1
|
Cappa P, Andreoli V, La C, Palacios-Abrantes J, Reygondeau G, Cheung WWL, Zeller D. Climate change undermines seafood micronutrient supply from wild-capture fisheries in Southeast Asia and Pacific Island countries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177024. [PMID: 39423899 DOI: 10.1016/j.scitotenv.2024.177024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Marine ecosystem functions are affected by climate change impacts such as ocean warming, deoxygenation and acidification. These impacts drive changes in distributions and body size of fish species and directly affect fisheries. Wild-capture fisheries are crucial for providing nutrients, livelihoods, and employment in tropical Southeast Asia and Pacific Island countries, where coastal communities are highly vulnerable to climate change. We examined the impacts of climate change on fish stocks and nutrient availability of seven key micronutrients (calcium, Omega-3 fatty acids, iodine, iron, vitamin A, vitamin B12 and zinc) in Southeast Asia, Pacific Islands, and Oceania (Australia and New Zealand). We combined micronutrient demands by local human populations with Sea Around Us reconstructed catch time series and catch projections from a dynamic bioclimate envelope model for the 21st century. The model predicted a decline in the Maximum Catch Potential (MCP) within Exclusive Economic Zones for Oceania, Pacific Islands, and Southeast Asian countries. Under the 'strong mitigation' scenario, catch potential reductions ranged from a decline of 54-66 % in Oceania, 58-92 % in Pacific Islands, and 65-86 % in Southeast Asia by the mid to the end of the 21st century relative to the historical period, respectively. Under the 'no-mitigation' climate scenario, reductions were more severe, with a decline of 55-70 % in Oceania, 66-92 % in Pacific Islands, and 70-86 % in Southeast Asia for the same time periods. Our findings indicate that Australia and New Zealand are unlikely to meet the recommended nutrient intake demand for most micronutrients through their fisheries (not considering trade or aquaculture production), except for iodine and vitamin B12. Pacific Island countries will likely follow the same pattern while Southeast Asia is expected to face worsening deficits, except for iodine and vitamin B12. This study highlights the importance of incorporating nutritional considerations of seafood into national food, trade and economic policies.
Collapse
Affiliation(s)
- Paolo Cappa
- Independent Researcher, Sommariva Perno 12040, Italy; Sea Around Us - Indian Ocean, School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Vania Andreoli
- Sea Around Us - Indian Ocean, School of Biological Sciences, University of Western Australia, Crawley, WA, Australia.
| | - Charlotte La
- Sea Around Us - Indian Ocean, School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | | | - Gabriel Reygondeau
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
| | - William W L Cheung
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, BC, Canada
| | - Dirk Zeller
- Sea Around Us - Indian Ocean, School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
2
|
Rowley AF, Baker-Austin C, Boerlage AS, Caillon C, Davies CE, Duperret L, Martin SAM, Mitta G, Pernet F, Pratoomyot J, Shields JD, Shinn AP, Songsungthong W, Srijuntongsiri G, Sritunyalucksana K, Vidal-Dupiol J, Uren Webster TM, Taengchaiyaphum S, Wongwaradechkul R, Coates CJ. Diseases of marine fish and shellfish in an age of rapid climate change. iScience 2024; 27:110838. [PMID: 39318536 PMCID: PMC11420459 DOI: 10.1016/j.isci.2024.110838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
A recurring trend in evidence scrutinized over the past few decades is that disease outbreaks will become more frequent, intense, and widespread on land and in water, due to climate change. Pathogens and the diseases they inflict represent a major constraint on seafood production and yield, and by extension, food security. The risk(s) for fish and shellfish from disease is a function of pathogen characteristics, biological species identity, and the ambient environmental conditions. A changing climate can adversely influence the host and environment, while augmenting pathogen characteristics simultaneously, thereby favoring disease outbreaks. Herein, we use a series of case studies covering some of the world's most cultured aquatic species (e.g., salmonids, penaeid shrimp, and oysters), and the pathogens (viral, fungal, bacterial, and parasitic) that afflict them, to illustrate the magnitude of disease-related problems linked to climate change.
Collapse
Affiliation(s)
- Andrew F Rowley
- Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, Wales, UK
| | | | - Annette S Boerlage
- Centre for Epidemiology and Planetary Health (CEPH), SRUC School of Veterinary Medicine, Inverness, Scotland, UK
| | - Coline Caillon
- Université of Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - Charlotte E Davies
- Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, Wales, UK
| | - Léo Duperret
- IHPE, Université of Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, Montpellier, France
| | - Samuel A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Guillaume Mitta
- Ifremer, ILM, IRD, UPF, UMR 241 SECOPOL, Tahiti, French Polynesia
| | - Fabrice Pernet
- Université of Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - Jarunan Pratoomyot
- Institute of Marine Science, Burapha University, Chonburi 20131, Thailand
| | - Jeffrey D Shields
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
| | - Andrew P Shinn
- INVE Aquaculture (Thailand), 471 Bond Street, Bangpood, Pakkred, Nonthaburi 11120, Thailand
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Warangkhana Songsungthong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 10400, Thailand
| | - Gun Srijuntongsiri
- School of Information, Computer, and Communication Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand
| | - Kallaya Sritunyalucksana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 10400, Thailand
| | - Jeremie Vidal-Dupiol
- IHPE, Université of Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, Montpellier, France
| | - Tamsyn M Uren Webster
- Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, Wales, UK
| | - Suparat Taengchaiyaphum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 10400, Thailand
| | | | - Christopher J Coates
- Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, Wales, UK
- Zoology and Ryan Institute, School of Natural Sciences, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
3
|
Brodie LP, Caballero SV, Ojea E, Taylor SFW, Roberts M, Vianello P, Jiddawi N, Aswani S, Bueno J. A new framework on climate-induced food-security risk for small-scale fishing communities in Tanzania. Food Secur 2024; 16:1125-1145. [PMID: 39429539 PMCID: PMC11489249 DOI: 10.1007/s12571-024-01472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/02/2024] [Indexed: 10/22/2024]
Abstract
Food insecurity is a pressing issue facing our world, particularly affecting coastal communities who rely on marine resources. The problem is further compounded by the rapidly changing climate, a deteriorating environment and growing human populations. It is essential to evaluate this issue accurately to reduce risk and improve the situation of coastal communities, especially in countries with less socioeconomic development. To this end, we develop a food security social-ecological risk assessment framework for developing communities in coastal areas of the Western Indian Ocean facing a changing environment. The framework integrates local ecological knowledge, expert scientific opinion, survey data, and satellite sea surface temperature (SST) and chlorophyll-a observation. We conducted a local-scale case study in four regions in Tanzania; Mafia, Pemba, Tanga, and Unguja, revealing that they face moderate to high risk levels of food insecurity. The highest risk was observed in the island communities of Pemba and Unguja, while the communities of Mafia and Tanga had the lowest risk due to lower exposure and sensitivity to climate change. Our results show that recognizing the key differences across risk components is crucial in identifying effective intervention strategies for local practitioners. This study highlights the need for detailed assessments to provide accurate information on local-scale food security dynamics, specifically when assessing impacts induced by environmental and climatic changes. Supplementary Information The online version contains supplementary material available at 10.1007/s12571-024-01472-x.
