation(s)
- Feng Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Shuxiang Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Linjie Ma
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yong Hou
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Jie Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Andrej Denisenko
- 3rd Institute of Physics, Research Center SCoPE and IQST, University of Stuttgart, 70569 Stuttgart, Germany
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Joachim Spatz
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), University of Heidelberg, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Jörg Wrachtrup
- 3rd Institute of Physics, Research Center SCoPE and IQST, University of Stuttgart, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Hai Lei
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
33
|
Lamichhane S, Timalsina R, Schultz C, Fescenko I, Ambal K, Liou SH, Lai RY, Laraoui A. Nitrogen-Vacancy Magnetic Relaxometry of Nanoclustered Cytochrome C Proteins. NANO LETTERS 2024; 24:873-880. [PMID: 38207217 DOI: 10.1021/acs.nanolett.3c03843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Nitrogen-vacancy (NV) magnetometry offers an alternative tool to detect paramagnetic centers in cells with a favorable combination of magnetic sensitivity and spatial resolution. Here, we employ NV magnetic relaxometry to detect cytochrome C (Cyt-C) nanoclusters. Cyt-C is a water-soluble protein that plays a vital role in the electron transport chain of mitochondria. Under ambient conditions, the heme group in Cyt-C remains in the Fe3+ state, which is paramagnetic. We vary the concentration of Cyt-C from 6 to 54 μM and observe a reduction of the NV spin-lattice relaxation time (T1) from 1.2 ms to 150 μs, which is attributed to the spin noise originating from the Fe3+ spins. NV T1 imaging of Cyt-C drop-casted on a nanostructured diamond chip allows us to detect the relaxation rates from the adsorbed Fe3+ within Cyt-C.
Collapse
Affiliation(s)
- Suvechhya Lamichhane
- Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Rupak Timalsina
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Cody Schultz
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Ilja Fescenko
- Laser Center, University of Latvia, Riga, LV-1004, Latvia
| | - Kapildeb Ambal
- Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, Kansas 67260, United States
| | - Sy-Hwang Liou
- Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Rebecca Y Lai
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Abdelghani Laraoui
- Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
34
|
Mokhtari M, Khoshbakht S, Ziyaei K, Akbari ME, Moravveji SS. New classifications for quantum bioinformatics: Q-bioinformatics, QCt-bioinformatics, QCg-bioinformatics, and QCr-bioinformatics. Brief Bioinform 2024; 25:bbae074. [PMID: 38446742 PMCID: PMC10939336 DOI: 10.1093/bib/bbae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/14/2023] [Accepted: 02/07/2021] [Indexed: 03/08/2024] Open
Abstract
Bioinformatics has revolutionized biology and medicine by using computational methods to analyze and interpret biological data. Quantum mechanics has recently emerged as a promising tool for the analysis of biological systems, leading to the development of quantum bioinformatics. This new field employs the principles of quantum mechanics, quantum algorithms, and quantum computing to solve complex problems in molecular biology, drug design, and protein folding. However, the intersection of bioinformatics, biology, and quantum mechanics presents unique challenges. One significant challenge is the possibility of confusion among scientists between quantum bioinformatics and quantum biology, which have similar goals and concepts. Additionally, the diverse calculations in each field make it difficult to establish boundaries and identify purely quantum effects from other factors that may affect biological processes. This review provides an overview of the concepts of quantum biology and quantum mechanics and their intersection in quantum bioinformatics. We examine the challenges and unique features of this field and propose a classification of quantum bioinformatics to promote interdisciplinary collaboration and accelerate progress. By unlocking the full potential of quantum bioinformatics, this review aims to contribute to our understanding of quantum mechanics in biological systems.
