1
|
Alban TJ, Riaz N, Parthasarathy P, Makarov V, Kendall S, Yoo SK, Shah R, Weinhold N, Srivastava R, Ma X, Krishna C, Mok JY, van Esch WJE, Garon E, Akerley W, Creelan B, Aanur N, Chowell D, Geese WJ, Rizvi NA, Chan TA. Neoantigen immunogenicity landscapes and evolution of tumor ecosystems during immunotherapy with nivolumab. Nat Med 2024; 30:3209-3222. [PMID: 39349627 DOI: 10.1038/s41591-024-03240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 08/08/2024] [Indexed: 11/16/2024]
Abstract
Neoantigen immunoediting drives immune checkpoint blockade efficacy, yet the molecular features of neoantigens and how neoantigen immunogenicity shapes treatment response remain poorly understood. To address these questions, 80 patients with non-small cell lung cancer were enrolled in the biomarker cohort of CheckMate 153 (CA209-153), which collected radiographic guided biopsy samples before treatment and during treatment with nivolumab. Early loss of mutations and neoantigens during therapy are both associated with clinical benefit. We examined 1,453 candidate neoantigens, including many of which that had reduced cancer cell fraction after treatment with nivolumab, and identified 196 neopeptides that were recognized by T cells. Mapping these neoantigens to clonal dynamics, evolutionary trajectories and clinical response revealed a strong selection against immunogenic neoantigen-harboring clones. We identified position-specific amino acid and physiochemical features related to immunogenicity and developed an immunogenicity score. Nivolumab-induced microenvironmental evolution in non-small cell lung cancer shared some similarities with melanoma, yet critical differences were apparent. This study provides unprecedented molecular portraits of neoantigen landscapes underlying nivolumab's mechanism of action.
Collapse
Affiliation(s)
- Tyler J Alban
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prerana Parthasarathy
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vladimir Makarov
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sviatoslav Kendall
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Seong-Keun Yoo
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Rachna Shah
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nils Weinhold
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Raghvendra Srivastava
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaoxiao Ma
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | - Edward Garon
- Department of Thoracic Medical Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Wallace Akerley
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Benjamin Creelan
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Diego Chowell
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Naiyer A Rizvi
- Synthekine, Menlo Park, CA, USA
- Thoracic Oncology, Columbia University, New York, NY, USA
| | - Timothy A Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA.
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
- National Center for Regenerative Medicine, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
2
|
Hernando-Calvo A, Han M, Ayodele O, Wang BX, Bruce JP, Abbas-Aghababazadeh F, Vila-Casadesús M, Sanz-Garcia E, Yang SYC, Berman HK, Vivancos A, Lam B, Lungu I, Salawu A, Stayner LA, Haibe-Kains B, Bedard PL, Avery L, Razak ARA, Pugh TJ, Spreafico A, Siu LL, Hansen AR. A Phase II, Open-Label, Randomized Trial of Durvalumab With Olaparib or Cediranib in Patients With Mismatch Repair-Proficient Colorectal or Pancreatic Cancer. Clin Colorectal Cancer 2024; 23:272-284.e9. [PMID: 38960798 DOI: 10.1016/j.clcc.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND The use of immunotherapy in mismatch repair proficient colorectal cancer (pMMR-CRC) or pancreatic adenocarcinoma (PDAC) is associated with limited efficacy. DAPPER (NCT03851614) is a phase 2, basket study randomizing patients with pMMR CRC or PDAC to durvalumab with olaparib (durvalumab + olaparib) or durvalumab with cediranib (durvalumab + cediranib). METHODS PDAC or pMMR-CRC patients were randomized to either durvalumab+olaparib (arm A), or durvalumab + cediranib (arm B). Co-primary endpoints included pharmacodynamic immune changes in the tumor microenvironment (TME) and safety. Objective response rate, progression-free survival (PFS) and overall survival (OS) were determined. Paired tumor samples were analyzed by multiplexed immunohistochemistry and RNA-sequencing. RESULTS A total of 31 metastatic pMMR-CRC patients were randomized to arm A (n = 16) or B (n = 15). In 28 evaluable patients, 3 patients had stable disease (SD) (2 patients treated with durvalumab + olaparib and 1 patient treated with durvalumab + cediranib) while 25 had progressive disease (PD). Among patients with PDAC (n = 19), 9 patients were randomized to arm A and 10 patients were randomized to arm B. In 18 evaluable patients, 1 patient had a partial response (unconfirmed) with durvalumab + cediranib, 1 patient had SD with durvalumab + olaparib while 16 had PD. Safety profile was manageable and no grade 4-5 treatment-related adverse events were observed in either arm A or B. No significant changes were observed for CD3+/CD8+ immune infiltration in on-treatment biopsies as compared to baseline for pMMR-CRC and PDAC independent of treatment arms. Increased tumor-infiltrating lymphocytes at baseline, low baseline CD68+ cells and different immune gene expression signatures at baseline were associated with outcomes. CONCLUSIONS In patients with pMMR-CRC or PDAC, durvalumab + olaparib and durvalumab + cediranib showed limited antitumor activity. Different immune components of the TME were associated with treatment outcomes.