Collapse
Affiliation(s)
- Lara Paige Brodie
- Centro de Investigación Mariña (CIM), Future Oceans Lab, Universidade de Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain
| | - Smit Vasquez Caballero
- Centro de Investigación Mariña (CIM), Future Oceans Lab, Universidade de Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain
- Center for Applied Economics and Strategy, RTI International, Research Triangle Park, Durham, NC 27709 USA
| | - Elena Ojea
- Centro de Investigación Mariña (CIM), Future Oceans Lab, Universidade de Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain
| | | | - Michael Roberts
- National Oceanography Centre, Southampton, SO14 3ZH UK
- Nelson Mandela University, Port Elizabeth, South Africa
| | | | | | | | - Juan Bueno
- Centro de Investigación Mariña (CIM), Future Oceans Lab, Universidade de Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain
| |
Collapse
|
4
|
Golden CD, Hartmann AC, Gibbons E, Todinanahary G, Troell MF, Ampalaza G, Behivoke F, David JM, Durand JD, Falinirina AM, Frånberg C, Declèrque F, Hook K, Kelahan H, Kirby M, Koenen K, Lamy T, Lavitra T, Moridy F, Léopold M, Little MJ, Mahefa JC, Mbony J, Nicholas K, Nomenisoa ALD, Ponton D, Rabarijaona RR, Rabearison M, Rabemanantsoa SA, Ralijaona M, Ranaivomanana HS, Randriamady HJ, Randrianandrasana J, Randriatsara HO, Randriatsara RM, Rasoanirina M, Ratsizafy MR, Razafiely KF, Razafindrasoa N, Romario, Solofoarimanana MY, Stroud RE, Tsiresimiary M, Volanandiana AJ, Volasoa NV, Vowell B, Zamborain-Mason J. HIARA study protocol: impacts of artificial coral reef development on fisheries, human livelihoods and health in southwestern Madagascar. Front Public Health 2024; 12:1366110. [PMID: 39076417 PMCID: PMC11284108 DOI: 10.3389/fpubh.2024.1366110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/24/2024] [Indexed: 07/31/2024] Open
Abstract
The Health Impacts of Artificial Reef Advancement (HIARA; in the Malagasy language, "together") study cohort was set up in December 2022 to assess the economic and nutritional importance of seafood for the coastal Malagasy population living along the Bay of Ranobe in southwestern Madagascar. Over the course of the research, which will continue until at least 2026, the primary question we seek to answer is whether the creation of artificial coral reefs can rehabilitate fish biomass, increase fish catch, and positively influence fisher livelihoods, community nutrition, and mental health. Through prospective, longitudinal monitoring of the ecological and social systems of Bay of Ranobe, we aim to understand the influence of seasonal and long-term shifts in marine ecological resources and their benefits to human livelihoods and health. Fourteen communities (12 coastal and two inland) were enrolled into the study including 450 households across both the coastal (n = 360 households) and inland (n = 90 households) ecosystems. In the ecological component, we quantify the extent and health of coral reef ecosystems and collect data on the diversity and abundance of fisheries resources. In the social component, we collect data on the diets, resource acquisition strategies, fisheries and agricultural practices, and other social, demographic and economic indicators, repeated every 3 months. At these visits, clinical measures are collected including anthropometric measures, blood pressure, and mental health diagnostic screening. By analyzing changes in fish catch and consumption arising from varying distances to artificial reef construction and associated impacts on fish biomass, our cohort study could provide valuable insights into the public health impacts of artificial coral reef construction on local populations. Specifically, we aim to assess the impact of changes in fish catch (caused by artificial reefs) on various health outcomes, such as stunting, underweight, wasting, nutrient intake, hypertension, anxiety, and depression.
Collapse
Affiliation(s)
- Christopher D. Golden
- Department of Nutrition, School of Public Health, Harvard University, Boston, MA, United States
- Department of Environmental Health, School of Public Health, Harvard University, Boston, MA, United States
- Madagascar Health and Environmental Research (MAHERY), Maroantsetra, Madagascar
| | - Aaron C. Hartmann
- Department of Organismic and Evolutionary Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, United States
| | | | - Gildas Todinanahary
- Institute of Fisheries and Marine Sciences, University of Toliara, Toliara, Madagascar
| | - Max F. Troell
- Beijer Institute of Ecological Economics, Stockholm, Sweden
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | - Gaelle Ampalaza
- Institute of Fisheries and Marine Sciences, University of Toliara, Toliara, Madagascar
| | - Faustinato Behivoke
- Institute of Fisheries and Marine Sciences, University of Toliara, Toliara, Madagascar
| | - Jean Marie David
- Institute of Fisheries and Marine Sciences, University of Toliara, Toliara, Madagascar
| | - Jean-Dominique Durand
- UMR9190 Centre Pour la Biodiversité Marine, l’exploitation et la Conservation (MARBEC), Sète, France
| | | | - Christopher Frånberg
- Department of Ecology, Environment and Plant Sciences, Faculty of Science, Stockholm University, Stockholm, Sweden
| | - Frédéric Declèrque
- Institute of Fisheries and Marine Sciences, University of Toliara, Toliara, Madagascar
| | - Kimberly Hook
- Department of Epidemiology, School of Public Health, Harvard University, Boston, MA, United States
| | - Heather Kelahan
- Department of Nutrition, School of Public Health, Harvard University, Boston, MA, United States
| | - Megumi Kirby
- Department of Organismic and Evolutionary Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, United States
| | - Karestan Koenen
- Department of Nutrition, School of Public Health, Harvard University, Boston, MA, United States
| | - Thomas Lamy
- UMR9190 Centre Pour la Biodiversité Marine, l’exploitation et la Conservation (MARBEC), Sète, France
| | - Thierry Lavitra
- Institute of Fisheries and Marine Sciences, University of Toliara, Toliara, Madagascar
| | - Franciana Moridy
- Institute of Fisheries and Marine Sciences, University of Toliara, Toliara, Madagascar
| | | | - Mark J. Little
- Department of Organismic and Evolutionary Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, United States
| | - Jean C. Mahefa
- Institute of Fisheries and Marine Sciences, University of Toliara, Toliara, Madagascar
| | - Jovial Mbony
- Institute of Fisheries and Marine Sciences, University of Toliara, Toliara, Madagascar
| | - Khristopher Nicholas
- Department of Nutrition, School of Public Health, Harvard University, Boston, MA, United States
| | - Aina Le Don Nomenisoa
- Institute of Fisheries and Marine Sciences, University of Toliara, Toliara, Madagascar
| | | | - Roddy R. Rabarijaona
- Institute of Fisheries and Marine Sciences, University of Toliara, Toliara, Madagascar
- National School of Computer Science, University of Fianarantsoa, Fianarantsoa, Madagascar
| | - Mihary Rabearison
- Institute of Fisheries and Marine Sciences, University of Toliara, Toliara, Madagascar
| | | | - Mbolahasina Ralijaona
- Institute of Fisheries and Marine Sciences, University of Toliara, Toliara, Madagascar
| | | | - Hervet J. Randriamady
- Department of Nutrition, School of Public Health, Harvard University, Boston, MA, United States
| | | | - Hanitra O. Randriatsara
- Service de la Santé Mentale, Direction de Lutte contre les Maladies Non Transmissibles, Ministère de la Santé Publique, Antananarivo, Madagascar
| | - Roddy M. Randriatsara
- Institute of Fisheries and Marine Sciences, University of Toliara, Toliara, Madagascar
| | - Madeleine Rasoanirina
- Institute of Fisheries and Marine Sciences, University of Toliara, Toliara, Madagascar
| | - Michel R. Ratsizafy
- Institute of Fisheries and Marine Sciences, University of Toliara, Toliara, Madagascar
| | - Kinasa F. Razafiely
- Institute of Fisheries and Marine Sciences, University of Toliara, Toliara, Madagascar
| | - Nivohanitra Razafindrasoa
- Centre Hospitalier Universitaire de Soins et de Santé PubliqueAnalakely (CHUSSPA), Antananarivo, Madagascar
| | - Romario
- Institute of Fisheries and Marine Sciences, University of Toliara, Toliara, Madagascar
| | | | - Rocky E. Stroud
- Department of Epidemiology, School of Public Health, Harvard University, Boston, MA, United States
| | | | | | | | | | - Jessica Zamborain-Mason
- Department of Nutrition, School of Public Health, Harvard University, Boston, MA, United States
- Department of Environmental Health, School of Public Health, Harvard University, Boston, MA, United States
| |
Collapse
|
5
|
Lynch AJ, Embke HS, Nyboer EA, Wood LE, Thorpe A, Phang SC, Viana DF, Golden CD, Milardi M, Arlinghaus R, Baigun C, Beard TD, Cooke SJ, Cowx IG, Koehn JD, Lyach R, Potts W, Robertson AM, Schmidhuber J, Weyl OLF. Inland recreational fisheries contribute nutritional benefits and economic value but are vulnerable to climate change. NATURE FOOD 2024; 5:433-443. [PMID: 38741002 DOI: 10.1038/s43016-024-00961-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/12/2024] [Indexed: 05/16/2024]
Abstract
Inland recreational fishing is primarily considered a leisure-driven activity in freshwaters, yet its harvest can contribute to food systems. Here we estimate that the harvest from inland recreational fishing equates to just over one-tenth of all reported inland fisheries catch globally. The estimated total consumptive use value of inland recreational fish destined for human consumption may reach US$9.95 billion annually. We identify Austria, Canada, Germany and Slovakia as countries above the third quantile for nutrition, economic value and climate vulnerability. These results have important implications for populations dependent on inland recreational fishing for food. Our findings can inform climate adaptation planning for inland recreational fisheries, particularly those not currently managed as food fisheries.
