1
|
Korbecki J, Bosiacki M, Kupnicka P, Barczak K, Ziętek P, Chlubek D, Baranowska-Bosiacka I. Biochemistry and Diseases Related to the Interconversion of Phosphatidylcholine, Phosphatidylethanolamine, and Phosphatidylserine. Int J Mol Sci 2024; 25:10745. [PMID: 39409074 PMCID: PMC11477190 DOI: 10.3390/ijms251910745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Phospholipids are crucial structural components of cells. Phosphatidylcholine and phosphatidylethanolamine (both synthesized via the Kennedy pathway) and phosphatidylserine undergo interconversion. The dysregulation of this process is implicated in various diseases. This paper discusses the role of enzymes involved in the interconversion of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine, specifically phosphatidylethanolamine N-methyltransferase (PEMT), phosphatidylserine synthases (PTDSS1 and PTDSS2), and phosphatidylserine decarboxylase (PISD), with a focus on their biochemical properties. Additionally, we describe the effects of the deregulation of these enzymes and their roles in both oncological and non-oncological diseases, including nonalcoholic fatty liver disease (NAFLD), Alzheimer's disease, obesity, insulin resistance, and type II diabetes. Current knowledge on inhibitors of these enzymes as potential therapeutic agents is also reviewed, although in most cases, inhibitors are yet to be developed. The final section of this article presents a bioinformatic analysis using the GEPIA portal to explore the significance of these enzymes in cancer processes.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland;
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (P.K.); (D.C.)
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (P.K.); (D.C.)
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (P.K.); (D.C.)
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Paweł Ziętek
- Department of Orthopaedics, Traumatology and Orthopaedic Oncology, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (P.K.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (P.K.); (D.C.)
| |
Collapse
|
2
|
Decker ST, Funai K. Mitochondrial membrane lipids in the regulation of bioenergetic flux. Cell Metab 2024; 36:1963-1978. [PMID: 39178855 PMCID: PMC11374467 DOI: 10.1016/j.cmet.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/12/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Oxidative phosphorylation (OXPHOS) occurs through and across the inner mitochondrial membrane (IMM). Mitochondrial membranes contain a distinct lipid composition, aided by lipid biosynthetic machinery localized in the IMM and class-specific lipid transporters that limit lipid traffic in and out of mitochondria. This unique lipid composition appears to be essential for functions of mitochondria, particularly OXPHOS, by its effects on direct lipid-to-protein interactions, membrane properties, and cristae ultrastructure. This review highlights the biological significance of mitochondrial lipids, with a particular spotlight on the role of lipids in mitochondrial bioenergetics. We describe pathways for the biosynthesis of mitochondrial lipids and provide evidence for their roles in physiology, their implications in human disease, and the mechanisms by which they regulate mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Stephen Thomas Decker
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Raun SH, Braun JL, Karavaeva I, Henriquez-Olguín C, Ali MS, Møller LLV, Gerhart-Hines Z, Fajardo VA, Richter EA, Sylow L. Mild Cold Stress at Ambient Temperature Elevates Muscle Calcium Cycling and Exercise Adaptations in Obese Female Mice. Endocrinology 2024; 165:bqae102. [PMID: 39136248 DOI: 10.1210/endocr/bqae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Indexed: 08/28/2024]
Abstract
CONTEXT Housing temperature is a critical regulator of mouse metabolism and thermoneutral housing can improve model translation to humans. However, the impact of housing temperature on the ability of wheel running exercise training to rescue the detrimental effect of diet-induced obese mice is currently not fully understood. OBJECTIVE To investigate how housing temperature affects muscle metabolism in obese mice with regard to calcium handling and exercise training (ET) adaptations in skeletal muscle, and benefits of ET on adiposity and glucometabolic parameters. METHODS Lean or obese female mice were housed at standard ambient temperature (22 °C) or thermoneutrality (30 °C) with/without access to running wheels. The metabolic phenotype was investigated using glucose tolerance tests, indirect calorimetry, and body composition. Molecular muscle adaptations were measured using immunoblotting, qPCR, and spectrophotometric/fluorescent assays. RESULTS Obese female mice housed at 22 °C showed lower adiposity, lower circulating insulin levels, improved glucose tolerance, and elevated basal metabolic rate compared to 30 °C housing. Mice exposed to voluntary wheel running exhibited a larger fat loss and higher metabolic rate at 22 °C housing compared to thermoneutrality. In obese female mice, glucose tolerance improved after ET independent of housing temperature. Independent of diet and training, 22 °C housing increased skeletal muscle sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) activity. Additionally, housing at 22 °C elevated the induction of training-responsive muscle proteins in obese mice. CONCLUSION Our findings highlight that housing temperature significantly influences adiposity, insulin sensitivity, muscle physiology, and exercise adaptations in diet-induced obese female mice.
Collapse
Affiliation(s)
- Steffen H Raun
- Molecular Metabolism in Cancer and Ageing, Department of Biomedical Sciences, Faculty of Health, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jessica L Braun
- Muscle Plasticity in Health and Disease, Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, L2A 3A1, Canada
| | - Iuliia Karavaeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health, University of Copenhagen, Copenhagen 2200, Denmark
| | - Carlos Henriquez-Olguín
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen 2100, Denmark
- Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Santiago 7501015, Chile
| | - Mona S Ali
- Molecular Metabolism in Cancer and Ageing, Department of Biomedical Sciences, Faculty of Health, University of Copenhagen, Copenhagen 2200, Denmark
| | - Lisbeth L V Møller
- Molecular Metabolism in Cancer and Ageing, Department of Biomedical Sciences, Faculty of Health, University of Copenhagen, Copenhagen 2200, Denmark
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health, University of Copenhagen, Copenhagen 2200, Denmark
| | - Val A Fajardo
- Muscle Plasticity in Health and Disease, Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, L2A 3A1, Canada
| | - Erik A Richter
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen 2100, Denmark
| | - Lykke Sylow
- Molecular Metabolism in Cancer and Ageing, Department of Biomedical Sciences, Faculty of Health, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
4
|
Thanh LP, Wichasit N, Li Y, Batistel F, Tartrakoon W, Parys C, Guyader J, Loor JJ. Alterations in skeletal muscle abundance of protein turnover, stress, and antioxidant proteins during the periparturient period in dairy cows fed ethyl-cellulose rumen-protected methionine. J Dairy Sci 2023:S0022-0302(23)00278-3. [PMID: 37225585 DOI: 10.3168/jds.2022-23187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/17/2023] [Indexed: 05/26/2023]
Abstract
Skeletal muscle turnover helps support the physiological needs of dairy cows during the transition into lactation. We evaluated effects of feeding ethyl-cellulose rumen-protected methionine (RPM) during the periparturient period on abundance of proteins associated with transport AA and glucose, protein turnover, metabolism, and antioxidant pathways in skeletal muscle. Sixty multiparous Holstein cows were used in a block design and assigned to a control or RPM diet from -28 to 60 d in milk. The RPM was fed at a rate of 0.09% or 0.10% of dry matter intake (DMI) during the prepartal and postpartal periods to achieve a target Lys:Met ratio in the metabolizable protein of ∼2.8:1. Muscle biopsies from the hind leg of 10 clinically healthy cows per diet collected at -21, 1, and 21 d relative to calving were used for western blotting of 38 target proteins. Statistical analysis was performed using the PROC MIXED statement of SAS version 9.4 (SAS Institute Inc.) with cow as random effect, whereas diet, time, and diet × time were the fixed effects. Diet × time tended to affect prepartum DMI, with RPM cows consuming 15.2 kg/d and controls 14.6 kg/d. However, diet had no effect on postpartum DMI (17.2 and 17.1 ± 0.4 kg/d for control and RPM, respectively). Milk yield during the first 30 d in milk was also not affected by diet (38.1 and 37.5 ± 1.9 kg/d for control and RPM, respectively). Diet or time did not affect the abundance of several AA transporters or the insulin-induced glucose transporter (SLC2A4). Among evaluated proteins, feeding RPM led to lower overall abundance of proteins associated with protein synthesis (phosphorylated EEF2, phosphorylated RPS6KB1), mTOR activation (RRAGA), proteasome degradation (UBA1), cellular stress responses (HSP70, phosphorylated MAPK3, phosphorylated EIF2A, ERK1/2), antioxidant response (GPX3), and de novo synthesis of phospholipids (PEMT). Regardless of diet, there was an increase in the abundance of the active form of the master regulator of protein synthesis phosphorylated MTOR and the growth-factor-induced serine/threonine kinase phosphorylated AKT1 and PIK3C3, whereas the abundance of a negative regulator of translation (phosphorylated EEF2K) decreased over time. Compared with d 1 after calving and regardless of diet, the abundance of proteins associated with endoplasmic reticulum stress (XBP1 spliced), cell growth and survival (phosphorylated MAPK3), inflammation (transcription factor p65), antioxidant responses (KEAP1), and circadian regulation (CLOCK, PER2) of oxidative metabolism was upregulated at d 21 relative to parturition. These responses coupled with the upregulation of transporters for Lys, Arg, and His (SLC7A1) and glutamate/aspartate (SLC1A3) over time were suggestive of dynamic adaptations in cellular functions. Overall, management approaches that could take advantage of this physiological plasticity may help cows make a smoother transition into lactation.
