1
|
Hur S, Jeong H, Kim K, Kim KH, Kim SH, Lee Y, Nam KT. MIST1 regulates endoplasmic reticulum stress-induced hepatic apoptosis as a candidate marker of fatty liver disease progression. Cell Death Dis 2024; 15:805. [PMID: 39516480 PMCID: PMC11549289 DOI: 10.1038/s41419-024-07217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The liver regenerates after injury; however, prolonged injury can lead to chronic inflammation, fatty liver disease, fibrosis, and cancer. The mechanism involving the complex pathogenesis of the progression of liver injury to chronic liver disease remains unclear. In this study, we investigated the dynamics of gene expression associated with the progression of liver disease. We analyzed changes in gene expression over time in a mouse model of carbon tetrachloride (CCl4)-induced fibrosis using high-throughput RNA sequencing. Prolonged CCl4-induced liver injury increased the expression levels of genes associated with the unfolded protein response (UPR), which correlated with the duration of injury, with substantial, progressive upregulation of muscle, intestine, and stomach expression 1 (Mist1, bhlha15) in the mouse fibrosis model and other liver-damaged tissues. Knockdown of MIST1 in HepG2 cells decreased tribbles pseudokinase 3 (TRIB3) levels and increased apoptosis, consistent with the patterns detected in Mist1-knockout mice. MIST1 expression was confirmed in liver tissues from patients with metabolic dysfunction-associated steatohepatitis and alcoholic steatohepatitis (MASH) and correlated with disease progression. In conclusion, MIST1 is expressed in hepatocytes in response to damage, suggesting a new indicator of liver disease progression. Our results suggest that MIST1 plays a key role in the regulation of apoptosis and TRIB3 expression contributing to progressive liver disease after injury.
Collapse
Affiliation(s)
- Sumin Hur
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Haengdueng Jeong
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Keunyoung Kim
- Department of Pharmacy, Kangwon National University College of Pharmacy, Chuncheon, Korea
| | - Kwang H Kim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Hee Kim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Yura Lee
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
2
|
Piran Z, Cohen N, Hoshen Y, Nitzan M. Disentanglement of single-cell data with biolord. Nat Biotechnol 2024; 42:1678-1683. [PMID: 38225466 PMCID: PMC11554562 DOI: 10.1038/s41587-023-02079-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 11/30/2023] [Indexed: 01/17/2024]
Abstract
Biolord is a deep generative method for disentangling single-cell multi-omic data to known and unknown attributes, including spatial, temporal and disease states, used to reveal the decoupled biological signatures over diverse single-cell modalities and biological systems. By virtually shifting cells across states, biolord generates experimentally inaccessible samples, outperforming state-of-the-art methods in predictions of cellular response to unseen drugs and genetic perturbations. Biolord is available at https://github.com/nitzanlab/biolord .
Collapse
Affiliation(s)
- Zoe Piran
- School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
| | - Niv Cohen
- School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
| | - Yedid Hoshen
- School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
| | - Mor Nitzan
- School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel.
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel.
- Faculty of Medicine, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
3
|
van de Graaf SFJ, Paulusma CC, In Het Panhuis W. Getting in the zone: Metabolite transport across liver zones. Acta Physiol (Oxf) 2024; 240:e14239. [PMID: 39364668 DOI: 10.1111/apha.14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
The liver has many functions including the regulation of nutrient and metabolite levels in the systemic circulation through efficient transport into and out of hepatocytes. To sustain these functions, hepatocytes display large functional heterogeneity. This heterogeneity is reflected by zonation of metabolic processes that take place in different zones of the liver lobule, where nutrient-rich blood enters the liver in the periportal zone and flows through the mid-zone prior to drainage by a central vein in the pericentral zone. Metabolite transport plays a pivotal role in the division of labor across liver zones, being either transport into the hepatocyte or transport between hepatocytes through the blood. Signaling pathways that regulate zonation, such as Wnt/β-catenin, have been shown to play a causal role in the development of metabolic dysfunction-associated steatohepatitis (MASH) progression, but the (patho)physiological regulation of metabolite transport remains enigmatic. Despite the practical challenges to separately study individual liver zones, technological advancements in the recent years have greatly improved insight in spatially divided metabolite transport. This review summarizes the theories behind the regulation of zonation, diurnal rhythms and their effect on metabolic zonation, contemporary techniques used to study zonation and current technological challenges, and discusses the current view on spatial and temporal metabolite transport.
Collapse
Affiliation(s)
- Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Center, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Coen C Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Wietse In Het Panhuis
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Wang S, Xu B, Liang J, Feng Y, Han P, Shen J, Li X, Zheng M, Zhang T, Zhang C, Mi P, Zhang Y, Liu Z, Li S, Yuan D. Spatial Transcriptomic Study Reveals Heterogeneous Metabolic Adaptation and a Role of Pericentral PPARα/CAR/Ces2a Axis During Fasting in Mouse Liver. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405240. [PMID: 39234807 PMCID: PMC11538668 DOI: 10.1002/advs.202405240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/13/2024] [Indexed: 09/06/2024]
Abstract
Spatial heterogeneity and plasticity of the mammalian liver are critical for systemic metabolic homeostasis in response to fluctuating nutritional conditions. Here, a spatially resolved transcriptomic landscape of mouse livers across fed, fasted and refed states using spatial transcriptomics is generated. This approach elucidated dynamic temporal-spatial gene cascades and how liver zonation-both expression levels and patterns-adapts to shifts in nutritional status. Importantly, the pericentral nuclear receptor Nr1i3 (CAR) as a pivotal regulator of triglyceride metabolism is pinpointed. It is showed that the activation of CAR in the pericentral region is transcriptionally governed by Pparα. During fasting, CAR activation enhances lipolysis by upregulating carboxylesterase 2a, playing a crucial role in maintaining triglyceride homeostasis. These findings lay the foundation for future mechanistic studies of liver metabolic heterogeneity and plasticity in response to nutritional status changes, offering insights into the zonated pathology that emerge during liver disease progression linked to nutritional imbalances.
Collapse
Affiliation(s)
- Shiguan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinan250012China
- Department of Clinical LaboratoryQilu Hospital of Shandong UniversityJinan250012China
| | - Bowen Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinan250012China
- Advanced Medical Research InstituteShandong UniversityJinan250012China
| | - Jinyuan Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinan250012China
| | - Yawei Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinan250012China
| | - Penghu Han
- Advanced Medical Research InstituteShandong UniversityJinan250012China
| | - Jing Shen
- Advanced Medical Research InstituteShandong UniversityJinan250012China
| | - Xinying Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinan250012China
| | - Mengqi Zheng
- Advanced Medical Research InstituteShandong UniversityJinan250012China
| | - Tingguo Zhang
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Ping Mi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinan250012China
| | - Yi Zhang
- Department of Clinical LaboratoryQilu Hospital of Shandong UniversityJinan250012China
| | - Zhiping Liu
- Department of Biomedical Engineering, School of Control Science and EngineeringShandong UniversityJinanShandong250061China
| | - Shiyang Li
- Advanced Medical Research InstituteShandong UniversityJinan250012China
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinan250012China
| |
Collapse
|
5
|
Petrova B, Lacey TE, Culhane AJ, Cui J, Brook JR, Raskind A, Misra A, Lehtinen MK, Kanarek N. Profiling metabolome of mouse embryonic cerebrospinal fluid following maternal immune activation. J Biol Chem 2024; 300:107749. [PMID: 39251136 PMCID: PMC11497393 DOI: 10.1016/j.jbc.2024.107749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/07/2024] [Accepted: 08/25/2024] [Indexed: 09/11/2024] Open
Abstract
The embryonic cerebrospinal fluid (eCSF) plays an essential role in the development of the central nervous system (CNS), influencing processes from neurogenesis to lifelong cognitive functions. An important process affecting eCSF composition is inflammation. Inflammation during development can be studied using the maternal immune activation (MIA) mouse model, which displays altered cytokine eCSF composition and mimics neurodevelopmental disorders including autism spectrum disorder (ASD). The limited nature of eCSF as a biosample restricts its research and has hindered our understanding of the eCSF's role in brain pathologies. Specifically, investigation of the small molecule composition of the eCSF is lacking, leaving this aspect of eCSF composition under-studied. We report here the eCSF metabolome as a resource for investigating developmental neuropathologies from a metabolic perspective. Our reference metabolome includes comprehensive MS1 and MS2 datasets and evaluates two mouse strains (CD-1 and C57Bl/6) and two developmental time points (E12.5 and E14.5). We illustrate the reference metabolome's utility by using untargeted metabolomics to identify eCSF-specific compositional changes following MIA. We uncover MIA-relevant metabolic pathways as differentially abundant in eCSF and validate changes in glucocorticoid and kynurenine pathways through targeted metabolomics. Our resource can guide future studies into the causes of MIA neuropathology and the impact of eCSF composition on brain development.
Collapse
Affiliation(s)
- Boryana Petrova
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA.
| | - Tiara E Lacey
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew J Culhane
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jin Cui
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Jeannette R Brook
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Aditya Misra
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
6
|
Martini T, Gobet C, Salati A, Blanc J, Mookhoek A, Reinehr M, Knott G, Sordet-Dessimoz J, Naef F. A sexually dimorphic hepatic cycle of periportal VLDL generation and subsequent pericentral VLDLR-mediated re-uptake. Nat Commun 2024; 15:8422. [PMID: 39341814 PMCID: PMC11438914 DOI: 10.1038/s41467-024-52751-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
Recent single-cell transcriptomes revealed spatiotemporal programmes of liver function on the sublobular scale. However, how sexual dimorphism affected this space-time logic remained poorly understood. We addressed this by performing scRNA-seq in the mouse liver, which revealed that sex, space and time together markedly influence xenobiotic detoxification and lipoprotein metabolism. The very low density lipoprotein receptor (VLDLR) exhibits a pericentral expression pattern, with significantly higher mRNA and protein levels in female mice. Conversely, VLDL assembly is periportally biased, suggesting a sexually dimorphic hepatic cycle of periportal formation and pericentral uptake of VLDL. In humans, VLDLR expression is also pericentral, with higher mRNA and protein levels in premenopausal women compared to similarly aged men. Individuals with low hepatic VLDLR expression show a high prevalence of atherosis in the coronary artery already at an early age and an increased incidence of heart attack.