Collapse
Affiliation(s)
- Majid Mokhtari
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| | - Samane Khoshbakht
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
- Duke Molecular Physiology Institute, Duke University School of Medicine-Cardiology, Durham, NC, 27701, USA
| | - Kobra Ziyaei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | | | - Sayyed Sajjad Moravveji
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| |
Collapse
|
35
|
Yang B, Picchetti P, Wang Y, Wang W, Seeger C, Bozov K, Malik S, Mallach D, Schäfer AH, Ibrahim M, Hirtz M, Powell AK. Patterned immobilization of polyoxometalate-loaded mesoporous silica particles via amine-ene Michael additions on alkene functionalized surfaces. Sci Rep 2024; 14:1249. [PMID: 38218940 PMCID: PMC10787769 DOI: 10.1038/s41598-023-50846-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024] Open
Abstract
Polyoxometalates (POM) are anionic oxoclusters of early transition metals that are of great interest for a variety of applications, including the development of sensors and catalysts. A crucial step in the use of POM in functional materials is the production of composites that can be further processed into complex materials, e.g. by printing on different substrates. In this work, we present an immobilization approach for POMs that involves two key processes: first, the stable encapsulation of POMs in the pores of mesoporous silica nanoparticles (MSPs) and, second, the formation of microstructured arrays with these POM-loaded nanoparticles. Specifically, we have developed a strategy that leads to water-stable, POM-loaded mesoporous silica that can be covalently linked to alkene-bearing surfaces by amine-Michael addition and patterned into microarrays by scanning probe lithography (SPL). The immobilization strategy presented facilitates the printing of hybrid POM-loaded nanomaterials onto different surfaces and provides a versatile method for the fabrication of POM-based composites. Importantly, POM-loaded MSPs are useful in applications such as microfluidic systems and sensors that require frequent washing. Overall, this method is a promising way to produce surface-printed POM arrays that can be used for a wide range of applications.
Collapse
Affiliation(s)
- Bingquan Yang
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Pierre Picchetti
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Yangxin Wang
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu Road(S) 30, 211816, Nanjing, People's Republic of China
| | - Wenjing Wang
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Christoph Seeger
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Kliment Bozov
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Sharali Malik
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Dennis Mallach
- nanoAnalytics GmbH, Heisenbergstraße 11, 48149, Münster, Germany
| | | | - Masooma Ibrahim
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Michael Hirtz
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany.
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany.
| | - Annie K Powell
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
- Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
36
|
Smith JA, Zhang D, Balram KC. Robotic Vectorial Field Alignment for Spin-Based Quantum Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304449. [PMID: 37974523 PMCID: PMC10787065 DOI: 10.1002/advs.202304449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/08/2023] [Indexed: 11/19/2023]
Abstract
Developing practical quantum technologies will require the exquisite manipulation of fragile systems in a robust and repeatable way. As quantum technologies move toward real world applications, from biological sensing to communication in space, increasing experimental complexity introduces constraints that can be alleviated by the introduction of new technologies. Robotics has shown tremendous progress in realizing increasingly smart, autonomous, and highly dexterous machines. Here, a robotic arm equipped with a magnet is demonstrated to sensitize an NV center quantum magnetometer in challenging conditions unachievable with standard techniques. Vector magnetic fields are generated with 1° angular and 0.1 mT amplitude accuracy and determine the orientation of a single stochastically-aligned spin-based sensor in a constrained physical environment. This work opens up the prospect of integrating robotics across many quantum degrees of freedom in constrained settings, allowing for increased prototyping speed, control, and robustness in quantum technology applications.
Collapse
Affiliation(s)
- Joe A Smith
- Quantum Engineering Technology Labs and Department of Electrical and Electronic Engineering, University of Bristol, Bristol, BS8 1FD, UK
| | - Dandan Zhang
- Bristol Robotics Laboratory and Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1TW, UK
| | - Krishna C Balram
- Quantum Engineering Technology Labs and Department of Electrical and Electronic Engineering, University of Bristol, Bristol, BS8 1FD, UK
| |
Collapse
|
37
|
Du Z, Gupta M, Xu F, Zhang K, Zhang J, Zhou Y, Liu Y, Wang Z, Wrachtrup J, Wong N, Li C, Chu Z. Widefield Diamond Quantum Sensing with Neuromorphic Vision Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304355. [PMID: 37939304 PMCID: PMC10787069 DOI: 10.1002/advs.202304355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/04/2023] [Indexed: 11/10/2023]
Abstract
Despite increasing interest in developing ultrasensitive widefield diamond magnetometry for various applications, achieving high temporal resolution and sensitivity simultaneously remains a key challenge. This is largely due to the transfer and processing of massive amounts of data from the frame-based sensor to capture the widefield fluorescence intensity of spin defects in diamonds. In this study, a neuromorphic vision sensor to encode the changes of fluorescence intensity into spikes in the optically detected magnetic resonance (ODMR) measurements is adopted, closely resembling the operation of the human vision system, which leads to highly compressed data volume and reduced latency. It also results in a vast dynamic range, high temporal resolution, and exceptional signal-to-background ratio. After a thorough theoretical evaluation, the experiment with an off-the-shelf event camera demonstrated a 13× improvement in temporal resolution with comparable precision of detecting ODMR resonance frequencies compared with the state-of-the-art highly specialized frame-based approach. It is successfully deploy this technology in monitoring dynamically modulated laser heating of gold nanoparticles coated on a diamond surface, a recognizably difficult task using existing approaches. The current development provides new insights for high-precision and low-latency widefield quantum sensing, with possibilities for integration with emerging memory devices to realize more intelligent quantum sensors.