Collapse
Affiliation(s)
- Lam Phuoc Thanh
- Department of Animal Sciences, Can Tho University, Ninh Kieu Can Tho, Vietnam 94000; Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Nithat Wichasit
- Department of Agricultural Science, Naresuan University, Phitsanulok, Thailand 65000
| | - Yu Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China 230036
| | - Fernanda Batistel
- Department of Animal Sciences, University of Florida, Gainesville 32608
| | - Wandee Tartrakoon
- Department of Agricultural Science, Naresuan University, Phitsanulok, Thailand 65000
| | - Claudia Parys
- Evonik Operations GmbH, Hanau-Wolfgang, Essen, Germany 63457
| | - Jessie Guyader
- Evonik Operations GmbH, Hanau-Wolfgang, Essen, Germany 63457
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
5
|
Ferrara PJ, Lang MJ, Johnson JM, Watanabe S, McLaughlin KL, Maschek JA, Verkerke AR, Siripoksup P, Chaix A, Cox JE, Fisher-Wellman KH, Funai K. Weight loss increases skeletal muscle mitochondrial energy efficiency in obese mice. LIFE METABOLISM 2023; 2:load014. [PMID: 37206438 PMCID: PMC10195096 DOI: 10.1093/lifemeta/load014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Weight loss from an overweight state is associated with a disproportionate decrease in whole-body energy expenditure that may contribute to the heightened risk for weight regain. Evidence suggests that this energetic mismatch originates from lean tissue. Although this phenomenon is well documented, the mechanisms have remained elusive. We hypothesized that increased mitochondrial energy efficiency in skeletal muscle is associated with reduced expenditure under weight loss. Wildtype (WT) male C57BL6/N mice were fed with high fat diet for 10 weeks, followed by a subset of mice that were maintained on the obesogenic diet (OB) or switched to standard chow to promote weight loss (WL) for additional 6 weeks. Mitochondrial energy efficiency was evaluated using high-resolution respirometry and fluorometry. Mass spectrometric analyses were employed to describe the mitochondrial proteome and lipidome. Weight loss promoted ~50% increase in the efficiency of oxidative phosphorylation (ATP produced per O2 consumed, or P/O) in skeletal muscle. However, weight loss did not appear to induce significant changes in mitochondrial proteome, nor any changes in respiratory supercomplex formation. Instead, it accelerated the remodeling of mitochondrial cardiolipin (CL) acyl-chains to increase tetralinoleoyl CL (TLCL) content, a species of lipids thought to be functionally critical for the respiratory enzymes. We further show that lowering TLCL by deleting the CL transacylase tafazzin was sufficient to reduce skeletal muscle P/O and protect mice from diet-induced weight gain. These findings implicate skeletal muscle mitochondrial efficiency as a novel mechanism by which weight loss reduces energy expenditure in obesity.
Collapse
Affiliation(s)
- Patrick J. Ferrara
- Diabetes & Metabolism Research Center, University of Utah
- Department of Nutrition & Integrative Physiology, University of Utah
| | - Marisa J. Lang
- Diabetes & Metabolism Research Center, University of Utah
- Department of Nutrition & Integrative Physiology, University of Utah
| | - Jordan M. Johnson
- Diabetes & Metabolism Research Center, University of Utah
- Department of Nutrition & Integrative Physiology, University of Utah
| | - Shinya Watanabe
- Diabetes & Metabolism Research Center, University of Utah
- Department of Nutrition & Integrative Physiology, University of Utah
| | - Kelsey L. McLaughlin
- East Carolina Diabetes & Obesity Institute, East Carolina University
- Department of Physiology, East Carolina University
| | - J. Alan Maschek
- Diabetes & Metabolism Research Center, University of Utah
- Department of Nutrition & Integrative Physiology, University of Utah
- Metabolomics Core Research Facility, University of Utah
| | - Anthony R.P. Verkerke
- Diabetes & Metabolism Research Center, University of Utah
- Department of Nutrition & Integrative Physiology, University of Utah
| | | | - Amandine Chaix
- Diabetes & Metabolism Research Center, University of Utah
- Department of Nutrition & Integrative Physiology, University of Utah
- Molecular Medicine Program, University of Utah
| | - James E. Cox
- Diabetes & Metabolism Research Center, University of Utah
- Metabolomics Core Research Facility, University of Utah
- Department of Biochemistry, University of Utah
| | - Kelsey H. Fisher-Wellman
- East Carolina Diabetes & Obesity Institute, East Carolina University
- Department of Physiology, East Carolina University
| | - Katsuhiko Funai
- Diabetes & Metabolism Research Center, University of Utah
- Department of Nutrition & Integrative Physiology, University of Utah
- Molecular Medicine Program, University of Utah
- Department of Biochemistry, University of Utah
| |
Collapse
|
6
|
Eshima H, Shahtout JL, Siripoksup P, Pearson MJ, Mahmassani ZS, Ferrara PJ, Lyons AW, Maschek JA, Peterlin AD, Verkerke ARP, Johnson JM, Salcedo A, Petrocelli JJ, Miranda ER, Anderson EJ, Boudina S, Ran Q, Cox JE, Drummond MJ, Funai K. Lipid hydroperoxides promote sarcopenia through carbonyl stress. eLife 2023; 12:e85289. [PMID: 36951533 PMCID: PMC10076018 DOI: 10.7554/elife.85289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/22/2023] [Indexed: 03/24/2023] Open
Abstract
Reactive oxygen species (ROS) accumulation is a cardinal feature of skeletal muscle atrophy. ROS refers to a collection of radical molecules whose cellular signals are vast, and it is unclear which downstream consequences of ROS are responsible for the loss of muscle mass and strength. Here, we show that lipid hydroperoxides (LOOH) are increased with age and disuse, and the accumulation of LOOH by deletion of glutathione peroxidase 4 (GPx4) is sufficient to augment muscle atrophy. LOOH promoted atrophy in a lysosomal-dependent, proteasomal-independent manner. In young and old mice, genetic and pharmacological neutralization of LOOH or their secondary reactive lipid aldehydes robustly prevented muscle atrophy and weakness, indicating that LOOH-derived carbonyl stress mediates age- and disuse-induced muscle dysfunction. Our findings provide novel insights for the role of LOOH in sarcopenia including a therapeutic implication by pharmacological suppression.
