1
|
Liang L, Yang X, Yao S, Li X, Wang F. Identification of lactylation-associated fibroblast subclusters predicting prognosis and cancer immunotherapy response in colon cancer. Gene 2025; 940:149220. [PMID: 39765285 DOI: 10.1016/j.gene.2025.149220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Lactylation plays an important role in tumor progression. This study aimed to clarify the impact of lactylation on cancer-associated fibroblasts(CAFs). METHODS Single-cell and bulk RNA sequence data, along with survival information, were obtained from TCGA and GEO datasets. Significant lactylation-associated genes were acquired by differential analysis and used to construct a prognostic model via Cox and LASSO regression analyses. Next, single-cell analysis, enrichment and pathway analysis, pseudotemporal trajectory and survival analysis were used to identify significant lactylation-associated fibroblast subclusters in colon cancer. IMvigor210 and PRJEB23709 cohorts were applied to assess the response to immunotherapy. In vitro experiments were conducted to explore how lactylation affect fibroblasts. RESULTS We established a lactylation-associated prognostic model with 17 risk genes in TCGA and further validated it in GEO datasets. Single-cell analysis revealed the lactylation level of fibroblasts in colon cancer was greater than that in normal tissues. Moreover, five lactylation-associated fibroblast subclusters were identified via the NMF algorithm. Patients with lower scores of FB_2_CALD1, FB_3_TPM4 and FB_4_AHNAK subclusters had better clinical prognosis in colon cancer and were more likely to benefit from immunotherapy. Further experiments demonstrated that lactylation could enhance the proliferation, migration and invasion ability of fibroblasts and up-regulate the expression of COL1A1, which was similar to the effect of colon cancer cells. CONCLUSION This study identified key fibroblast subclusters with prognostic value and implied that lactylation might help transform fibroblasts into CAFs in colon cancer for the first time, which provides new paths for understanding the evolution of CAFs and cancer therapeutic strategies.
Collapse
Affiliation(s)
- Lunxi Liang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Changsha, China
| | - Xueer Yang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Changsha, China
| | - Shuoyi Yao
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Changsha, China
| | - Xinmeng Li
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Changsha, China
| | - Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Changsha, China.
| |
Collapse
|
2
|
Huang H, Han Y, Zhang Y, Zeng J, He X, Cheng J, Wang S, Xiong Y, Yin H, Yuan Q, Huang L, Xie Y, Meng J, Tao L, Peng Z. Deletion of Pyruvate Carboxylase in Tubular Epithelial Cell Promotes Renal Fibrosis by Regulating SQOR/cGAS/STING-Mediated Glycolysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2408753. [PMID: 39836535 DOI: 10.1002/advs.202408753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/31/2024] [Indexed: 01/23/2025]
Abstract
Renal fibrosis is a common pathway involved in the progression of various chronic kidney diseases to end-stage renal disease. Recent studies show that mitochondrial injury of renal tubular epithelial cells (RTECs) is a crucial pathological foundation for renal fibrosis. However, the underlying regulatory mechanisms remain unclear. Pyruvate carboxylase (PC) is a catalytic enzyme located within the mitochondria that is intricately linked with mitochondrial damage and metabolism. In the present study, the downregulation of PC in various fibrotic animal and human kidney samples is demonstrated. Renal proximal tubule-specific Pcx gene knockout mice (PcxcKO) has significant interstitial fibrosis compared to control mice, with heightened expression of extracellular matrix molecules. This is further demonstrated in a stable PC knock-out RTEC line. Mechanistically, PC deficiency reduces its interaction with sulfide:quinone oxidoreductase (SQOR), increasing the ubiquitination and degradation of SQOR. This leads to mitochondrial morphological and functional disruption, increased mtDNA release, activation of the cGAS-STING pathway, and elevated glycolysis levels, and ultimately, promotes renal fibrosis. This study investigates the molecular mechanisms through which PC deficiency induces mitochondrial injury and metabolic reprogramming in RTECs. This study provides a novel theoretical foundation and potential therapeutic targets for the pathogenesis and treatment of renal fibrosis.
Collapse
Affiliation(s)
- Hao Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Cell biology, School of Life Sciences, Central South University, Changsha, 410013, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, 410013, China
- FuRong Laboratory, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 410008, China
| | - Yuanyuan Han
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, 410013, China
- FuRong Laboratory, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 410008, China
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, 410008, China
| | - Yan Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, 410013, China
- FuRong Laboratory, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 410008, China
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, 410008, China
| | - Jianhua Zeng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, 410013, China
- FuRong Laboratory, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 410008, China
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, 410008, China
| | - Xin He
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, 410013, China
- FuRong Laboratory, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 410008, China
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, 410008, China
| | - Jiawei Cheng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, 410013, China
- FuRong Laboratory, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 410008, China
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, 410008, China
| | - Songkai Wang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, 410013, China
- FuRong Laboratory, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 410008, China
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, 410008, China
| | - Yiwei Xiong
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, 410013, China
- FuRong Laboratory, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 410008, China
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, 410008, China
| | - Hongling Yin
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 410008, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiongjing Yuan
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, 410013, China
- FuRong Laboratory, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 410008, China
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, 410008, China
| | - Ling Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, 410013, China
- FuRong Laboratory, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 410008, China
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, 410008, China
| | - Yanyun Xie
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, 410013, China
- FuRong Laboratory, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 410008, China
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, 410008, China
| | - Jie Meng
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, 410013, China
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, 410013, China
- FuRong Laboratory, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 410008, China
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, 410008, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, 410013, China
- FuRong Laboratory, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 410008, China
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, 410008, China
| |
Collapse
|
3
|
Zhan Z, Wang Y, Xie H, Yang M, Ruan M, Liu X, Liu J, Liu Z, Wen F, Hong X, Hu C. Hierarchically Porous Microgels with Interior Spiral Canals for High-Efficiency Delivery of Stem Cells in Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405648. [PMID: 39703097 DOI: 10.1002/smll.202405648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Chronic wound poses a serious risk to diabetic patients, primarily due to damaged skin microvasculature and prolonged inflammation at the wound site. Mesenchymal stem cell (MSC) therapy utilizing microgels as a cell delivery system has shown promise in promoting wound healing by enhancing cell viability and the secretion of bioactive factors. Retaining sufficient MSCs at injury sites is crucial for optimal therapeutic outcomes. However, inadequate hierarchical structure and limited use of the microgel's interior space significantly reduce cell proliferation and infiltration efficiency, thereby compromising the therapeutic effect. To address this, a microfluidic approach is developed for fabricating porous hierarchical interconnected microgels with interior spiral canals (PHIGels) by employing a fluidic "viscous instability" effect and gas formation reaction during the microfluidic synthesis. These MSC-laden PHIGel scaffolds facilitate rapid proliferation and infiltration into the interior spiral canals through a hierarchical pore network, significantly increasing the number of viable cells that can be carried by the microgels. It is proved that these microgel-based deliveries of MSCs promote re-epithelialization, collagen synthesis, angiogenesis, and reduction in inflammation, thus enhancing cutaneous wound repair in a rat model of type I diabetes. The microporosity and hierarchical design of these microgels offer novel routes for tissue regeneration and repair.
Collapse
Affiliation(s)
- Zhen Zhan
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuting Wang
- Shenzhen Children's Hospital of China Medical University, Shenzhen, 518038, China
| | - Hanhan Xie
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ming Yang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Muyang Ruan
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xuefei Liu
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jialing Liu
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zeyang Liu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Feiqiu Wen
- Shenzhen Children's Hospital of China Medical University, Shenzhen, 518038, China
| | - Xin Hong
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chengzhi Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
4
|
Altieri A, Visser GV, Buechler MB. Enter the Matrix: Fibroblast-immune cell interactions shape extracellular matrix deposition in health and disease. F1000Res 2024; 13:119. [PMID: 39886650 PMCID: PMC11781523 DOI: 10.12688/f1000research.143506.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 02/01/2025] Open
Abstract
Fibroblasts, non-hematopoietic cells of mesenchymal origin, are tissue architects which regulate the topography of tissues, dictate tissue resident cell types, and drive fibrotic disease. Fibroblasts regulate the composition of the extracellular matrix (ECM), a 3-dimensional network of macromolecules that comprise the acellular milieu of tissues. Fibroblasts can directly and indirectly regulate immune responses by secreting ECM and ECM-bound molecules to shape tissue structure and influence organ function. In this review, we will highlight recent studies which elucidate the mechanisms by which fibroblast-derived ECM factors (e.g., collagens, fibrillar proteins) regulate ECM architecture and subsequent immune responses, with a focus on macrophages. As examples of fibroblast-derived ECM proteins, we examine Collagen Triple Helix Repeat Containing 1 (CTHRC1) and Transforming Growth Factor-β-inducible protein (TGFBI), also known as BIGH3. We address the need for investigation into how diverse fibroblast populations coordinate immune responses by modulating ECM, including the fibroblast-ECM-immune axis and the precise molecular mediators and pathways which regulate these processes. Finally, we will outline how novel research identifying key regulators of ECM deposition is critical for therapeutic development for fibrotic diseases and cancer.