Collapse
Affiliation(s)
- Tomaz Martini
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Cédric Gobet
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andrea Salati
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jérôme Blanc
- Bioelectron Microscopy Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Aart Mookhoek
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Michael Reinehr
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Graham Knott
- Bioelectron Microscopy Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jessica Sordet-Dessimoz
- Histology Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
7
|
Hildebrandt F, Iturritza MU, Zwicker C, Vanneste B, Van Hul N, Semle E, Quin J, Pascini T, Saarenpää S, He M, Andersson ER, Scott CL, Vega-Rodriguez J, Lundeberg J, Ankarklev J. Host-pathogen interactions in the Plasmodium-infected mouse liver at spatial and single-cell resolution. Nat Commun 2024; 15:7105. [PMID: 39160174 PMCID: PMC11333755 DOI: 10.1038/s41467-024-51418-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
Upon infecting its vertebrate host, the malaria parasite initially invades the liver where it undergoes massive replication, whilst remaining clinically silent. The coordination of host responses across the complex liver tissue during malaria infection remains unexplored. Here, we perform spatial transcriptomics in combination with single-nuclei RNA sequencing over multiple time points to delineate host-pathogen interactions across Plasmodium berghei-infected liver tissues. Our data reveals significant changes in spatial gene expression in the malaria-infected tissues. These include changes related to lipid metabolism in the proximity to sites of Plasmodium infection, distinct inflammation programs between lobular zones, and regions with enrichment of different inflammatory cells, which we term 'inflammatory hotspots'. We also observe significant upregulation of genes involved in inflammation in the control liver tissues of mice injected with mosquito salivary gland components. However, this response is considerably delayed compared to that observed in P. berghei-infected mice. Our study establishes a benchmark for investigating transcriptome changes during host-parasite interactions in tissues, it provides informative insights regarding in vivo study design linked to infection and offers a useful tool for the discovery and validation of de novo intervention strategies aimed at malaria liver stage infection.
Collapse
Affiliation(s)
- Franziska Hildebrandt
- Molecular Biosciences, the Wenner Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, SE-106 91, Stockholm, Sweden.
| | - Miren Urrutia Iturritza
- Molecular Biosciences, the Wenner Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, SE-106 91, Stockholm, Sweden
| | - Christian Zwicker
- Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
| | - Bavo Vanneste
- Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
| | - Noémi Van Hul
- Department of Cell and Molecular Biology, Karolinska Institutet Stockholm, SE-171 77, Solna, Sweden
| | - Elisa Semle
- Molecular Biosciences, the Wenner Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, SE-106 91, Stockholm, Sweden
| | - Jaclyn Quin
- Molecular Biosciences, the Wenner Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, SE-106 91, Stockholm, Sweden
| | - Tales Pascini
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Sami Saarenpää
- SciLifeLab, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23a, SE-171 65, Solna, Sweden
| | - Mengxiao He
- SciLifeLab, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23a, SE-171 65, Solna, Sweden
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet Stockholm, SE-171 77, Solna, Sweden
| | - Charlotte L Scott
- Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
| | - Joel Vega-Rodriguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Joakim Lundeberg
- SciLifeLab, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23a, SE-171 65, Solna, Sweden
| | - Johan Ankarklev
- Molecular Biosciences, the Wenner Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
8
|
Sonkar R, Ma H, Waxman DJ. Steatotic liver disease induced by TCPOBOP-activated hepatic constitutive androstane receptor: primary and secondary gene responses with links to disease progression. Toxicol Sci 2024; 200:324-345. [PMID: 38710495 DOI: 10.1093/toxsci/kfae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
Constitutive androstane receptor (CAR, Nr1i3), a liver nuclear receptor and xenobiotic sensor, induces drug, steroid, and lipid metabolizing enzymes, stimulates liver hypertrophy and hyperplasia, and ultimately, hepatocellular carcinogenesis. The mechanisms linking early CAR responses to later disease development are poorly understood. Here we show that exposure of CD-1 mice to TCPOBOP (1,4-bis[2-(3,5-dichloropyridyloxy)]benzene), a halogenated xenochemical and selective CAR agonist ligand, induces pericentral steatosis marked by hepatic accumulation of cholesterol and neutral lipid, and elevated circulating alanine aminotransferase, indicating hepatocyte damage. TCPOBOP-induced steatosis was weaker in the pericentral region but stronger in the periportal region in females compared with males. Early (1 day) TCPOBOP transcriptional responses were enriched for CAR-bound primary response genes, and for lipogenesis and xenobiotic metabolism and oxidative stress protection pathways; late (2 weeks) TCPOBOP responses included many CAR binding-independent secondary response genes, with enrichment for macrophage activation, immune response, and cytokine and reactive oxygen species production. Late upstream regulators specific to TCPOBOP-exposed male liver were linked to proinflammatory responses and hepatocellular carcinoma progression. TCPOBOP administered weekly to male mice using a high corn oil vehicle induced carbohydrate-responsive transcription factor (MLXIPL)-regulated target genes, dysregulated mitochondrial respiratory and translation regulatory pathways, and induced more advanced liver pathology. Overall, TCPOBOP exposure recapitulates histological and gene expression changes characteristic of emerging steatotic liver disease, including secondary gene responses in liver nonparenchymal cells indicative of transition to a more advanced disease state. Upstream regulators of both the early and late TCPOBOP response genes include novel biomarkers for foreign chemical-induced metabolic dysfunction-associated steatotic liver disease.
Collapse
Affiliation(s)
- Ravi Sonkar
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - Hong Ma
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
9
|
Zhu B, Yang Y, Wang X, Sun D, Yang X, Zhu X, Ding S, Xiao C, Zou Y, Yang X. Blocking H 1R signal aggravates atherosclerosis by promoting inflammation and foam cell formation. J Mol Med (Berl) 2024; 102:887-897. [PMID: 38733386 DOI: 10.1007/s00109-024-02453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 04/12/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory arterial disease, in which abnormal lipid metabolism and foam cell formation play key roles. Histamine is a vital biogenic amine catalyzed by histidine decarboxylase (HDC) from L-histidine. Histamine H1 receptor (H1R) antagonist is a commonly encountered anti-allergic agent in the clinic. However, the role and mechanism of H1R in atherosclerosis have not been fully elucidated. Here, we explored the effect of H1R on atherosclerosis using Apolipoprotein E-knockout (ApoE-/-) mice with astemizole (AST, a long-acting H1R antagonist) treatment. The results showed that AST increased atherosclerotic plaque area and hepatic lipid accumulation in mice. The result of microarray study identified a significant change of endothelial lipase (LIPG) in CD11b+ myeloid cells derived from HDC-knockout (HDC-/-) mice compared to WT mice. Blocking H1R promoted the formation of foam cells from bone marrow-derived macrophages (BMDMs) of mice by up-regulating p38 mitogen-activated protein kinase (p38 MAPK) and LIPG signaling pathway. Taken together, these findings demonstrate that blocking H1R signal aggravates atherosclerosis by promoting abnormal lipid metabolism and macrophage-derived foam cell formation via p38 MAPK-LIPG signaling pathway. KEY MESSAGES: Blocking H1R signal with AST aggravated atherosclerosis and increased hepatic lipid accumulation in high-fat diet (HFD)-fed ApoE-/- mice. Blocking H1R signal promoted macrophage-derived foam cell formation via p38 MAPK-LIPG signaling pathway.
Collapse
Affiliation(s)
- Baoling Zhu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shandong, 266071, China
| | - Yi Yang
- Department of Medical Laboratory, College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Xiangfei Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dili Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiyang Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaowei Zhu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University Shanghai, Shanghai, 200940, China
| | - Suling Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chun Xiao
- Department of Cardiology, Third People's Hospital of Huizhou, Guangdong, 516003, China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University Shanghai, Shanghai, 200940, China.
- Department of Cardiology, Third People's Hospital of Huizhou, Guangdong, 516003, China.
| |
Collapse
|
10
|
Huang S, Zhang W, Xuan S, Si H, Huang D, Ba M, Qi D, Pei X, Lu D, Li Z. Chronic sleep deprivation impairs retinal circadian transcriptome and visual function. Exp Eye Res 2024; 243:109907. [PMID: 38649019 DOI: 10.1016/j.exer.2024.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Sleep loss is common in modern society and is increasingly associated with eye diseases. However, the precise effects of sleep loss on retinal structure and function, particularly on the retinal circadian system, remain largely unexplored. This study investigates these effects using a chronic sleep deprivation (CSD) model in mice. Our investigation reveals that CSD significantly alters the retinal circadian transcriptome, leading to remarkable changes in the temporal patterns of enriched pathways. This perturbation extends to metabolic and immune-related transcriptomes, coupled with an accumulation of reactive oxygen species in the retina. Notably, CSD rhythmically affects the thickness of the ganglion cell complex, along with diurnal shifts in microglial migration and morphology within the retina. Most critically, we observe a marked decrease in both scotopic and photopic retinal function under CSD conditions. These findings underscore the broad impact of sleep deprivation on retinal health, highlighting its role in altering circadian gene expression, metabolism, immune response, and structural integrity. Our study provides new insights into the broader impact of sleep loss on retinal health.
Collapse
Affiliation(s)
- Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China; Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Wenxiao Zhang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shuting Xuan
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongli Si
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Duliurui Huang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Mengru Ba
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China; Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China.
| |
Collapse
|
11
|
Zhou Y, Zhao Y, Carbonaro M, Chen H, Germino M, Adler C, Ni M, Zhu YO, Kim SY, Altarejos J, Li Z, Burczynski ME, Glass DJ, Sleeman MW, Lee AH, Halasz G, Cheng X. Perturbed liver gene zonation in a mouse model of non-alcoholic steatohepatitis. Metabolism 2024; 154:155830. [PMID: 38428673 DOI: 10.1016/j.metabol.2024.155830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Liver zonation characterizes the separation of metabolic pathways along the lobules and is required for optimal hepatic function. Wnt signaling is a master regulator of spatial liver zonation. A perivenous-periportal Wnt activity gradient orchestrates metabolic zonation by activating gene expression in perivenous hepatocytes, while suppressing gene expression in their periportal counterparts. However, the understanding as to the liver gene zonation and zonation regulators in diseases is limited. Non-alcoholic steatohepatitis (NASH) is a chronic liver disease characterized by fat accumulation, inflammation, and fibrosis. Here, we investigated the perturbation of liver gene zonation in a mouse NASH model by combining spatial transcriptomics, bulk RNAseq and in situ hybridization. Wnt-target genes represented a major subset of genes showing altered spatial expression in the NASH liver. The altered Wnt-target gene expression levels and zonation spatial patterns were in line with the up regulation of Wnt regulators and the augmentation of Wnt signaling. Particularly, we found that the Wnt activator Rspo3 expression was restricted to the perivenous zone in control liver but expanded to the periportal zone in NASH liver. AAV8-mediated RSPO3 overexpression in controls resulted in zonation changes, and further amplified the disturbed zonation of Wnt-target genes in NASH, similarly Rspo3 knockdown in Rspo3+/- mice resulted in zonation changes of Wnt-target genes in both chow and HFD mouse. Interestingly, there were no impacts on steatosis, inflammation, or fibrosis NASH pathology from RSPO3 overexpression nor Rspo3 knockdown. In summary, our study demonstrated the alteration of Wnt signaling in a mouse NASH model, leading to perturbed liver zonation.