Collapse
Affiliation(s)
- Hiroaki Eshima
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Molecular Medicine Program, University of UtahSalt Lake CityUnited States
- Department of International Tourism, Nagasaki International UniversityNagasakiJapan
| | - Justin L Shahtout
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Department of Physical Therapy & Athletic Training, University of UtahSalt Lake CityUnited States
| | - Piyarat Siripoksup
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Department of Physical Therapy & Athletic Training, University of UtahSalt Lake CityUnited States
| | | | - Ziad S Mahmassani
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Molecular Medicine Program, University of UtahSalt Lake CityUnited States
- Department of Physical Therapy & Athletic Training, University of UtahSalt Lake CityUnited States
| | - Patrick J Ferrara
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Molecular Medicine Program, University of UtahSalt Lake CityUnited States
- Department of Nutrition & Integrative Physiology, University of UtahSalt Lake CityUnited States
| | - Alexis W Lyons
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
| | - John Alan Maschek
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Department of Nutrition & Integrative Physiology, University of UtahSalt Lake CityUnited States
- Metabolomics Core Research Facility, University of UtahSalt Lake CityUnited States
| | - Alek D Peterlin
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Department of Nutrition & Integrative Physiology, University of UtahSalt Lake CityUnited States
| | - Anthony RP Verkerke
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Department of Nutrition & Integrative Physiology, University of UtahSalt Lake CityUnited States
| | - Jordan M Johnson
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Department of Nutrition & Integrative Physiology, University of UtahSalt Lake CityUnited States
| | - Anahy Salcedo
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
| | - Jonathan J Petrocelli
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Department of Physical Therapy & Athletic Training, University of UtahSalt Lake CityUnited States
| | - Edwin R Miranda
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Molecular Medicine Program, University of UtahSalt Lake CityUnited States
| | - Ethan J Anderson
- Fraternal Order of Eagles Diabetes Research Center, University of IowaIowa CityUnited States
| | - Sihem Boudina
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Molecular Medicine Program, University of UtahSalt Lake CityUnited States
- Department of Nutrition & Integrative Physiology, University of UtahSalt Lake CityUnited States
| | - Qitao Ran
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - James E Cox
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Metabolomics Core Research Facility, University of UtahSalt Lake CityUnited States
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | - Micah J Drummond
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Molecular Medicine Program, University of UtahSalt Lake CityUnited States
- Department of Physical Therapy & Athletic Training, University of UtahSalt Lake CityUnited States
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
- Molecular Medicine Program, University of UtahSalt Lake CityUnited States
- Department of Physical Therapy & Athletic Training, University of UtahSalt Lake CityUnited States
- Department of Nutrition & Integrative Physiology, University of UtahSalt Lake CityUnited States
| |
Collapse
|
7
|
Geromella MS, Ryan CR, Braun JL, Finch MS, Maddalena LA, Bagshaw O, Hockey BL, Moradi F, Fenech RK, Ryoo J, Marko DM, Dhaliwal R, Sweezey-Munroe J, Hamstra SI, Gardner G, Silvera S, Vandenboom R, Roy BD, Stuart JA, MacPherson RE, Fajardo VA. Low-dose lithium supplementation promotes adipose tissue browning and sarco(endo)plasmic reticulum Ca2+ ATPase uncoupling in muscle. J Biol Chem 2022; 298:102568. [DOI: 10.1016/j.jbc.2022.102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022] Open
|
8
|
Zhou Q, Zhang F, Kerbl-Knapp J, Korbelius M, Kuentzel KB, Vujić N, Akhmetshina A, Hörl G, Paar M, Steyrer E, Kratky D, Madl T. Phosphatidylethanolamine N-Methyltransferase Knockout Modulates Metabolic Changes in Aging Mice. Biomolecules 2022; 12:1270. [PMID: 36139111 PMCID: PMC9496051 DOI: 10.3390/biom12091270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/11/2022] Open
Abstract
Phospholipid metabolism, including phosphatidylcholine (PC) biosynthesis, is crucial for various biological functions and is associated with longevity. Phosphatidylethanolamine N-methyltransferase (PEMT) is a protein that catalyzes the biosynthesis of PC, the levels of which change in various organs such as the brain and kidneys during aging. However, the role of PEMT for systemic PC supply is not fully understood. To address how PEMT affects aging-associated energy metabolism in tissues responsible for nutrient absorption, lipid storage, and energy consumption, we employed NMR-based metabolomics to study the liver, plasma, intestine (duodenum, jejunum, and ileum), brown/white adipose tissues (BAT and WAT), and skeletal muscle of young (9-10 weeks) and old (91-132 weeks) wild-type (WT) and PEMT knockout (KO) mice. We found that the effect of PEMT-knockout was tissue-specific and age-dependent. A deficiency of PEMT affected the metabolome of all tissues examined, among which the metabolome of BAT from both young and aged KO mice was dramatically changed in comparison to the WT mice, whereas the metabolome of the jejunum was only slightly affected. As for aging, the absence of PEMT increased the divergence of the metabolome during the aging of the liver, WAT, duodenum, and ileum and decreased the impact on skeletal muscle. Overall, our results suggest that PEMT plays a previously underexplored, critical role in both aging and energy metabolism.
Collapse
Affiliation(s)
- Qishun Zhou
- Research Unit Integrative Structural Biology, Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria
| | - Fangrong Zhang
- Research Unit Integrative Structural Biology, Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria
- Key Laboratory of Gastrointestinal Cancer, Fujian Medical University, Ministry of Education, Fuzhou 350122, China
| | - Jakob Kerbl-Knapp
- Research Unit Integrative Structural Biology, Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria
| | - Melanie Korbelius
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Katharina Barbara Kuentzel
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Nemanja Vujić
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Alena Akhmetshina
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Gerd Hörl
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, 8010 Graz, Austria
| | - Margret Paar
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, 8010 Graz, Austria
| | - Ernst Steyrer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Tobias Madl
- Research Unit Integrative Structural Biology, Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
9
|
Law AS, Hafen PS, Brault JJ. Liquid chromatography method for simultaneous quantification of ATP and its degradation products compatible with both UV-Vis and mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1206:123351. [PMID: 35797802 PMCID: PMC9479163 DOI: 10.1016/j.jchromb.2022.123351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/20/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
ATP and its degradation products are essential metabolic and signaling molecules. Traditionally, they have been quantified via high-performance liquid chromatography (HPLC) with UV-Vis detection while utilizing phosphate buffer mobile phase, but this approach is incompatible with modern mass detection. The goal of this study was to develop an ultra-performance liquid chromatography (UPLC) method free of phosphate buffer, to allow for analysis of adenine nucleotides with UV-Vis and mass spectrometry (MS) simultaneously. The final conditions used an Acquity HSS T3 premier column with a volatile ammonium acetate buffer to successfully separate and quantify ATP-related analytes in a standard mixture and in extracts from non-contracted and contracted mouse hindlimb muscles. Baseline resolution was achieved with all 10 metabolites, and a lower limit of quantification down to 1 pmol per inject was observed for most metabolites using UV-Vis. Therefore, this method allows for the reliable quantification of adenine nucleotides and their degradation products via UV-Vis and their confirmation and/or identification of unknown peaks via MS.
Collapse
Affiliation(s)
- Andrew S Law
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Paul S Hafen
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jeffrey J Brault
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
10
|
Jahn M, Seebacher F. Variations in cost of transport and their ecological consequences: a review. J Exp Biol 2022; 225:276242. [PMID: 35942859 DOI: 10.1242/jeb.243646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Movement is essential in the ecology of most animals, and it typically consumes a large proportion of individual energy budgets. Environmental conditions modulate the energetic cost of movement (cost of transport, COT), and there are pronounced differences in COT between individuals within species and across species. Differences in morphology affect COT, but the physiological mechanisms underlying variation in COT remain unresolved. Candidates include mitochondrial efficiency and the efficiency of muscle contraction-relaxation dynamics. Animals can offset increased COT behaviourally by adjusting movement rate and habitat selection. Here, we review the theory underlying COT and the impact of environmental changes on COT. Increasing temperatures, in particular, increase COT and its variability between individuals. Thermal acclimation and exercise can affect COT, but this is not consistent across taxa. Anthropogenic pollutants can increase COT, although few chemical pollutants have been investigated. Ecologically, COT may modify the allocation of energy to different fitness-related functions, and thereby influence fitness of individuals, and the dynamics of animal groups and communities. Future research should consider the effects of multiple stressors on COT, including a broader range of pollutants, the underlying mechanisms of COT and experimental quantifications of potential COT-induced allocation trade-offs.