Collapse
Affiliation(s)
- Alberto Hernando-Calvo
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Ming Han
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Olubukola Ayodele
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Ben X Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jeffrey P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | | | - Enrique Sanz-Garcia
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - S Y Cindy Yang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Hal K Berman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ana Vivancos
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Bernard Lam
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Ilinca Lungu
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Abdulazeez Salawu
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lee-Anne Stayner
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Ontario Institute for Cancer Research, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Department of Computer Science, University of Toronto, Toronto, Ontario, Canada; Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| | - Philippe L Bedard
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lisa Avery
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Albiruni R A Razak
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Ontario Institute for Cancer Research, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Anna Spreafico
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lillian L Siu
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Aaron R Hansen
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Ricciuti B, Elkrief A, Lin J, Zhang J, Alessi JV, Lamberti G, Gandhi M, Di Federico A, Pecci F, Wang X, Makarem M, Murilo Hidalgo Filho C, Gorria T, Saini A, Pabon C, Lindsay J, Pfaff KL, Welsh EL, Nishino M, Sholl LM, Rodig S, Kilickap S, Rietschel P, McIntyre DAG, Pouliot JF, Altan M, Gainor JF, Heymach JV, Schoenfeld AJ, Awad MM. Three-Year Overall Survival Outcomes and Correlative Analyses in Patients With NSCLC and High (50%-89%) Versus Very High (≥90%) Programmed Death-Ligand 1 Expression Treated With First-Line Pembrolizumab or Cemiplimab. JTO Clin Res Rep 2024; 5:100675. [PMID: 39399157 PMCID: PMC11471150 DOI: 10.1016/j.jtocrr.2024.100675] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Responses to first-line programmed cell death protein 1 inhibition vary among patients with metastatic NSCLC and a programmed death-ligand 1 (PD-L1) tumor proportion score (TPS) greater than or equal to 50%. We previously reported improved clinical outcomes to first-line programmed cell death protein 1 inhibition in patients with metastatic NSCLC with a PD-L1 TPS of greater than or equal to 90% versus 50% to 89% in a pilot study. Here, we report the three-year survival with first-line pembrolizumab and cemiplimab in two large independent cohorts of patients with PD-L1 TPS greater than or equal to 90% versus 50% to 89% and characterize genomic and immunophenotypic differences between these PD-L1 expression groups, which were largely unknown. Methods We analyzed three-year outcomes of the following two independent cohorts: (1) a multicenter cohort of patients from four academic centers in the United States treated with pembrolizumab and (2) EMPOWER-Lung 1, randomized, phase III trial comparing first-line cemiplimab with chemotherapy. Tumor genomic profiling and multiplexed immunofluorescence were performed to evaluate genomic and immunophenotypic correlates of very high PD-L1 expression. Results At three years of follow-up, progression-free survival (hazard ratio [HR], 0.69; p < 0.001) and overall survival (HR, 0.70; p < 0.01) to first-line commercial pembrolizumab were significantly improved in patients with a PD-L1 TPS greater than or equal to 90% versus 50% to 89%. In the EMPOWER-Lung 1, patients assigned to the cemiplimab arm with a PD-L1 TPS greater than or equal to 90% also had significant improvements in progression-free survival (HR, 0.53; p < 0.0001) and overall survival (HR, 0.63; p = 0.007) compared with those with a PD-L1 of 50% to 89%. Tumor genomic profiling of 553 NSCLC samples revealed that mutations in STK11 and SMARCA4 were significantly more frequent in tumors with a PD-L1 TPS of 50% to 89% compared with those with a PD-L1 TPS greater than or equal to 90% (Q < 0.15), whereas BRCA2 was enriched in NSCLC samples with a PD-L1 TPS greater than or equal to 90% (Q < 0.15). Multiplexed immunofluorescence on 93 NSCLC samples identified higher intratumoral CD8+PD1+ T cells (p = 0.02) in tumors with PD-L1 TPS greater than or equal to 90% versus 50% to 89%. Conclusion Pembrolizumab and cemiplimab were found to have long-term survival benefit and favorable genomic and immunophenotypic profile in patients with advanced NSCLC with PD-L1 TPS greater than or equal to 90% compared with TPS 50% to 89%.
Collapse
Affiliation(s)
- Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Arielle Elkrief
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jessica Lin
- Department of Medicine, Center for Thoracic Cancers, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Jianjun Zhang
- Departments of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joao V. Alessi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Giuseppe Lamberti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Malini Gandhi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Federica Pecci
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Xinan Wang
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Maisam Makarem
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Teresa Gorria
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Hospital Clinic de Barcelona, Barcelona, Spain
| | - Arushi Saini
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Cindy Pabon
- Departments of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James Lindsay
- ImmunoProfile, Department of Pathology, Brigham & Women’s Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kathleen L. Pfaff
- ImmunoProfile, Department of Pathology, Brigham & Women’s Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Emma L. Welsh
- ImmunoProfile, Department of Pathology, Brigham & Women’s Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mizuki Nishino
- Department of Radiology, Brigham and Women’s Hospital and Department of Imaging, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lynette M. Sholl
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Scott Rodig
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Saadettin Kilickap
- Faculty of Medicine, Department of Internal Medicine and Medical Oncology, Istinye University Istanbul, Istanbul, Turkey
| | | | | | | | - Mehmet Altan
- Departments of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Justin F. Gainor
- Department of Medicine, Center for Thoracic Cancers, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - John V. Heymach
- Departments of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adam J. Schoenfeld
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark M. Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
4
|
Gao A, Wang X, Wang J, Zhong D, Zhang L. Homologous recombination deficiency status predicts response to immunotherapy-based treatment in non-small cell lung cancer patients. Thorac Cancer 2024; 15:1842-1853. [PMID: 39081050 PMCID: PMC11367659 DOI: 10.1111/1759-7714.15408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/11/2024] [Accepted: 07/04/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Homologous recombination deficiency (HRD) is a biomarker that predicts response to ovarian cancer treatment with poly (ADP-ribose) polymerase (PARP) inhibitors or breast cancer treatment with first-line platinum-based chemotherapy. However, there are few studies on the prognosis of lung cancer patients treated with immune checkpoint inhibitor (ICI) therapy using HRD as a biomarker. METHODS We studied the relationship between HRD status and the effectiveness of first-line ICI-based therapy in EGFR/ALK wild-type metastatic non-small cell lung cancer patients (NSCLC) patients. RESULTS This study included 22 treatment naïve NSCLC patients. The HRD score ranged from -26.37 to 92.34, with an average of 24.57. Based on analysis of the progression-free survival (PFS) data from the included NSCLC patients, threshold traversal was carried out. HRD (+) was defined as an HRD score of 31 or higher. Kaplan-Meier PFS survival analysis showed prolonged median PFS (mPFS) in NSCLC patients with HRD (+) versus HRD (-) (N/A vs. 7.0 ms, log-rank p = 0.029; HR 0.20, 95% CI: 0.04-0.96, likelihood-ratio p = 0.03). In patients with PD-L1 TPS ≥50% and HRD score ≥31 (co-status high), the mPFS was temporarily not reached during the follow-up period. In patients with PD-L1 TPS <1% and HRD score <31, the mPFS was 3 ms. Cox regression analysis showed that the hazard ratio of the co-status was 0.14 (95% CI: 0.04-0.54), which was a good prognostic factor, and the prognostic effect of co-status was better than that of HRD score alone. CONCLUSION The HRD status can be identified as an independent significance in NSCLC patients treated with first-line ICI-based therapy.