Collapse
Affiliation(s)
- Abigail J Lynch
- National Climate Adaptation Science Center, United States Geological Survey, Reston, VA, USA.
| | - Holly S Embke
- Midwest Climate Adaptation Science Center, United States Geological Survey, St. Paul, MN, USA
| | - Elizabeth A Nyboer
- Canadian Centre for Evidence-Based Conservation, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Louisa E Wood
- Centre for Blue Governance, University of Portsmouth, Portsmouth, UK
| | - Andy Thorpe
- Centre for Blue Governance, University of Portsmouth, Portsmouth, UK
| | | | - Daniel F Viana
- Department of Nutrition, Department of Environmental Health, Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Christopher D Golden
- Department of Nutrition, Department of Environmental Health, Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marco Milardi
- Southern Indian Ocean Fisheries Agreement (SIOFA/APSOI), Saint-Denis, France
| | - Robert Arlinghaus
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Division of Integrative Fisheries Management, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claudio Baigun
- Institute of Environmental Research and Engineering, National University of San Martin-CONICET, Buenos Aires, Argentina
| | - T Douglas Beard
- National Climate Adaptation Science Center, United States Geological Survey, Reston, VA, USA
| | - Steven J Cooke
- Canadian Centre for Evidence-Based Conservation, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Ian G Cowx
- International Fisheries Institute, University of Hull, Hull, UK
| | - John D Koehn
- Applied Aquatic Ecology, Arthur Rylah Institute for Environmental Research, Department of Energy, Environment and Climate Action, Heidelberg, Victoria, Australia
- Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Albury, New South Wales, Australia
| | - Roman Lyach
- Institute for Evaluations and Social Analyses (INESAN), Prague, Czech Republic
| | - Warren Potts
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
| | - Ashley M Robertson
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | | | - Olaf L F Weyl
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
| |
Collapse
|
6
|
Yadav NK, Patel AB, Singh SK, Mehta NK, Anand V, Lal J, Dekari D, Devi NC. Climate change effects on aquaculture production and its sustainable management through climate-resilient adaptation strategies: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31731-31751. [PMID: 38652188 DOI: 10.1007/s11356-024-33397-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Aquaculture witnessed a remarkable growth as one of the fastest-expanding sector in the food production industry; however, it faces serious threat from the unavoidable impacts of climate change. Understanding this threat, the present review explores the consequences of climate change on aquaculture production and provides need based strategies for its sustainable management, with a particular emphasis on climate-resilient approaches. The study examines the multi-dimensional impacts of climate change on aquaculture which includes the shifts in water temperature, sea-level rise, ocean acidification, harmful algal blooms, extreme weather events, and alterations in ecological dynamics. The review subsequently investigates innovative scientific interventions and climate-resilient aquaculture strategies aimed at strengthening the adaptive capacity of aquaculture practices. Some widely established solutions include selective breeding, species diversification, incorporation of ecosystem-based management practices, and the implementation of sustainable and advanced aquaculture systems (aquaponics and recirculating aquaculture systems (RAS). These strategies work towards fortifying aquaculture systems against climate-induced disturbances, thereby mitigating risks and ensuring sustained production. This review provides a detailed insight to the ongoing discourse on climate-resilient aquaculture, emphasizing an immediate need for prudent measures to secure the future sustainability of fish food production sector.
Collapse
Affiliation(s)
- Nitesh Kumar Yadav
- Department of Aquaculture, College of Fisheries, Central Agriculture University (Imphal), Lembucherra, Tripura (West), 799210, India.
| | - Arun Bhai Patel
- Department of Aquaculture, College of Fisheries, Central Agriculture University (Imphal), Lembucherra, Tripura (West), 799210, India
| | - Soibam Khogen Singh
- Department of Aquaculture, College of Fisheries, Central Agriculture University (Imphal), Lembucherra, Tripura (West), 799210, India
- Krishi Vigyan Kendra, ICAR Research Complex for NEH Region, Imphal, Manipur, 795142, India
| | - Naresh Kumar Mehta
- Department of Fish Processing Technology, College of Fisheries, Central Agriculture University (Imphal), Lembucherra, Tripura (West), 799210, India
| | - Vishwajeet Anand
- Department of Aquaculture, College of Fisheries, Central Agriculture University (Imphal), Lembucherra, Tripura (West), 799210, India
- ICAR - Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Jham Lal
- Department of Aquaculture, College of Fisheries, Central Agriculture University (Imphal), Lembucherra, Tripura (West), 799210, India
| | - Debojit Dekari
- Department of Aquatic Health and Environment, College of Fisheries, Central Agriculture University (Imphal), Lembucherra, Tripura (West), 799210, India
| | - Ng Chinglembi Devi
- Department of Aquaculture, College of Fisheries, Central Agriculture University (Imphal), Lembucherra, Tripura (West), 799210, India
- Department of Aquaculture, Dr. M.G.R Fisheries College and Research Institute, Thiruvallur District, Ponneri, 601 204, Tamil Nadu, India
| |
Collapse
|
7
|
Zhao K, Gaines SD, García Molinos J, Zhang M, Xu J. Effect of trade on global aquatic food consumption patterns. Nat Commun 2024; 15:1412. [PMID: 38360822 PMCID: PMC10869811 DOI: 10.1038/s41467-024-45556-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/28/2024] [Indexed: 02/17/2024] Open
Abstract
Globalization of fishery products is playing a significant role in shaping the harvesting and use of aquatic foods, but a vigorous debate has focused on whether the trade is a driver of the inequitable distribution of aquatic foods. Here, we develop species-level mass balance and trophic level identification datasets for 174 countries and territories to analyze global aquatic food consumption patterns, trade characteristics, and impacts from 1976 to 2019. We find that per capita consumption of aquatic foods has increased significantly at the global scale, but the human aquatic food trophic level (HATL), i.e., the average trophic level of aquatic food items in the human diet, is declining (from 3.42 to 3.18) because of the considerable increase in low-trophic level aquaculture species output relative to that of capture fisheries since 1976. Moreover, our study finds that trade has contributed to increasing the availability and trophic level of aquatic foods in >60% of the world's countries. Trade has also reduced geographic differences in the HATL among countries over recent decades. We suggest that there are important opportunities to widen the current focus on productivity gains and economic outputs to a more equitable global distribution of aquatic foods.