Collapse
Affiliation(s)
- Miki Jahn
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
11
|
Divakaruni AS, Jastroch M. A practical guide for the analysis, standardization and interpretation of oxygen consumption measurements. Nat Metab 2022; 4:978-994. [PMID: 35971004 PMCID: PMC9618452 DOI: 10.1038/s42255-022-00619-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/17/2022] [Indexed: 12/14/2022]
Abstract
Measurement of oxygen consumption is a powerful and uniquely informative experimental technique. It can help identify mitochondrial mechanisms of action following pharmacologic and genetic interventions, and characterize energy metabolism in physiology and disease. The conceptual and practical benefits of respirometry have made it a frontline technique to understand how mitochondrial function can interface with-and in some cases control-cell physiology. Nonetheless, an appreciation of the complexity and challenges involved with such measurements is required to avoid common experimental and analytical pitfalls. Here we provide a practical guide to oxygen consumption measurements covering the selection of experimental models and instrumentation, as well as recommendations for the collection, interpretation and normalization of data. These guidelines are provided with the intention of aiding experimental design and enhancing the overall reputability, transparency and reliability of oxygen consumption measurements.
Collapse
Affiliation(s)
- Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| |
Collapse
|
12
|
Yin Y, Xu D, Mao Y, Xiao L, Sun Z, Liu J, Zhou D, Xu Z, Liu L, Fu T, Ding C, Guo Q, Sun W, Zhou Z, Yang L, Jia Y, Chen X, Gan Z. FNIP1 regulates adipocyte browning and systemic glucose homeostasis in mice by shaping intracellular calcium dynamics. J Exp Med 2022; 219:213128. [PMID: 35412553 PMCID: PMC9008465 DOI: 10.1084/jem.20212491] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/14/2022] [Accepted: 03/08/2022] [Indexed: 12/02/2022] Open
Abstract
Metabolically beneficial beige adipocytes offer tremendous potential to combat metabolic diseases. The folliculin interacting protein 1 (FNIP1) is implicated in controlling cellular metabolism via AMPK and mTORC1. However, whether and how FNIP1 regulates adipocyte browning is unclear. Here, we demonstrate that FNIP1 plays a critical role in controlling adipocyte browning and systemic glucose homeostasis. Adipocyte-specific ablation of FNIP1 promotes a broad thermogenic remodeling of adipocytes, including increased UCP1 levels, high mitochondrial content, and augmented capacity for mitochondrial respiration. Mechanistically, FNIP1 binds to and promotes the activity of SERCA, a main Ca2+ pump responsible for cytosolic Ca2+ removal. Loss of FNIP1 resulted in enhanced intracellular Ca2+ signals and consequential activation of Ca2+-dependent thermogenic program in adipocytes. Furthermore, mice lacking adipocyte FNIP1 were protected against high-fat diet–induced insulin resistance and liver steatosis. Thus, these findings reveal a pivotal role of FNIP1 as a negative regulator of beige adipocyte thermogenesis and unravel an intriguing functional link between intracellular Ca2+ dynamics and adipocyte browning.
Collapse
Affiliation(s)
- Yujing Yin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Dengqiu Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yan Mao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Liwei Xiao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Zongchao Sun
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Jing Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Danxia Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Zhisheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Lin Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Tingting Fu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Chenyun Ding
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Qiqi Guo
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Wanping Sun
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Zheng Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Likun Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yuhuan Jia
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Xinyi Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| |
Collapse
|
13
|
Ca 2+ leak through ryanodine receptor 1 regulates thermogenesis in resting skeletal muscle. Proc Natl Acad Sci U S A 2022; 119:2119203119. [PMID: 35046046 PMCID: PMC8794839 DOI: 10.1073/pnas.2119203119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 11/26/2022] Open
Abstract
The evolution of mammals to use skeletal muscle as a source of heat allowed them to spread to all parts of the globe. The generation of heat requires increased adenosine triphosphate (ATP) hydrolysis in the resting muscle in a regulated manner, but how this mechanism works is unknown. The results suggest that mammals increase their RyR1 Ca2+ leak rate to amplify a basal ATP turnover rate at the sarcoplasmic reticulum Ca2+ pump that is higher than that of lower vertebrates. Muscle-based thermogenesis allows regulation of body temperature that is essential for life in mammals and provides a potential pathway for manipulating body weight or temperature by altering metabolic rate. Mammals rely on nonshivering thermogenesis (NST) from skeletal muscle so that cold temperatures can be tolerated. NST results from activity of the sarcoplasmic reticulum (SR) Ca2+ pump in skeletal muscle, but the mechanisms that regulate this activity are unknown. Here, we develop a single-fiber assay to investigate the role of Ca2+ leak through ryanodine receptor 1 (RyR1) to generate heat at the SR Ca2+ pump in resting muscle. By inhibiting a subpopulation of RyR1s in a single-fiber preparation via targeted delivery of ryanodine through transverse tubules, we achieve in-preparation isolation of RyR1 Ca2+ leak. This maneuver provided a critical increase in signal-to-noise of the SR-temperature-sensitive dye ER thermoyellow fluorescence signal from the fiber to allow detection of SR temperature changes as either RyR1 or SR Ca2+ pump activity was altered. We found that RyR1 Ca2+ leak raises cytosolic [Ca2+] in the local vicinity of the SR Ca2+ pump to amplify thermogenesis. Furthermore, gene-dose-dependent increases in RyR1 leak in RYR1 mutant mice result in progressive rises in leak-dependent heat, consistent with raised local [Ca2+] at the SR Ca2+ pump via RyR1 Ca2+ leak. We also show that basal RyR Ca2+ leak and the heat generated by the SR Ca2+ pump in the absence of RyR Ca2+ leak is greater in fibers from mice than from toads. The distinct function of RyRs and SR Ca2+ pump in endothermic mammals compared to ectothermic amphibians provides insights into the mechanisms by which mammalian skeletal muscle achieves thermogenesis at rest.
Collapse
|
14
|
Wang S, Gopinath T, Larsen EK, Weber DK, Walker C, Uddigiri VR, Mote KR, Sahoo SK, Periasamy M, Veglia G. Structural basis for sarcolipin's regulation of muscle thermogenesis by the sarcoplasmic reticulum Ca 2+-ATPase. SCIENCE ADVANCES 2021; 7:eabi7154. [PMID: 34826239 PMCID: PMC8626070 DOI: 10.1126/sciadv.abi7154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/06/2021] [Indexed: 06/10/2023]
Abstract
The sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA) plays a central role in muscle contractility and nonshivering thermogenesis. SERCA is regulated by sarcolipin (SLN), a single-pass membrane protein that uncouples Ca2+ transport from ATP hydrolysis, promoting futile enzymatic cycles and heat generation. The molecular determinants for regulating heat release by the SERCA/SLN complex are unclear. Using thermocalorimetry, chemical cross-linking, and solid-state NMR spectroscopy in oriented phospholipid bicelles, we show that SERCA’s functional uncoupling and heat release rate are dictated by specific SERCA/SLN intramembrane interactions, with the carboxyl-terminal residues anchoring SLN to the SR membrane in an inhibitory topology. Systematic deletion of the carboxyl terminus does not prevent the SERCA/SLN complex formation but reduces uncoupling in a graded manner. These studies emphasize the critical role of lipids in defining the active topology of SLN and modulating the heat release rate by the SERCA/SLN complex, with implications in fat metabolism and basal metabolic rate.