Collapse
|
5
|
Xu Y, Yang W, Qiu J, Zhou K, Yu G, Zhang Y, Wang X, Jiao Y, Wang X, Hu S, Zhang X, Li P, Lu Y, Chen R, Tao T, Yang Z, Xu Y, Xu C. Metabolic marker-assisted genomic prediction improves hybrid breeding. PLANT COMMUNICATIONS 2024:101199. [PMID: 39614617 DOI: 10.1016/j.xplc.2024.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Hybrid breeding is widely acknowledged as the most effective method for increasing crop yield, particularly in maize and rice. However, a major challenge in hybrid breeding is the selection of desirable combinations from the vast pool of potential crosses. Genomic selection (GS) has emerged as a powerful tool to tackle this challenge, but its success in practical breeding depends on prediction accuracy. Several strategies have been explored to enhance prediction accuracy for complex traits, such as the incorporation of functional markers and multi-omics data. Metabolome-wide association studies (MWAS) help to identify metabolites that are closely linked to phenotypes, known as metabolic markers. However, the use of preselected metabolic markers from parental lines to predict hybrid performance has not yet been explored. In this study, we developed a novel approach called metabolic marker-assisted genomic prediction (MM_GP), which incorporates significant metabolites identified from MWAS into GS models to improve the accuracy of genomic hybrid prediction. In maize and rice hybrid populations, MM_GP outperformed genomic prediction (GP) for all traits, regardless of the method used (genomic best linear unbiased prediction or eXtreme gradient boosting). On average, MM_GP demonstrated 4.6% and 13.6% higher predictive abilities than GP for maize and rice, respectively. MM_GP could also match or even surpass the predictive ability of M_GP (integrated genomic-metabolomic prediction) for most traits. In maize, the integration of only six metabolic markers significantly associated with multiple traits resulted in 5.0% and 3.1% higher average predictive ability compared with GP and M_GP, respectively. With advances in high-throughput metabolomics technologies and prediction models, this approach holds great promise for revolutionizing genomic hybrid breeding by enhancing its accuracy and efficiency.
Collapse
Affiliation(s)
- Yang Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Wenyan Yang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Kai Zhou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Guangning Yu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Yuxiang Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Xin Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Yuxin Jiao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Xinyi Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Shujun Hu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), Mexico D.F. 06600, Mexico
| | - Pengcheng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Yue Lu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Rujia Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Tianyun Tao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Zefeng Yang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Yunbi Xu
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China; BGI Bioverse, Shenzhen 518083, China; MolBreeding Biotechnology Co., Ltd., Shijiazhuang 050035, China.
| | - Chenwu Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
6
|
Liu X, Wu Y, Liu Y, Qian W, Huang L, Wu Y, Ke B. UPLC-MS/MS-based serum metabolomics analysis for comprehensive pathological myopia profiling. Exp Eye Res 2024; 251:110152. [PMID: 39603320 DOI: 10.1016/j.exer.2024.110152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Pathological myopia (PM) is associated with ocular morbidities that cause blindness. PM often occurs in eyes with high myopia (HM) while they are distinctly different. Identifying the differences in metabolites and metabolic pathways between patients with PM and HM may provide information about the pathogenesis of PM, which is currently unknown. This study aimed to reveal the comprehensive metabolic alterations associated with PM. Thirty patients with PM, 27 with simple HM and 27 with low myopia (LM) were enrolled in this study. Ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) was performed, and a Venn diagram was generated to explore the overlapping differential metabolites and enriched pathways between each set of two groups. The area under the receiver operating characteristic curve (AUC) was computed to assess the discrimination capacity of each metabolite marker. A total of 134, 125 and 81 differential metabolites were identified in each comparison. Thirty-two differential metabolites were overlapped between the PM vs HM comparison and the PM vs LM comparison. Of these 32 metabolites, 16 were common to all three comparisons; among these metabolites, high levels of 4-hydroxy-l-glutamic acid and low levels of succinic semialdehyde and 2,3-dinor-8-iso prostaglandin F2α appeared to be risk factors for PM. The remaining 16 metabolites were shared only between the PM versus HM and PM versus LM comparisons, most of which are lipid molecules. Pathway analysis revealed that alanine, aspartate and glutamate metabolism was the key metabolic pathway altered in PM patients. Overall, significant differences in the metabolites and metabolic pathways were observed in patients with PM. The metabolic differences identified in this study included differential factors between PM and HM patients, addressing current gaps in PM research. These findings provide a novel perspective of the molecular mechanism of PM.
Collapse
Affiliation(s)
- Xin Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yue Wu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yuying Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Wenzhe Qian
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Liandi Huang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yixiang Wu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Bilian Ke
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, China; Department of Ophthalmology, Shanghai Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Shanghai, 200127, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
| |
Collapse
|
7
|
Naba A. Mechanisms of assembly and remodelling of the extracellular matrix. Nat Rev Mol Cell Biol 2024; 25:865-885. [PMID: 39223427 DOI: 10.1038/s41580-024-00767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
The extracellular matrix (ECM) is the complex meshwork of proteins and glycans that forms the scaffold that surrounds and supports cells. It exerts key roles in all aspects of metazoan physiology, from conferring physical and mechanical properties on tissues and organs to modulating cellular processes such as proliferation, differentiation and migration. Understanding the mechanisms that orchestrate the assembly of the ECM scaffold is thus crucial to understand ECM functions in health and disease. This Review discusses novel insights into the compositional diversity of matrisome components and the mechanisms that lead to tissue-specific assemblies and architectures tailored to support specific functions. The Review then highlights recently discovered mechanisms, including post-translational modifications and metabolic pathways such as amino acid availability and the circadian clock, that modulate ECM secretion, assembly and remodelling in homeostasis and human diseases. Last, the Review explores the potential of 'matritherapies', that is, strategies to normalize ECM composition and architecture to achieve a therapeutic benefit.
Collapse
Affiliation(s)
- Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
8
|
Guillard J, Schwörer S. Metabolic control of collagen synthesis. Matrix Biol 2024; 133:43-56. [PMID: 39084474 PMCID: PMC11402592 DOI: 10.1016/j.matbio.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
The extracellular matrix (ECM) is present in all tissues and crucial in maintaining normal tissue homeostasis and function. Defects in ECM synthesis and remodeling can lead to various diseases, while overproduction of ECM components can cause severe conditions like organ fibrosis and influence cancer progression and therapy resistance. Collagens are the most abundant core ECM proteins in physiological and pathological conditions and are predominantly synthesized by fibroblasts. Previous efforts to target aberrant collagen synthesis in fibroblasts by inhibiting pro-fibrotic signaling cascades have been ineffective. More recently, metabolic rewiring downstream of pro-fibrotic signaling has emerged as a critical regulator of collagen synthesis in fibroblasts. Here, we propose that targeting the metabolic pathways involved in ECM biomass generation provides a novel avenue for treating conditions characterized by excessive collagen accumulation. This review summarizes the unique metabolic challenges collagen synthesis imposes on fibroblasts and discusses how underlying metabolic networks could be exploited to create therapeutic opportunities in cancer and fibrotic disease. Finally, we provide a perspective on open questions in the field and how conceptual and technical advances will help address them to unlock novel metabolic vulnerabilities of collagen synthesis in fibroblasts and beyond.