Collapse
Affiliation(s)
- Ai Gao
- Department of Medical OncologyTianjin Medical University General HospitalTianjinChina
| | - Xin Wang
- Department of Medical OncologyTianjin Medical University General HospitalTianjinChina
| | - Jing Wang
- Department of Medical OncologyTianjin Medical University General HospitalTianjinChina
| | - Diansheng Zhong
- Department of Medical OncologyTianjin Medical University General HospitalTianjinChina
| | - Linlin Zhang
- Department of Medical OncologyTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
5
|
Hong WF, Zhang F, Wang N, Bi JM, Zhang DW, Wei LS, Song ZT, Mills GB, Chen MM, Li XX, Du SS, Yu M. Dynamic immunoediting by macrophages in homologous recombination deficiency-stratified pancreatic ductal adenocarcinoma. Drug Resist Updat 2024; 76:101115. [PMID: 39002266 DOI: 10.1016/j.drup.2024.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease, notably resistant to existing therapies. Current research indicates that PDAC patients deficient in homologous recombination (HR) benefit from platinum-based treatments and poly-ADP-ribose polymerase inhibitors (PARPi). However, the effectiveness of PARPi in HR-deficient (HRD) PDAC is suboptimal, and significant challenges remain in fully understanding the distinct characteristics and implications of HRD-associated PDAC. We analyzed 16 PDAC patient-derived tissues, categorized by their homologous recombination deficiency (HRD) scores, and performed high-plex immunofluorescence analysis to define 20 cell phenotypes, thereby generating an in-situ PDAC tumor-immune landscape. Spatial phenotypic-transcriptomic profiling guided by regions-of-interest (ROIs) identified a crucial regulatory mechanism through localized tumor-adjacent macrophages, potentially in an HRD-dependent manner. Cellular neighborhood (CN) analysis further demonstrated the existence of macrophage-associated high-ordered cellular functional units in spatial contexts. Using our multi-omics spatial profiling strategy, we uncovered a dynamic macrophage-mediated regulatory axis linking HRD status with SIGLEC10 and CD52. These findings demonstrate the potential of targeting CD52 in combination with PARPi as a therapeutic intervention for PDAC.
Collapse
Affiliation(s)
- Wei-Feng Hong
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China; Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310005, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310005, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310005, China
| | - Feng Zhang
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Nan Wang
- Cosmos Wisdom Biotech, co. ltd, Building 10, No. 617 Jiner Road, Hangzhou, Zhejiang, China
| | - Jun-Ming Bi
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ding-Wen Zhang
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Lu-Sheng Wei
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhen-Tao Song
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd. Jinan, Shandong, China
| | - Gordon B Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, USA
| | - Min-Min Chen
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Xue-Xin Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna 17165, Sweden.
| | - Shi-Suo Du
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Min Yu
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Zhang C, Ma HM, Wu S, Shen JM, Zhang N, Xu YL, Li CX, He P, Ge MK, Chu XL, Zhang YX, Zheng JK, Chen GQ, Shen SM. Secreted PTEN binds PLXDC2 on macrophages to drive antitumor immunity and tumor suppression. Dev Cell 2024:S1534-5807(24)00486-6. [PMID: 39197453 DOI: 10.1016/j.devcel.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/24/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024]
Abstract
Loss of phosphatase and tensin homolog (PTEN) has been linked to an immunosuppressive tumor microenvironment, but its underlying mechanisms remain largely enigmatic. Here, we report that PTEN can be secreted by the transmembrane emp24 domain-containing protein 10 (TMED10)-channeled protein secretion pathway. Inhibiting PTEN secretion from tumor cells contributes to immunosuppression and impairs the tumor-suppressive role of PTEN, while intratumoral injection of PTEN protein promotes antitumor immunity and suppresses tumor growth in mice. Mechanistically, extracellular PTEN binds to the plexin domain-containing protein 2 (PLXDC2) on macrophages, triggering subsequent activation of JAK2-STAT1 signaling, which switches tumor-associated macrophages (TAMs) from the immunosuppressive to inflammatory phenotype, leading to enhanced activation of CD8+ T and natural killer cells. Importantly, PTEN treatment also enhances the therapeutic efficacy of anti-PD-1 treatment in mice and reverses the immune-suppressive phenotype of patient-derived primary TAMs. These data identify a cytokine-like role of PTEN in immune activation and tumor suppression and demonstrate the therapeutic potential for extracellular administration of PTEN in cancer immunotherapy.
Collapse
Affiliation(s)
- Cheng Zhang
- Institute of Aging & Tissue Regeneration, Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No.2019RU043), State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China; School of Basic Medicine and Life Science, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, Hainan 571199, China
| | - Hong-Ming Ma
- Institute of Aging & Tissue Regeneration, Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No.2019RU043), State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Shuai Wu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Jia-Ming Shen
- Institute of Aging & Tissue Regeneration, Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No.2019RU043), State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Na Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Yi-Lu Xu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Cheng-Xiao Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Ping He
- Institute of Aging & Tissue Regeneration, Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No.2019RU043), State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China
| | - Meng-Kai Ge
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Xi-Li Chu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Yu-Xue Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Jun-Ke Zheng
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Guo-Qiang Chen
- Institute of Aging & Tissue Regeneration, Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No.2019RU043), State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China; School of Basic Medicine and Life Science, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, Hainan 571199, China.
| | - Shao-Ming Shen
- Institute of Aging & Tissue Regeneration, Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No.2019RU043), State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China.
| |
Collapse
|
7
|
Lou Y, Chen Y, Guo K, Li B, Zheng S. Emerging biomarkers for immunotherapy response in biliary tract cancers: a comprehensive review of immune checkpoint inhibitor strategies. Biomark Med 2024; 18:703-715. [PMID: 39143949 PMCID: PMC11441040 DOI: 10.1080/17520363.2024.2385297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/14/2024] [Indexed: 08/16/2024] Open
Abstract
Biliary tract cancers (BTCs) have rising incidence and mortality rates. Chemotherapy's limited efficacy has led to exploring new treatments like immunotherapy. which offers modest benefits. Moreover, the identification of reliable predictive biomarkers for immune checkpoint therapy in BTCs remains elusive, hindering personalized treatment strategies. This review provides an overview of the current landscape of emerging biomarkers for immunotherapy response in BTCs. We discuss the incremental benefits of combination therapy and the evolving role of immunotherapy in managing advanced BTC. Additionally, we highlight the need for robust predictive biomarkers to optimize treatment outcomes and foster a more individualized approach to patient care. We aim to identify promising research avenues and strategies to enhance therapeutic efficacy and patient survival in BTCs.