Collapse
Affiliation(s)
- Kangshun Zhao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, USA
| | - Steven D Gaines
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, USA
| | | | - Min Zhang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, College of Fisheries, Huazhong Agricultural University, Wuhan, China.
| | - Jun Xu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
8
|
Li Y, Sun M, Yang X, Yang M, Kleisner KM, Mills KE, Tang Y, Du F, Qiu Y, Ren Y, Chen Y. Social-ecological vulnerability and risk of China's marine capture fisheries to climate change. Proc Natl Acad Sci U S A 2024; 121:e2313773120. [PMID: 38147648 PMCID: PMC10769861 DOI: 10.1073/pnas.2313773120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/18/2023] [Indexed: 12/28/2023] Open
Abstract
Climate change is a new disrupter to global fisheries systems and their governance frameworks. It poses a pressing management challenge, particularly in China, which is renowned as the world's largest fishing country and seafood producer. As climate change continues to intensify in the region and climate awareness grows within the country's national policy, the need to understand China's fisheries' resilience to the escalating climate crisis becomes paramount. In this study, we conduct an interdisciplinary analysis to assess the vulnerability and risk of China's marine capture fisheries in response to climate change. This study employs a spatially explicit, indicator-based approach with a coupled social-ecological framework, focusing on 67 species and 11 coastal regions. By integrating diverse sets of climatic, ecological, economic, societal, and governance indicators and information, we elucidate the factors that could hinder climate adaptation, including a limited understanding of fish early life stages, uncertainty in seafood production, unequal allocation and accessibility of resources, and inadequate consideration of inclusive governance and adaptive management. Our results show that species, which have managed to survive the stress of overfishing, demonstrate a remarkable ability to adapt to climate change. However, collapsing stocks such as large yellow croaker face a high risk due to the synergistic effects of inherent biological traits and external management interventions. We emphasize the imperative to build institutional, scientific, and social capacity to support fisheries adaptation. The scientific insights provided by this study can inform fisheries management decisions and promote the operationalization of climate-resilient fisheries in China and other regions.
Collapse
Affiliation(s)
- Yunzhou Li
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY11794
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY11794
| | - Ming Sun
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY11794
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY11794
| | - Xiangyan Yang
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY11794
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY11794
| | - Molin Yang
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY11794
| | | | | | - Yi Tang
- College of Marine Culture and Law, Shanghai Ocean University, Shanghai201306, China
| | - Feiyan Du
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou510301, China
| | - Yongsong Qiu
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou510301, China
| | - Yiping Ren
- College of Fisheries, Ocean University of China, Qingdao266003, China
| | - Yong Chen
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY11794
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY11794
| |
Collapse
|
9
|
Smith MR, Myers SS. Do Global Dietary Nutrient Datasets Associate with Human Biomarker Assessments? A Regression Analysis. Am J Clin Nutr 2024; 119:69-75. [PMID: 37898436 DOI: 10.1016/j.ajcnut.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/23/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND To assess the state and trends of global nutrition, our best tools are nationally representative assessments using human biomarker assays, yet these are expensive and logistically challenging. We instead often rely on more easily produced global nutrient datasets-measures of nutrients provided by the diet-as a proxy for nutritional intake and deficiency, due to their greater geographic and temporal coverage. However, the accuracy of global nutrient datasets is questionable. OBJECTIVE We aimed to test whether estimates of inadequate dietary intake derived from existing global nutrient datasets reliably associate with biophysical deficiency. DESIGN We performed linear regressions of estimates of inadequate dietary nutrient intake derived from three global nutrient datasets-Global Dietary Database, Global Nutrient Database, and Global Expanded Nutrient Supply (GENuS) model-against the existing suite of nationally representative biomarker survey data for three key nutrients of global concern in two vulnerable demographic groups: zinc, folate, and vitamin A in females of childbearing age; and zinc and vitamin A in children younger than 5 y. RESULTS We found significant associations (P < 0.1) for only 3 of 22 regressions between global nutrition datasets and biophysical deficiency: zinc for females of childbearing age from GENuS and Global Dietary Database, and zinc for children under 5 y from GENuS. Folate and vitamin A show no reliable relationship between nutrient datasets and independent biomarker surveys. Applying the successful models for zinc to the accompanying full datasets yield estimates of global zinc deficiency of 31%-37% for these demographic groups. CONCLUSIONS We found that few estimates of nutritional inadequacy from global dietary datasets are associated with more direct measures of biophysical deficiency from biomarker studies. Researchers and policymakers must be cautious when applying global nutrient datasets to questions of global health and use them for limited applications.
Collapse
Affiliation(s)
- Matthew R Smith
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States.
| | - Samuel S Myers
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
10
|
Li Y, Sun M, Kleisner KM, Mills KE, Chen Y. A global synthesis of climate vulnerability assessments on marine fisheries: Methods, scales, and knowledge co-production. GLOBAL CHANGE BIOLOGY 2023; 29:3545-3561. [PMID: 37079435 DOI: 10.1111/gcb.16733] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Undertaking climate vulnerability assessments (CVAs) on marine fisheries is instrumental to the identification of regions, species, and stakeholders at risk of impacts from climate change, and the development of effective and targeted responses for fisheries adaptation. In this global literature review, we addressed three important questions to characterize fisheries CVAs: (i) what are the available approaches to develop CVAs in various social-ecological contexts, (ii) are different geographic scales and regions adequately represented, and (iii) how do diverse knowledge systems contribute to current understanding of vulnerability? As part of these general research efforts, we identified and characterized an inventory of frameworks and indicators that encompass a wide range of foci on ecological and socioeconomic dimensions of climate vulnerability on fisheries. Our analysis highlighted a large gap between countries with top research inputs and the most urgent adaptation needs. More research and resources are needed in low-income tropical countries to ensure existing inequities are not exacerbated. We also identified an uneven research focus across spatial scales and cautioned a possible scale mismatch between assessment and management needs. Drawing on this information, we catalog (1) a suite of research directions that could improve the utility and applicability of CVAs, particularly the examination of barriers and enabling conditions that influence the uptake of CVA results into management responses at multiple levels, (2) the lessons that have been learned from applications in data-limited regions, particularly the use of proxy indicators and knowledge co-production to overcome the problem of data deficiency, and (3) opportunities for wider applications, for example diversifying the use of vulnerability indicators in broader monitoring and management schemes. This information is used to provide a set of recommendations that could advance meaningful CVA practices for fisheries management and promote effective translation of climate vulnerability into adaptation actions.