Collapse
Affiliation(s)
- Julien Guillard
- Section of Hematology/Oncology, Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Simon Schwörer
- Section of Hematology/Oncology, Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA; Committee on Cancer Biology, Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
9
|
Contento G, Wilson JAA, Selvarajah B, Platé M, Guillotin D, Morales V, Trevisani M, Pitozzi V, Bianchi K, Chambers RC. Pyruvate metabolism dictates fibroblast sensitivity to GLS1 inhibition during fibrogenesis. JCI Insight 2024; 9:e178453. [PMID: 39315548 PMCID: PMC11457851 DOI: 10.1172/jci.insight.178453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/07/2024] [Indexed: 09/25/2024] Open
Abstract
Fibrosis is a chronic disease characterized by excessive extracellular matrix production, which leads to disruption of organ function. Fibroblasts are key effector cells of this process, responding chiefly to the pleiotropic cytokine transforming growth factor-β1 (TGF-β1), which promotes fibroblast to myofibroblast differentiation. We found that extracellular nutrient availability profoundly influenced the TGF-β1 transcriptome of primary human lung fibroblasts and that biosynthesis of amino acids emerged as a top enriched TGF-β1 transcriptional module. We subsequently uncovered a key role for pyruvate in influencing glutaminase (GLS1) inhibition during TGF-β1-induced fibrogenesis. In pyruvate-replete conditions, GLS1 inhibition was ineffective in blocking TGF-β1-induced fibrogenesis, as pyruvate can be used as the substrate for glutamate and alanine production via glutamate dehydrogenase (GDH) and glutamic-pyruvic transaminase 2 (GPT2), respectively. We further show that dual targeting of either GPT2 or GDH in combination with GLS1 inhibition was required to fully block TGF-β1-induced collagen synthesis. These findings embolden a therapeutic strategy aimed at additional targeting of mitochondrial pyruvate metabolism in the presence of a glutaminolysis inhibitor to interfere with the pathological deposition of collagen in the setting of pulmonary fibrosis and potentially other fibrotic conditions.
Collapse
Affiliation(s)
- Greg Contento
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, United Kingdom
| | - Jo-Anne A.M. Wilson
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, United Kingdom
| | - Brintha Selvarajah
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, United Kingdom
| | - Manuela Platé
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, United Kingdom
| | - Delphine Guillotin
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, United Kingdom
| | - Valle Morales
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, United Kingdom
| | | | - Vanessa Pitozzi
- Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Katiuscia Bianchi
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, United Kingdom
| | - Rachel C. Chambers
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, United Kingdom
| |
Collapse
|
10
|
Long F, Zhong W, Zhao F, Xu Y, Hu X, Jia G, Huang L, Yi K, Wang N, Si H, Wang J, Wang B, Rong Y, Yuan Y, Yuan C, Wang F. DAB2 + macrophages support FAP + fibroblasts in shaping tumor barrier and inducing poor clinical outcomes in liver cancer. Theranostics 2024; 14:4822-4843. [PMID: 39239526 PMCID: PMC11373629 DOI: 10.7150/thno.99046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024] Open
Abstract
Background: Cancer-associated fibroblasts (CAFs) are the key components of the immune barrier in liver cancer. Therefore, gaining a deeper understanding of the heterogeneity and intercellular communication of CAFs holds utmost importance in boosting immunotherapy effectiveness and improving clinical outcomes. Methods: A comprehensive analysis by combing single-cell, bulk, and spatial transcriptome profiling with multiplexed immunofluorescence was conducted to unravel the complexities of CAFs in liver cancer. Results: Through an integrated approach involving 235 liver cancer scRNA-seq samples encompassing over 1.2 million cells, we found that CAFs were particularly increased in hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). FAP + fibroblasts were identified as the dominant subtype of CAFs, and which were mainly involved in extracellular matrix organization and angiogenesis. These CAFs were enriched in the tumor boundary of HCC, but diffusely scattered within ICC. The DAB2 + and SPP1 + tumor-associated macrophages (TAMs) reinforce the function of FAP + CAFs through signals such as TGF-β, PDGF, and ADM. Notably, the interaction between DAB2 + TAMs and FAP + CAFs promoted the formation of immune barrier and correlated with poorer patient survival, non-response to immunotherapy in HCC. High FAP and DAB2 immunohistochemical scores predicted shorter survival and higher serum AFP concentration in a local clinical cohort of 90 HCC patients. Furthermore, this communication pattern might be applicable to other solid malignancies as well. Conclusions: The interaction between DAB2 + TAMs and FAP + CAFs appears crucial in shaping the immune barrier. Strategies aimed at disrupting this communication or inhibiting the functions of FAP + CAFs could potentially enhance immunotherapy effectiveness and improve clinical outcomes.
Collapse
Affiliation(s)
- Fei Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Zhong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Faming Zhao
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yaqi Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xin Hu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gaihua Jia
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lanxiang Huang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kezhen Yi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Na Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huaqi Si
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Wang
- Department of Laboratory Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bicheng Wang
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Rong
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chunhui Yuan
- Department of Laboratory Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
11
|
Das C, Bhattacharya A, Adhikari S, Mondal A, Mondal P, Adhikary S, Roy S, Ramos K, Yadav KK, Tainer JA, Pandita TK. A prismatic view of the epigenetic-metabolic regulatory axis in breast cancer therapy resistance. Oncogene 2024; 43:1727-1741. [PMID: 38719949 PMCID: PMC11161412 DOI: 10.1038/s41388-024-03054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Epigenetic regulation established during development to maintain patterns of transcriptional expression and silencing for metabolism and other fundamental cell processes can be reprogrammed in cancer, providing a molecular mechanism for persistent alterations in phenotype. Metabolic deregulation and reprogramming are thus an emerging hallmark of cancer with opportunities for molecular classification as a critical preliminary step for precision therapeutic intervention. Yet, acquisition of therapy resistance against most conventional treatment regimens coupled with tumor relapse, continue to pose unsolved problems for precision healthcare, as exemplified in breast cancer where existing data informs both cancer genotype and phenotype. Furthermore, epigenetic reprograming of the metabolic milieu of cancer cells is among the most crucial determinants of therapeutic resistance and cancer relapse. Importantly, subtype-specific epigenetic-metabolic interplay profoundly affects malignant transformation, resistance to chemotherapy, and response to targeted therapies. In this review, we therefore prismatically dissect interconnected epigenetic and metabolic regulatory pathways and then integrate them into an observable cancer metabolism-therapy-resistance axis that may inform clinical intervention. Optimally coupling genome-wide analysis with an understanding of metabolic elements, epigenetic reprogramming, and their integration by metabolic profiling may decode missing molecular mechanisms at the level of individual tumors. The proposed approach of linking metabolic biochemistry back to genotype, epigenetics, and phenotype for specific tumors and their microenvironment may thus enable successful mechanistic targeting of epigenetic modifiers and oncometabolites despite tumor metabolic heterogeneity.
Collapse
Affiliation(s)
- Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India.
- Homi Bhabha National Institute, Mumbai, 400094, India.
| | - Apoorva Bhattacharya
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Swagata Adhikari
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Kenneth Ramos
- Center for Genomics and Precision Medicine, Texas A&M University, School of Medicine, Houston, TX, 77030, USA
| | - Kamlesh K Yadav
- Center for Genomics and Precision Medicine, Texas A&M University, School of Medicine, Houston, TX, 77030, USA
- School of Engineering Medicine, Texas A&M University, School of Medicine, Houston, TX, 77030, USA
| | - John A Tainer
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Tej K Pandita
- Center for Genomics and Precision Medicine, Texas A&M University, School of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Curvello R, Berndt N, Hauser S, Loessner D. Recreating metabolic interactions of the tumour microenvironment. Trends Endocrinol Metab 2024; 35:518-532. [PMID: 38212233 DOI: 10.1016/j.tem.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
Tumours are heterogeneous tissues containing diverse populations of cells and an abundant extracellular matrix (ECM). This tumour microenvironment prompts cancer cells to adapt their metabolism to survive and grow. Besides epigenetic factors, the metabolism of cancer cells is shaped by crosstalk with stromal cells and extracellular components. To date, most experimental models neglect the complexity of the tumour microenvironment and its relevance in regulating the dynamics of the metabolism in cancer. We discuss emerging strategies to model cellular and extracellular aspects of cancer metabolism. We highlight cancer models based on bioengineering, animal, and mathematical approaches to recreate cell-cell and cell-matrix interactions and patient-specific metabolism. Combining these approaches will improve our understanding of cancer metabolism and support the development of metabolism-targeting therapies.