Collapse
Affiliation(s)
- Ye Zhou
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Yuanqi Zhao
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Marisa Carbonaro
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Helen Chen
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Mary Germino
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Christina Adler
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Min Ni
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Yuan O Zhu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Sun Y Kim
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Judith Altarejos
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Zhe Li
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | | | - David J Glass
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Mark W Sleeman
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Ann-Hwee Lee
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Gabor Halasz
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Xiping Cheng
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America.
| |
Collapse
|
12
|
Fujiwara N, Kimura G, Nakagawa H. Emerging Roles of Spatial Transcriptomics in Liver Research. Semin Liver Dis 2024; 44:115-132. [PMID: 38574750 DOI: 10.1055/a-2299-7880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Spatial transcriptomics, leveraging sequencing- and imaging-based techniques, has emerged as a groundbreaking technology for mapping gene expression within the complex architectures of tissues. This approach provides an in-depth understanding of cellular and molecular dynamics across various states of healthy and diseased livers. Through the integration of sophisticated bioinformatics strategies, it enables detailed exploration of cellular heterogeneity, transitions in cell states, and intricate cell-cell interactions with remarkable precision. In liver research, spatial transcriptomics has been particularly revelatory, identifying distinct zonated functions of hepatocytes that are crucial for understanding the metabolic and detoxification processes of the liver. Moreover, this technology has unveiled new insights into the pathogenesis of liver diseases, such as the role of lipid-associated macrophages in steatosis and endothelial cell signals in liver regeneration and repair. In the domain of liver cancer, spatial transcriptomics has proven instrumental in delineating intratumor heterogeneity, identifying supportive microenvironmental niches and revealing the complex interplay between tumor cells and the immune system as well as susceptibility to immune checkpoint inhibitors. In conclusion, spatial transcriptomics represents a significant advance in hepatology, promising to enhance our understanding and treatment of liver diseases.
Collapse
Affiliation(s)
- Naoto Fujiwara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Mie, Japan
| | - Genki Kimura
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Mie, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Mie, Japan
| |
Collapse
|
13
|
Santos AA, Delgado TC, Marques V, Ramirez-Moncayo C, Alonso C, Vidal-Puig A, Hall Z, Martínez-Chantar ML, Rodrigues CM. Spatial metabolomics and its application in the liver. Hepatology 2024; 79:1158-1179. [PMID: 36811413 PMCID: PMC11020039 DOI: 10.1097/hep.0000000000000341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 02/24/2023]
Abstract
Hepatocytes work in highly structured, repetitive hepatic lobules. Blood flow across the radial axis of the lobule generates oxygen, nutrient, and hormone gradients, which result in zoned spatial variability and functional diversity. This large heterogeneity suggests that hepatocytes in different lobule zones may have distinct gene expression profiles, metabolic features, regenerative capacity, and susceptibility to damage. Here, we describe the principles of liver zonation, introduce metabolomic approaches to study the spatial heterogeneity of the liver, and highlight the possibility of exploring the spatial metabolic profile, leading to a deeper understanding of the tissue metabolic organization. Spatial metabolomics can also reveal intercellular heterogeneity and its contribution to liver disease. These approaches facilitate the global characterization of liver metabolic function with high spatial resolution along physiological and pathological time scales. This review summarizes the state of the art for spatially resolved metabolomic analysis and the challenges that hinder the achievement of metabolome coverage at the single-cell level. We also discuss several major contributions to the understanding of liver spatial metabolism and conclude with our opinion on the future developments and applications of these exciting new technologies.
Collapse
Affiliation(s)
- André A. Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa C. Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Bizkaia, Spain
- Congenital Metabolic Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Carmen Ramirez-Moncayo
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | | | - Antonio Vidal-Puig
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Centro Investigation Principe Felipe, Valencia, Spain
| | - Zoe Hall
- Division of Systems Medicine, Imperial College London, London, UK
| | - María Luz Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Cecilia M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
14
|
Okada J, Landgraf A, Xiaoli AM, Liu L, Horton M, Schuster VL, Yang F, Sidoli S, Qiu Y, Kurland IJ, Eliscovich C, Shinoda K, Pessin JE. Spatial hepatocyte plasticity of gluconeogenesis during the metabolic transitions between fed, fasted and starvation states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591168. [PMID: 38746329 PMCID: PMC11092462 DOI: 10.1101/2024.04.29.591168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The liver acts as a master regulator of metabolic homeostasis in part by performing gluconeogenesis. This process is dysregulated in type 2 diabetes, leading to elevated hepatic glucose output. The parenchymal cells of the liver (hepatocytes) are heterogeneous, existing on an axis between the portal triad and the central vein, and perform distinct functions depending on location in the lobule. Here, using single cell analysis of hepatocytes across the liver lobule, we demonstrate that gluconeogenic gene expression ( Pck1 and G6pc ) is relatively low in the fed state and gradually increases first in the periportal hepatocytes during the initial fasting period. As the time of fasting progresses, pericentral hepatocyte gluconeogenic gene expression increases, and following entry into the starvation state, the pericentral hepatocytes show similar gluconeogenic gene expression to the periportal hepatocytes. Similarly, pyruvate-dependent gluconeogenic activity is approximately 10-fold higher in the periportal hepatocytes during the initial fasting state but only 1.5-fold higher in the starvation state. In parallel, starvation suppresses canonical beta-catenin signaling and modulates expression of pericentral and periportal glutamine synthetase and glutaminase, resulting in an enhanced pericentral glutamine-dependent gluconeogenesis. These findings demonstrate that hepatocyte gluconeogenic gene expression and gluconeogenic activity are highly spatially and temporally plastic across the liver lobule, underscoring the critical importance of using well-defined feeding and fasting conditions to define the basis of hepatic insulin resistance and glucose production.
Collapse
|
15
|
E Drigo RA, Habashy A, Acree C, Kim KY, Deerinck T, Patterson E, Lantier L, McGuinness O, Ellisman M. Mesoscale Metabolic Channeling Revealed by Multimodal Microscopy. RESEARCH SQUARE 2024:rs.3.rs-4096781. [PMID: 38699373 PMCID: PMC11065083 DOI: 10.21203/rs.3.rs-4096781/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Metabolic homeostasis within cells and tissues requires engagement of catabolic and anabolic pathways consuming nutrients needed to generate energy to drive these and other subcellular processes. However, the current understanding of cell homeostasis and metabolism, including how cells utilize nutrients, comes largely from tissue and cell models analyzed after fractionation. These bulk strategies do not reveal the spatial characteristics of cell metabolism at the single cell level, and how these aspects relate to the location of cells and organelles within the complexity of the tissue they reside within. Here we pioneer the use of high-resolution electron and stable isotope microscopy (MIMS-EM) to quantitatively map the fate of nutrient-derived 13C atoms at subcellular scale. When combined with machine-learning image segmentation, our approach allows us to establish the cellular and organellar spatial pattern of glucose 13C flux in hepatocytes in situ. We applied network analysis algorithms to chart the landscape of organelle-organelle contact networks and identified subpopulations of mitochondria and lipid droplets that have distinct organelle interactions and 13C enrichment levels. In addition, we revealed a new relationship between the initiation of glycogenesis and proximity of lipid droplets. Our results establish MIMS-EM as a new tool for tracking and quantifying nutrient metabolism at the subcellular scale, and to identify the spatial channeling of nutrient-derived atoms in the context of organelle-organelle interactions in situ.
Collapse
|
16
|
Scheidecker B, Poulain S, Sugimoto M, Arakawa H, Kim SH, Kawanishi T, Kato Y, Danoy M, Nishikawa M, Sakai Y. Mechanobiological stimulation in organ-on-a-chip systems reduces hepatic drug metabolic capacity in favor of regenerative specialization. Biotechnol Bioeng 2024; 121:1435-1452. [PMID: 38184801 DOI: 10.1002/bit.28653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024]
Abstract
Hepatic physiology depends on the liver's complex structural composition which among others, provides high oxygen supply rates, locally differential oxygen tension, endothelial paracrine signaling, as well as residual hemodynamic shear stress to resident hepatocytes. While functional improvements were shown by implementing these factors into hepatic culture systems, direct cause-effect relationships are often not well characterized-obfuscating their individual contribution in more complex microphysiological systems. By comparing increasingly complex hepatic in vitro culture systems that gradually implement these parameters, we investigate the influence of the cellular microenvironment to overall hepatic functionality in pharmacological applications. Here, hepatocytes were modulated in terms of oxygen tension and supplementation, endothelial coculture, and exposure to fluid shear stress delineated from oxygen influx. Results from transcriptomic and metabolomic evaluation indicate that particularly oxygen supply rates are critical to enhance cellular functionality-with cellular drug metabolism remaining comparable to physiological conditions after prolonged static culture. Endothelial signaling was found to be a major contributor to differential phenotype formation known as metabolic zonation, indicated by WNT pathway activity. Lastly, oxygen-delineated shear stress was identified to direct cellular fate towards increased hepatic plasticity and regenerative phenotypes at the cost of drug metabolic functionality - in line with regenerative effects observed in vivo. With these results, we provide a systematic evaluation of critical parameters and their impact in hepatic systems. Given their adherence to physiological effects in vivo, this highlights the importance of their implementation in biomimetic devices, such as organ-on-a-chip systems. Considering recent advances in basic liver biology, direct translation of physiological structures into in vitro models is a promising strategy to expand the capabilities of pharmacological models.
Collapse
Affiliation(s)
| | - Stéphane Poulain
- Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Hiroshi Arakawa
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Soo H Kim
- Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| | - Takumi Kawanishi
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yukio Kato
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Mathieu Danoy
- Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan
| | - Masaki Nishikawa
- Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Kang SWS, Cunningham RP, Miller CB, Brown LA, Cultraro CM, Harned A, Narayan K, Hernandez J, Jenkins LM, Lobanov A, Cam M, Porat-Shliom N. A spatial map of hepatic mitochondria uncovers functional heterogeneity shaped by nutrient-sensing signaling. Nat Commun 2024; 15:1799. [PMID: 38418824 PMCID: PMC10902380 DOI: 10.1038/s41467-024-45751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 02/04/2024] [Indexed: 03/02/2024] Open
Abstract
In the liver, mitochondria are exposed to different concentrations of nutrients due to their spatial positioning across the periportal and pericentral axis. How the mitochondria sense and integrate these signals to respond and maintain homeostasis is not known. Here, we combine intravital microscopy, spatial proteomics, and functional assessment to investigate mitochondrial heterogeneity in the context of liver zonation. We find that periportal and pericentral mitochondria are morphologically and functionally distinct; beta-oxidation is elevated in periportal regions, while lipid synthesis is predominant in the pericentral mitochondria. In addition, comparative phosphoproteomics reveals spatially distinct patterns of mitochondrial composition and potential regulation via phosphorylation. Acute pharmacological modulation of nutrient sensing through AMPK and mTOR shifts mitochondrial phenotypes in the periportal and pericentral regions, linking nutrient gradients across the lobule and mitochondrial heterogeneity. This study highlights the role of protein phosphorylation in mitochondrial structure, function, and overall homeostasis in hepatic metabolic zonation. These findings have important implications for liver physiology and disease.