Collapse
Affiliation(s)
- Yunzhou Li
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York, USA
| | - Ming Sun
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York, USA
| | | | | | - Yong Chen
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
11
|
Duncan MI, Micheli F, Boag TH, Marquez JA, Deres H, Deutsch CA, Sperling EA. Oxygen availability and body mass modulate ectotherm responses to ocean warming. Nat Commun 2023; 14:3811. [PMID: 37369654 PMCID: PMC10300008 DOI: 10.1038/s41467-023-39438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In an ocean that is rapidly warming and losing oxygen, accurate forecasting of species' responses must consider how this environmental change affects fundamental aspects of their physiology. Here, we develop an absolute metabolic index (ΦA) that quantifies how ocean temperature, dissolved oxygen and organismal mass interact to constrain the total oxygen budget an organism can use to fuel sustainable levels of aerobic metabolism. We calibrate species-specific parameters of ΦA with physiological measurements for red abalone (Haliotis rufescens) and purple urchin (Strongylocentrotus purpuratus). ΦA models highlight that the temperature where oxygen supply is greatest shifts cooler when water loses oxygen or organisms grow larger, providing a mechanistic explanation for observed thermal preference patterns. Viable habitat forecasts are disproportionally deleterious for red abalone, revealing how species-specific physiologies modulate the intensity of a common climate signal, captured in the newly developed ΦA framework.
Collapse
Affiliation(s)
- Murray I Duncan
- Earth and Planetary Science, Stanford University, Stanford, CA, USA.
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA.
- Department of Environment, University of Seychelles, Anse Royale, Seychelles.
- Blue Economy Research Institute, University of Seychelles, Anse Royale, Seychelles.
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa.
| | - Fiorenza Micheli
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
- Stanford Center for Ocean Solutions, Stanford University, Pacific Grove, CA, USA
| | - Thomas H Boag
- Earth and Planetary Science, Stanford University, Stanford, CA, USA
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, 06511, USA
| | - J Andres Marquez
- Earth and Planetary Science, Stanford University, Stanford, CA, USA
| | - Hailey Deres
- Earth Systems, Stanford University, Stanford, CA, USA
| | - Curtis A Deutsch
- Department of Geosciences and the High Meadows Environmental Institute, Princeton, NJ, USA
| | - Erik A Sperling
- Earth and Planetary Science, Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
Fossile T, Herbst DF, McGrath K, Toso A, Giannini PCF, Milheira RG, Gilson SP, Ferreira J, Bandeira DDR, Haimovici M, Ceretta B, Bender MG, Colonese AC. Bridging archaeology and marine conservation in the Neotropics. PLoS One 2023; 18:e0285951. [PMID: 37228060 DOI: 10.1371/journal.pone.0285951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Anthropogenic impacts on tropical and subtropical coastal environments are increasing at an alarming rate, compromising ecosystem functions, structures and services. Understanding the scale of marine population decline and diversity loss requires a long-term perspective that incorporates information from a range of sources. The Southern Atlantic Ocean represents a major gap in our understanding of pre-industrial marine species composition. Here we begin to fill this gap by performing an extensive review of the published data on Middle and Late Holocene marine fish remains along the southern coast of Brazil. This region preserves archaeological sites that are unique archives of past socio-ecological systems and pre-European biological diversity. We assessed snapshots of species compositions and relative abundances spanning the last 9500 years, and modelled differences in species' functional traits between archaeological and modern fisheries. We found evidence for both generalist and specialist fishing practices in pre-European times, with large body size and body mass caught regularly over hundreds of years. Comparison with modern catches revealed a significant decline in these functional traits, possibly associated with overfishing and escalating human impacts in recent times.
Collapse
Affiliation(s)
- Thiago Fossile
- Department of Prehistory and Institute of Environmental Science and Technology (ICTA-UAB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Dannieli Firme Herbst
- Department of Prehistory and Institute of Environmental Science and Technology (ICTA-UAB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Krista McGrath
- Department of Prehistory and Institute of Environmental Science and Technology (ICTA-UAB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Alice Toso
- Department of Prehistory and Institute of Environmental Science and Technology (ICTA-UAB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- BoCAS, Bonn Center for ArchaeoSciences, Institut für Archäologie und Kulturanthropologie, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | | | - Rafael Guedes Milheira
- Departamento de Antropologia e Arqueologia, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Simon-Pierre Gilson
- Instituto de Ciências Humanas e da Informação, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Jessica Ferreira
- Programa em Patrimônio Cultural e Sociedade, Universidade da Região de Joinville, Joinville; Museu Arqueológico de Sambaqui de Joinville, Joinville, Brazil
| | - Dione da Rocha Bandeira
- Programa em Patrimônio Cultural e Sociedade, Universidade da Região de Joinville, Joinville; Museu Arqueológico de Sambaqui de Joinville, Joinville, Brazil
| | - Manuel Haimovici
- Universidade Federal do Rio Grande, Instituto de Oceanografia, Rio Grande, RS, Brazil
| | - Bruna Ceretta
- Laboratório de Macroecologia e Conservação Marinha, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Mariana G Bender
- Laboratório de Macroecologia e Conservação Marinha, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - André Carlo Colonese
- Department of Prehistory and Institute of Environmental Science and Technology (ICTA-UAB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
13
|
Crona BI, Wassénius E, Jonell M, Koehn JZ, Short R, Tigchelaar M, Daw TM, Golden CD, Gephart JA, Allison EH, Bush SR, Cao L, Cheung WWL, DeClerck F, Fanzo J, Gelcich S, Kishore A, Halpern BS, Hicks CC, Leape JP, Little DC, Micheli F, Naylor RL, Phillips M, Selig ER, Springmann M, Sumaila UR, Troell M, Thilsted SH, Wabnitz CCC. Four ways blue foods can help achieve food system ambitions across nations. Nature 2023; 616:104-112. [PMID: 36813964 PMCID: PMC10076219 DOI: 10.1038/s41586-023-05737-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 01/17/2023] [Indexed: 02/24/2023]
Abstract
Blue foods, sourced in aquatic environments, are important for the economies, livelihoods, nutritional security and cultures of people in many nations. They are often nutrient rich1, generate lower emissions and impacts on land and water than many terrestrial meats2, and contribute to the health3, wellbeing and livelihoods of many rural communities4. The Blue Food Assessment recently evaluated nutritional, environmental, economic and justice dimensions of blue foods globally. Here we integrate these findings and translate them into four policy objectives to help realize the contributions that blue foods can make to national food systems around the world: ensuring supplies of critical nutrients, providing healthy alternatives to terrestrial meat, reducing dietary environmental footprints and safeguarding blue food contributions to nutrition, just economies and livelihoods under a changing climate. To account for how context-specific environmental, socio-economic and cultural aspects affect this contribution, we assess the relevance of each policy objective for individual countries, and examine associated co-benefits and trade-offs at national and international scales. We find that in many African and South American nations, facilitating consumption of culturally relevant blue food, especially among nutritionally vulnerable population segments, could address vitamin B12 and omega-3 deficiencies. Meanwhile, in many global North nations, cardiovascular disease rates and large greenhouse gas footprints from ruminant meat intake could be lowered through moderate consumption of seafood with low environmental impact. The analytical framework we provide also identifies countries with high future risk, for whom climate adaptation of blue food systems will be particularly important. Overall the framework helps decision makers to assess the blue food policy objectives most relevant to their geographies, and to compare and contrast the benefits and trade-offs associated with pursuing these objectives.