Collapse
Affiliation(s)
- Rodrigo Curvello
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Melbourne, Victoria, Australia
| | - Nikolaus Berndt
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany; Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Daniela Loessner
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Melbourne, Victoria, Australia; Leibniz Institute of Polymer Research Dresden e.V., Max Bergmann Center of Biomaterials, Dresden, Germany; Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
13
|
Vendramini-Costa DB, Francescone R, Franco-Barraza J, Luong T, Graves M, de Aquino AM, Steele N, Gardiner JC, Dos Santos SAA, Ogier C, Malloy E, Borghaei L, Martinez E, Zhigarev DI, Tan Y, Lee H, Zhou Y, Cai KQ, Klein-Szanto AJ, Wang H, Andrake M, Dunbrack RL, Campbell K, Cukierman E. Netrin G1 Ligand is a new stromal immunomodulator that promotes pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594354. [PMID: 38798370 PMCID: PMC11118300 DOI: 10.1101/2024.05.15.594354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Understanding pancreatic cancer biology is fundamental for identifying new targets and for developing more effective therapies. In particular, the contribution of the stromal microenvironment to pancreatic cancer tumorigenesis requires further exploration. Here, we report the stromal roles of the synaptic protein Netrin G1 Ligand (NGL-1) in pancreatic cancer, uncovering its pro-tumor functions in cancer-associated fibroblasts and in immune cells. We observed that the stromal expression of NGL-1 inversely correlated with patients' overall survival. Moreover, germline knockout (KO) mice for NGL-1 presented decreased tumor burden, with a microenvironment that is less supportive of tumor growth. Of note, tumors from NGL-1 KO mice produced less immunosuppressive cytokines and displayed an increased percentage of CD8 + T cells than those from control mice, while preserving the physical structure of the tumor microenvironment. These effects were shown to be mediated by NGL-1 in both immune cells and in the local stroma, in a TGF-β-dependent manner. While myeloid cells lacking NGL-1 decreased the production of immunosuppressive cytokines, NGL-1 KO T cells showed increased proliferation rates and overall polyfunctionality compared to control T cells. CAFs lacking NGL-1 were less immunosuppressive than controls, with overall decreased production of pro-tumor cytokines and compromised ability to inhibit CD8 + T cells activation. Mechanistically, these CAFs downregulated components of the TGF-β pathway, AP-1 and NFAT transcription factor families, resulting in a less tumor-supportive phenotype. Finally, targeting NGL-1 genetically or using a functionally antagonistic small peptide phenocopied the effects of chemotherapy, while modulating the immunosuppressive tumor microenvironment (TME), rather than eliminating it. We propose NGL-1 as a new local stroma and immunomodulatory molecule, with pro-tumor roles in pancreatic cancer. Statement of Significance Here we uncovered the pro-tumor roles of the synaptic protein NGL-1 in the tumor microenvironment of pancreatic cancer, defining a new target that simultaneously modulates tumor cell, fibroblast, and immune cell functions. This study reports a new pathway where NGL-1 controls TGF-β, AP-1 transcription factor members and NFAT1, modulating the immunosuppressive microenvironment in pancreatic cancer. Our findings highlight NGL-1 as a new stromal immunomodulator in pancreatic cancer.
Collapse
|
14
|
Wu X, Fan Y, Wang K, Miao Y, Chang Y, Ming J, Wang X, Lu S, Liu R, Zhang F, Zhang Y, Qin H, Shi J. NIR-II imaging-guided precise photodynamic therapy for augmenting tumor-starvation therapy by glucose metabolism reprogramming interference. Sci Bull (Beijing) 2024; 69:1263-1274. [PMID: 38418300 DOI: 10.1016/j.scib.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/31/2023] [Accepted: 02/02/2024] [Indexed: 03/01/2024]
Abstract
Metabolic reprogramming is a mechanism by which cancer cells alter their metabolic patterns to promote cell proliferation and growth, thereby enabling their resistance to external stress. 2-Deoxy-D-glucose (2DG) can eliminate their energy source by inhibiting glucose glycolysis, leading to cancer cell death through starvation. However, a compensatory increase in mitochondrial metabolism inhibits its efficacy. Herein, we propose a synergistic approach that combines photodynamic therapy (PDT) with starvation therapy to address this challenge. To monitor the nanodrugs and determine the optimal triggering time for precise tumor therapy, a multifunctional nano-platform comprising lanthanide-doped nanoparticle (LnNP) cores was constructed and combined with mesoporous silicon shells loaded with 2DG and photosensitizer chlorin e6 (Ce6) in the mesopore channels. Under 980 nm near-infrared light excitation, the downshifted 1550 nm fluorescence signal in the second near-infrared (NIR-II, 1000-1700 nm) window from the LnNPs was used to monitor the accumulation of nanomaterials in tumors. Furthermore, upconverted 650 nm light excited the Ce6 to generate singlet oxygen for PDT, which damaged mitochondrial function and enhanced the efficacy of 2DG by inhibiting hexokinase 2 and lactate dehydrogenase A expressions. As a result, glucose metabolism reprogramming was inhibited and the efficiency of starvation therapy was significantly enhanced. Overall, the proposed NIR-II bioimaging-guided PDT-augmented starvation therapy, which simultaneously inhibited glycolysis and mitochondria, facilitated the effects of a cancer theranostic system.
Collapse
Affiliation(s)
- Xiawei Wu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yong Fan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai 200433, China
| | - Kairuo Wang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yunqiu Miao
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yongliang Chang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jiang Ming
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai 200433, China
| | - Xinyue Wang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Shengwei Lu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Ruichi Liu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Fan Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai 200433, China
| | - Yang Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| | - Huanlong Qin
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
15
|
Kimmelman AC, Sherman MH. The Role of Stroma in Cancer Metabolism. Cold Spring Harb Perspect Med 2024; 14:a041540. [PMID: 37696660 PMCID: PMC10925555 DOI: 10.1101/cshperspect.a041540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The altered metabolism of tumor cells is a well-known hallmark of cancer and is driven by multiple factors such as mutations in oncogenes and tumor suppressor genes, the origin of the tissue where the tumor arises, and the microenvironment of the tumor. These metabolic changes support the growth of cancer cells by providing energy and the necessary building blocks to sustain proliferation. Targeting these metabolic alterations therapeutically is a potential strategy to treat cancer, but it is challenging due to the metabolic plasticity of tumors. Cancer cells have developed ways to scavenge nutrients through autophagy and macropinocytosis and can also form metabolic networks with stromal cells in the tumor microenvironment. Understanding the role of the tumor microenvironment in tumor metabolism is crucial for effective therapeutic targeting. This review will discuss tumor metabolism and the contribution of the stroma in supporting tumor growth through metabolic interactions.
Collapse
Affiliation(s)
- Alec C Kimmelman
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, New York 10016, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - Mara H Sherman
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
16
|
Risbud M, Madhu V, Hernandez-Meadows M, Coleman A, Sao K, Inguito K, Haslam O, Boneski P, Sesaki H, Collins J. The loss of OPA1 accelerates intervertebral disc degeneration and osteoarthritis in aged mice. RESEARCH SQUARE 2024:rs.3.rs-3950044. [PMID: 38464287 PMCID: PMC10925423 DOI: 10.21203/rs.3.rs-3950044/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
NP cells of the intervertebral disc and articular chondrocytes reside in avascular and hypoxic tissue niches. As a consequence of these environmental constraints the cells are primarily glycolytic in nature and were long thought to have a minimal reliance on mitochondrial function. Recent studies have challenged this long-held view and highlighted the increasingly important role of mitochondria in the physiology of these tissues. However, the foundational understanding of mechanisms governing mitochondrial dynamics and function in these tissues is lacking. We investigated the role of mitochondrial fusion protein OPA1 in maintaining the spine and knee joint health in mice. OPA1 knockdown in NP cells altered mitochondrial size and cristae shape and increased the oxygen consumption rate without affecting ATP synthesis. OPA1 governed the morphology of multiple organelles, including peroxisomes, early endosomes and cis-Golgi and its loss resulted in the dysregulation of NP cell autophagy. Metabolic profiling and 13C-flux analyses revealed TCA cycle anaplerosis and altered metabolism in OPA1-deficient NP cells. Noteworthy, Opa1AcanCreERT2 mice with Opa1 deletion in disc and cartilage showed age-dependent disc degeneration, osteoarthritis, and vertebral osteopenia. Our findings underscore that OPA1 regulation of mitochondrial dynamics and multi-organelle interactions is critical in preserving metabolic homeostasis of disc and cartilage.