Collapse
Affiliation(s)
- Yidan Lou
- Zhejiang University School of Medicine, Hangzhou, 310006, China
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Yijing Chen
- Zhejiang University School of Medicine, Hangzhou, 310006, China
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Kaibo Guo
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Key Laboratory of Clinical Cancer Pharmacology & Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, 310006, China
| | - Binbin Li
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Department of Oncology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Song Zheng
- Zhejiang University School of Medicine, Hangzhou, 310006, China
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Key Laboratory of Clinical Cancer Pharmacology & Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, 310006, China
- Department of Oncology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| |
Collapse
|
8
|
Chehade H, Gogoi R, Adzibolosu NK, Galoforo S, Fehmi RA, Kheil M, Fox A, Kim S, Rattan R, Hou Z, Morris RT, Matherly LH, Mor G, Alvero AB. BRCA Status Dictates Wnt Responsiveness in Epithelial Ovarian Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:2075-2088. [PMID: 39028933 PMCID: PMC11320024 DOI: 10.1158/2767-9764.crc-24-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/17/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
The association of BRCA1 and BRCA2 mutations with increased risk for developing epithelial ovarian cancer is well established. However, the observed clinical differences, particularly the improved therapy response and patient survival in BRCA2-mutant patients, are unexplained. Our objective is to identify molecular pathways that are differentially regulated upon the loss of BRCA1 and BRCA2 functions in ovarian cancer. Transcriptomic and pathway analyses comparing BRCA1-mutant, BRCA2-mutant, and homologous recombination wild-type ovarian tumors showed differential regulation of the Wnt/β-catenin pathway. Using Wnt3A-treated BRCA1/2 wild-type, BRCA1-null, and BRCA2-null mouse ovarian cancer cells, we observed preferential activation of canonical Wnt/β-catenin signaling in BRCA1/2 wild-type ovarian cancer cells, whereas noncanonical Wnt/β-catenin signaling was preferentially activated in the BRCA1-null ovarian cancer cells. Interestingly, BRCA2-null mouse ovarian cancer cells demonstrated a unique response to Wnt3A with the preferential upregulation of the Wnt signaling inhibitor Axin2. In addition, decreased phosphorylation and enhanced stability of β-catenin were observed in BRCA2-null mouse ovarian cancer cells, which correlated with increased inhibitory phosphorylation on GSK3β. These findings open venues for the translation of these molecular observations into modalities that can impact patient survival. SIGNIFICANCE We show that BRCA1 and BRCA2 mutation statuses differentially impact the regulation of the Wnt/β-catenin signaling pathway, a major effector of cancer initiation and progression. Our findings provide a better understanding of molecular mechanisms that promote the known differential clinical profile in these patient populations.
Collapse
Affiliation(s)
- Hussein Chehade
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan.
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan.
| | - Radhika Gogoi
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan.
- Karmanos Cancer Institute, Detroit, Michigan.
| | - Nicholas K. Adzibolosu
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan.
| | - Sandra Galoforo
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan.
| | - Rouba-Ali Fehmi
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.
- Karmanos Cancer Institute, Detroit, Michigan.
| | - Mira Kheil
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.
- Karmanos Cancer Institute, Detroit, Michigan.
| | - Alexandra Fox
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan.
| | - Seongho Kim
- Karmanos Cancer Institute, Detroit, Michigan.
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.
| | - Ramandeep Rattan
- Division of Gynecology Oncology, Department of Women’s Health Services, Henry Ford Cancer Institute and Henry Ford Health System, Detroit, Michigan.
| | - Zhanjun Hou
- Karmanos Cancer Institute, Detroit, Michigan.
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.
| | - Robert T. Morris
- Karmanos Cancer Institute, Detroit, Michigan.
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.
| | - Larry H. Matherly
- Karmanos Cancer Institute, Detroit, Michigan.
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.
| | - Gil Mor
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan.
- Karmanos Cancer Institute, Detroit, Michigan.
| | - Ayesha B. Alvero
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan.
- Karmanos Cancer Institute, Detroit, Michigan.
| |
Collapse
|
9
|
Tang Q, Li H, Zhao XT, Li ZY, Ma CX, Zhou SQ, Chen DD. Opportunities and Challenges in the Development of Antibody-Drug Conjugate for Triple-Negative Breast Cancer: The Diverse Choices and Changing Needs. World J Oncol 2024; 15:527-542. [PMID: 38993251 PMCID: PMC11236369 DOI: 10.14740/wjon1853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/11/2024] [Indexed: 07/13/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous breast cancer subtype, which is also characterized by the aggressive phenotype, high recurrence rate, and poor prognosis. Antibody-drug conjugate (ADC) is a monoclonal antibody with a cytotoxic payload connected by a linker. ADC is gaining more and more attention as a targeted anti-cancer agent. Clinical studies of emerging ADC drugs such as sacituzumab govitecan and trastuzumab deruxtecan in patients with metastatic breast cancer (including TNBC) are progressing rapidly. In view of its excellent clinical efficacy and good tolerability, Sacituzumab govitecan gained accelerated approval by the FDA for the treatment of advanced metastatic TNBC in 2020. This review discusses the treatment status and challenges in TNBC, with an emphasis on the current status of ADC development and clinical trials in TNBC and metastatic breast cancer. We also summarize the clinical experience and future exploration directions of ADC development for TNBC patients.