Collapse
Affiliation(s)
- Beatrice I Crona
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden.
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Science, Stockholm, Sweden.
| | - Emmy Wassénius
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Science, Stockholm, Sweden
| | - Malin Jonell
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Science, Stockholm, Sweden
| | - J Zachary Koehn
- Stanford Center for Ocean Solutions, Stanford University, Stanford, CA, USA
| | - Rebecca Short
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | | | - Tim M Daw
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | - Christopher D Golden
- Dept. of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Dept. of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Dept. of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jessica A Gephart
- Dept. of Environmental Science, American University, Washington, DC, USA
| | | | - Simon R Bush
- Wageningen University and Research, Wageningen, The Netherlands
| | - Ling Cao
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - William W L Cheung
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Jessica Fanzo
- Bloomberg School of Public Health, Berman Institute of Bioethics, Johns Hopkins University, Washington DC, USA
- Nitze School of Advanced International Studies, Johns Hopkins University, Washington, DC, USA
| | - Stefan Gelcich
- Instituto Milenio en Socio-Ecologia Costera, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center of Applied Ecology and Sustainability, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Avinash Kishore
- International Food Policy Research Institute (IFPRI), New Delhi, India
| | - Benjamin S Halpern
- National Center for Ecological Analysis and Synthesis, UC Santa Barbara, Santa Barbara, CA, USA
- Bren School of Environmental Science and Management, UC Santa Barbara, Santa Barbara, CA, USA
| | | | - James P Leape
- Stanford Center for Ocean Solutions, Stanford University, Stanford, CA, USA
| | - David C Little
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - Fiorenza Micheli
- Stanford Center for Ocean Solutions, Stanford University, Stanford, CA, USA
- Hopkins Marine Station, Oceans Department, Stanford University, Pacific Grove, CA, USA
| | - Rosamond L Naylor
- Department of Earth System Science, Stanford University, Stanford, CA, USA
- Center on Food Security and the Environment, Stanford University, Stanford, CA, USA
| | | | - Elizabeth R Selig
- Stanford Center for Ocean Solutions, Stanford University, Stanford, CA, USA
| | - Marco Springmann
- Oxford Martin Programme on the Future of Food, University of Oxford, Oxford, UK
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - U Rashid Sumaila
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
- School of Public Policy and Global Affairs, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Max Troell
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Science, Stockholm, Sweden
- Beijer Institute of Ecological Economics, Royal Swedish Academy of Science, Stockholm, Sweden
| | | | - Colette C C Wabnitz
- Stanford Center for Ocean Solutions, Stanford University, Stanford, CA, USA
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Roos N. Blue foods brought to the table to improve fish-policy decisions. Nature 2023; 616:42-43. [PMID: 36973461 DOI: 10.1038/d41586-023-00851-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
15
|
Cooke SJ, Fulton EA, Sauer WHH, Lynch AJ, Link JS, Koning AA, Jena J, Silva LGM, King AJ, Kelly R, Osborne M, Nakamura J, Preece AL, Hagiwara A, Forsberg K, Kellner JB, Coscia I, Helyar S, Barange M, Nyboer E, Williams MJ, Chuenpagdee R, Begg GA, Gillanders BM. Towards vibrant fish populations and sustainable fisheries that benefit all: learning from the last 30 years to inform the next 30 years. REVIEWS IN FISH BIOLOGY AND FISHERIES 2023; 33:317-347. [PMID: 37122954 PMCID: PMC9985478 DOI: 10.1007/s11160-023-09765-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/07/2023] [Indexed: 05/03/2023]
Abstract
A common goal among fisheries science professionals, stakeholders, and rights holders is to ensure the persistence and resilience of vibrant fish populations and sustainable, equitable fisheries in diverse aquatic ecosystems, from small headwater streams to offshore pelagic waters. Achieving this goal requires a complex intersection of science and management, and a recognition of the interconnections among people, place, and fish that govern these tightly coupled socioecological and sociotechnical systems. The World Fisheries Congress (WFC) convenes every four years and provides a unique global forum to debate and discuss threats, issues, and opportunities facing fish populations and fisheries. The 2021 WFC meeting, hosted remotely in Adelaide, Australia, marked the 30th year since the first meeting was held in Athens, Greece, and provided an opportunity to reflect on progress made in the past 30 years and provide guidance for the future. We assembled a diverse team of individuals involved with the Adelaide WFC and reflected on the major challenges that faced fish and fisheries over the past 30 years, discussed progress toward overcoming those challenges, and then used themes that emerged during the Congress to identify issues and opportunities to improve sustainability in the world's fisheries for the next 30 years. Key future needs and opportunities identified include: rethinking fisheries management systems and modelling approaches, modernizing and integrating assessment and information systems, being responsive and flexible in addressing persistent and emerging threats to fish and fisheries, mainstreaming the human dimension of fisheries, rethinking governance, policy and compliance, and achieving equity and inclusion in fisheries. We also identified a number of cross-cutting themes including better understanding the role of fish as nutrition in a hungry world, adapting to climate change, embracing transdisciplinarity, respecting Indigenous knowledge systems, thinking ahead with foresight science, and working together across scales. By reflecting on the past and thinking about the future, we aim to provide guidance for achieving our mutual goal of sustaining vibrant fish populations and sustainable fisheries that benefit all. We hope that this prospective thinking can serve as a guide to (i) assess progress towards achieving this lofty goal and (ii) refine our path with input from new and emerging voices and approaches in fisheries science, management, and stewardship.