Collapse
Affiliation(s)
- Zhiyuan Du
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Madhav Gupta
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Feng Xu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Kai Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518000, China
| | - Jiahua Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yan Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518000, China
| | - Yiyao Liu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| | - Zhenyu Wang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
- Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Jörg Wrachtrup
- 3rd Institute of Physics, Research Center SCoPE and IQST, University of Stuttgart, 70569, Stuttgart, Germany
- Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
| | - Ngai Wong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Can Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, 999077, P. R. China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong, 999077, P. R. China
| |
Collapse
|
38
|
Greco A, Baek S, Middelmann T, Mehring C, Braun C, Marquetand J, Siegel M. Discrimination of finger movements by magnetomyography with optically pumped magnetometers. Sci Rep 2023; 13:22157. [PMID: 38092937 PMCID: PMC10719385 DOI: 10.1038/s41598-023-49347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Optically pumped magnetometers (OPM) are quantum sensors that offer new possibilities to measure biomagnetic signals. Compared to the current standard surface electromyography (EMG), in magnetomyography (MMG), OPM sensors offer the advantage of contactless measurements of muscle activity. However, little is known about the relative performance of OPM-MMG and EMG, e.g. in their ability to detect and classify finger movements. To address this in a proof-of-principle study, we recorded simultaneous OPM-MMG and EMG of finger flexor muscles for the discrimination of individual finger movements on a single human participant. Using a deep learning model for movement classification, we found that both sensor modalities were able to discriminate finger movements with above 89% accuracy. Furthermore, model predictions for the two sensor modalities showed high agreement in movement detection (85% agreement; Cohen's kappa: 0.45). Our findings show that OPM sensors can be employed for contactless discrimination of finger movements and incentivize future applications of OPM in magnetomyography.
Collapse
Affiliation(s)
- Antonino Greco
- Department of Neural Dynamics and Magnetoencephalography, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
- MEG-Center, University of Tübingen, Tübingen, Germany.
| | - Sangyeob Baek
- Department of Neural Dynamics and Magnetoencephalography, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- MEG-Center, University of Tübingen, Tübingen, Germany
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Thomas Middelmann
- Department of Biosignals, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Carsten Mehring
- Bernstein Center Freiburg, University of Freiburg, Freiburg Im Breisgau, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg Im Breisgau, Germany
| | - Christoph Braun
- Department of Neural Dynamics and Magnetoencephalography, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- MEG-Center, University of Tübingen, Tübingen, Germany
| | - Justus Marquetand
- Department of Neural Dynamics and Magnetoencephalography, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- MEG-Center, University of Tübingen, Tübingen, Germany
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Markus Siegel
- Department of Neural Dynamics and Magnetoencephalography, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- MEG-Center, University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), University of Tübingen, Tübingen, Germany
| |
Collapse
|
39
|
Qiu Y, Eckvahl HJ, Equbal A, Krzyaniak MD, Wasielewski MR. Enhancing Coherence Times of Chromophore-Radical Molecular Qubits and Qudits by Rational Design. J Am Chem Soc 2023; 145:25903-25909. [PMID: 37963349 DOI: 10.1021/jacs.3c10772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
An important criterion for quantum operations is long qubit coherence times. To elucidate the influence of molecular structure on the coherence times of molecular spin qubits and qudits, a series of molecules featuring perylenediimide (PDI) chromophores covalently linked to stable nitroxide radicals were synthesized and investigated by pulse electron paramagnetic resonance spectroscopy. Photoexcitation of PDI in these systems creates an excited quartet state (Q) followed by a spin-polarized doublet ground state (D0), which hold promise as spin qudits and qubits, respectively. By tailoring the molecular structure of these spin qudit/qubit candidates by selective deuteration and eliminating intramolecular motion, coherence times of Tm = 9.1 ± 0.3 and 4.2 ± 0.3 μs at 85 K for D0 and Q, respectively, are achieved. These coherence times represent a nearly 3-fold enhancement compared to those of the initial molecular design. This approach offers a rational structural design protocol for effectively extending coherence times in molecular spin qudits/qubits.