Collapse
|
17
|
Liu Z, Zhang Z, Zhang Y, Zhou W, Zhang X, Peng C, Ji T, Zou X, Zhang Z, Ren Z. Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma. Int J Oral Sci 2024; 16:9. [PMID: 38287007 PMCID: PMC10824761 DOI: 10.1038/s41368-023-00267-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/31/2024] Open
Abstract
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment. Oral squamous cell carcinoma (OSCC), a representative hypoxic tumor, has a heterogeneous internal metabolic environment. To clarify the relationship between different metabolic regions and the tumor immune microenvironment (TME) in OSCC, Single cell (SC) and spatial transcriptomics (ST) sequencing of OSCC tissues were performed. The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data. The metabolic activity of each spot was calculated using scMetabolism, and k-means clustering was used to classify all spots into hyper-, normal-, or hypometabolic regions. CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others. Through CellPhoneDB and NicheNet cell-cell communication analysis, it was found that in the hypermetabolic region, fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts (iCAFs), and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12. The secretion of CXCL12 recruits regulatory T cells (Tregs), leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment. This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC, ST and TCGA bulk data, and highlights potential targets for therapy.
Collapse
Affiliation(s)
- Zheqi Liu
- Department of Oral and Maxillofacial - Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral and Maxillofacial Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhen Zhang
- Department of Oral and Maxillofacial - Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yu Zhang
- Department of Oral and Maxillofacial - Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wenkai Zhou
- Department of Oral and Maxillofacial - Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xu Zhang
- Department of Oral and Maxillofacial - Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Canbang Peng
- School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| | - Tong Ji
- Department of Oral and Maxillofacial Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Zou
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Pathology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial - Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
- Hainan Western Central Hospital, Academician Zhang Zhiyuan Team Innovation Center, Danzhou, China.
| | - Zhenhu Ren
- Department of Oral and Maxillofacial - Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
- Hainan Western Central Hospital, Academician Zhang Zhiyuan Team Innovation Center, Danzhou, China.
| |
Collapse
|
18
|
Madhu V, Hernandaz-Meadows M, Coleman A, Sao K, Inguito K, Haslam O, Boneski PK, Sesaki H, Collins JA, Risbud MV. OPA1 protects intervertebral disc and knee joint health in aged mice by maintaining the structure and metabolic functions of mitochondria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576115. [PMID: 38293153 PMCID: PMC10827164 DOI: 10.1101/2024.01.17.576115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Due to their glycolytic nature and limited vascularity, nucleus pulposus (NP) cells of the intervertebral disc and articular chondrocytes were long thought to have minimal reliance on mitochondrial function. Recent studies have challenged this long-held view and highlighted the increasingly important role of mitochondria in the physiology of these tissues. We investigated the role of mitochondrial fusion protein OPA1 in maintaining the spine and knee joint health in aging mice. OPA1 knockdown in NP cells altered mitochondrial size and cristae shape and increased the oxygen consumption rate without affecting ATP synthesis. OPA1 governed the morphology of multiple organelles, and its loss resulted in the dysregulation of NP cell autophagy. Metabolic profiling and 13 C-flux analyses revealed TCA cycle anaplerosis and altered metabolism in OPA1-deficient NP cells. Noteworthy, Opa1 AcanCreERT2 mice showed age- dependent disc, and cartilage degeneration and vertebral osteopenia. Our findings suggest that OPA1 regulation of mitochondrial dynamics and multi-organelle interactions is critical in preserving metabolic homeostasis of disc and cartilage. Teaser OPA1 is necessary for the maintenance of intervertebral disc and knee joint health in aging mice.
Collapse
|
19
|
Oliveres H, Cascante M, Maurel J. Metabolic interventions to enhance immunotherapy and targeted therapy efficacy in advanced colorectal cancer. Curr Opin Chem Biol 2023; 77:102401. [PMID: 37806262 DOI: 10.1016/j.cbpa.2023.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/25/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023]
Abstract
Current standard-of-care for metastatic colorectal cancer patients includes chemotherapy and anti-angiogenic or anti-epidermal growth factor receptor for microsatellite stable tumors and pembrolizumab for microsatellite instable tumors. However, despite the available therapies, the prognosis remains poor. In recent years, new drugs combined with immune checkpoint inhibitors have been tested in microsatellite stable metastatic colorectal cancer patients, but the benefit was modest. Here, we review the metabolic interactions between the immune microenvironment and cancer cells. More specifically, we highlight potential correlatives of tumor immune and metabolic features with transcriptomic classifications such as the Consensus Molecular Subtype. Finally, we discuss the unmet need of immune-metabolic signatures and the value of a new signature (IMMETCOLS) for guiding new strategies in metastatic colorectal cancer. We conclude that the field is ready to propose customized strategies for modifying metabolism and improving immunotherapy and targeted therapy efficacy.
Collapse
Affiliation(s)
- Helena Oliveres
- Medical Oncology Department, Hospital Clinic of Barcelona, Translational Genomics and Targeted Therapeutics in Solid Tumors Group, IDIBAPS, Barcelona, Spain
| | - Marta Cascante
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Universitat de Barcelona, Barcelona, Spain.
| | - Joan Maurel
- Medical Oncology Department, Hospital Clinic of Barcelona, Translational Genomics and Targeted Therapeutics in Solid Tumors Group, IDIBAPS, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
20
|
Bantug GR, Hess C. The immunometabolic ecosystem in cancer. Nat Immunol 2023; 24:2008-2020. [PMID: 38012409 DOI: 10.1038/s41590-023-01675-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/03/2023] [Indexed: 11/29/2023]
Abstract
Our increased understanding of how key metabolic pathways are activated and regulated in malignant cells has identified metabolic vulnerabilities of cancers. Translating this insight to the clinics, however, has proved challenging. Roadblocks limiting efficacy of drugs targeting cancer metabolism may lie in the nature of the metabolic ecosystem of tumors. The exchange of metabolites and growth factors between cancer cells and nonmalignant tumor-resident cells is essential for tumor growth and evolution, as well as the development of an immunosuppressive microenvironment. In this Review, we will examine the metabolic interplay between tumor-resident cells and how targeted inhibition of specific metabolic enzymes in malignant cells could elicit pro-tumorigenic effects in non-transformed tumor-resident cells and inhibit the function of tumor-specific T cells. To improve the efficacy of metabolism-targeted anticancer strategies, a holistic approach that considers the effect of metabolic inhibitors on major tumor-resident cell populations is needed.
Collapse
Affiliation(s)
- Glenn R Bantug
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, Basel, Switzerland.
| | - Christoph Hess
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, Basel, Switzerland.
- Department of Medicine, CITIID, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
21
|
Wu Z, Yu X, Zhang S, He Y, Guo W. Novel roles of PIWI proteins and PIWI-interacting RNAs in human health and diseases. Cell Commun Signal 2023; 21:343. [PMID: 38031146 PMCID: PMC10685540 DOI: 10.1186/s12964-023-01368-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Non-coding RNA has aroused great research interest recently, they play a wide range of biological functions, such as regulating cell cycle, cell proliferation, and intracellular substance metabolism. Piwi-interacting RNAs (piRNAs) are emerging small non-coding RNAs that are 24-31 nucleotides in length. Previous studies on piRNAs were mainly limited to evaluating the binding to the PIWI protein family to play the biological role. However, recent studies have shed more lights on piRNA functions; aberrant piRNAs play unique roles in many human diseases, including diverse lethal cancers. Therefore, understanding the mechanism of piRNAs expression and the specific functional roles of piRNAs in human diseases is crucial for developing its clinical applications. Presently, research on piRNAs mainly focuses on their cancer-specific functions but lacks investigation of their expressions and epigenetic modifications. This review discusses piRNA's biogenesis and functional roles and the recent progress of functions of piRNA/PIWI protein complexes in human diseases. Video Abstract.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
22
|
Bertolio R, Napoletano F, Del Sal G. Dynamic links between mechanical forces and metabolism shape the tumor milieu. Curr Opin Cell Biol 2023; 84:102218. [PMID: 37597464 DOI: 10.1016/j.ceb.2023.102218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/21/2023]
Abstract
Cell function relies on the spatiotemporal dynamics of metabolic reactions. In all physiopathological processes of tissues, mechanical forces impact the structure and function of membranes, enzymes, organelles and regulators of metabolic gene programs, thus regulating cell metabolism. In turn, metabolic pathways feedback impacts the physical properties of cell and tissues. Hence, metabolism and tissue mechanics are dynamically intertwined and continuously interact. Cancer is akin to an ecosystem, comprising tumor cells and various subpopulations of stromal cells embedded in an altered extracellular matrix. The progression of cancer, from initiation to advanced stage and metastasis, is driven by genetic mutations and crucially influenced by physical and metabolic alterations in the tumor microenvironment. These alterations also play a pivotal role in cancer cells evasion from immune surveillance and in developing resistance to treatments. Here, we highlight emerging evidence showing that mechano-metabolic circuits in cancer and stromal cells regulate multiple processes crucial for tumor progression and discuss potential approaches to improve therapeutic treatments by interfering with these circuits.