Collapse
Affiliation(s)
- Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6 Canada
| | - Elizabeth A. Fulton
- CSIRO Environment, Hobart, 7001 TAS Australia
- Centre for Marine Socioecology, University of Tasmania, Hobart, 7001 TAS Australia
| | - Warwick H. H. Sauer
- Department of Ichthyology and Fisheries Science, Rhodes University, Grahamstown, South Africa
| | - Abigail J. Lynch
- National Climate Adaptation Science Center, U.S. Geological Survey, 12201 Sunrise Valley Drive, Reston, VA 20192 USA
| | - Jason S. Link
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Woods Hole, MA USA
| | - Aaron A. Koning
- Global Water Center, University of Nevada-Reno, Reno, NV USA
| | - Joykrushna Jena
- Indian Council of Agricultural Research, Krishi Anusandhan Bhawan-II, Pusa, New Delhi, 110012 India
| | - Luiz G. M. Silva
- Institute of Environmental Engineering, ETH-Zurich, Zurich, Switzerland
| | - Alison J. King
- Centre for Freshwater Ecosystems, La Trobe University, Wodonga, 3690 Vic Australia
| | - Rachel Kelly
- Centre for Marine Socioecology, University of Tasmania, Hobart, 7001 TAS Australia
| | - Matthew Osborne
- Department of Industry, Tourism and Trade, Northern Territory Government, Darwin, 0800 NT Australia
| | - Julia Nakamura
- Strathclyde Centre for Environmental Law and Governance, University of Strathclyde Law School, Glasgow, UK
| | | | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521 Japan
| | | | - Julie B. Kellner
- Woods Hole Oceanographic Institute, Falmouth, MA 02453 USA
- International Council for the Exploration of the Sea, 1553 Copenhagen, Denmark
| | - Ilaria Coscia
- School of Science, Engineering and Environment, University of Salford, Salford, M5 4WT UK
| | - Sarah Helyar
- School of Biological Sciences/Institute for Global Food Security, Queen’s University Belfast, Belfast, UK
| | - Manuel Barange
- Fisheries and Aquaculture Division, Food and Agriculture Organization of the United Nations, Viale Delle Terme Di Caracalla S/N, 00153 Rome, Italy
| | - Elizabeth Nyboer
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6 Canada
| | | | - Ratana Chuenpagdee
- Department of Geography, Memorial University of Newfoundland, St. John’s, NFLD Canada
| | - Gavin A. Begg
- Department of Primary Industries and Regions, PO Box 120, Henley Beach, 5022 SA Australia
| | | |
Collapse
|
16
|
The ecological impact of plastic pollution in a changing climate. Emerg Top Life Sci 2022; 6:389-402. [PMID: 36398707 DOI: 10.1042/etls20220016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
Assessing three interlinked issues, plastic pollution, climate change and biodiversity loss separately can overlook potential interactions that may lead to positive or negative impacts on global ecosystem processes. Recent studies suggest that threatened species and ecosystems are vulnerable to both plastic pollution and climate change stressors. Here we consider the connectivity and state of knowledge between these three environmental issues with a focus on the Global South. Nine out of top ten Long-Term Climate Risk Index (CRI) (2000-2019) ranked countries are located within the Global South, yet research is focused in the Global North. A literature search for the top ten Long-Term Climate Risk Index (CRI) (2000-2019) ranked countries matched a total of 2416 (3.3% of global publications) search results on climate change, with 56 (4% of the global publications) on plastic pollution, and seven (7.7% of the global publications) on both climate change and plastic pollution. There is a strong correlation between the Global South and high biodiversity hotspots, high food insecurity and low environmental performance. Using Bangladesh as a case study, we show the erosion rates and sea level rise scenarios that will increase ocean-bound plastic pollution and impact high biodiversity areas. Poverty alleviation and promoting renewable energy and green practices can significantly reduce the stress on the environment. We recommend that these connected planetary threats can be best addressed through a holistic and collaborative approach to research, a focus on the Global South, and an ambitious policy agenda.
Collapse
|
17
|
Yuan B, Li Z, Shan H, Dashnyam B, Xu X, McClements DJ, Zhang B, Tan M, Wang Z, Cao C. A review of recent strategies to improve the physical stability of phycocyanin. Curr Res Food Sci 2022; 5:2329-2337. [PMID: 36467748 PMCID: PMC9712502 DOI: 10.1016/j.crfs.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 10/10/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
There is an increasing demand for more healthy and sustainable diets, which led to an interest in replacing synthetic colors with natural plant-based ones. Phycocyanin, which is commonly extracted from Spirulina platensis, has been explored as a natural blue pigment for application in the food industry. It is also used as a nutraceutical in food, cosmetic, and pharmaceutical products because of its potentially beneficial biological properties, such as radical scavenging, immune modulating, and lipid peroxidase activities. The biggest challenges to the widespread application of phycocyanin for this purpose are its high sensitivity to chemical degradation when exposed to heat, light, acids, high pressure, heavy metal cations, and denaturants. Consequently, it is of considerable importance to improve its chemical stability, which requires a thorough knowledge of the relationship between the structure, environment, and chemical reactivity of phycocyanin. To increase the application of this natural pigment and nutraceutical within foods and other products, the structure, biological activities, and factors affecting its stability are reviewed, as well as strategies that have been developed to improve its stability. The information contained in this article is intended to stimulate further studies on the development of effective strategies to improve phycocyanin stability and performance.
Collapse
Affiliation(s)
- Biao Yuan
- Department of Food Quality and Safety/ National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Zhuxin Li
- Department of Food Quality and Safety/ National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Honghong Shan
- Department of Food Quality and Safety/ National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Badamkhand Dashnyam
- Department of Food Quality and Safety/ National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xiao Xu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, 312000, China
| | | | - Bingquan Zhang
- Zhejiang Binmei Biotechnology Co. LTD, Linhai, Zhejiang, 318000, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Zhixiang Wang
- Department of Food Quality and Safety/ National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chongjiang Cao
- Department of Food Quality and Safety/ National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| |
Collapse
|
18
|
Myers S, Fanzo J, Wiebe K, Huybers P, Smith M. Current guidance underestimates risk of global environmental change to food security. BMJ 2022; 378:e071533. [PMID: 36175018 PMCID: PMC9517947 DOI: 10.1136/bmj-2022-071533] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Samuel Myers
- Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA, USA
- Harvard University Center for the Environment, Cambridge, MA, USA
| | - Jessica Fanzo
- Nitze School of Advanced International Studies, Berman Institute of Bioethics, Bloomberg School of Public Health, Johns Hopkins University, Washington DC, USA
| | - Keith Wiebe
- International Food Policy Research Institute, Washington DC, USA
| | - Peter Huybers
- Harvard University Center for the Environment, Cambridge, MA, USA
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - Matthew Smith
- Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
19
|
Dong Y, Li L, Xia T, Wang L, Xiao L, Ding N, Wu Y, Lu K. Oxidative Stress Can Be Attenuated by 4-PBA Caused by High-Fat or Ammonia Nitrogen in Cultured Spotted Seabass: The Mechanism Is Related to Endoplasmic Reticulum Stress. Antioxidants (Basel) 2022; 11:1276. [PMID: 35883767 PMCID: PMC9312264 DOI: 10.3390/antiox11071276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress is a common phenomenon in aquaculture, which can be induced by nutritional or environmental factors. Generally, oxidative stress causes poor growth performance, metabolic dysregulation, and even the death of aquatic animals. To identify a nutritional intervention strategy, high-fat diet (HFD) feeding (Experiment I) and acute ammonia nitrogen challenge (Experiment II) tests were carried out. In Experiment I, HFD feeding significantly decreased the growth performance concomitantly with excessive fat deposition in the liver and abdomen. The addition of 4-PBA in the diet improved the excessive fat accumulation. The activities of antioxidative enzymes were suppressed, and the levels of lipid and protein peroxidation were increased, indicating that HFD feeding induced oxidative stress. The endoplasmic reticulum stress (ERs) related genes were downregulated in the HFD group. Under a transmission electron microscope (TEM), more swollen and dilated ER lumen could be observed. These results indicated that the HFD induced ERs activation. Although 4-PBA acted as a potent ERs inhibitor, as evidenced by the alleviated alterations of ERs molecules and the ER ultrastructure, the oxidative stress was also attenuated by 4-PBA. In Experiment II, dietary 4-PBA improved the tolerance to the acute ammonia nitrogen challenge, as lower mortality and serum aminotransferase activity was found. Further results showed that 4-PBA decreased the peroxidation content and attenuated ERs, thus confirming the correlation between oxidative stress and ERs. Our findings showed that dietary 4-PBA supplementation can attenuate oxidative stress induced by a HFD or acute ammonia challenge; the mechanism is related to its potent inhibition effect for ERs.