Collapse
Affiliation(s)
- Yunfan Qiu
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3313, United States
| | - Hannah J Eckvahl
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3313, United States
| | - Asif Equbal
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3313, United States
| | - Matthew D Krzyaniak
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3313, United States
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3313, United States
| |
Collapse
|
40
|
Cook B, Reineck P, Shiell T, Bradby J, Esser BD, Etheridge J, Haberl B, Boehler R, McKenzie DR, McCulloch DG. Extensively Microtwinned Diamond with Nanolaminates of Lonsdaleite Formed by Flash Laser Heating of Glassy Carbon. NANO LETTERS 2023; 23:10311-10316. [PMID: 37917923 DOI: 10.1021/acs.nanolett.3c02900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Diamond's unique properties on the nanoscale make it one of the most important materials for use in biosensors and quantum computing and for components that can withstand the harsh environments of space. We synthesize oriented, faceted diamond particles by flash laser heating of glassy carbon at 16 GPa and 2300 K. Detailed transmission electron microscopy shows them to consist of a mosaic of diamond nanocrystals frequently joined at twin boundaries forming microtwins. Striking 3-fold translational periodicity was observed in both imaging and diffraction. This periodicity was shown to originate from nanodimensional wedge-shaped overlapping regions of twinned diamond and not from a possible 9R polytype, which has also been reported in other group IVa elements and water ice. Extended bilayers of hexagonal layer stacking were observed, forming lonsdaleite nanolaminates. The particles exhibited optical fluorescence with a rapid quench time (<1 ns) attributed to their unique twinned microstructure.
Collapse
Affiliation(s)
- Brenton Cook
- Physics, School of Science, RMIT University, Melbourne, 3001, Australia
| | - Philipp Reineck
- Physics, School of Science, RMIT University, Melbourne, 3001, Australia
| | - Thomas Shiell
- Research School of Physics, The Australian National University, Canberra, 2601, Australia
| | - Jodie Bradby
- Research School of Physics, The Australian National University, Canberra, 2601, Australia
| | - Bryan D Esser
- Monash Centre for Electron Microscopy, Monash University, Melbourne, 3800, Australia
| | - Joanne Etheridge
- Monash Centre for Electron Microscopy, Monash University, Melbourne, 3800, Australia
- School of Physics and Astronomy, Monash University, Melbourne, 3800, Australia
| | - Bianca Haberl
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Reinhard Boehler
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - David R McKenzie
- School of Physics, The University of Sydney, Sydney, 2006, Australia
| | | |
Collapse
|
41
|
Zheng P, Semancik S, Barman I. Quantum Plexcitonic Sensing. NANO LETTERS 2023; 23:9529-9537. [PMID: 37819891 DOI: 10.1021/acs.nanolett.3c03095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
While fundamental to quantum sensing, quantum state control has been traditionally limited to extreme conditions. This restricts the impact of the practical implementation of quantum sensing on a broad range of physical measurements. Plexcitons, however, provide a promising path under ambient conditions toward quantum state control and thus quantum sensing, owing to their origin from strong plasmon-exciton coupling. Herein, we harness plexcitons to demonstrate quantum plexcitonic sensing by strongly coupling excitonic particles to a plasmonic hyperbolic metasurface. As compared to classical sensing in the weak-coupling regime, our model of quantum plexcitonic sensing performs at a level that is ∼40 times more sensitive. Noise-modulated sensitivity studies reinforce the quantum advantage over classical sensing, featuring better sensitivity, smaller sensitivity uncertainty, and higher resilience against optical noise. The successful demonstration of quantum plexcitonic sensing opens the door for a variety of physical, chemical, and biological measurements by leveraging strongly coupled plasmon-exciton systems.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Biomolecular Measurement Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Steve Semancik
- Biomolecular Measurement Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|
42
|
Jia J, Novikov V, Brasil TB, Zeuthen E, Müller JH, Polzik ES. Acoustic frequency atomic spin oscillator in the quantum regime. Nat Commun 2023; 14:6396. [PMID: 37828042 PMCID: PMC10570288 DOI: 10.1038/s41467-023-42059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Quantum noise reduction and entanglement-enhanced sensing in the acoustic frequency range is an outstanding challenge relevant for a number of applications including magnetometry and broadband noise reduction in gravitational wave detectors. Here we experimentally demonstrate quantum behavior of a macroscopic atomic spin oscillator in the acoustic frequency range. Quantum back-action of the spin measurement, ponderomotive squeezing of light, and virtual spring softening are observed at oscillation frequencies down to the sub-kHz range. Quantum noise sources characteristic of spin oscillators operating in the near-DC frequency range are identified and means for their mitigation are presented.