Collapse
Affiliation(s)
- Sun Woo Sophie Kang
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Rory P Cunningham
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Colin B Miller
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lauryn A Brown
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Constance M Cultraro
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Adam Harned
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Research Technology Programs, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Research Technology Programs, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jonathan Hernandez
- Surgical Oncology Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource (CCBR) National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource (CCBR) National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Natalie Porat-Shliom
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
18
|
Porat-Shliom N. Compartmentalization, cooperation, and communication: The 3Cs of Hepatocyte zonation. Curr Opin Cell Biol 2024; 86:102292. [PMID: 38064779 PMCID: PMC10922296 DOI: 10.1016/j.ceb.2023.102292] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 02/15/2024]
Abstract
The unique architecture of the liver allows for spatial compartmentalization of its functions, also known as liver zonation. In contrast to organelles and cells, this compartment is devoid of a surrounding membrane, rendering traditional biochemical tools ineffective for studying liver zonation. Recent advancements in tissue imaging and single-cell technologies have provided new insights into the complexity of tissue organization, rich cellular composition, and the gradients that shape zonation. Hepatocyte gene expression profiles and metabolic programs differ based on their location. Non-parenchymal cells further support hepatocytes from different zones through local secretion of factors that instruct hepatocyte activities. Collectively, these elements form a cohesive and dynamic network of cell-cell interactions that vary across space, time, and disease states. This review will examine the cell biology of hepatocytes in vivo, presenting the latest discoveries and emerging principles that govern tissue-level and sub-cellular compartmentalization.
Collapse
Affiliation(s)
- Natalie Porat-Shliom
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
19
|
Piran Z, Nitzan M. SiFT: uncovering hidden biological processes by probabilistic filtering of single-cell data. Nat Commun 2024; 15:760. [PMID: 38278815 PMCID: PMC10817921 DOI: 10.1038/s41467-024-44757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/03/2024] [Indexed: 01/28/2024] Open
Abstract
Cellular populations simultaneously encode multiple biological attributes, including spatial configuration, temporal trajectories, and cell-cell interactions. Some of these signals may be overshadowed by others and harder to recover, despite the great progress made to computationally reconstruct biological processes from single-cell data. To address this, we present SiFT, a kernel-based projection method for filtering biological signals in single-cell data, thus uncovering underlying biological processes. SiFT applies to a wide range of tasks, from the removal of unwanted variation in the data to revealing hidden biological structures. We demonstrate how SiFT enhances the liver circadian signal by filtering spatial zonation, recovers regenerative cell subpopulations in spatially-resolved liver data, and exposes COVID-19 disease-related cells, pathways, and dynamics by filtering healthy reference signals. SiFT performs the correction at the gene expression level, can scale to large datasets, and compares favorably to state-of-the-art methods.
Collapse
Affiliation(s)
- Zoe Piran
- School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
| | - Mor Nitzan
- School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel.
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel.
- Faculty of Medicine, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
20
|
Bravo González-Blas C, Matetovici I, Hillen H, Taskiran II, Vandepoel R, Christiaens V, Sansores-García L, Verboven E, Hulselmans G, Poovathingal S, Demeulemeester J, Psatha N, Mauduit D, Halder G, Aerts S. Single-cell spatial multi-omics and deep learning dissect enhancer-driven gene regulatory networks in liver zonation. Nat Cell Biol 2024; 26:153-167. [PMID: 38182825 PMCID: PMC10791584 DOI: 10.1038/s41556-023-01316-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/15/2023] [Indexed: 01/07/2024]
Abstract
In the mammalian liver, hepatocytes exhibit diverse metabolic and functional profiles based on their location within the liver lobule. However, it is unclear whether this spatial variation, called zonation, is governed by a well-defined gene regulatory code. Here, using a combination of single-cell multiomics, spatial omics, massively parallel reporter assays and deep learning, we mapped enhancer-gene regulatory networks across mouse liver cell types. We found that zonation affects gene expression and chromatin accessibility in hepatocytes, among other cell types. These states are driven by the repressors TCF7L1 and TBX3, alongside other core hepatocyte transcription factors, such as HNF4A, CEBPA, FOXA1 and ONECUT1. To examine the architecture of the enhancers driving these cell states, we trained a hierarchical deep learning model called DeepLiver. Our study provides a multimodal understanding of the regulatory code underlying hepatocyte identity and their zonation state that can be used to engineer enhancers with specific activity levels and zonation patterns.
Collapse
Affiliation(s)
- Carmen Bravo González-Blas
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Irina Matetovici
- VIB Center for Brain & Disease Research, Leuven, Belgium
- VIB Center for AI and Computational Biology (VIB.AI), Leuven, Belgium
- VIB Tech Watch, VIB Headquarters, Ghent, Belgium
| | - Hanne Hillen
- VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ibrahim Ihsan Taskiran
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for AI and Computational Biology (VIB.AI), Leuven, Belgium
| | - Roel Vandepoel
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for AI and Computational Biology (VIB.AI), Leuven, Belgium
| | - Valerie Christiaens
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for AI and Computational Biology (VIB.AI), Leuven, Belgium
| | - Leticia Sansores-García
- VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Elisabeth Verboven
- VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Gert Hulselmans
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for AI and Computational Biology (VIB.AI), Leuven, Belgium
| | | | - Jonas Demeulemeester
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Nikoleta Psatha
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - David Mauduit
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for AI and Computational Biology (VIB.AI), Leuven, Belgium
| | - Georg Halder
- VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Stein Aerts
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- VIB Center for AI and Computational Biology (VIB.AI), Leuven, Belgium.
| |
Collapse
|
21
|
Petrova B, Lacey TE, Culhane AJ, Cui J, Raskin A, Misra A, Lehtinen MK, Kanarek N. Metabolomics of Mouse Embryonic CSF Following Maternal Immune Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570507. [PMID: 38105934 PMCID: PMC10723469 DOI: 10.1101/2023.12.06.570507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The cerebrospinal fluid (CSF) serves various roles in the developing central nervous system (CNS), from neurogenesis to lifelong cognitive functions. Changes in CSF composition due to inflammation can impact brain function. We recently identified an abnormal cytokine signature in embryonic CSF (eCSF) following maternal immune activation (MIA), a mouse model of autism spectrum disorder (ASD). We hypothesized that MIA leads to other alterations in eCSF composition and employed untargeted metabolomics to profile changes in the eCSF metabolome in mice after inducing MIA with polyI:C. We report these data here as a resource, include a comprehensive MS1 and MS2 reference dataset, and present additional datasets comparing two mouse strains (CD-1 and C57Bl/6) and two developmental time points (E12.5 and E14.5). Targeted metabolomics further validated changes upon MIA. We show a significant elevation of glucocorticoids and kynurenine pathway related metabolites. Both pathways are relevant for suppressing inflammation or could be informative as disease biomarkers. Our resource should inform future mechanistic studies regarding the etiology of MIA neuropathology and roles and contributions of eCSF metabolites to brain development.
Collapse
|
22
|
Karin J, Bornfeld Y, Nitzan M. scPrisma infers, filters and enhances topological signals in single-cell data using spectral template matching. Nat Biotechnol 2023; 41:1645-1654. [PMID: 36849830 PMCID: PMC10635821 DOI: 10.1038/s41587-023-01663-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 01/06/2023] [Indexed: 03/01/2023]
Abstract
Single-cell RNA sequencing has been instrumental in uncovering cellular spatiotemporal context. This task is challenging as cells simultaneously encode multiple, potentially cross-interfering, biological signals. Here we propose scPrisma, a spectral computational method that uses topological priors to decouple, enhance and filter different classes of biological processes in single-cell data, such as periodic and linear signals. We apply scPrisma to the analysis of the cell cycle in HeLa cells, circadian rhythm and spatial zonation in liver lobules, diurnal cycle in Chlamydomonas and circadian rhythm in the suprachiasmatic nucleus in the brain. scPrisma can be used to distinguish mixed cellular populations by specific characteristics such as cell type and uncover regulatory networks and cell-cell interactions specific to predefined biological signals, such as the circadian rhythm. We show scPrisma's flexibility in incorporating prior knowledge, inference of topologically informative genes and generalization to additional diverse templates and systems. scPrisma can be used as a stand-alone workflow for signal analysis and as a prior step for downstream single-cell analysis.
Collapse
Affiliation(s)
- Jonathan Karin
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yonathan Bornfeld
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mor Nitzan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
23
|
Sen A, Youssef S, Wendt K, Anakk S. Depletion of IQ motif-containing GTPase activating protein 2 (IQGAP2) reduces hepatic glycogen and impairs insulin signaling. J Biol Chem 2023; 299:105322. [PMID: 37805137 PMCID: PMC10652104 DOI: 10.1016/j.jbc.2023.105322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023] Open
Abstract
The liver is critical in maintaining metabolic homeostasis, regulating both anabolic and catabolic processes. Scaffold protein IQ motif-containing GTPase activating protein 2 (IQGAP2) is highly expressed in the liver and implicated in fatty acid uptake. However, its role in coordinating either fed or fasted responses is not well understood. Here we report that IQGAP2 is widely expressed in the liver that is pronounced in the pericentral region. Although control and IQGAP2 knockout mouse model showed comparable hepatic gene expression in the fasted state, we found significant defects in fed state responses. Glycogen levels were reduced in the periportal region when IQGAP2 was deleted. Consistently, we observed a decrease in phosphorylated glycogen synthase kinase 3α and total glycogen synthase protein in the fed IQGAP2 knockout mice which suggest inadequate glycogen synthesis. Moreover, immunoprecipitation of IQGAP2 revealed its interaction with GSK3 and GYS. Furthermore, our study demonstrated that knocking down IQGAP2 in vitro significantly decreased the phosphorylation of AKT and forkhead box O3 proteins downstream of insulin signaling. These findings suggest that IQGAP2 contributes to liver fed state metabolism by interacting with glycogen synthesis regulators and affecting the phosphorylation of insulin pathway components. Our results suggest that IQGAP2 plays a role in regulating fed state metabolism.