Collapse
Affiliation(s)
- Songlin Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tata Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Erik K. Larsen
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel K. Weber
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Caitlin Walker
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Venkateswara Reddy Uddigiri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kaustubh R. Mote
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad, Telangana 500046, India
| | - Sanjaya K. Sahoo
- Department of Physiology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Muthu Periasamy
- Department of Physiology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
15
|
Eshima H. Influence of Obesity and Type 2 Diabetes on Calcium Handling by Skeletal Muscle: Spotlight on the Sarcoplasmic Reticulum and Mitochondria. Front Physiol 2021; 12:758316. [PMID: 34795598 PMCID: PMC8592904 DOI: 10.3389/fphys.2021.758316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity and diabetes have been shown to interfere with energy metabolism and cause peripheral insulin resistance in skeletal muscle. However, recent studies have focused on the effect metabolic insult has on the loss of muscle size, strength, and physical function. Contractile dysfunction has been linked to impaired intracellular Ca2+ concentration ([Ca2+]i) regulation. In skeletal muscle, [Ca2+]i homeostasis is highly regulated by Ca2+ transport across the sarcolemma/plasma membrane, the golgi apparatus, sarcoplasmic reticulum (SR), and mitochondria. Particularly, the SR and or mitochondria play an important role in the fine-tuning of this metabolic process. Recent studies showed that obesity and insulin resistance are associated with interactions between the SR and mitochondrial networks (the dynamic tubular reticulum formed by mitochondria), suggesting that metabolic disorders alter Ca2+ handling by these organelles. These interactions are facilitated by specific membrane proteins, including ion channels. This review considers the impact of metabolic disorders, such as obesity and type 2 diabetes, on the regulation of [Ca2+]i in skeletal muscle. It also discusses the mechanisms by which this occurs, focusing chiefly on the SR and mitochondria networks. A deeper understanding of the effect of metabolic disorders on calcium handling might be useful for therapeutic strategies.
Collapse
Affiliation(s)
- Hiroaki Eshima
- Department of International Tourism, Nagasaki International University, Nagasaki, Japan
| |
Collapse
|
16
|
Braun JL, Teng ACT, Geromella MS, Ryan CR, Fenech RK, MacPherson REK, Gramolini AO, Fajardo VA. Neuronatin promotes SERCA uncoupling and its expression is altered in skeletal muscles of high-fat diet-fed mice. FEBS Lett 2021; 595:2756-2767. [PMID: 34693525 DOI: 10.1002/1873-3468.14213] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/07/2021] [Accepted: 10/15/2021] [Indexed: 11/09/2022]
Abstract
Neuronatin (NNAT) is a transmembrane protein in the endoplasmic reticulum involved in metabolic regulation. It shares sequence homology with sarcolipin (SLN), which negatively regulates the sarco(endo)plasmic reticulum Ca2+ -ATPase (SERCA) that maintains energy homeostasis in muscles. Here, we examined whether NNAT could uncouple the Ca2+ transport activity of SERCA from ATP hydrolysis, similarly to SLN. NNAT significantly reduced Ca2+ uptake without altering SERCA activity, ultimately lowering the apparent coupling ratio of SERCA. This effect of NNAT was reversed by the adenylyl cyclase activator forskolin. Furthermore, soleus muscles from high fat diet (HFD)-fed mice showed a significant downregulation in NNAT content compared with chow-fed mice, whereas an upregulation in NNAT content was observed in fast-twitch muscles from HFD- versus chow- fed mice. Therefore, NNAT is a SERCA uncoupler in cells and may function in adaptive thermogenesis.
Collapse
Affiliation(s)
- Jessica L Braun
- Department of Kinesiology, Brock University, St. Catharines, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, Canada.,Centre for Neuroscience, Brock University, St. Catharines, Canada
| | - Allen C T Teng
- Department of Physiology, University of Toronto, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
| | - Mia S Geromella
- Department of Kinesiology, Brock University, St. Catharines, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, Canada.,Centre for Neuroscience, Brock University, St. Catharines, Canada
| | - Chantal R Ryan
- Centre for Neuroscience, Brock University, St. Catharines, Canada.,Department of Health Sciences, Brock University, St. Catharines, Canada
| | - Rachel K Fenech
- Centre for Neuroscience, Brock University, St. Catharines, Canada.,Department of Health Sciences, Brock University, St. Catharines, Canada
| | - Rebecca E K MacPherson
- Centre for Neuroscience, Brock University, St. Catharines, Canada.,Department of Health Sciences, Brock University, St. Catharines, Canada
| | - Anthony O Gramolini
- Department of Physiology, University of Toronto, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
| | - Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, Canada.,Centre for Neuroscience, Brock University, St. Catharines, Canada
| |
Collapse
|
17
|
Ferrara PJ, Verkerke ARP, Maschek JA, Shahtout JL, Siripoksup P, Eshima H, Johnson JM, Petrocelli JJ, Mahmassani ZS, Green TD, McClung JM, Cox JE, Drummond MJ, Funai K. Low lysophosphatidylcholine induces skeletal muscle myopathy that is aggravated by high-fat diet feeding. FASEB J 2021; 35:e21867. [PMID: 34499764 DOI: 10.1096/fj.202101104r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 12/25/2022]
Abstract
Obesity alters skeletal muscle lipidome and promotes myopathy, but it is unknown whether aberrant muscle lipidome contributes to the reduction in skeletal muscle contractile force-generating capacity. Comprehensive lipidomic analyses of mouse skeletal muscle revealed a very strong positive correlation between the abundance of lysophosphatidylcholine (lyso-PC), a class of lipids that is known to be downregulated with obesity, with maximal tetanic force production. The level of lyso-PC is regulated primarily by lyso-PC acyltransferase 3 (LPCAT3), which acylates lyso-PC to form phosphatidylcholine. Tamoxifen-inducible skeletal muscle-specific overexpression of LPCAT3 (LPCAT3-MKI) was sufficient to reduce muscle lyso-PC content in both standard chow diet- and high-fat diet (HFD)-fed conditions. Strikingly, the assessment of skeletal muscle force-generating capacity ex vivo revealed that muscles from LPCAT3-MKI mice were weaker regardless of diet. Defects in force production were more apparent in HFD-fed condition, where tetanic force production was 40% lower in muscles from LPCAT3-MKI compared to that of control mice. These observations were partly explained by reductions in the cross-sectional area in type IIa and IIx fibers, and signs of muscle edema in the absence of fibrosis. Future studies will pursue the mechanism by which LPCAT3 may alter protein turnover to promote myopathy.
Collapse
Affiliation(s)
- Patrick J Ferrara
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, North Carolina, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Anthony R P Verkerke
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - J Alan Maschek
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Metabolomics, Mass Spectrometry, and Proteomics Core, University of Utah, Salt Lake City, Utah, USA
| | - Justin L Shahtout
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Piyarat Siripoksup
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Hiroaki Eshima
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of International Tourism, Nagasaki International University, Sasebo, Japan
| | - Jordan M Johnson
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Jonathan J Petrocelli
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Ziad S Mahmassani
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Thomas D Green
- East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Joseph M McClung
- East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - James E Cox
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Metabolomics, Mass Spectrometry, and Proteomics Core, University of Utah, Salt Lake City, Utah, USA.,Department of Biochemistry, University of Utah, Salt Lake City, Utah, USA
| | - Micah J Drummond
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, North Carolina, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
18
|
Functional Interplay between Methyltransferases and Inflammasomes in Inflammatory Responses and Diseases. Int J Mol Sci 2021; 22:ijms22147580. [PMID: 34299198 PMCID: PMC8306412 DOI: 10.3390/ijms22147580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023] Open
Abstract
An inflammasome is an intracellular protein complex that is activated in response to a pathogenic infection and cellular damage. It triggers inflammatory responses by promoting inflammatory cell death (called pyroptosis) and the secretion of pro-inflammatory cytokines, interleukin (IL)-1β and IL-18. Many types of inflammasomes have been identified and demonstrated to play a central role in inducing inflammatory responses, leading to the onset and progression of numerous inflammatory diseases. Methylation is a biological process by which methyl groups are transferred from methyl donors to proteins, nucleic acids, and other cellular molecules. Methylation plays critical roles in various biological functions by modulating gene expression, protein activity, protein localization, and molecular stability, and aberrant regulation of methylation causes deleterious outcomes in various human diseases. Methylation is a key determinant of inflammatory responses and diseases. This review highlights the current understanding of the functional relationship between inflammasome regulation and methylation of cellular molecules in inflammatory responses and diseases.