Collapse
Affiliation(s)
- Rebecca Bertolio
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, 34149 Trieste, Italy
| | - Francesco Napoletano
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, 34149 Trieste, Italy
| | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, 34149 Trieste, Italy; IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
23
|
Xue X, Zeng X, Wu X, Mu K, Dai Y, Wei Z. SIRT4 protects against intestinal fibrosis by facilitating GLS1 degradation. Matrix Biol 2023; 122:33-45. [PMID: 37541633 DOI: 10.1016/j.matbio.2023.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Intestinal fibrosis is a prevalent complication of Crohn's disease (CD), characterized by excessive deposition of extracellular matrix (ECM), and no approved drugs are currently available for its treatment. Sirtuin 4 (SIRT4), a potent anti-fibrosis factor in mitochondria, has an unclear role in intestinal fibrosis. In this study, fibroblasts isolated from biopsies of stenotic ileal mucosa in CD patients were analyzed to identify the most down-regulated protein among SIRT1-7, and SIRT4 was found to be the most affected. Moreover, in vivo and in vitro models of intestinal fibrosis, SIRT4 expression was significantly decreased in a TGF-β dependent manner, and its decrease was negatively associated with disease severity. SIRT4 impeded ECM deposition by inhibiting glutaminolysis, but not glycolysis, and α-ketoglutarate (α-KG) was identified as the key metabolite. Specifically, SIRT4 hinders SIRT5's stabilizing interaction with glutaminase 1 (GLS1), thereby facilitating the degradation of GLS1. KDM6, rather than KDM4, is a potential mediator for α-KG-induced transcription of ECM components, and SIRT4 enhances the enrichment of H3K27me3 on their promotors and enhancers. These findings indicate that the activation of TGF-β signals decreases the expression of SIRT4 in intestinal fibrosis, and SIRT4 can facilitate GLS1 degradation, thereby resisting glutaminolysis and alleviating intestinal fibrosis, providing a novel therapeutic target for intestinal fibrosis.
Collapse
Affiliation(s)
- Xinru Xue
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Xi Zeng
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Xiaoqian Wu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Kexin Mu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
24
|
Li J, Yin Y, Zou J, Zhang E, Li Q, Chen L, Li J. The adipose-derived stem cell peptide ADSCP2 alleviates hypertrophic scar fibrosis via binding with pyruvate carboxylase and remodeling the metabolic landscape. Acta Physiol (Oxf) 2023; 238:e14010. [PMID: 37366253 DOI: 10.1111/apha.14010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 06/28/2023]
Abstract
AIM The purpose of this study was to investigate the function and mechanism of a novel peptide derived from adipose-derived stem cell-conditioned medium (ADSC-CM). METHODS Mass spectrometry was applied to identify expressed peptides in ADSC-CM obtained at different time points. The cell counting kit-8 assay and quantitative reverse transcription polymerase chain reactions were performed to screen the functional peptides contained within ADSC-CM. RNA-seq, western blot, a back skin excisional model of BALB/c mice, the peptide pull-down assay, rescue experiments, untargeted metabolomics, and mixOmics analysis were performed to thoroughly understand the functional mechanism of selected peptide. RESULTS A total of 93, 827, 1108, and 631 peptides were identified in ADSC-CM at 0, 24, 48, and 72 h of conditioning, respectively. A peptide named ADSCP2 (DENREKVNDQAKL) derived from ADSC-CM inhibited collagen and ACTA2 mRNAs in hypertrophic scar fibroblasts. Moreover, ADSCP2 facilitated wound healing and attenuated collagen deposition in a mouse model. ADSCP2 bound with the pyruvate carboxylase (PC) protein and inhibited PC protein expression. Overexpressing PC rescued the reduction in collagen and ACTA2 mRNAs caused by ADSCP2. Untargeted metabolomics identified 258 and 447 differential metabolites in the negative and positive mode, respectively, in the ADSCP2-treated group. The mixOmics analysis, which integrated RNA-seq and untargeted metabolomics data, provided a more holistic view of the functions of ADSCP2. CONCLUSION Overall, a novel peptide derived from ADSC-CM, named ADSCP2, attenuated hypertrophic scar fibrosis in vitro and in vivo, and the novel peptide ADSCP2 might be a promising drug candidate for clinical scar therapy.
Collapse
Affiliation(s)
- Jingyun Li
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yiliang Yin
- Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Jijun Zou
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Enyuan Zhang
- Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Qian Li
- Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Ling Chen
- Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Jun Li
- Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| |
Collapse
|
25
|
Simpson CE, Ambade AS, Harlan R, Roux A, Graham D, Klauer N, Tuhy T, Kolb TM, Suresh K, Hassoun PM, Damico RL. Spatial and temporal resolution of metabolic dysregulation in the Sugen hypoxia model of pulmonary hypertension. Pulm Circ 2023; 13:e12260. [PMID: 37404901 PMCID: PMC10315560 DOI: 10.1002/pul2.12260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023] Open
Abstract
Although PAH is partially attributed to disordered metabolism, previous human studies have mostly examined circulating metabolites at a single time point, potentially overlooking crucial disease biology. Current knowledge gaps include an understanding of temporal changes that occur within and across relevant tissues, and whether observed metabolic changes might contribute to disease pathobiology. We utilized targeted tissue metabolomics in the Sugen hypoxia (SuHx) rodent model to investigate tissue-specific metabolic relationships with pulmonary hypertensive features over time using regression modeling and time-series analysis. Our hypotheses were that some metabolic changes would precede phenotypic changes, and that examining metabolic interactions across heart, lung, and liver tissues would yield insight into interconnected metabolic mechanisms. To support the relevance of our findings, we sought to establish links between SuHx tissue metabolomics and human PAH -omics data using bioinformatic predictions. Metabolic differences between and within tissue types were evident by Day 7 postinduction, demonstrating distinct tissue-specific metabolism in experimental pulmonary hypertension. Various metabolites demonstrated significant tissue-specific associations with hemodynamics and RV remodeling. Individual metabolite profiles were dynamic, and some metabolic shifts temporally preceded the emergence of overt pulmonary hypertension and RV remodeling. Metabolic interactions were observed such that abundance of several liver metabolites modulated lung and RV metabolite-phenotype relationships. Taken all together, regression analyses, pathway analyses and time-series analyses implicated aspartate and glutamate signaling and transport, glycine homeostasis, lung nucleotide abundance, and oxidative stress as relevant to early PAH pathobiology. These findings offer valuable insights into potential targets for early intervention in PAH.