Collapse
Affiliation(s)
- Anushna Sen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sara Youssef
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Karen Wendt
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
24
|
Wesseler MF, Taebnia N, Harrison S, Youhanna S, Preiss LC, Kemas AM, Vegvari A, Mokry J, Sullivan GJ, Lauschke VM, Larsen NB. 3D microperfusion of mesoscale human microphysiological liver models improves functionality and recapitulates hepatic zonation. Acta Biomater 2023; 171:336-349. [PMID: 37734628 DOI: 10.1016/j.actbio.2023.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/26/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Hepatic in vitro models that accurately replicate phenotypes and functionality of the human liver are needed for applications in toxicology, pharmacology and biomedicine. Notably, it has become clear that liver function can only be sustained in 3D culture systems at physiologically relevant cell densities. Additionally, drug metabolism and drug-induced cellular toxicity often follow distinct spatial micropatterns of the metabolic zones in the liver acinus, calling for models that capture this zonation. We demonstrate the manufacture of accurate liver microphysiological systems (MPS) via engineering of 3D stereolithography printed hydrogel chips with arrays of diffusion open synthetic vasculature channels at spacings approaching in vivo capillary distances. Chip designs are compatible with seeding of cell suspensions or preformed liver cell spheroids. Importantly, primary human hepatocytes (PHH) and hiPSC-derived hepatocyte-like cells remain viable, exhibit improved molecular phenotypes compared to isogenic monolayer and static spheroid cultures and form interconnected tissue structures over the course of multiple weeks in perfused culture. 3D optical oxygen mapping of embedded sensor beads shows that the liver MPS recapitulates oxygen gradients found in the acini, which translates into zone-specific acet-ami-no-phen toxicity patterns. Zonation, here naturally generated by high cell densities and associated oxygen and nutrient utilization along the flow path, is also documented by spatial proteomics showing increased concentration of periportal- versus perivenous-associated proteins at the inlet region and vice versa at the outlet region. The presented microperfused liver MPS provides a promising platform for the mesoscale culture of human liver cells at phenotypically relevant densities and oxygen exposures. STATEMENT OF SIGNIFICANCE: A full 3D tissue culture platform is presented, enabled by massively parallel arrays of high-resolution 3D printed microperfusion hydrogel channels that functionally mimics tissue vasculature. The platform supports long-term culture of liver models with dimensions of several millimeters at physiologically relevant cell densities, which is difficult to achieve with other methods. Human liver models are generated from seeded primary human hepatocytes (PHHs) cultured for two weeks, and from seeded spheroids of hiPSC-derived human liver-like cells cultured for two months. Both model types show improved functionality over state-of-the-art 3D spheroid suspensions cultured in parallel. The platform can generate physiologically relevant oxygen gradients driven by consumption rather than supply, which was validated by visualization of embedded oxygen-sensitive microbeads, which is exploited to demonstrate zonation-specific toxicity in PHH liver models.
Collapse
Affiliation(s)
- Milan Finn Wesseler
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Nayere Taebnia
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Sean Harrison
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lena C Preiss
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Drug Metabolism and Pharmacokinetics (DMPK), the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Aurino M Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Akos Vegvari
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jaroslav Mokry
- Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University, Hradec, Králové, Czech Republic
| | - Gareth J Sullivan
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway.
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tübingen, Tübingen, Germany.
| | - Niels B Larsen
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, Kgs, Lyngby, Denmark.
| |
Collapse
|
25
|
Kang SWS, Cunningham RP, Miller CB, Brown LA, Cultraro CM, Harned A, Narayan K, Hernandez J, Jenkins LM, Lobanov A, Cam M, Porat-Shliom N. A spatial map of hepatic mitochondria uncovers functional heterogeneity shaped by nutrient-sensing signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.13.536717. [PMID: 37333328 PMCID: PMC10274915 DOI: 10.1101/2023.04.13.536717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
In the liver, mitochondria are exposed to different concentrations of nutrients due to their spatial positioning across the periportal (PP) and pericentral (PC) axis. How these mitochondria sense and integrate these signals to respond and maintain homeostasis is not known. Here, we combined intravital microscopy, spatial proteomics, and functional assessment to investigate mitochondrial heterogeneity in the context of liver zonation. We found that PP and PC mitochondria are morphologically and functionally distinct; beta-oxidation was elevated in PP regions, while lipid synthesis was predominant in the PC mitochondria. In addition, comparative phosphoproteomics revealed spatially distinct patterns of mitochondrial composition and potential regulation via phosphorylation. Acute pharmacological modulation of nutrient sensing through AMPK and mTOR shifted mitochondrial phenotypes in the PP and PC regions, linking nutrient gradients across the lobule and mitochondrial heterogeneity. This study highlights the role of protein phosphorylation in mitochondrial structure, function, and overall homeostasis in hepatic metabolic zonation. These findings have important implications for liver physiology and disease.
Collapse
Affiliation(s)
- Sun Woo Sophie Kang
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Rory P. Cunningham
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Colin B. Miller
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Lauryn A. Brown
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Constance M. Cultraro
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Adam Harned
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jonathan Hernandez
- Surgical Oncology Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Lisa M. Jenkins
- Laboratory of Cell Biology, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource (CCBR) National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource (CCBR) National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Natalie Porat-Shliom
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
26
|
Rosenberger FA, Thielert M, Strauss MT, Schweizer L, Ammar C, Mädler SC, Metousis A, Skowronek P, Wahle M, Madden K, Gote-Schniering J, Semenova A, Schiller HB, Rodriguez E, Nordmann TM, Mund A, Mann M. Spatial single-cell mass spectrometry defines zonation of the hepatocyte proteome. Nat Methods 2023; 20:1530-1536. [PMID: 37783884 PMCID: PMC10555842 DOI: 10.1038/s41592-023-02007-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/15/2023] [Indexed: 10/04/2023]
Abstract
Single-cell proteomics by mass spectrometry is emerging as a powerful and unbiased method for the characterization of biological heterogeneity. So far, it has been limited to cultured cells, whereas an expansion of the method to complex tissues would greatly enhance biological insights. Here we describe single-cell Deep Visual Proteomics (scDVP), a technology that integrates high-content imaging, laser microdissection and multiplexed mass spectrometry. scDVP resolves the context-dependent, spatial proteome of murine hepatocytes at a current depth of 1,700 proteins from a cell slice. Half of the proteome was differentially regulated in a spatial manner, with protein levels changing dramatically in proximity to the central vein. We applied machine learning to proteome classes and images, which subsequently inferred the spatial proteome from imaging data alone. scDVP is applicable to healthy and diseased tissues and complements other spatial proteomics and spatial omics technologies.
Collapse
Affiliation(s)
- Florian A Rosenberger
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Marvin Thielert
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maximilian T Strauss
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisa Schweizer
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Constantin Ammar
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sophia C Mädler
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andreas Metousis
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Patricia Skowronek
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maria Wahle
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Katherine Madden
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Janine Gote-Schniering
- Comprehensive Pneumology Center (CPC) / Institute of Lung Health and Immunity (LHI), Helmholtz Munich; Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Anna Semenova
- Comprehensive Pneumology Center (CPC) / Institute of Lung Health and Immunity (LHI), Helmholtz Munich; Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Herbert B Schiller
- Comprehensive Pneumology Center (CPC) / Institute of Lung Health and Immunity (LHI), Helmholtz Munich; Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Edwin Rodriguez
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Thierry M Nordmann
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andreas Mund
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Mann
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
27
|
Zhang J, Qiu Z, Zhang Y, Wang G, Hao H. Intracellular spatiotemporal metabolism in connection to target engagement. Adv Drug Deliv Rev 2023; 200:115024. [PMID: 37516411 DOI: 10.1016/j.addr.2023.115024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
The metabolism in eukaryotic cells is a highly ordered system involving various cellular compartments, which fluctuates based on physiological rhythms. Organelles, as the smallest independent sub-cell unit, are important contributors to cell metabolism and drug metabolism, collectively designated intracellular metabolism. However, disruption of intracellular spatiotemporal metabolism can lead to disease development and progression, as well as drug treatment interference. In this review, we systematically discuss spatiotemporal metabolism in cells and cell subpopulations. In particular, we focused on metabolism compartmentalization and physiological rhythms, including the variation and regulation of metabolic enzymes, metabolic pathways, and metabolites. Additionally, the intricate relationship among intracellular spatiotemporal metabolism, metabolism-related diseases, and drug therapy/toxicity has been discussed. Finally, approaches and strategies for intracellular spatiotemporal metabolism analysis and potential target identification are introduced, along with examples of potential new drug design based on this.
Collapse
Affiliation(s)
- Jingwei Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Zhixia Qiu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China; Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
28
|
Dai W, Wang Z, Wang G, Wang QA, DeBerardinis R, Jiang L. FASN deficiency induces a cytosol-to-mitochondria citrate flux to mitigate detachment-induced oxidative stress. Cell Rep 2023; 42:112971. [PMID: 37578864 PMCID: PMC10528718 DOI: 10.1016/j.celrep.2023.112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/03/2023] [Accepted: 07/28/2023] [Indexed: 08/16/2023] Open
Abstract
Fatty acid synthase (FASN) maintains de novo lipogenesis (DNL) to support rapid growth in most proliferating cancer cells. Lipogenic acetyl-coenzyme A (CoA) is primarily produced from carbohydrates but can arise from glutamine-dependent reductive carboxylation. Here, we show that reductive carboxylation also occurs in the absence of DNL. In FASN-deficient cells, reductive carboxylation is mainly catalyzed by isocitrate dehydrogenase-1 (IDH1), but IDH1-generated cytosolic citrate is not utilized for supplying DNL. Metabolic flux analysis (MFA) shows that FASN deficiency induces a net cytosol-to-mitochondria citrate flux through mitochondrial citrate transport protein (CTP). Previously, a similar pathway has been shown to mitigate detachment-induced oxidative stress in anchorage-independent tumor spheroids. We further report that tumor spheroids show reduced FASN activity and that FASN-deficient cells acquire resistance to oxidative stress in a CTP- and IDH1-dependent manner. Collectively, these data indicate that by inducing a cytosol-to-mitochondria citrate flux, anchorage-independent malignant cells can gain redox capacity by trading off FASN-supported rapid growth.
Collapse
Affiliation(s)
- Wenting Dai
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA, USA.
| | - Zhichao Wang
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Guan Wang
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Qiong A Wang
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA, USA; Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Ralph DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Jiang
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA, USA; Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
29
|
Chen F, Schönberger K, Tchorz JS. Distinct hepatocyte identities in liver homeostasis and regeneration. JHEP Rep 2023; 5:100779. [PMID: 37456678 PMCID: PMC10339260 DOI: 10.1016/j.jhepr.2023.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 07/18/2023] Open
Abstract
The process of metabolic liver zonation is spontaneously established by assigning distributed tasks to hepatocytes along the porto-central blood flow. Hepatocytes fulfil critical metabolic functions, while also maintaining hepatocyte mass by replication when needed. Recent technological advances have enabled us to fine-tune our understanding of hepatocyte identity during homeostasis and regeneration. Subsets of hepatocytes have been identified to be more regenerative and some have even been proposed to function like stem cells, challenging the long-standing view that all hepatocytes are similarly capable of regeneration. The latest data show that hepatocyte renewal during homeostasis and regeneration after liver injury is not limited to rare hepatocytes; however, hepatocytes are not exactly the same. Herein, we review the known differences that give individual hepatocytes distinct identities, recent findings demonstrating how these distinct identities correspond to differences in hepatocyte regenerative capacity, and how the plasticity of hepatocyte identity allows for division of labour among hepatocytes. We further discuss how these distinct hepatocyte identities may play a role during liver disease.
Collapse
Affiliation(s)
- Feng Chen
- Novartis Institutes for BioMedical Research, Cambridge, MA, United States
| | | | - Jan S. Tchorz
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
30
|
Abstract
Tumour cells migrate very early from primary sites to distant sites, and yet metastases often take years to manifest themselves clinically or never even surface within a patient's lifetime. This pause in cancer progression emphasizes the existence of barriers that constrain the growth of disseminated tumour cells (DTCs) at distant sites. Although the nature of these barriers to metastasis might include DTC-intrinsic traits, recent studies have established that the local microenvironment also controls the formation of metastases. In this Perspective, I discuss how site-specific differences of the immune system might be a major selective growth restraint on DTCs, and argue that harnessing tissue immunity will be essential for the next stage in immunotherapy development that reliably prevents the establishment of metastases.