Collapse
Affiliation(s)
- Qi Tang
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
- These authors contributed equally to this article
| | - Hui Li
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
- These authors contributed equally to this article
| | - Xin Tong Zhao
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
- These authors contributed equally to this article
| | - Ze Ying Li
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
| | - Chun Xiao Ma
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
| | - Shao Qiang Zhou
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
| | - De Dian Chen
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
| |
Collapse
|
10
|
Ma J, Shah R, Bell AC, McDermott N, Pei X, Selenica P, Haseltine J, Delsite R, Khan AJ, Lok BH, Ellis MJ, Aft RF, Setton J, Reis-Filho JS, Riaz N, Powell SN. Increased Synthetic Cytotoxicity of Combinatorial Chemoradiation Therapy in Homologous Recombination Deficient Tumors. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)02946-8. [PMID: 38997095 DOI: 10.1016/j.ijrobp.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/10/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
PURPOSE Homologous recombination deficient (HRD) tumors are exquisitely sensitive to platinum-based chemotherapy and when combined with radiation therapy (RT), leads to improved overall survival in multiple cancer types. Whether a subset of tumors with distinct molecular characteristics demonstrate increased benefit from cisplatin and RT (c-RT) is unclear. We hypothesized that HRD tumors, whether associated with BRCA mutations or genomic scars of HRD, exhibit exquisite sensitivity to c-RT, and that HRD may be a significant driver of c-RT benefit. METHODS AND MATERIALS Sensitivity to c-RT was examined using isogenic and sporadic breast cancer cell lines. HRD was assessed using 4 assays: RT-induced Rad51 foci, a DR-GFP reporter assay, a genomic scar score (large-scale state transitions [LST]), and clonogenic survival assays. Whole-genome sequencing of 4 breast tumors from a phase 2 clinical trial of neoadjuvant c-RT in triple-negative breast cancer was performed and HRD was defined using HRDetect. RESULTS BRCA1/2 deficient cell lines displayed functional HRD based on the Rad51 functional assay, with c-RT to RT or cisplatin interaction ratios (IR) of 1.11 and 26.84 for the BRCA1 isogenic pair at 2 μM cisplatin and 6 Gy, respectively. The highest LST lines demonstrated HRD and synthetic cytotoxicity to c-RT with IR at 2 Gy and cisplatin 20 μM of 7.50, and the lowest LST line with IR of 0.65. Of 4 evaluable patients in the phase 2 trial, one achieved a pathologic complete response with corresponding HRD based on multiple genomic scar scores including HRDetect and LST scores, compared with patients without a pathologic complete response. CONCLUSIONS HRD breast cancers, whether identified by BRCA1/2 mutation status, functional tests, or mutational signatures, appear to be significantly more sensitive to c-RT compared with isogenic controls or tumors without HRD mutational signatures. HRD tumors may be exquisitely sensitive to c-RT which warrants further clinical investigation to guide a precision oncology approach.
Collapse
Affiliation(s)
- Jennifer Ma
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rachna Shah
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew C Bell
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Niamh McDermott
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xin Pei
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pier Selenica
- Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Justin Haseltine
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert Delsite
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Atif J Khan
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Benjamin H Lok
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York; Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Departments of Radiation Oncology; Medical Biophysics; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Matthew J Ellis
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Rebecca F Aft
- Department of General Surgery, Washington University, St Louis, Missouri
| | - Jeremy Setton
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Nadeem Riaz
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Simon N Powell
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
11
|
Park J, Kim JC, Lee YJ, Kim S, Kim SW, Shin EC, Lee JY, Park SH. Unique immune characteristics and differential anti-PD-1-mediated reinvigoration potential of CD8 + TILs based on BRCA1/2 mutation status in epithelial ovarian cancers. J Immunother Cancer 2024; 12:e009058. [PMID: 38964784 PMCID: PMC11227838 DOI: 10.1136/jitc-2024-009058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND We aimed to investigate the distinct immunological characteristics of the tumor immune microenvironment in epithelial ovarian cancer (EOC) according to BRCA1/2 mutations status and differential PD-1 expression levels. METHODS Tumor-infiltrating lymphocytes (TILs) were collected from patients with newly diagnosed advanced-stage EOC (YUHS cohort, n=117). This YUHS cohort was compared with The Cancer Genome Atlas (TCGA) data for ovarian serous cystadenocarcinoma (n=482), in terms of survival outcomes and immune-related gene profiles according to BRCA1/2 status. We used multicolor flow cytometry to characterize the immune phenotypes and heterogeneity of TILs with or without BRCA1/2 mutations. In vitro functional assays were conducted to evaluate the reinvigorating ability of CD8+ TILs on anti-PD-1 treatment. RESULTS We found that EOC patients with BRCA1/2 mutations (BRCA1/2mt) exhibited better survival outcomes and significantly higher tumor mutation burden (TMB), compared with BRCA1/2 non-mutated (BRCA1/2wt) patients. Furthermore, CD8+ TILs within BRCA1/2mt tumors displayed characteristics indicating more severe T-cell exhaustion than their BRCA1/2wt counterparts. Notably, the capacity for anti-PD-1-mediated reinvigoration of CD8+ TILs was significantly greater in BRCA1/2wt tumors compared with BRCA1/2mt tumors. Additionally, within the BRCA1/2wt group, the frequency of PD-1highCD8+ TILs was positively correlated with the reinvigoration capacity of CD8+ TILs after anti-PD-1 treatment. CONCLUSION Our results highlight unique immune features of CD8+ TILs in EOC and a differential response to anti-PD-1 treatment, contingent on BRCA1/2 mutation status. These findings suggest that immune checkpoint blockade may be a promising frontline therapeutic option for selected BRCA1/2wt EOC patients.
Collapse
Affiliation(s)
- Junsik Park
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
- Department of Obstetrics and Gynecology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea (the Republic of)
| | - Jung Chul Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
- Department of Obstetrics and Gynecology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea (the Republic of)
| | - Yong Jae Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Sunghoon Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Sang Wun Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea (the Republic of)
| | - Jung Yun Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea (the Republic of)
| |
Collapse
|
12
|
Balog JÁ, Horti-Oravecz K, Kövesdi D, Bozsik A, Papp J, Butz H, Patócs A, Szebeni GJ, Grolmusz VK. Peripheral immunophenotyping reveals lymphocyte stimulation in healthy women living with hereditary breast and ovarian cancer syndrome. iScience 2024; 27:109882. [PMID: 38799565 PMCID: PMC11126817 DOI: 10.1016/j.isci.2024.109882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/11/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
Germline pathogenic variants in BRCA1 and BRCA2 (gpath(BRCA1/2)) represent genetic susceptibility for hereditary breast and ovarian cancer syndrome. Tumor-immune interactions are key contributors to breast cancer pathogenesis. Although earlier studies confirmed pro-tumorigenic immunological alterations in breast cancer patients, data are lacking in healthy carriers of gpath(BRCA1/2). Peripheral blood mononuclear cells of 66 women with or without germline predisposition or breast cancer were studied with a mass cytometry panel that identified 4 immune subpopulations of altered frequencies between healthy controls and healthy gpath(BRCA1) carriers, while no difference was observed in healthy gpath(BRCA2) carriers compared to controls. Moreover, 3 (one IgD-CD27+CD95+ B cell subpopulation and two CD45RA-CCR7+CD38+ CD4+ T cell subpopulations) out of these 4 subpopulations were also elevated in triple-negative breast cancer patients compared to controls. Our results reveal an activated peripheral immune phenotype in healthy carriers of gpath(BRCA1) that needs to be further elucidated to be leveraged in risk-reducing strategies.