Collapse
|
19
|
Gonzalez A, Girard T, Dell-Kuster S, Urwyler A, Bandschapp O. BMI and malignant hyperthermia pathogenic ryanodine receptor type 1 sequence variants in Switzerland: A retrospective cohort analysis. Eur J Anaesthesiol 2021; 38:751-757. [PMID: 33259453 DOI: 10.1097/eja.0000000000001399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ryanodine receptor type 1 (RYR1) sequence variants are pathogenic for malignant hyperthermia. Variant carriers have a subtle increase in resting myoplasmic calcium concentration compared with nonaffected individuals, but whether this has metabolic effects in daily life is unknown. OBJECTIVES We analysed the potential effect of malignant hyperthermia-pathogenic RYR1 sequence variants on BMI as a single factor. Due to the heterogeneity of genetic variants predisposing to malignant hyperthermia, and to incomplete information about their regional distribution, we describe the prevalence of RYR1 variants in our population. DESIGN A retrospective cohort study. SETTING A single University hospital. PATIENTS Patients from malignant hyperthermia families with pathogenic RYR1 sequence variants were selected if BMI was available. OUTCOME MEASURES BMI values were compared amongst malignant hyperthermia susceptible (MHS) and malignant hyperthermia-negative individuals using hierarchical multivariable analyses adjusted for age and sex and considering family clustering. Variant prevalence was calculated. RESULTS The study included 281 individuals from 42 unrelated malignant hyperthermia families, 109 of whom were MHS and carriers of the familial RYR1 sequence variants. Median [IQR] BMI in MHS individuals with pathogenic RYR1 variants was 22.5 kg m-2 [21.3 to 25.6 kg m-2]. In malignant hyperthermia-negative individuals without variants, median BMI was 23.4 kg m-2 [21.0 to 26.3 kg m-2]. Using multivariable regression adjusted for age and sex, the mean difference was -0.73 (95% CI -1.51 to 0.05). No carrier of a pathogenic RYR1 sequence variant was found to have BMI higher than 30 kg m-2. Only 10 RYR1 variants from the list of the European MH Group were found in our cohort, the most common being p.Val2168Met (39% of families), p.Arg2336His (24%) and p.Arg614Cys (12%). CONCLUSION The observed tendency towards lower BMI values in carriers of malignant hyperthermia-pathogenic RYR1 sequence variants points to a possible protective effect on obesity. This study confirms regional differences of the prevalence of malignant hyperthermia-pathogenic RYR1 sequence variants, with just three variants covering 75% of Swiss MHS families. TRIAL REGISTRATION This manuscript is based on a retrospective analysis.
Collapse
Affiliation(s)
- Asensio Gonzalez
- From the Department for Anesthesia, Interdisciplinary Intermediate Care, Prehospital Emergency Medicine and Pain Therapy, University Hospital (AG, TG, SD-K, AU, OB) and Basel Institute for Clinical Epidemiology and Biostatistics (SD-K), University of Basel, Basel, Switzerland
| | | | | | | | | |
Collapse
|
20
|
Verkerke ARP, Kajimura S. Oil does more than light the lamp: The multifaceted role of lipids in thermogenic fat. Dev Cell 2021; 56:1408-1416. [PMID: 34004150 DOI: 10.1016/j.devcel.2021.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 01/23/2023]
Abstract
Brown and beige adipocytes, or thermogenic fat, were initially thought to be merely a thermogenic organ. However, emerging evidence suggests its multifaceted roles in the regulation of systemic glucose and lipid homeostasis that go beyond enhancing thermogenesis. One of the important functions of thermogenic fat is as a "metabolic sink" for glucose, fatty acids, and amino acids, which profoundly impacts metabolite clearance and oxidation. Importantly, lipids are not only the predominant fuel source used for thermogenesis but are also essential molecules for development, cellular signaling, and structural components. Here, we review the multifaceted role of lipids in thermogenic adipocytes.
Collapse
Affiliation(s)
- Anthony R P Verkerke
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Ferrara PJ, Rong X, Maschek JA, Verkerke AR, Siripoksup P, Song H, Green TD, Krishnan KC, Johnson JM, Turk J, Houmard JA, Lusis AJ, Drummond MJ, McClung JM, Cox JE, Shaikh SR, Tontonoz P, Holland WL, Funai K. Lysophospholipid acylation modulates plasma membrane lipid organization and insulin sensitivity in skeletal muscle. J Clin Invest 2021; 131:135963. [PMID: 33591957 DOI: 10.1172/jci135963] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/11/2021] [Indexed: 01/09/2023] Open
Abstract
Aberrant lipid metabolism promotes the development of skeletal muscle insulin resistance, but the exact identity of lipid-mediated mechanisms relevant to human obesity remains unclear. A comprehensive lipidomic analysis of primary myocytes from individuals who were insulin-sensitive and lean (LN) or insulin-resistant with obesity (OB) revealed several species of lysophospholipids (lyso-PLs) that were differentially abundant. These changes coincided with greater expression of lysophosphatidylcholine acyltransferase 3 (LPCAT3), an enzyme involved in phospholipid transacylation (Lands cycle). Strikingly, mice with skeletal muscle-specific knockout of LPCAT3 (LPCAT3-MKO) exhibited greater muscle lysophosphatidylcholine/phosphatidylcholine, concomitant with improved skeletal muscle insulin sensitivity. Conversely, skeletal muscle-specific overexpression of LPCAT3 (LPCAT3-MKI) promoted glucose intolerance. The absence of LPCAT3 reduced phospholipid packing of cellular membranes and increased plasma membrane lipid clustering, suggesting that LPCAT3 affects insulin receptor phosphorylation by modulating plasma membrane lipid organization. In conclusion, obesity accelerates the skeletal muscle Lands cycle, whose consequence might induce the disruption of plasma membrane organization that suppresses muscle insulin action.