Collapse
|
31
|
Zou J, Li J, Zhong X, Tang D, Fan X, Chen R. Liver in infections: a single-cell and spatial transcriptomics perspective. J Biomed Sci 2023; 30:53. [PMID: 37430371 PMCID: PMC10332047 DOI: 10.1186/s12929-023-00945-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
The liver is an immune organ that plays a vital role in the detection, capture, and clearance of pathogens and foreign antigens that invade the human body. During acute and chronic infections, the liver transforms from a tolerant to an active immune state. The defence mechanism of the liver mainly depends on a complicated network of intrahepatic and translocated immune cells and non-immune cells. Therefore, a comprehensive liver cell atlas in both healthy and diseased states is needed for new therapeutic target development and disease intervention improvement. With the development of high-throughput single-cell technology, we can now decipher heterogeneity, differentiation, and intercellular communication at the single-cell level in sophisticated organs and complicated diseases. In this concise review, we aimed to summarise the advancement of emerging high-throughput single-cell technologies and re-define our understanding of liver function towards infections, including hepatitis B virus, hepatitis C virus, Plasmodium, schistosomiasis, endotoxemia, and corona virus disease 2019 (COVID-19). We also unravel previously unknown pathogenic pathways and disease mechanisms for the development of new therapeutic targets. As high-throughput single-cell technologies mature, their integration into spatial transcriptomics, multiomics, and clinical data analysis will aid in patient stratification and in developing effective treatment plans for patients with or without liver injury due to infectious diseases.
Collapse
Affiliation(s)
- Ju Zou
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Li
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiao Zhong
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xuegong Fan
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
32
|
Sheng Y, Barak B, Nitzan M. Robust reconstruction of single-cell RNA-seq data with iterative gene weight updates. Bioinformatics 2023; 39:i423-i430. [PMID: 37387155 DOI: 10.1093/bioinformatics/btad253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
MOTIVATION Single-cell RNA-sequencing technologies have greatly enhanced our understanding of heterogeneous cell populations and underlying regulatory processes. However, structural (spatial or temporal) relations between cells are lost during cell dissociation. These relations are crucial for identifying associated biological processes. Many existing tissue-reconstruction algorithms use prior information about subsets of genes that are informative with respect to the structure or process to be reconstructed. When such information is not available, and in the general case when the input genes code for multiple processes, including being susceptible to noise, biological reconstruction is often computationally challenging. RESULTS We propose an algorithm that iteratively identifies manifold-informative genes using existing reconstruction algorithms for single-cell RNA-seq data as subroutine. We show that our algorithm improves the quality of tissue reconstruction for diverse synthetic and real scRNA-seq data, including data from the mammalian intestinal epithelium and liver lobules. AVAILABILITY AND IMPLEMENTATION The code and data for benchmarking are available at github.com/syq2012/iterative_weight_update_for_reconstruction.
Collapse
Affiliation(s)
- Yueqi Sheng
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, United States
| | - Boaz Barak
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, United States
| | - Mor Nitzan
- School of Computer Science and Engineering, Racah Institute of Physics, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
33
|
Kang HM, Lee JH. Spatial Single-Cell Technologies for Exploring Gastrointestinal Tissue Transcriptome. Compr Physiol 2023; 13:4709-4718. [PMID: 37358516 PMCID: PMC10386894 DOI: 10.1002/cphy.c210053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
In the gastrointestinal (GI) system, like in other organ systems, the histological structure is a key determinant of physiological function. Tissues form multiple layers in the GI tract to perform their specialized functions in secretion, absorption, and motility. Even at the single layer, the heterogeneous cell population performs a diverse range of digestive or regulatory functions. Although many details of such functions at the histological and cell biological levels were revealed by traditional methods such as cell sorting, isolation, and culture, as well as histological methods such as immunostaining and RNA in situ hybridization, recent advances in spatial single-cell technologies could further contribute to our understanding of the molecular makeup of GI histological structures by providing a genome-wide overview of how different genes are expressed across individual cells and tissue layers. The current minireview summarizes recent advances in the spatial transcriptomics field and discusses how such technologies can promote our understanding of GI physiology. © 2023 American Physiological Society. Compr Physiol 13:4709-4718, 2023.
Collapse
Affiliation(s)
- Hyun Min Kang
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
34
|
Tran M, Askary A, Elowitz MB. Lineage motifs: developmental modules for control of cell type proportions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543925. [PMID: 37333085 PMCID: PMC10274800 DOI: 10.1101/2023.06.06.543925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
In multicellular organisms, cell types must be produced and maintained in appropriate proportions. One way this is achieved is through committed progenitor cells that produce specific sets of descendant cell types. However, cell fate commitment is probabilistic in most contexts, making it difficult to infer progenitor states and understand how they establish overall cell type proportions. Here, we introduce Lineage Motif Analysis (LMA), a method that recursively identifies statistically overrepresented patterns of cell fates on lineage trees as potential signatures of committed progenitor states. Applying LMA to published datasets reveals spatial and temporal organization of cell fate commitment in zebrafish and rat retina and early mouse embryo development. Comparative analysis of vertebrate species suggests that lineage motifs facilitate adaptive evolutionary variation of retinal cell type proportions. LMA thus provides insight into complex developmental processes by decomposing them into simpler underlying modules.
Collapse
Affiliation(s)
- Martin Tran
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Amjad Askary
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael B. Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lead contact
| |
Collapse
|
35
|
Abu-Elala NM, Khattab MS, AbuBakr HO, Helmy S, Hesham A, Younis NA, Dawood MAO, El Basuini MF. Neem leaf powder (Azadirachta indica) mitigates oxidative stress and pathological alterations triggered by lead toxicity in Nile tilapia (Oreochromis niloticus). Sci Rep 2023; 13:9170. [PMID: 37280317 DOI: 10.1038/s41598-023-36121-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
This study investigated the clinical and pathological symptoms of waterborne lead toxicity in wild Nile tilapia collected from a lead-contaminated area (the Mariotteya Canal: Pb = 0.6 ± 0.21 mg L-1) and a farmed fish after 2 weeks of experimental exposure to lead acetate (5-10 mg L-1) in addition to evaluating the efficacy of neem leaf powder (NLP) treatment in mitigating symptoms of lead toxicity. A total of 150 fish (20 ± 2 g) were alienated into five groups (30 fish/group with three replicates). G1 was assigned as a negative control without any treatments. Groups (2-5) were exposed to lead acetate for 2 weeks at a concentration of 5 mg L-1 (G2 and G3) or 10 mg L-1 (G4 and G5). During the lead exposure period, all groups were reared under the same conditions, while G3 and G5 were treated with 1 g L-1 NLP. Lead toxicity induced DNA fragmentation and lipid peroxidation and decreased the level of glutathione and expression of heme synthesis enzyme delta aminolaevulinic acid dehydratase (ALA-D) in wild tilapia, G2, and G4. NLP could alleviate the oxidative stress stimulated by lead in G3 and showed an insignificant effect in G5. The pathological findings, including epithelial hyperplasia in the gills, edema in the gills and muscles, degeneration and necrosis in the liver and muscle, and leukocytic infiltration in all organs, were directly correlated with lead concentration. Thus, the aqueous application of NLP at 1 g L-1 reduced oxidative stress and lowered the pathological alterations induced by lead toxicity.
Collapse
Affiliation(s)
- Nermeen M Abu-Elala
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Faculty of Veterinary Medicine, King Salman International University, South Sinai, Egypt
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Huda O AbuBakr
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Samah Helmy
- Department of Immunology, Animal Health Research Institute, Dokki, Giza, Egypt
| | - Ahmed Hesham
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
- Middle East for Veterinary Vaccine (MEVAC), El-Salihya El-Gededa, 44671, El-Sharkia, Egypt
| | - Nehal A Younis
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, Cairo, 11835, Egypt
| | - Mohammed F El Basuini
- Faculty of Agriculture, Tanta University, Tanta, 31527, Egypt.
- Faculty of Desert Agriculture, King Salman International University, South Sinai, 46618, Egypt.
| |
Collapse
|
36
|
Hu KH, Kuhn NF, Courau T, Tsui J, Samad B, Ha P, Kratz JR, Combes AJ, Krummel MF. Transcriptional space-time mapping identifies concerted immune and stromal cell patterns and gene programs in wound healing and cancer. Cell Stem Cell 2023; 30:885-903.e10. [PMID: 37267918 PMCID: PMC10843988 DOI: 10.1016/j.stem.2023.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 03/13/2023] [Accepted: 05/02/2023] [Indexed: 06/04/2023]
Abstract
Tissue repair responses in metazoans are highly coordinated by different cell types over space and time. However, comprehensive single-cell-based characterization covering this coordination is lacking. Here, we captured transcriptional states of single cells over space and time during skin wound closure, revealing choreographed gene-expression profiles. We identified shared space-time patterns of cellular and gene program enrichment, which we call multicellular "movements" spanning multiple cell types. We validated some of the discovered space-time movements using large-volume imaging of cleared wounds and demonstrated the value of this analysis to predict "sender" and "receiver" gene programs in macrophages and fibroblasts. Finally, we tested the hypothesis that tumors are like "wounds that never heal" and found conserved wound healing movements in mouse melanoma and colorectal tumor models, as well as human tumor samples, revealing fundamental multicellular units of tissue biology for integrative studies.
Collapse
Affiliation(s)
- Kenneth H Hu
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Nicholas F Kuhn
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tristan Courau
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jessica Tsui
- ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Otolaryngology Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bushra Samad
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Patrick Ha
- Department of Otolaryngology Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Johannes R Kratz
- ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexis J Combes
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew F Krummel
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
37
|
Trinh VQH, Lee TF, Lemoinne S, Ray KC, Ybanez MD, Tsuchida T, Carter JK, Agudo J, Brown BD, Akat KM, Friedman SL, Lee YA. Hepatic stellate cells maintain liver homeostasis through paracrine neurotrophin-3 signaling that induces hepatocyte proliferation. Sci Signal 2023; 16:eadf6696. [PMID: 37253090 PMCID: PMC10367116 DOI: 10.1126/scisignal.adf6696] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 05/03/2023] [Indexed: 06/01/2023]
Abstract
Organ size is maintained by the controlled proliferation of distinct cell populations. In the mouse liver, hepatocytes in the midlobular zone that are positive for cyclin D1 (CCND1) repopulate the parenchyma at a constant rate to preserve liver mass. Here, we investigated how hepatocyte proliferation is supported by hepatic stellate cells (HSCs), pericytes that are in close proximity to hepatocytes. We used T cells to ablate nearly all HSCs in the murine liver, enabling the unbiased characterization of HSC functions. In the normal liver, complete loss of HSCs persisted for up to 10 weeks and caused a gradual reduction in liver mass and in the number of CCND1+ hepatocytes. We identified neurotrophin-3 (Ntf-3) as an HSC-produced factor that induced the proliferation of midlobular hepatocytes through the activation of tropomyosin receptor kinase B (TrkB). Treating HSC-depleted mice with Ntf-3 restored CCND1+ hepatocytes in the midlobular region and increased liver mass. These findings establish that HSCs form the mitogenic niche for midlobular hepatocytes and identify Ntf-3 as a hepatocyte growth factor.