Collapse
Affiliation(s)
- József Ágoston Balog
- Institute of Genetics, Laboratory of Functional Genomics, HUN-REN Biological Research Center, 6726 Szeged, Hungary
- Core Facility, HUN-REN Biological Research Center, 6726 Szeged, Hungary
| | - Klaudia Horti-Oravecz
- Department of Molecular Genetics and the National Tumorbiology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary
- Semmelweis University, Doctoral School, 1085 Budapest, Hungary
| | - Dorottya Kövesdi
- Department of Immunology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Anikó Bozsik
- Department of Molecular Genetics and the National Tumorbiology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary
- HUN-REN-SE Hereditary Cancers Research Group, Hungarian Research Network – Semmelweis University, 1122 Budapest, Hungary
| | - Janos Papp
- Department of Molecular Genetics and the National Tumorbiology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary
- HUN-REN-SE Hereditary Cancers Research Group, Hungarian Research Network – Semmelweis University, 1122 Budapest, Hungary
| | - Henriett Butz
- Department of Molecular Genetics and the National Tumorbiology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary
- HUN-REN-SE Hereditary Cancers Research Group, Hungarian Research Network – Semmelweis University, 1122 Budapest, Hungary
- Department of Oncology Biobank, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Attila Patócs
- Department of Molecular Genetics and the National Tumorbiology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary
- HUN-REN-SE Hereditary Cancers Research Group, Hungarian Research Network – Semmelweis University, 1122 Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Gábor János Szebeni
- Institute of Genetics, Laboratory of Functional Genomics, HUN-REN Biological Research Center, 6726 Szeged, Hungary
- Core Facility, HUN-REN Biological Research Center, 6726 Szeged, Hungary
- Department of Internal Medicine, Hematology Centre, Faculty of Medicine University of Szeged, 6725 Szeged, Hungary
| | - Vince Kornél Grolmusz
- Department of Molecular Genetics and the National Tumorbiology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary
- HUN-REN-SE Hereditary Cancers Research Group, Hungarian Research Network – Semmelweis University, 1122 Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary
| |
Collapse
|
13
|
Peng S, Huang H, Zhu X, Chen J, Ding X, Wang F, Chen L, Lu Z. Anlotinib plus tislelizumab for recurrent metastatic pancreas ductal adenocarcinoma with germline BRCA2 mutation: A case report. Exp Ther Med 2024; 27:178. [PMID: 38515651 PMCID: PMC10952340 DOI: 10.3892/etm.2024.12466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/09/2024] [Indexed: 03/23/2024] Open
Abstract
While combined immunotherapy and anti-angiogenic therapy have demonstrated efficacy in renal cell carcinoma, non-small cell lung cancer and hepatocellular carcinoma, the efficacy of first-line treatment for pancreatic ductal adenocarcinoma (PDAC) with germline BRCA2 mutation remains unproven. We described a BRCA2-mutated patient with PDAC who presented with posterior cardiac metastasis 8 months after surgery. After receiving four cycles of anlotinib combined with tislelizumab, abdominal CT scans indicated a complete response. The patient sustained this response for over 14 months on the combination regimen, with no reported adverse events. In conclusion, the combination of tislelizumab and anlotinib may offer a viable therapeutic option for recurrent metastatic BRCA2-mutated PDAC.
Collapse
Affiliation(s)
- Sujuan Peng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Hongxiang Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Xie Zhu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Jinhong Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Xinjing Ding
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Fen Wang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Li Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Zhihui Lu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| |
Collapse
|
14
|
Xu P, Gao Y, Jiang S, Cui Y, Xie Y, Kang Z, Chen YX, Sun D, Fang JY. CHEK2 deficiency increase the response to PD-1 inhibitors by affecting the tumor immune microenvironment. Cancer Lett 2024; 588:216595. [PMID: 38097135 DOI: 10.1016/j.canlet.2023.216595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/13/2023] [Accepted: 12/06/2023] [Indexed: 03/12/2024]
Abstract
Immune checkpoint blockade (ICB) therapy has improved treatment effects in multiple cancers. Gene mutations in the DNA damage repair pathway (DDR) may cause genomic instability and may relate to the efficacy of ICB. Checkpoint kinase 2 (CHEK2) and polymerase epsilon (POLE) are important genes in the DDR. In this study, we aimed to study the impact of CHEK2 deficiency mutations on the response to ICB. We found that tumors with CHEK2 mutations had a significantly higher tumor mutational burden (TMB) compared to those with CHEK2-WT in a pancancer database. We noted that CHEK2 deficiency mutations potentiated the anti-tumor effect of anti-PD-1 therapy in MC38 and B16 tumor-bearing mice with the decrease of tumor volume and tumor weight after anti-PD-1 treatment. Mechanistically, CHEK2 deficiency tumors were with the increased cytotoxic CD8+ T-cell infiltration, especially cytotoxic CD8+ T cells, and modulated the tumor-immune microenvironment with an upregulated immune inflammatory pathway and antigen presentation pathway after anti-PD-1 treatment. Furthermore, murine models with POLE mutations confirmed that CHEK2 deficiency shaped similar mutational and immune landscapes as POLE mutations after anti-PD-1 treatment. Taken together, our results demonstrated that CHEK2 deficiency mutations may increase the response to ICB (eg. anti-PD-1) by influencing the tumor immune microenvironment. This indicated that CHEK2 deficiency mutations were a potentially predictive biomarker and CHEK2 deficiency may potentiate response to immunotherapy.