Collapse
Affiliation(s)
- Jun Jia
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Valeriy Novikov
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- Russian Quantum Center, Skolkovo, Moscow, Russia
| | | | - Emil Zeuthen
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Eugene S Polzik
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
43
|
Maynard AD, Dudley SM. Navigating advanced technology transitions: using lessons from nanotechnology. NATURE NANOTECHNOLOGY 2023; 18:1118-1120. [PMID: 37783855 DOI: 10.1038/s41565-023-01481-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Affiliation(s)
- Andrew D Maynard
- School for the Future of Being Human, Arizona State University, Tempe, AZ, USA.
| | - Sean M Dudley
- Knowledge Enterprise, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
44
|
Troullinou C, Lucivero VG, Mitchell MW. Quantum-Enhanced Magnetometry at Optimal Number Density. PHYSICAL REVIEW LETTERS 2023; 131:133602. [PMID: 37831996 DOI: 10.1103/physrevlett.131.133602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/28/2023] [Indexed: 10/15/2023]
Abstract
We study the use of squeezed probe light and evasion of measurement backaction to enhance the sensitivity and measurement bandwidth of an optically pumped magnetometer (OPM) at sensitivity-optimal atom number density. By experimental observation, and in agreement with quantum noise modeling, a spin-exchange-limited OPM probed with off-resonance laser light is shown to have an optimal sensitivity determined by density-dependent quantum noise contributions. Application of squeezed probe light boosts the OPM sensitivity beyond this laser-light optimum, allowing the OPM to achieve sensitivities that it cannot reach with coherent-state probing at any density. The observed quantum sensitivity enhancement at optimal number density is enabled by measurement backaction evasion.
Collapse
Affiliation(s)
- Charikleia Troullinou
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Vito Giovanni Lucivero
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- Dipartimento Interateneo di Fisica, Universitá degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Morgan W Mitchell
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
45
|
Brites CDS, Marin R, Suta M, Carneiro Neto AN, Ximendes E, Jaque D, Carlos LD. Spotlight on Luminescence Thermometry: Basics, Challenges, and Cutting-Edge Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302749. [PMID: 37480170 DOI: 10.1002/adma.202302749] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Indexed: 07/23/2023]
Abstract
Luminescence (nano)thermometry is a remote sensing technique that relies on the temperature dependency of the luminescence features (e.g., bandshape, peak energy or intensity, and excited state lifetimes and risetimes) of a phosphor to measure temperature. This technique provides precise thermal readouts with superior spatial resolution in short acquisition times. Although luminescence thermometry is just starting to become a more mature subject, it exhibits enormous potential in several areas, e.g., optoelectronics, photonics, micro- and nanofluidics, and nanomedicine. This work reviews the latest trends in the field, including the establishment of a comprehensive theoretical background and standardized practices. The reliability, repeatability, and reproducibility of the technique are also discussed, along with the use of multiparametric analysis and artificial-intelligence algorithms to enhance thermal readouts. In addition, examples are provided to underscore the challenges that luminescence thermometry faces, alongside the need for a continuous search and design of new materials, experimental techniques, and analysis procedures to improve the competitiveness, accessibility, and popularity of the technology.
Collapse
Affiliation(s)
- Carlos D S Brites
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| | - Riccardo Marin
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Markus Suta
- Inorganic Photoactive Materials, Institute of Inorganic Chemistry and Structural Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Albano N Carneiro Neto
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| | - Erving Ximendes
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, 28034, Spain
| | - Daniel Jaque
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, 28034, Spain
| | - Luís D Carlos
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
46
|
Cholsuk C, Suwanna S, Vogl T. Comprehensive Scheme for Identifying Defects in Solid-State Quantum Systems. J Phys Chem Lett 2023; 14:6564-6571. [PMID: 37458585 DOI: 10.1021/acs.jpclett.3c01475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
A solid-state quantum emitter is a crucial component for optical quantum technologies, ideally with a compatible wavelength for efficient coupling to other components in a quantum network. It is essential to understand fluorescent defects that lead to specific emitters. In this Letter, we employ density functional theory (DFT) to demonstrate the calculations of the complete optical fingerprints of quantum emitters in hexagonal boron nitride. Our results suggest that instead of comparing a single optical property, like the zero-phonon line energy, multiple properties should be used when comparing simulations to the experiment. Moreover, we apply this approach to predict the suitability of using the emitters in specific quantum applications. We therefore apply DFT calculations to identify quantum emitters with a lower risk of misassignments and a way to design optical quantum systems. Hence, we provide a recipe for classification and generation of universal quantum emitters in future hybrid quantum networks.