Collapse
Affiliation(s)
- Yanzou Dong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; (Y.D.); (L.L.); (T.X.)
| | - Lei Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; (Y.D.); (L.L.); (T.X.)
| | - Tian Xia
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; (Y.D.); (L.L.); (T.X.)
| | - Lina Wang
- Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Fujian Aonong Biological Science and Technology Group Co., Ltd., Zhangzhou 363000, China; (L.W.); (L.X.); (N.D.)
| | - Liping Xiao
- Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Fujian Aonong Biological Science and Technology Group Co., Ltd., Zhangzhou 363000, China; (L.W.); (L.X.); (N.D.)
| | - Nengshui Ding
- Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Fujian Aonong Biological Science and Technology Group Co., Ltd., Zhangzhou 363000, China; (L.W.); (L.X.); (N.D.)
| | - Youlin Wu
- Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Fujian Aonong Biological Science and Technology Group Co., Ltd., Zhangzhou 363000, China; (L.W.); (L.X.); (N.D.)
| | - Kangle Lu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; (Y.D.); (L.L.); (T.X.)
| |
Collapse
|
20
|
Tigchelaar M, Leape J, Micheli F, Allison EH, Basurto X, Bennett A, Bush SR, Cao L, Cheung WW, Crona B, DeClerck F, Fanzo J, Gelcich S, Gephart JA, Golden CD, Halpern BS, Hicks CC, Jonell M, Kishore A, Koehn JZ, Little DC, Naylor RL, Phillips MJ, Selig ER, Short RE, Sumaila UR, Thilsted SH, Troell M, Wabnitz CC. The vital roles of blue foods in the global food system. GLOBAL FOOD SECURITY 2022. [DOI: 10.1016/j.gfs.2022.100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Pounds A, Kaminski AM, Budhathoki M, Gudbrandsen O, Kok B, Horn S, Malcorps W, Mamun AA, McGoohan A, Newton R, Ozretich R, Little DC. More Than Fish-Framing Aquatic Animals within Sustainable Food Systems. Foods 2022; 11:1413. [PMID: 35626983 PMCID: PMC9141230 DOI: 10.3390/foods11101413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
Aquatic animals are diverse in terms of species, but also in terms of production systems, the people involved, and the benefits achieved. In this concept piece, we draw on literature to outline how the diversity of aquatic animals, their production, and their consumption all influence their impact within the food system. Built on evidence from an array of reductionist and non-reductionist literature, we suggest that food systems researchers and policymakers adapt current methods and theoretical frameworks to appropriately contextualise aquatic animals in broader food systems. We do this through combining current understandings of food systems theory, value chain, livelihoods, nutritional outcomes, and planetary boundaries thinking. We make several claims around understanding the role of aquatic animals in terms of nutritional output and environmental impacts. We suggest a need to consider: (1) the diversity of species and production methods; (2) variable definitions of an "edible yield"; (3) circular economy principles and the impacts of co-products, and effects beyond nutrient provision; (4) role of aquatic animals in the overall diet; (5) contextual effects of preservation, preparation, cooking, and consumer choices; (6) globalised nature of aquatic animal trade across the value chain; and (7) that aquatic animals are produced from a continuum, rather than a dichotomy, of aquaculture or fisheries. We conclude by proposing a new framework that involves cohesive interdisciplinary discussions around aquatic animal foods and their role in the broader food system.
Collapse
Affiliation(s)
- Alexandra Pounds
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
| | - Alexander M. Kaminski
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
| | - Mausam Budhathoki
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
| | - Oddrun Gudbrandsen
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway;
| | - Björn Kok
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
| | - Stephanie Horn
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
| | - Wesley Malcorps
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
| | - Abdullah-Al Mamun
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh;
| | - Amy McGoohan
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
- The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Richard Newton
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
| | - Reed Ozretich
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
| | - David C. Little
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
| |
Collapse
|
22
|
Acute critical thermal maximum does not predict chronic incremental thermal maximum in Atlantic salmon (Salmo salar). Comp Biochem Physiol A Mol Integr Physiol 2022; 266:111143. [PMID: 34995773 DOI: 10.1016/j.cbpa.2022.111143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 10/19/2022]
Abstract
Atlantic salmon is an important aquaculture species farmed in ocean net-pens and therefore subjected to changing environmental conditions, including rising temperatures. This creates a need for research on the thermal tolerance of this species for the future of sustainable aquaculture. We investigated the thermal tolerance of individually tagged Atlantic salmon post-smolts subjected sequentially to two common high-temperature challenges: critical thermal maximum (CTmax) followed by incremental thermal maximum (ITmax). Our goals were (1) to determine whether CTmax can predict ITmax for individual fish, and (2) to examine connections between various body size (mass, length, condition factor), cardiac (absolute and relative ventricle mass) and blood (hematocrit) metrics and thermal tolerance. We found no relationship between CTmax and ITmax. This is of concern because CTmax, which is a quick and easy test, is often used to predict upper lethal limits in fish despite not using real-world rates of temperature increase and not using death as the experimental endpoint (unlike ITmax). Also, some metrics which correlated in one direction with CTmax had the opposite correlation with ITmax. For instance, smaller fish or fish with smaller ventricles had a higher CTmax but a lower ITmax than larger fish or fish with larger ventricles. Taken together, these results highlight the need to take care when using acute thermal tolerance tests to predict real-world responses to rising temperatures.
Collapse
|
23
|
|
24
|
Naylor RL, Kishore A, Sumaila UR, Issifu I, Hunter BP, Belton B, Bush SR, Cao L, Gelcich S, Gephart JA, Golden CD, Jonell M, Koehn JZ, Little DC, Thilsted SH, Tigchelaar M, Crona B. Blue food demand across geographic and temporal scales. Nat Commun 2021; 12:5413. [PMID: 34526495 PMCID: PMC8443621 DOI: 10.1038/s41467-021-25516-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022] Open
Abstract
Numerous studies have focused on the need to expand production of 'blue foods', defined as aquatic foods captured or cultivated in marine and freshwater systems, to meet rising population- and income-driven demand. Here we analyze the roles of economic, demographic, and geographic factors and preferences in shaping blue food demand, using secondary data from FAO and The World Bank, parameters from published models, and case studies at national to sub-national scales. Our results show a weak cross-sectional relationship between per capita income and consumption globally when using an aggregate fish metric. Disaggregation by fish species group reveals distinct geographic patterns; for example, high consumption of freshwater fish in China and pelagic fish in Ghana and Peru where these fish are widely available, affordable, and traditionally eaten. We project a near doubling of global fish demand by mid-century assuming continued growth in aquaculture production and constant real prices for fish. Our study concludes that nutritional and environmental consequences of rising demand will depend on substitution among fish groups and other animal source foods in national diets.
Collapse
Affiliation(s)
| | - Avinash Kishore
- International Food Policy Research Institute (IFPRI), New Delhi, India
| | | | | | | | - Ben Belton
- WorldFish, Bayan Lepas, Malaysia
- Michigan State University, East Lansing, MI, USA
| | - Simon R Bush
- Wageningen University, Wageningen, The Netherlands
| | - Ling Cao
- Shanghai Jiao Tong University, Shanghai, China
| | - Stefan Gelcich
- Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | - Malin Jonell
- Beijer Institute of Ecological Economics, The Royal Swedish Academy of Sciences, Stockholm, Sweden
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
- Royal Swedish Academy of Science, Stockholm, Sweden
| | | | | | | | | | - Beatrice Crona
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
- Royal Swedish Academy of Science, Stockholm, Sweden
| |
Collapse
|