Collapse
Affiliation(s)
- Pingping Xu
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaqi Gao
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanshan Jiang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Cui
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanhong Xie
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziran Kang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danfeng Sun
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Han BY, Chen C, Luo H, Lin CJ, Han XC, Nasir J, Shi JX, Huang W, Shao ZM, Ling H, Hu X. Clinical sequencing defines the somatic and germline mutation landscapes of Chinese HER2-Low Breast Cancer. Cancer Lett 2024; 588:216763. [PMID: 38403109 DOI: 10.1016/j.canlet.2024.216763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/28/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
More than half of the breast cancer initially labeled as human epidermal growth factor receptor 2 (HER2)-negative actually exhibited low HER2 levels (IHC 1+ or IHC 2+/FISH-) and were classified as HER2-low breast cancer. Previous research emphasized the significant biological heterogeneity in HER2-low breast cancer, highlighting the importance of accurately characterizing HER2-low tumors to promote the precise management of antibody‒drug conjugates. In this study, we established a large-scale targeted sequencing cohort (N = 1907) representing Chinese HER2-low breast cancer patients with detailed clinical annotation. Our research findings revealed that HER2-low breast cancer demonstrated distinct clinical pathological characteristics and mutation landscapes compared to HER2-zero group. When compared to HER2-zero tumors, HER2-low tumors exhibited a higher proportion of Luminal B subtypes and better disease-free survival. In hormone receptor (HR)-positive breast cancer, HER2-low group showed a higher frequency of GATA3 somatic mutations, BRCA2 germline mutations, and mutations in the DNA damage repair pathway. In contrast, in HR-negative breast cancer, the HER2-low group displayed a higher frequency of PIK3CA mutations and PI3K pathway alterations. These findings offered valuable insights for the precise targeted treatment of HER2-low breast cancer in different HR statuses.
Collapse
Affiliation(s)
- Bo-Yue Han
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, 201315, China
| | - Chao Chen
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hong Luo
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, 201315, China
| | - Cai-Jin Lin
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiang-Chen Han
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, 201315, China
| | - Javaria Nasir
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jin-Xiu Shi
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, 201315, China; Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Wei Huang
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, 201315, China; Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, 201315, China
| | - Hong Ling
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Xin Hu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, 201315, China.
| |
Collapse
|
16
|
Li PC, Zhu YF, Pan JN, Zhu QY, Liao YY, Ding XW, Zheng LF, Cao WM. HR-positive/HER2-negative breast cancer arising in patients with or without BRCA2 mutation: different biological phenotype and similar prognosis. Ther Adv Med Oncol 2024; 16:17588359241242613. [PMID: 38606163 PMCID: PMC11008348 DOI: 10.1177/17588359241242613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
Background BRCA2 plays a key role in homologous recombination. However, information regarding its mutations in Chinese patients with breast cancer remains limited. Objectives This study aimed to assess the clinicopathological characteristics of BRCA2 mutation breast cancer and explore the mutation's effect on hormone receptor (HR)-positive/human epidermal growth factor receptor 2 (HER2)-negative breast cancer survival in China. Design This hospital-based cohort study prospectively included 629 women with breast cancer diagnosed from 2008 to 2023 at Zhejiang Cancer Hospital in China. Methods We compared the clinicopathological characteristics and metastatic patterns and analysed the invasive disease-free survival (iDFS), distant relapse-free survival (DRFS) and first-line progression-free survival (PFS1) of patients with HR-positive/HER2-negative breast cancer according to BRCA2 mutations. Results Among the 629 patients, 78 had BRCA2 mutations (12.4%) and 551 did not (87.6%). The mean age at diagnosis was lower in the BRCA2 mutation breast cancer group than in the non-mutation breast cancer group (38.91 versus 41.94 years, p = 0.016). BRCA2 mutation breast cancers were more likely to be lymph node-positive than non-mutation breast cancers (73.0% versus 56.6%, p = 0.037). The pathological grade was higher in 47.1% of BRCA2 mutation breast cancers than in 29.6% of non-mutation breast cancers (p = 0.014). The proportions of patients with BRCA2 mutations who developed contralateral breast cancer (19.2% versus 8.8%, p = 0.004), breast cancer in the family (53.8% versus 38.3%, p = 0.009) and ovarian cancer in the family (7.6% versus 2.4%, p = 0.022) were higher than those of patients without the mutation. The median follow-up time was 92.78 months. Multivariate analysis showed that BRCA2 mutation was not associated with poorer iDFS [hazard ratio = 0.9, 95% confidence interval (CI) = 0.64-1.27, p = 0.56] and poorer distant relapse-free survival (DRFS) (hazard ratio = 1.09, 95% CI = 0.61-1.93, p = 0.76). There was no significant difference between the two groups with regard to metastatic patterns in the advanced disease setting. In the first-line metastatic breast cancer setting, PFS1 expression was broadly similar between the two groups irrespective of chemotherapy or endocrine therapy. Conclusion HR-positive/HER2-negative breast cancer with BRCA2 mutations differs from those without mutations in clinical behaviour and reflects more aggressive tumour behaviour. Our results indicate that BRCA2 mutations have no significant effect on the survival of Chinese women with HR-positive/HER2-negative breast cancer.
Collapse
Affiliation(s)
- Pu-Chun Li
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Yi-Fan Zhu
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Jia-Ni Pan
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Qiao-Yan Zhu
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu-Yang Liao
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Xiao-Wen Ding
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Lin-Feng Zheng
- Department of Pathology, Zhejiang Cancer Hospital, 1 Banshan East Road, Hangzhou, Zhejiang 310022, China
| | - Wen-Ming Cao
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, 1 Banshan East Road, Gongsu, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
17
|
Hong W, Zhang Y, Wang S, Li Z, Zheng D, Hsu S, Zhou J, Fan J, Chen Z, Xia X, Zeng Z, Gao Q, Yu M, Du S. RECQL4 Inhibits Radiation-Induced Tumor Immune Awakening via Suppressing the cGAS-STING Pathway in Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308009. [PMID: 38381090 DOI: 10.1002/advs.202308009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Indexed: 02/22/2024]
Abstract
Many patients with hepatocellular carcinoma (HCC) respond poorly to radiotherapy despite remarkable advances in treatment. A deeper insight into the mechanism of sensitivity of HCC to this therapy is urgently required. It is demonstrated that RECQL4 is upregulated in the malignant cells of patients with HCC. Elevated RECQL4 levels reduce the sensitivity of HCC to radiotherapy by repairing radiation-induced double-stranded DNA (dsDNA) fragments. Mechanistically, the inhibitory effect of RECQL4 on radiotherapy is due to the reduced recruitment of dendritic cells and CD8+ T cells in the tumor microenvironment (TME). RECQL4 disrupts the radiation-induced transformation of the TME into a tumoricidal niche by inhibiting the cGAS-STING pathway in dendritic cells. Knocking out STING in dendritic cells can block the impact of RECQL4 on HCC radiosensitivity. Notably, high RECQL4 expressions in HCC is significantly associated with poor prognosis in multiple independent cohorts. In conclusion, this study highlights how HCC-derived RECQL4 disrupts cGAS-STING pathway activation in dendritic cells through DNA repair, thus reducing the radiosensitivity of HCC. These findings provide new perspectives on the clinical treatment of HCC.