Collapse
Affiliation(s)
| | - Ting-Fang Lee
- Department of Surgery, Vanderbilt University Medical Center; Nashville, TN, USA
| | - Sara Lemoinne
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - Kevin C. Ray
- Department of Surgery, Vanderbilt University Medical Center; Nashville, TN, USA
| | - Maria D. Ybanez
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - Takuma Tsuchida
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - James K. Carter
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - Judith Agudo
- Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School; Boston, MA, USA
| | - Brian D. Brown
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kemal M. Akat
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center; Nashville, TN, USA
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - Youngmin A. Lee
- Department of Surgery, Vanderbilt University Medical Center; Nashville, TN, USA
| |
Collapse
|
38
|
Guan D, Bae H, Zhou D, Chen Y, Jiang C, La CM, Xiao Y, Zhu K, Hu W, Trinh TM, Liu P, Xiong Y, Cai B, Jang C, Lazar MA. Hepatocyte SREBP signaling mediates clock communication within the liver. J Clin Invest 2023; 133:e163018. [PMID: 37066875 PMCID: PMC10104893 DOI: 10.1172/jci163018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/23/2023] [Indexed: 04/18/2023] Open
Abstract
Rhythmic intraorgan communication coordinates environmental signals and the cell-intrinsic clock to maintain organ homeostasis. Hepatocyte-specific KO of core components of the molecular clock Rev-erbα and -β (Reverb-hDKO) alters cholesterol and lipid metabolism in hepatocytes as well as rhythmic gene expression in nonparenchymal cells (NPCs) of the liver. Here, we report that in fatty liver caused by diet-induced obesity (DIO), hepatocyte SREBP cleavage-activating protein (SCAP) was required for Reverb-hDKO-induced diurnal rhythmic remodeling and epigenomic reprogramming in liver macrophages (LMs). Integrative analyses of isolated hepatocytes and LMs revealed that SCAP-dependent lipidomic changes in REV-ERB-depleted hepatocytes led to the enhancement of LM metabolic rhythms. Hepatocytic loss of REV-ERBα and β (REV-ERBs) also attenuated LM rhythms via SCAP-independent polypeptide secretion. These results shed light on the signaling mechanisms by which hepatocytes regulate diurnal rhythms in NPCs in fatty liver disease caused by DIO.
Collapse
Affiliation(s)
- Dongyin Guan
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Hosung Bae
- Department of Biological Chemistry, University of California Irvine, Irvine, California, USA
| | - Dishu Zhou
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Ying Chen
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Chunjie Jiang
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Cam Mong La
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yang Xiao
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kun Zhu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wenxiang Hu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Basic Research, Guangzhou Laboratory, Guangdong, China
| | - Trang Minh Trinh
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Panpan Liu
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Ying Xiong
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, California, USA
| | - Mitchell A. Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and
- Department of Genetics, the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
39
|
Escalante-Covarrubias Q, Mendoza-Viveros L, González-Suárez M, Sitten-Olea R, Velázquez-Villegas LA, Becerril-Pérez F, Pacheco-Bernal I, Carreño-Vázquez E, Mass-Sánchez P, Bustamante-Zepeda M, Orozco-Solís R, Aguilar-Arnal L. Time-of-day defines NAD + efficacy to treat diet-induced metabolic disease by synchronizing the hepatic clock in mice. Nat Commun 2023; 14:1685. [PMID: 36973248 PMCID: PMC10043291 DOI: 10.1038/s41467-023-37286-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
The circadian clock is an endogenous time-tracking system that anticipates daily environmental changes. Misalignment of the clock can cause obesity, which is accompanied by reduced levels of the clock-controlled, rhythmic metabolite NAD+. Increasing NAD+ is becoming a therapy for metabolic dysfunction; however, the impact of daily NAD+ fluctuations remains unknown. Here, we demonstrate that time-of-day determines the efficacy of NAD+ treatment for diet-induced metabolic disease in mice. Increasing NAD+ prior to the active phase in obese male mice ameliorated metabolic markers including body weight, glucose and insulin tolerance, hepatic inflammation and nutrient sensing pathways. However, raising NAD+ immediately before the rest phase selectively compromised these responses. Remarkably, timed NAD+ adjusted circadian oscillations of the liver clock until completely inverting its oscillatory phase when increased just before the rest period, resulting in misaligned molecular and behavioral rhythms in male and female mice. Our findings unveil the time-of-day dependence of NAD+-based therapies and support a chronobiology-based approach.
Collapse
Affiliation(s)
- Quetzalcoatl Escalante-Covarrubias
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Lucía Mendoza-Viveros
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Laboratorio de Cronobiología y Metabolismo, Instituto Nacional de Medicina Genómica, 14610, Mexico City, Mexico
| | - Mirna González-Suárez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Román Sitten-Olea
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Laura A Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080, Mexico City, Mexico
| | - Fernando Becerril-Pérez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Ignacio Pacheco-Bernal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Erick Carreño-Vázquez
- Laboratorio de Cronobiología y Metabolismo, Instituto Nacional de Medicina Genómica, 14610, Mexico City, Mexico
| | - Paola Mass-Sánchez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Marcia Bustamante-Zepeda
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Ricardo Orozco-Solís
- Laboratorio de Cronobiología y Metabolismo, Instituto Nacional de Medicina Genómica, 14610, Mexico City, Mexico
- Centro de Investigación sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados, 14330, Mexico City, Mexico
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
40
|
Dai W, Wang Z, Wang G, Wang QA, DeBerardinis R, Jiang L. FASN-deficiency induces a cytosol-to-mitochondria citrate flux to mitigate detachment-induced oxidative stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532533. [PMID: 36993662 PMCID: PMC10054959 DOI: 10.1101/2023.03.14.532533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Fatty acid synthase (FASN) maintains de novo lipogenesis (DNL) to support rapid growth in most proliferating cancer cells. Lipogenic acetyl-CoA is primarily produced from carbohydrates but can arise from glutamine-dependent reductive carboxylation under hypoxia. Here we show that reductive carboxylation also occurs in the absence of DNL in cells with defective FASN. In this state, reductive carboxylation was mainly catalyzed by isocitrate dehydrogenase-1 (IDH1) in the cytosol, but IDH1-generated citrate was not used for DNL. Metabolic flux analysis (MFA) revealed that FASN-deficiency induced a net cytosol-to-mitochondria citrate flux through citrate transport protein (CTP). A similar pathway was previously shown to mitigate detachment-induced mitochondrial reactive oxygen species (mtROS) in anchorage-independent tumor spheroids. We further demonstrate that FASN-deficient cells acquire resistance to oxidative stress in a CTP- and IDH1-dependent manner. Together with the reduced FASN activity in tumor spheroids, these data indicate that anchorage-independent malignant cells trade FASN-supported rapid growth for a cytosol-to-mitochondria citrate flux to gain redox capacity against detachment-induced oxidative stress.
Collapse
|
41
|
Costa R, Mangini C, Domenie ED, Zarantonello L, Montagnese S. Circadian rhythms and the liver. Liver Int 2023; 43:534-545. [PMID: 36577705 DOI: 10.1111/liv.15501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/29/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022]
Abstract
This narrative review briefly describes the mammalian circadian timing system, the specific features of the liver clock, also by comparison with other peripheral clocks, the role of the liver clock in the preparation of food intake, and its relationship with energy metabolism. It then goes on to provide a chronobiological perspective of the pathophysiology and management of several types of liver disease, with a particular focus on metabolic-associated fatty liver disease (MAFLD), decompensated cirrhosis and liver transplantation. Finally, it provides some insight into the potential contribution of circadian principles and circadian hygiene practices in preventing MAFLD, improving the prognosis of advanced liver disease and modulating liver transplantation outcomes.
Collapse
Affiliation(s)
- Rodolfo Costa
- Institute of Neuroscience, National Research Council (CNR), Padova, Italy.,Department of Biology, University of Padova, Padova, Italy.,Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Chiara Mangini
- Department of Medicine, University of Padova, Padova, Italy
| | | | | | - Sara Montagnese
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
42
|
Qiu L, Kong B, Kong T, Wang H. Recent advances in liver-on-chips: Design, fabrication, and applications. SMART MEDICINE 2023; 2:e20220010. [PMID: 39188562 PMCID: PMC11235950 DOI: 10.1002/smmd.20220010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/20/2022] [Indexed: 08/28/2024]
Abstract
The liver is a multifunctional organ and the metabolic center of the human body. Most drugs and toxins are metabolized in the liver, resulting in varying degrees of hepatotoxicity. The damage of liver will seriously affect human health, so it is very important to study the prevention and treatment of liver diseases. At present, there are many research studies in this field. However, most of them are based on animal models, which are limited by the time-consuming processes and species difference between human and animals. In recent years, liver-on-chips have emerged and developed rapidly and are expected to replace animal models. Liver-on-chips refer to the use of a small number of liver cells on the chips to simulate the liver microenvironment and ultrastructure in vivo. They hold extensive applications in multiple fields by reproducing the unique physiological functions of the liver in vitro. In this review, we first introduced the physiology and pathology of liver and then described the cell system of liver-on-chips, the chip-based liver models, and the applications of liver-on-chips in liver transplantation, drug screening, and metabolic evaluation. Finally, we discussed the currently encountered challenges and future trends in liver-on-chips.
Collapse
Affiliation(s)
- Linjie Qiu
- The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
- School of MedicineSun Yat‐Sen UniversityShenzhenChina
| | - Bin Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenChina
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenChina
| | - Huan Wang
- The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| |
Collapse
|
43
|
McCommis KS, Finck BN. The Hepatic Mitochondrial Pyruvate Carrier as a Regulator of Systemic Metabolism and a Therapeutic Target for Treating Metabolic Disease. Biomolecules 2023; 13:261. [PMID: 36830630 PMCID: PMC9953669 DOI: 10.3390/biom13020261] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
Pyruvate sits at an important metabolic crossroads of intermediary metabolism. As a product of glycolysis in the cytosol, it must be transported into the mitochondrial matrix for the energy stored in this nutrient to be fully harnessed to generate ATP or to become the building block of new biomolecules. Given the requirement for mitochondrial import, it is not surprising that the mitochondrial pyruvate carrier (MPC) has emerged as a target for therapeutic intervention in a variety of diseases characterized by altered mitochondrial and intermediary metabolism. In this review, we focus on the role of the MPC and related metabolic pathways in the liver in regulating hepatic and systemic energy metabolism and summarize the current state of targeting this pathway to treat diseases of the liver. Available evidence suggests that inhibiting the MPC in hepatocytes and other cells of the liver produces a variety of beneficial effects for treating type 2 diabetes and nonalcoholic steatohepatitis. We also highlight areas where our understanding is incomplete regarding the pleiotropic effects of MPC inhibition.