Collapse
Affiliation(s)
- Catherine E. Simpson
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Anjira S. Ambade
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Robert Harlan
- Johns Hopkins All Children's Hospital Molecular Determinants CoreSt. PetersburgFloridaUSA
| | - Aurelie Roux
- Johns Hopkins All Children's Hospital Molecular Determinants CoreSt. PetersburgFloridaUSA
| | - David Graham
- Johns Hopkins All Children's Hospital Molecular Determinants CoreSt. PetersburgFloridaUSA
| | - Neal Klauer
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Tijana Tuhy
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Todd M. Kolb
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Karthik Suresh
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Paul M. Hassoun
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Rachel L. Damico
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| |
Collapse
|
26
|
Schwörer S, Cimino FV, Ros M, Tsanov KM, Ng C, Lowe SW, Carmona-Fontaine C, Thompson CB. Hypoxia Potentiates the Inflammatory Fibroblast Phenotype Promoted by Pancreatic Cancer Cell-Derived Cytokines. Cancer Res 2023; 83:1596-1610. [PMID: 36912618 PMCID: PMC10658995 DOI: 10.1158/0008-5472.can-22-2316] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/19/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Cancer-associated fibroblasts (CAF) are a major cell type in the stroma of solid tumors and can exert both tumor-promoting and tumor-restraining functions. CAF heterogeneity is frequently observed in pancreatic ductal adenocarcinoma (PDAC), a tumor characterized by a dense and hypoxic stroma that features myofibroblastic CAFs (myCAF) and inflammatory CAFs (iCAF) that are thought to have opposing roles in tumor progression. While CAF heterogeneity can be driven in part by tumor cell-produced cytokines, other determinants shaping CAF identity and function are largely unknown. In vivo, we found that iCAFs displayed a hypoxic gene expression and biochemical profile and were enriched in hypoxic regions of PDAC tumors, while myCAFs were excluded from these regions. Hypoxia led fibroblasts to acquire an inflammatory gene expression signature and synergized with cancer cell-derived cytokines to promote an iCAF phenotype in a HIF1α-dependent fashion. Furthermore, HIF1α stabilization was sufficient to induce an iCAF phenotype in stromal cells introduced into PDAC organoid cocultures and to promote PDAC tumor growth. These findings indicate hypoxia-induced HIF1α as a regulator of CAF heterogeneity and promoter of tumor progression in PDAC. SIGNIFICANCE Hypoxia in the tumor microenvironment of pancreatic cancer potentiates the cytokine-induced inflammatory CAF phenotype and promotes tumor growth. See related commentary by Fuentes and Taniguchi, p. 1560.
Collapse
Affiliation(s)
- Simon Schwörer
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Francesco V Cimino
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Manon Ros
- Center for Genomics and Systems Biology, New York University, New York, New York
| | - Kaloyan M Tsanov
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles Ng
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | | | - Craig B Thompson
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
27
|
Zhang Y, Chen J, Mi D, Ling J, Li H, He P, Liu N, Chen Q, Chen Y, Huang L. Discovery of YH677 as a cancer stemness inhibitor that suppresses triple-negative breast cancer growth and metastasis by regulating the TGFβ signaling pathway. Cancer Lett 2023; 560:216142. [PMID: 36965539 DOI: 10.1016/j.canlet.2023.216142] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Triple-negative breast cancer (TNBC) has a poor prognosis due to the lack of specific and highly effective therapeutic agents. Cancer stem cells (CSCs) are one of the main factors contributing to TNBC relapse and metastasis. Therefore, targeting CSCs selectively with small molecules is a novel strategy for drug development. In this study, the natural product harmine (HM) was identified as a hit compound from 2632 natural product monomers based on phenotypic screening of a 2D assay and patient-derived organoid (PDO) model that was established from a patient who had multiple drug resistance and various visceral and contralateral breast metastases. Next, harmine was further modified and optimized to obtain a lead compound (YH677) with a tetrahydro-β-carboline scaffold. YH677 showed potent antiproliferative and antimigratory activities against several TNBC cell lines in vitro. In addition, YH677 inhibited epithelial mesenchymal transition (EMT) and stem cell marker expression in a dose-dependent manner. More importantly, YH677 suppressed breast cancer growth and metastasis in orthotopic, metastatic xenograft and patient-derived xenograft (PDX) models in vivo. Mechanistic studies showed that YH677 inhibits the expansion of CSCs by regulating the TGFβ/Smad signaling pathway. These preclinical data provide a basis for the development of YH677 as a lead compound for TNBC treatment.
Collapse
Affiliation(s)
- Yuzhu Zhang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Breast Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Jing Chen
- School of Basic Medical Sciences, Ningxia Medical University, Ningxia, 750004, China; Key Laboratory of Fertility Maintenance Ministry of Education, Ningxia Medical University, Ningxia, 750004, China
| | - Dazhao Mi
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jun Ling
- School of Basic Medical Sciences, Ningxia Medical University, Ningxia, 750004, China; Key Laboratory of Fertility Maintenance Ministry of Education, Ningxia Medical University, Ningxia, 750004, China
| | - Huachao Li
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Peng He
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ning Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qianjun Chen
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| | - Yihua Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
28
|
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S, Xiao M. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer 2023; 22:48. [PMID: 36906534 PMCID: PMC10007858 DOI: 10.1186/s12943-023-01744-8] [Citation(s) in RCA: 221] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/11/2023] [Indexed: 03/13/2023] Open
Abstract
The malignant tumor is a multi-etiological, systemic and complex disease characterized by uncontrolled cell proliferation and distant metastasis. Anticancer treatments including adjuvant therapies and targeted therapies are effective in eliminating cancer cells but in a limited number of patients. Increasing evidence suggests that the extracellular matrix (ECM) plays an important role in tumor development through changes in macromolecule components, degradation enzymes and stiffness. These variations are under the control of cellular components in tumor tissue via the aberrant activation of signaling pathways, the interaction of the ECM components to multiple surface receptors, and mechanical impact. Additionally, the ECM shaped by cancer regulates immune cells which results in an immune suppressive microenvironment and hinders the efficacy of immunotherapies. Thus, the ECM acts as a barrier to protect cancer from treatments and supports tumor progression. Nevertheless, the profound regulatory network of the ECM remodeling hampers the design of individualized antitumor treatment. Here, we elaborate on the composition of the malignant ECM, and discuss the specific mechanisms of the ECM remodeling. Precisely, we highlight the impact of the ECM remodeling on tumor development, including proliferation, anoikis, metastasis, angiogenesis, lymphangiogenesis, and immune escape. Finally, we emphasize ECM "normalization" as a potential strategy for anti-malignant treatment.
Collapse
Affiliation(s)
- Zhennan Yuan
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingpu Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Sifan Zhang
- Department of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - He Dou
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xi Yu
- Department of Gynecological Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, 150001, China
| | - Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150000, China.
| | - Min Xiao
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
29
|
Gibb AA, Huynh AT, Gaspar RB, Ploesch TL, Lombardi AA, Lorkiewicz PK, Lazaropoulos MP, Bedi K, Arany Z, Margulies KB, Hill BG, Elrod JW. Glutamine uptake and catabolism is required for myofibroblast formation and persistence. J Mol Cell Cardiol 2022; 172:78-89. [PMID: 35988357 PMCID: PMC10486318 DOI: 10.1016/j.yjmcc.2022.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Fibrosis and extracellular matrix remodeling are mediated by resident cardiac fibroblasts (CFs). In response to injury, fibroblasts activate, differentiating into specialized synthetic and contractile myofibroblasts producing copious extracellular matrix proteins (e.g., collagens). Myofibroblast persistence in chronic diseases, such as HF, leads to progressive cardiac dysfunction and maladaptive remodeling. We recently reported that an increase in αKG (alpha-ketoglutarate) bioavailability, which contributes to enhanced αKG-dependent lysine demethylase activity and chromatin remodeling, is required for myofibroblast formation. Therefore, we aimed to determine the substrates and metabolic pathways contributing to αKG biosynthesis and their requirement for myofibroblast formation. METHODS Stable isotope metabolomics identified glutaminolysis as a key metabolic pathway required for αKG biosynthesis and myofibroblast formation, therefore we tested the effects of pharmacologic inhibition (CB-839) or genetic deletion of glutaminase (Gls1-/-) on myofibroblast formation in both murine and human cardiac fibroblasts. We employed immunofluorescence staining, functional gel contraction, western blotting, and bioenergetic assays to determine the myofibroblast phenotype. RESULTS Carbon tracing indicated enhanced glutaminolysis mediating increased αKG abundance. Pharmacological and genetic inhibition of glutaminolysis prevented myofibroblast formation indicated by a reduction in αSMA+ cells, collagen gel contraction, collagen abundance, and the bioenergetic response. Inhibition of glutaminolysis also prevented TGFβ-mediated histone demethylation and supplementation with cell-permeable αKG rescued the myofibroblast phenotype. Importantly, inhibition of glutaminolysis was sufficient to prevent myofibroblast formation in CFs isolated from the human failing heart. CONCLUSIONS These results define glutaminolysis as necessary for myofibroblast formation and persistence, providing substantial rationale to evaluate several new therapeutic targets to treat cardiac fibrosis.