Collapse
Affiliation(s)
- Chanaprom Cholsuk
- Abbe Center of Photonics, Institute of Applied Physics, Friedrich Schiller University Jena, 07745 Jena, Germany
| | - Sujin Suwanna
- Optical and Quantum Physics Laboratory, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Tobias Vogl
- Abbe Center of Photonics, Institute of Applied Physics, Friedrich Schiller University Jena, 07745 Jena, Germany
- Fraunhofer-Institute for Applied Optics and Precision Engineering IOF, 07745 Jena, Germany
| |
Collapse
|
47
|
Lamichhane S, McElveen KA, Erickson A, Fescenko I, Sun S, Timalsina R, Guo Y, Liou SH, Lai RY, Laraoui A. Nitrogen-Vacancy Magnetometry of Individual Fe-Triazole Spin Crossover Nanorods. ACS NANO 2023; 17:8694-8704. [PMID: 37093121 DOI: 10.1021/acsnano.3c01819] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
[Fe(Htrz)2(trz)](BF4) (Fe-triazole) spin crossover molecules show thermal, electrical, and optical switching between high spin (HS) and low spin (LS) states, making them promising candidates for molecular spintronics. The LS and HS transitions originate from the electronic configurations of Fe(II) and are considered to be diamagnetic and paramagnetic, respectively. The Fe(II) LS state has six paired electrons in the ground states with no interaction with the magnetic field and a diamagnetic behavior is usually observed. While the bulk magnetic properties of Fe-triazole compounds are widely studied by standard magnetometry techniques, their magnetic properties at the individual level are missing. Here we use nitrogen vacancy (NV) based magnetometry to study the magnetic properties of the Fe-triazole LS state of nanoparticle clusters and individual nanorods of size varying from 20 to 1000 nm. Scanning electron microscopy (SEM) and Raman spectroscopy are performed to determine the size of the nanoparticles/nanorods and to confirm their respective spin states. The magnetic field patterns produced by the nanoparticles/nanorods are imaged by NV magnetic microscopy as a function of applied magnetic field (up to 350 mT) and correlated with SEM and Raman. We found that in most of the nanorods the LS state is slightly paramagnetic, possibly originating from the surface oxidation and/or the greater Fe(III) presence along the nanorods' edges. NV measurements on the Fe-triazole LS state nanoparticle clusters revealed both diamagnetic and paramagnetic behavior. Our results highlight the potential of NV quantum sensors to study the magnetic properties of spin crossover molecules and molecular magnets.
Collapse
Affiliation(s)
- Suvechhya Lamichhane
- Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, 855 North 16th Street, Lincoln, Nebraska 68588, United States
| | - Kayleigh A McElveen
- Department of Chemistry, University of Nebraska-Lincoln, 639 N 12 Street, 651 Hamilton Hall, Lincoln, Nebraska 68588, United States
| | - Adam Erickson
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, 900 North 16th Street, West Nebraska Hall 342, Lincoln, Nebraska 68588, United States
| | - Ilja Fescenko
- Laser Center, University of Latvia, Jelgavas St 3, Riga LV-1004, Latvia
| | - Shuo Sun
- Department of Chemistry, University of Nebraska-Lincoln, 639 N 12 Street, 651 Hamilton Hall, Lincoln, Nebraska 68588, United States
| | - Rupak Timalsina
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, 900 North 16th Street, West Nebraska Hall 342, Lincoln, Nebraska 68588, United States
| | - Yinsheng Guo
- Department of Chemistry, University of Nebraska-Lincoln, 639 N 12 Street, 651 Hamilton Hall, Lincoln, Nebraska 68588, United States
| | - Sy-Hwang Liou
- Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, 855 North 16th Street, Lincoln, Nebraska 68588, United States
| | - Rebecca Y Lai
- Department of Chemistry, University of Nebraska-Lincoln, 639 N 12 Street, 651 Hamilton Hall, Lincoln, Nebraska 68588, United States
| | - Abdelghani Laraoui
- Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, 855 North 16th Street, Lincoln, Nebraska 68588, United States
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, 900 North 16th Street, West Nebraska Hall 342, Lincoln, Nebraska 68588, United States
| |
Collapse
|