Collapse
Affiliation(s)
- Kyle S. McCommis
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Brian N. Finck
- Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
44
|
Zonated quantification of immunohistochemistry in normal and steatotic livers. Virchows Arch 2023:10.1007/s00428-023-03496-8. [PMID: 36702937 DOI: 10.1007/s00428-023-03496-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
Immunohistochemical stains (IHC) reveal differences between liver lobule zones in health and disease, including nonalcoholic fatty liver disease (NAFLD). However, such differences are difficult to accurately quantify. In NAFLD, the presence of lipid vacuoles from macrovesicular steatosis further hampers interpretation by pathologists. To resolve this, we applied a zonal image analysis method to measure the distribution of hypoxia markers in the liver lobule of steatotic livers.The hypoxia marker pimonidazole was assessed with IHC in the livers of male C57BL/6 J mice on standard diet or choline-deficient L-amino acid-defined high-fat diet mimicking NAFLD. Another hypoxia marker, carbonic anhydrase IX, was evaluated by IHC in human liver tissue. Liver lobules were reconstructed in whole slide images, and staining positivity was quantified in different zones in hundreds of liver lobules. This method was able to quantify the physiological oxygen gradient along hepatic sinusoids in normal livers and panlobular spread of the hypoxia in NAFLD and to overcome the pronounced impact of macrovesicular steatosis on IHC. In a proof-of-concept study with an assessment of the parenchyma between centrilobular veins in human liver biopsies, carbonic anhydrase IX could be quantified correctly as well.The method of zonated quantification of IHC objectively quantifies the difference in zonal distribution of hypoxia markers (used as an example) between normal and NAFLD livers both in whole liver as well as in liver biopsy specimens. It constitutes a tool for liver pathologists to support visual interpretation and estimate the impact of steatosis on IHC results.
Collapse
|
45
|
Martini T, Naef F, Tchorz JS. Spatiotemporal Metabolic Liver Zonation and Consequences on Pathophysiology. ANNUAL REVIEW OF PATHOLOGY 2023; 18:439-466. [PMID: 36693201 DOI: 10.1146/annurev-pathmechdis-031521-024831] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hepatocytes are the main workers in the hepatic factory, managing metabolism of nutrients and xenobiotics, production and recycling of proteins, and glucose and lipid homeostasis. Division of labor between hepatocytes is critical to coordinate complex complementary or opposing multistep processes, similar to distributed tasks at an assembly line. This so-called metabolic zonation has both spatial and temporal components. Spatial distribution of metabolic function in hepatocytes of different lobular zones is necessary to perform complex sequential multistep metabolic processes and to assign metabolic tasks to the right environment. Moreover, temporal control of metabolic processes is critical to align required metabolic processes to the feeding and fasting cycles. Disruption of this complex spatiotemporal hepatic organization impairs key metabolic processes with both local and systemic consequences. Many metabolic diseases, such as nonalcoholic steatohepatitis and diabetes, are associated with impaired metabolic liver zonation. Recent technological advances shed new light on the spatiotemporal gene expression networks controlling liver function and how their deregulation may be involved in a large variety of diseases. We summarize the current knowledge about spatiotemporal metabolic liver zonation and consequences on liver pathobiology.
Collapse
Affiliation(s)
- Tomaz Martini
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland;
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland;
| | - Jan S Tchorz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland;
| |
Collapse
|
46
|
Auerbach BJ, FitzGerald GA, Li M. Tempo: an unsupervised Bayesian algorithm for circadian phase inference in single-cell transcriptomics. Nat Commun 2022; 13:6580. [PMID: 36323668 PMCID: PMC9630322 DOI: 10.1038/s41467-022-34185-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
The circadian clock is a 24 h cellular timekeeping mechanism that regulates human physiology. Answering several fundamental questions in circadian biology will require joint measures of single-cell circadian phases and transcriptomes. However, no widespread experimental approaches exist for this purpose. While computational approaches exist to infer cell phase directly from single-cell RNA-sequencing data, existing methods yield poor circadian phase estimates, and do not quantify estimation uncertainty, which is essential for interpretation of results from very sparse single-cell RNA-sequencing data. To address these unmet needs, we introduce Tempo, a Bayesian variational inference approach that incorporates domain knowledge of the clock and quantifies phase estimation uncertainty. Through simulations and analyses of real data, we demonstrate that Tempo yields more accurate estimates of circadian phase than existing methods and provides well-calibrated uncertainty quantifications. Tempo will facilitate large-scale studies of single-cell circadian transcription.
Collapse
Affiliation(s)
- Benjamin J Auerbach
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
47
|
Afriat A, Zuzarte-Luís V, Bahar Halpern K, Buchauer L, Marques S, Chora ÂF, Lahree A, Amit I, Mota MM, Itzkovitz S. A spatiotemporally resolved single-cell atlas of the Plasmodium liver stage. Nature 2022; 611:563-569. [PMID: 36352220 DOI: 10.1038/s41586-022-05406-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/03/2022] [Indexed: 11/10/2022]
Abstract
Malaria infection involves an obligatory, yet clinically silent liver stage1,2. Hepatocytes operate in repeating units termed lobules, exhibiting heterogeneous gene expression patterns along the lobule axis3, but the effects of hepatocyte zonation on parasite development at the molecular level remain unknown. Here we combine single-cell RNA sequencing4 and single-molecule transcript imaging5 to characterize the host and parasite temporal expression programmes in a zonally controlled manner for the rodent malaria parasite Plasmodium berghei ANKA. We identify differences in parasite gene expression in distinct zones, including potentially co-adaptive programmes related to iron and fatty acid metabolism. We find that parasites develop more rapidly in the pericentral lobule zones and identify a subpopulation of periportally biased hepatocytes that harbour abortive infections, reduced levels of Plasmodium transcripts and parasitophorous vacuole breakdown. These 'abortive hepatocytes', which appear predominantly with high parasite inoculum, upregulate immune recruitment and key signalling programmes. Our study provides a resource for understanding the liver stage of Plasmodium infection at high spatial resolution and highlights the heterogeneous behaviour of both the parasite and the host hepatocyte.
Collapse
Affiliation(s)
- Amichay Afriat
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Vanessa Zuzarte-Luís
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Keren Bahar Halpern
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lisa Buchauer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sofia Marques
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Ângelo Ferreira Chora
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Aparajita Lahree
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Maria M Mota
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
48
|
Spatial transcriptome profiling of normal human liver. Sci Data 2022; 9:633. [PMID: 36261431 PMCID: PMC9581974 DOI: 10.1038/s41597-022-01676-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
The comprehensive study of the spatial-cellular anatomy of the human liver is critical to addressing the cellular origins of liver disease. Here we conducted spatial transcriptomics on normal human liver tissue sections, providing detailed information of liver zonation at the transcriptional level. We present 6581 high-quality spots from normal livers of two human donors. In this dataset, cells were mainly hepatocytes, and we classified them into four sub-groups. Collectively, these data provide a reliable reference for studies on spatial heterogeneity of liver lobules. Measurement(s) | mRNA Expression | Technology Type(s) | spatial transcriptomics | Sample Characteristic - Organism | Homo sapiens |
Collapse
|
49
|
Paris J, Henderson NC. Liver zonation, revisited. Hepatology 2022; 76:1219-1230. [PMID: 35175659 PMCID: PMC9790419 DOI: 10.1002/hep.32408] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/31/2022]
Abstract
The concept of hepatocyte functional zonation is well established, with differences in metabolism and xenobiotic processing determined by multiple factors including oxygen and nutrient levels across the hepatic lobule. However, recent advances in single-cell genomics technologies, including single-cell and nuclei RNA sequencing, and the rapidly evolving fields of spatial transcriptomic and proteomic profiling have greatly increased our understanding of liver zonation. Here we discuss how these transformative experimental strategies are being leveraged to dissect liver zonation at unprecedented resolution and how this new information should facilitate the emergence of novel precision medicine-based therapies for patients with liver disease.
Collapse
Affiliation(s)
- Jasmin Paris
- Centre for Inflammation ResearchThe Queen’s Medical Research InstituteEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| | - Neil C. Henderson
- Centre for Inflammation ResearchThe Queen’s Medical Research InstituteEdinburgh BioQuarterUniversity of EdinburghEdinburghUK,MRC Human Genetics UnitInstitute of Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
50
|
Stopka SA, van der Reest J, Abdelmoula WM, Ruiz DF, Joshi S, Ringel AE, Haigis MC, Agar NYR. Spatially resolved characterization of tissue metabolic compartments in fasted and high-fat diet livers. PLoS One 2022; 17:e0261803. [PMID: 36067168 PMCID: PMC9447892 DOI: 10.1371/journal.pone.0261803] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
Cells adapt their metabolism to physiological stimuli, and metabolic heterogeneity exists between cell types, within tissues, and subcellular compartments. The liver plays an essential role in maintaining whole-body metabolic homeostasis and is structurally defined by metabolic zones. These zones are well-understood on the transcriptomic level, but have not been comprehensively characterized on the metabolomic level. Mass spectrometry imaging (MSI) can be used to map hundreds of metabolites directly from a tissue section, offering an important advance to investigate metabolic heterogeneity in tissues compared to extraction-based metabolomics methods that analyze tissue metabolite profiles in bulk. We established a workflow for the preparation of tissue specimens for matrix-assisted laser desorption/ionization (MALDI) MSI that can be implemented to achieve broad coverage of central carbon, nucleotide, and lipid metabolism pathways. Herein, we used this approach to visualize the effect of nutrient stress and excess on liver metabolism. Our data revealed a highly organized metabolic tissue compartmentalization in livers, which becomes disrupted under high fat diet. Fasting caused changes in the abundance of several metabolites, including increased levels of fatty acids and TCA intermediates while fatty livers had higher levels of purine and pentose phosphate-related metabolites, which generate reducing equivalents to counteract oxidative stress. This spatially conserved approach allowed the visualization of liver metabolic compartmentalization at 30 μm pixel resolution and can be applied more broadly to yield new insights into metabolic heterogeneity in vivo.
Collapse
Affiliation(s)
- Sylwia A. Stopka
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United Statees of America
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United Statees of America
| | - Jiska van der Reest
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United Statees of America
- Department of Cell Biology, Blavatnik Institute, Ludwig Center, Harvard Medical School, Boston, MA, United Statees of America
| | - Walid M. Abdelmoula
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United Statees of America
| | - Daniela F. Ruiz
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United Statees of America
- Bouvé College of Health Sciences, Northeastern University, Boston, MA, United Statees of America
| | - Shakchhi Joshi
- Department of Cell Biology, Blavatnik Institute, Ludwig Center, Harvard Medical School, Boston, MA, United Statees of America
| | - Alison E. Ringel
- Department of Cell Biology, Blavatnik Institute, Ludwig Center, Harvard Medical School, Boston, MA, United Statees of America
| | - Marcia C. Haigis
- Department of Cell Biology, Blavatnik Institute, Ludwig Center, Harvard Medical School, Boston, MA, United Statees of America
- * E-mail: (MCH); (NYRA)
| | - Nathalie Y. R. Agar
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United Statees of America
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United Statees of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United Statees of America
- * E-mail: (MCH); (NYRA)
| |
Collapse
|