Collapse
Affiliation(s)
- Andrew A Gibb
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Anh T Huynh
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ryan B Gaspar
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Tori L Ploesch
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Alyssa A Lombardi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Pawel K Lorkiewicz
- Department of Chemistry, University of Louisville, Louisville, KY 40202, USA
| | - Michael P Lazaropoulos
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ken Bedi
- Cardiovascular Institute and Cardiovascular Medicine Division, Department of Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Zolt Arany
- Cardiovascular Institute and Cardiovascular Medicine Division, Department of Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Kenneth B Margulies
- Cardiovascular Institute and Cardiovascular Medicine Division, Department of Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Bradford G Hill
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - John W Elrod
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
30
|
Chai P, Lan P, Li S, Yao D, Chang C, Cao M, Shen Y, Ge S, Wu J, Lei M, Fan X. Mechanistic insight into allosteric activation of human pyruvate carboxylase by acetyl-CoA. Mol Cell 2022; 82:4116-4130.e6. [DOI: 10.1016/j.molcel.2022.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/08/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
|
31
|
Sheeley MP, Kiesel VA, Andolino C, Lanman NA, Donkin SS, Hursting SD, Wendt MK, Teegarden D. 1α,25-dihydroxyvitamin D reduction of MCF10A-ras cell viability in extracellular matrix detached conditions is dependent on regulation of pyruvate carboxylase. J Nutr Biochem 2022; 109:109116. [DOI: 10.1016/j.jnutbio.2022.109116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/02/2022] [Accepted: 06/24/2022] [Indexed: 10/31/2022]
|
32
|
Identification of an Amino Acid Metabolism Signature Participating in Immunosuppression in Ovarian Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4525540. [PMID: 35783506 PMCID: PMC9242802 DOI: 10.1155/2022/4525540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is one of the most fatal gynecologic cancer types, and its heterogeneity in the microenvironment limited the efficacy of the current treatment. In this study, we aimed at building a risk score to predict patient survival based on the amino acid metabolic genes and TCGA RNA-seq dataset (n = 376). We first used univariate analysis and PCA to select and test the survival-related genes, and the LASSO regression was applied to build the risk score signature with prediction accuracy estimation by survival analysis and ROC. We then conducted GSEA and GSVA to investigate the biological roles of the signature and run ESTIMATE and 4 different immunocyte infiltration algorithms to investigate the immunological diversity between the risk groups. Furthermore, the immune checkpoint expression was compared. We finally explored the cMap and PRISM database to screen out sensitive drugs for high-risk patients and analyzed the oncogenic role of TPH1 by clone formation and transwell migration assays. As a result, the risk score predicted patients' survival and stage with high accuracy. We found that the signature mainly affected the extracellular activities and cancer immunity by functional enrichment. We further discovered that the high-risk OV harbored a high level of stromal cell infiltration and was associated with highly infiltrated fibroblasts and decreased CD8+ T cells. The immune checkpoint analyses showed that TGFB1 and CD276 were upregulated. Finally, we screened out 4 PRISM drugs with lower IC50 in the high-risk group and validated the oncogenic role of TPH1 in OV cancers. We believe this research offered a novel understanding of the interplay between amino acid metabolism and immunity in OV and will benefit patients with better prognostic management and therapeutic strategy development.
Collapse
|
33
|
Kay EJ, Paterson K, Riera-Domingo C, Sumpton D, Däbritz JHM, Tardito S, Boldrini C, Hernandez-Fernaud JR, Athineos D, Dhayade S, Stepanova E, Gjerga E, Neilson LJ, Lilla S, Hedley A, Koulouras G, McGregor G, Jamieson C, Johnson RM, Park M, Kirschner K, Miller C, Kamphorst JJ, Loayza-Puch F, Saez-Rodriguez J, Mazzone M, Blyth K, Zagnoni M, Zanivan S. Cancer-associated fibroblasts require proline synthesis by PYCR1 for the deposition of pro-tumorigenic extracellular matrix. Nat Metab 2022; 4:693-710. [PMID: 35760868 PMCID: PMC9236907 DOI: 10.1038/s42255-022-00582-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 05/10/2022] [Indexed: 12/21/2022]
Abstract
Elevated production of collagen-rich extracellular matrix is a hallmark of cancer-associated fibroblasts (CAFs) and a central driver of cancer aggressiveness. Here we find that proline, a highly abundant amino acid in collagen proteins, is newly synthesized from glutamine in CAFs to make tumour collagen in breast cancer xenografts. PYCR1 is a key enzyme for proline synthesis and highly expressed in the stroma of breast cancer patients and in CAFs. Reducing PYCR1 levels in CAFs is sufficient to reduce tumour collagen production, tumour growth and metastatic spread in vivo and cancer cell proliferation in vitro. Both collagen and glutamine-derived proline synthesis in CAFs are epigenetically upregulated by increased pyruvate dehydrogenase-derived acetyl-CoA levels. PYCR1 is a cancer cell vulnerability and potential target for therapy; therefore, our work provides evidence that targeting PYCR1 may have the additional benefit of halting the production of a pro-tumorigenic extracellular matrix. Our work unveils new roles for CAF metabolism to support pro-tumorigenic collagen production.
Collapse
Affiliation(s)
- Emily J Kay
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Karla Paterson
- Centre for Microsystems and Photonics, EEE Department, University of Strathclyde, Glasgow, UK
| | - Carla Riera-Domingo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | | | - Saverio Tardito
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | - Ekaterina Stepanova
- Translational Control and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Enio Gjerga
- Heidelberg University, Faculty of Medicine, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
- RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Aachen, Germany
| | | | - Sergio Lilla
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Ann Hedley
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Grace McGregor
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Craig Jamieson
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, Glasgow, UK
| | - Radia Marie Johnson
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Kristina Kirschner
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Crispin Miller
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jurre J Kamphorst
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Fabricio Loayza-Puch
- Translational Control and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
- RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Aachen, Germany
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Michele Zagnoni
- Centre for Microsystems and Photonics, EEE Department, University of Strathclyde, Glasgow, UK
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
34
|
Vokurka M, Lacina L, Brábek J, Kolář M, Ng YZ, Smetana K. Cancer-Associated Fibroblasts Influence the Biological Properties of Malignant Tumours via Paracrine Secretion and Exosome Production. Int J Mol Sci 2022; 23:964. [PMID: 35055153 PMCID: PMC8778626 DOI: 10.3390/ijms23020964] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are an essential component of the tumour microenvironment. They represent a heterogeneous group of cells that are under the control of cancer cells and can reversely influence the cancer cell population. They affect the cancer cell differentiation status, and the migration and formation of metastases. This is achieved through the production of the extracellular matrix and numerous bioactive factors. IL-6 seems to play the central role in the communication of noncancerous and cancer cells in the tumour. This review outlines the role of exosomes in cancer cells and cancer-associated fibroblasts. Available data on the exosomal cargo, which can significantly intensify interactions in the tumour, are summarised. The role of exosomes as mediators of the dialogue between cancer cells and cancer-associated fibroblasts is discussed together with their therapeutic relevance. The functional unity of the paracrine- and exosome-mediated communication of cancer cells with the tumour microenvironment represented by CAFs is worthy of attention.
Collapse
Affiliation(s)
- Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic;
| | - Lukáš Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague 2, Czech Republic;
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Michal Kolář
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic;
| | - Yi Zhen Ng
- A*STAR Skin Research Labs (A*SRL)—Biopolis, Skin Research Institute of Singapore, 8A Biomedical Grove #06-06 Immunos Singapore, Singapore 138665, Singapore;
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| |
Collapse
|
35
|
Bacigalupa ZA, Rathmell WK. Upcycling the TCA cycle-rewiring tumour-associated fibroblasts. Nat Metab 2021; 3:1439-1440. [PMID: 34764458 PMCID: PMC9383054 DOI: 10.1038/s42255-021-00473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alterations to the extracellular matrix have long been associated with cancer progression and therapeutic resistance. Schwörer et al. describe a mechanism whereby fibroblasts reroute metabolites to fuel the demands of collagen synthesis, leading to cancer progression.
Collapse
Affiliation(s)
- Zachary A Bacigalupa
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - W Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|