Collapse
Affiliation(s)
- Patrick J Ferrara
- Diabetes and Metabolism Research Center and.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes and Obesity Institute and.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Xin Rong
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - J Alan Maschek
- Diabetes and Metabolism Research Center and.,Metabolomics, Mass Spectrometry, and Proteomics Core and
| | - Anthony Rp Verkerke
- Diabetes and Metabolism Research Center and.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes and Obesity Institute and.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA
| | - Piyarat Siripoksup
- Diabetes and Metabolism Research Center and.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Haowei Song
- Division of Endocrinology Metabolism and Lipid Research, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | - Jordan M Johnson
- Diabetes and Metabolism Research Center and.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes and Obesity Institute and.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA
| | - John Turk
- Division of Endocrinology Metabolism and Lipid Research, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joseph A Houmard
- East Carolina Diabetes and Obesity Institute and.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA
| | - Aldons J Lusis
- Cardiology Division, Department of Medicine, UCLA, Los Angeles, California, USA
| | - Micah J Drummond
- Diabetes and Metabolism Research Center and.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | | | - James E Cox
- Diabetes and Metabolism Research Center and.,Metabolomics, Mass Spectrometry, and Proteomics Core and.,Department of Biochemistry, University of Utah, Salt Lake City, Utah, USA
| | - Saame Raza Shaikh
- East Carolina Diabetes and Obesity Institute and.,Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - William L Holland
- Diabetes and Metabolism Research Center and.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center and.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes and Obesity Institute and.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
22
|
Braun JL, Geromella MS, Hamstra SI, Fajardo VA. Neuronatin regulates whole-body metabolism: is thermogenesis involved? FASEB Bioadv 2020; 2:579-586. [PMID: 33089074 PMCID: PMC7566048 DOI: 10.1096/fba.2020-00052] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022] Open
Abstract
Neuronatin (NNAT) was originally discovered in 1995 and labeled as a brain developmental gene due to its abundant expression in developing brains. Over the past 25 years, researchers have uncovered NNAT in other tissues; notably, the hypothalamus, pancreatic β‐cells, and adipocytes. Recent evidence in these tissues indicates that NNAT plays a significant role in metabolism whereby it regulates food intake, insulin secretion, and adipocyte differentiation. Furthermore, genetic deletion of Nnat in mice lowers whole‐body energy expenditure and increases susceptibility to diet‐induced obesity and glucose intolerance; however, the underlying cellular mechanisms remain unknown. Based on its sequence homology with phospholamban, NNAT has a purported role in regulating the sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) pump. However, NNAT also shares sequence homology with sarcolipin, which has the unique property of uncoupling the SERCA pump, increasing whole‐body energy expenditure and thus promoting adaptive thermogenesis in states of caloric excess or cold exposure. Thus, in this article, we discuss the accumulating evidence suggestive of NNAT’s role in whole‐body metabolic regulation, while highlighting its potential to mediate adaptive thermogenesis via SERCA uncoupling.
Collapse
Affiliation(s)
- Jessica L Braun
- Department of Kinesiology Brock University St. Catharines ON USA.,Centre for Bone and Muscle Health Brock University St. Catharines ON USA.,Centre for Neuroscience Brock University St. Catharines ON USA
| | - Mia S Geromella
- Department of Kinesiology Brock University St. Catharines ON USA.,Centre for Bone and Muscle Health Brock University St. Catharines ON USA
| | - Sophie I Hamstra
- Department of Kinesiology Brock University St. Catharines ON USA.,Centre for Bone and Muscle Health Brock University St. Catharines ON USA
| | - Val A Fajardo
- Department of Kinesiology Brock University St. Catharines ON USA.,Centre for Bone and Muscle Health Brock University St. Catharines ON USA.,Centre for Neuroscience Brock University St. Catharines ON USA
| |
Collapse
|
23
|
Alfaro GF, Novak TE, Rodning SP, Moisá SJ. Preconditioning beef cattle for long-duration transportation stress with rumen-protected methionine supplementation: A nutrigenetics study. PLoS One 2020; 15:e0235481. [PMID: 32614880 PMCID: PMC7332072 DOI: 10.1371/journal.pone.0235481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/16/2020] [Indexed: 01/03/2023] Open
Abstract
In general, beef cattle long-distance transportation from cow-calf operations to feedlots or from feedlots to abattoirs is a common situation in the beef industry. The aim of this study was to determine the effect of rumen-protected methionine (RPM) supplementation on a proposed gene network for muscle fatigue, creatine synthesis (CKM), and reactive oxygen species (ROS) metabolism after a transportation simulation in a test track. Angus × Simmental heifers (n = 18) were stratified by body weight (408 ± 64 kg; BW) and randomly assigned to dietary treatments: 1) control diet (CTRL) or 2) control diet + 8 gr/hd/day of top-dressed rumen-protected methionine (RPM). After an adaptation period to Calan gates, animals received the mentioned dietary treatment consisting of Bermuda hay ad libitum and a soy hulls and corn gluten feed based supplement. After 45 days of supplementation, animals were loaded onto a trailer and transported for 22 hours (long-term transportation). Longissimus muscle biopsies, BW and blood samples were obtained on day 0 (Baseline), 43 (Pre-transport; PRET), and 46 (Post-transport; POST). Heifers' average daily gain did not differ between baseline and PRET. Control heifer's shrink was 10% of BW while RPM heifers shrink was 8%. Serum cortisol decreased, and glucose and creatine kinase levels increased after transportation, but no differences were observed between treatments. Messenger RNA was extracted from skeletal muscle tissue and gene expression analysis was performed by RT-qPCR. Results showed that AHCY and DNMT3A (DNA methylation), SSPN (Sarcoglycan complex), and SOD2 (Oxidative Stress-ROS) were upregulated in CTRL between baseline and PRET and, decreased between pre and POST while they remained constant for RPM. Furthermore, CKM was not affected by treatments. In conclusion, RPM supplementation may affect ROS production and enhance DNA hypermethylation, after a long-term transportation.
Collapse
Affiliation(s)
- Gastón F. Alfaro
- Department of Animal Sciences, Auburn University, Auburn, AL, United States of America
| | - Taylor E. Novak
- Department of Animal Sciences, Auburn University, Auburn, AL, United States of America
| | - Soren P. Rodning
- Department of Animal Sciences, Auburn University, Auburn, AL, United States of America
| | - Sonia J. Moisá
- Department of Animal Sciences, Auburn University, Auburn, AL, United States of America
| |
Collapse
|
24
|
Eshima H, Siripoksup P, Mahmassani ZS, Johnson JM, Ferrara PJ, Verkerke ARP, Salcedo A, Drummond MJ, Funai K. Neutralizing mitochondrial ROS does not rescue muscle atrophy induced by hindlimb unloading in female mice. J Appl Physiol (1985) 2020; 129:124-132. [PMID: 32552434 DOI: 10.1152/japplphysiol.00456.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Excess reactive oxygen species (ROS) induced by physical inactivity is associated with muscle atrophy and muscle weakness. However, the role of mitochondrial ROS on disuse-induced muscle atrophy is not fully understood. The purpose of this study was to utilize a genetic strategy to examine the effect of neutralizing mitochondrial ROS on disuse-induced skeletal muscle atrophy. This was accomplished by placing wild-type (WT) and mitochondrial-targeted catalase-expressing (MCAT) littermate mice on 7 days of hindlimb unloading. After assessment of body weight and composition, muscles were analyzed for individual muscle mass, force-generating capacity, fiber type, cross-sectional area, and mitochondrial function, including H2O2 production. Despite a successful attenuation of mitochondrial ROS, MCAT mice were not protected from muscle atrophy. No differences were observed in body composition, lean mass, individual muscle masses, force-generating capacity, or muscle fiber cross-sectional area. These data suggest that neutralizing mitochondrial ROS is insufficient to suppress disuse-induced loss of skeletal muscle mass and contractile function.NEW & NOTEWORTHY The premise of this study was to examine the efficacy of genetic suppression of mitochondrial reactive oxygen species (ROS) to attenuate disuse-induced muscle atrophy and muscle weakness. Neutralization of mitochondrial ROS by MCAT expression was insufficient to rescue muscle atrophy and muscle weakness.
Collapse
Affiliation(s)
- Hiroaki Eshima
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah.,Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Piyarat Siripoksup
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah.,Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Ziad S Mahmassani
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah.,Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Jordan M Johnson
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Patrick J Ferrara
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Anthony R P Verkerke
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Anahy Salcedo
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Micah J Drummond
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Katsuhiko Funai
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| |
Collapse
|
25
|
Mahmassani ZS, Reidy PT, McKenzie AI, Petrocelli JJ, Matthews O, de Hart NM, Ferrara PJ, O'Connell RM, Funai K, Drummond MJ. Absence of MyD88 from Skeletal Muscle Protects Female Mice from Inactivity-Induced Adiposity and Insulin Resistance. Obesity (Silver Spring) 2020; 28:772-782. [PMID: 32108446 PMCID: PMC7093260 DOI: 10.1002/oby.22759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Inactivity and inflammation are linked to obesity and insulin resistance. It was hypothesized that MyD88 (mediates inflammation) knockout from muscle (MusMyD88-/- ) would prevent, whereas miR146a-/- (MyD88 inhibitor) would exacerbate, inactivity-induced metabolic disturbances. METHODS Cre-control, MusMyD88-/- , and miR146a-/- mice were given running wheels for 5 weeks to model an active phenotype. Afterward, half were placed into a small mouse cage (SMC) to restrict movement for 8 days. Body composition, muscle (3 H)2-deoxyglucose uptake, visceral fat histology, and tissue weight (hind limb muscles, visceral fat, and liver) were assessed. In skeletal muscle and visceral fat, RNA sequencing and mitochondrial function were performed on female MusMyD88-/- and Cre-control SMC mice. RESULTS The SMC induced adiposity, hyperinsulinemia, and muscle insulin-stimulated glucose uptake, which was worsened in miR146a-/- mice. In females, MusMyD88-/- mice were protected. Female MusMyD88-/- mice during the SMC period (vs. Cre-control) exhibited higher Igf1 and decreased Ip6k3 and Trim63 muscle expression. Visceral fat transcript changes corresponded to improved lipid metabolism, decreased adipose expansion (Gulp1↑, Anxa2↓, Ehd1↓) and meta-inflammation (Hmox1↓), and increased beiging (Fgf10↑). Ralgapa2, negative regulator of GLUT4 translocation, and inflammation-related gene 993011J21Rik2 were decreased in both muscle and fat. CONCLUSIONS Whole-body miR146a-/- exacerbated inactivity-induced fat gain and muscle insulin resistance, whereas MusMyD88-/- prevented insulin resistance in female mice.
Collapse
Affiliation(s)
- Ziad S Mahmassani
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Paul T Reidy
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Alec I McKenzie
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Jonathan J Petrocelli
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - O'Connor Matthews
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Naomi M de Hart
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Patrick J Ferrara
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Ryan M O'Connell
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Katsuhiko Funai
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Micah J Drummond
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
26
|
Johnson JM, Verkerke ARP, Maschek JA, Ferrara PJ, Lin CT, Kew KA, Neufer PD, Lodhi IJ, Cox JE, Funai K. Alternative splicing of UCP1 by non-cell-autonomous action of PEMT. Mol Metab 2020; 31:55-66. [PMID: 31918922 PMCID: PMC6889607 DOI: 10.1016/j.molmet.2019.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/14/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Phosphatidylethanolamine methyltransferase (PEMT) generates phosphatidylcholine (PC), the most abundant phospholipid in the mitochondria and an important acyl chain donor for cardiolipin (CL) biosynthesis. Mice lacking PEMT (PEMTKO) are cold-intolerant when fed a high-fat diet (HFD) due to unclear mechanisms. The purpose of this study was to determine whether PEMT-derived phospholipids are important for the function of uncoupling protein 1 (UCP1) and thus for maintenance of core temperature. METHODS To test whether PEMT-derived phospholipids are important for UCP1 function, we examined cold-tolerance and brown adipose (BAT) mitochondria from PEMTKO mice with or without HFD feeding. We complemented these studies with experiments on mice lacking functional CL due to tafazzin knockdown (TAZKD). We generated several conditional mouse models to study the tissue-specific roles of PEMT, including mice with BAT-specific knockout of PEMT (PEMT-BKO). RESULTS Chow- and HFD-fed PEMTKO mice completely lacked UCP1 protein in BAT, despite a lack of difference in mRNA levels, and the mice were accordingly cold-intolerant. While HFD-fed PEMTKO mice exhibited reduced mitochondrial CL content, this was not observed in chow-fed PEMTKO mice or TAZKD mice, indicating that the lack of UCP1 was not attributable to CL deficiency. Surprisingly, the PEMT-BKO mice exhibited normal UCP1 protein levels. Knockout of PEMT in the adipose tissue (PEMT-AKO), liver (PEMT-LKO), or skeletal muscle (PEMT-MKO) also did not affect UCP1 protein levels, suggesting that lack of PEMT in other non-UCP1-expressing cells communicates to BAT to suppress UCP1. Instead, we identified an untranslated UCP1 splice variant that was triggered during the perinatal period in the PEMTKO mice. CONCLUSIONS PEMT is required for UCP1 splicing that yields functional protein. This effect is derived by PEMT in nonadipocytes that communicates to BAT during embryonic development. Future research will focus on identifying the non-cell-autonomous PEMT-dependent mechanism of UCP1 splicing.
Collapse
Affiliation(s)
- Jordan M Johnson
- Diabetes & Metabolism Research Center, University of Utah, 15 N. 2030 E, Salt Lake City, UT, 84112, USA; Department of Nutrition & Integrative Physiology, University of Utah, 250 S. 1850 E., RM 214, Salt Lake City, UT, 84112, USA; Department of Physical Therapy & Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT, 84108, USA; East Carolina Diabetes & Obesity Institute, East Carolina University, 115 Heart Drive, 4101 ECHI, Greenville, NC, 27834, USA
| | - Anthony R P Verkerke
- Diabetes & Metabolism Research Center, University of Utah, 15 N. 2030 E, Salt Lake City, UT, 84112, USA; Department of Nutrition & Integrative Physiology, University of Utah, 250 S. 1850 E., RM 214, Salt Lake City, UT, 84112, USA; Department of Physical Therapy & Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT, 84108, USA; East Carolina Diabetes & Obesity Institute, East Carolina University, 115 Heart Drive, 4101 ECHI, Greenville, NC, 27834, USA
| | - J Alan Maschek
- Diabetes & Metabolism Research Center, University of Utah, 15 N. 2030 E, Salt Lake City, UT, 84112, USA; Metabolomics Core Research Facility, University of Utah, 15 N. Medical Dr. East RM A306, Salt Lake City, UT, 84112, USA; Department of Biochemistry, University of Utah, 15 N. Medical Dr. East RM 4100, Salt Lake City, UT, 84112, USA
| | - Patrick J Ferrara
- Diabetes & Metabolism Research Center, University of Utah, 15 N. 2030 E, Salt Lake City, UT, 84112, USA; Department of Nutrition & Integrative Physiology, University of Utah, 250 S. 1850 E., RM 214, Salt Lake City, UT, 84112, USA; Department of Physical Therapy & Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT, 84108, USA; East Carolina Diabetes & Obesity Institute, East Carolina University, 115 Heart Drive, 4101 ECHI, Greenville, NC, 27834, USA
| | - Chien-Te Lin
- East Carolina Diabetes & Obesity Institute, East Carolina University, 115 Heart Drive, 4101 ECHI, Greenville, NC, 27834, USA
| | - Kimberly A Kew
- East Carolina Diabetes & Obesity Institute, East Carolina University, 115 Heart Drive, 4101 ECHI, Greenville, NC, 27834, USA; Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA
| | - P Darrell Neufer
- East Carolina Diabetes & Obesity Institute, East Carolina University, 115 Heart Drive, 4101 ECHI, Greenville, NC, 27834, USA
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - James E Cox
- Diabetes & Metabolism Research Center, University of Utah, 15 N. 2030 E, Salt Lake City, UT, 84112, USA; Metabolomics Core Research Facility, University of Utah, 15 N. Medical Dr. East RM A306, Salt Lake City, UT, 84112, USA; Department of Biochemistry, University of Utah, 15 N. Medical Dr. East RM 4100, Salt Lake City, UT, 84112, USA
| | - Katsuhiko Funai
- Diabetes & Metabolism Research Center, University of Utah, 15 N. 2030 E, Salt Lake City, UT, 84112, USA; Department of Nutrition & Integrative Physiology, University of Utah, 250 S. 1850 E., RM 214, Salt Lake City, UT, 84112, USA; Department of Physical Therapy & Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT, 84108, USA; East Carolina Diabetes & Obesity Institute, East Carolina University, 115 Heart Drive, 4101 ECHI, Greenville, NC, 27834, USA; Molecular Medicine Program, University of Utah, 15 N. 2030 E. RM 4145, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
27
|
Affiliation(s)
- Fangfei Li
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Muthu Periasamy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|