Collapse
Affiliation(s)
- Weifeng Hong
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Yang Zhang
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Siwei Wang
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Zongjuan Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200000, China
| | - Danxue Zheng
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Shujung Hsu
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Zhesheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences; Institute for Biotechnology, St. John's University, Queens, New York, NY10003, USA
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhaochong Zeng
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Min Yu
- Department of Pancreas Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Shisuo Du
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| |
Collapse
|
18
|
Collet L, Hanvic B, Turinetto M, Treilleux I, Chopin N, Le Saux O, Ray-Coquard I. BRCA1/2 alterations and reversion mutations in the area of PARP inhibitors in high grade ovarian cancer: state of the art and forthcoming challenges. Front Oncol 2024; 14:1354427. [PMID: 38544832 PMCID: PMC10965616 DOI: 10.3389/fonc.2024.1354427] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/12/2024] [Indexed: 11/11/2024] Open
Abstract
BRCA1/2 genes are part of homologous recombination (HR) DNA repair pathways in charge of error-free double-strand break (DSB) repair. Loss-of-function mutations of BRCA1/2 genes have been associated for a long time with breast and ovarian cancer hereditary syndrome. Recently, polyadenosine diphosphate-ribose polymerase inhibitors (PARPi) have revolutionized the therapeutic landscape of BRCA1/2-mutated tumors, especially of BRCA1/2 high-grade serous ovarian cancer (HGSC), taking advantage of HR deficiency through the synthetic lethality concept. However, PARPi efficiency differs among patients, and most of them will develop resistance, particularly in the relapse setting. In the current proposal, we aim to review primary and secondary resistance to PARPi in HGSC owing to BRCA1/2 alterations. Of note, as several mechanisms of primary or secondary resistance to PARPi have been described, BRCA1/2 reversion mutations that restore HR pathways are by far the most reported. First, the type and location of the BRCA1/2 primary mutation have been associated with PARPi and platinum-salt sensitivity and impact the probability of the occurrence and the type of secondary reversion mutation. Furthermore, the presence of multiple reversion mutations and the variation of allelic frequency under treatment underline the role of intratumor heterogeneity (ITH) in treatment resistance. Of note, circulating tumor DNA might help us to detect and characterize reversion mutations and ITH to finally refine the treatment strategy. Importantly, forthcoming therapeutic strategies, including combination with antiangiogenics or with targeted therapies, may help us delay and overcome PARPi resistance secondary to BRCA1/2 reversion mutations. Also, progression despite PARPi therapy does not preclude PARPi rechallenge in selected patients.
Collapse
Affiliation(s)
- Laetitia Collet
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Medical Oncology Department, Centre Léon Bérard, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Brunhilde Hanvic
- Medical Oncology Department, Centre Léon Bérard, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | | | | | | | - Olivia Le Saux
- Medical Oncology Department, Centre Léon Bérard, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Isabelle Ray-Coquard
- Medical Oncology Department, Centre Léon Bérard, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
19
|
Valentini V, Bucalo A, Conti G, Celli L, Porzio V, Capalbo C, Silvestri V, Ottini L. Gender-Specific Genetic Predisposition to Breast Cancer: BRCA Genes and Beyond. Cancers (Basel) 2024; 16:579. [PMID: 38339330 PMCID: PMC10854694 DOI: 10.3390/cancers16030579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Among neoplastic diseases, breast cancer (BC) is one of the most influenced by gender. Despite common misconceptions associating BC as a women-only disease, BC can also occur in men. Additionally, transgender individuals may also experience BC. Genetic risk factors play a relevant role in BC predisposition, with important implications in precision prevention and treatment. The genetic architecture of BC susceptibility is similar in women and men, with high-, moderate-, and low-penetrance risk variants; however, some sex-specific features have emerged. Inherited high-penetrance pathogenic variants (PVs) in BRCA1 and BRCA2 genes are the strongest BC genetic risk factor. BRCA1 and BRCA2 PVs are more commonly associated with increased risk of female and male BC, respectively. Notably, BRCA-associated BCs are characterized by sex-specific pathologic features. Recently, next-generation sequencing technologies have helped to provide more insights on the role of moderate-penetrance BC risk variants, particularly in PALB2, CHEK2, and ATM genes, while international collaborative genome-wide association studies have contributed evidence on common low-penetrance BC risk variants, on their combined effect in polygenic models, and on their role as risk modulators in BRCA1/2 PV carriers. Overall, all these studies suggested that the genetic basis of male BC, although similar, may differ from female BC. Evaluating the genetic component of male BC as a distinct entity from female BC is the first step to improve both personalized risk assessment and therapeutic choices of patients of both sexes in order to reach gender equality in BC care. In this review, we summarize the latest research in the field of BC genetic predisposition with a particular focus on similarities and differences in male and female BC, and we also discuss the implications, challenges, and open issues that surround the establishment of a gender-oriented clinical management for BC.
Collapse
Affiliation(s)
- Virginia Valentini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Agostino Bucalo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Giulia Conti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Ludovica Celli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Virginia Porzio
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Carlo Capalbo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
- Medical Oncology Unit, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Valentina Silvestri
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| |
Collapse
|
20
|
Dennis MJ, Bylsma S, Madlensky L, Pagadala MS, Carter H, Patel SP. Germline DNA damage response gene mutations as predictive biomarkers of immune checkpoint inhibitor efficacy. Front Immunol 2024; 15:1322187. [PMID: 38348036 PMCID: PMC10859432 DOI: 10.3389/fimmu.2024.1322187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Background Impaired DNA damage response (DDR) can affect immune checkpoint inhibitors (ICI) efficacy and lead to heightened immune activation. We assessed the impact of pathogenic or likely pathogenic (P/LP) germline DDR mutations on ICI response and toxicity. Materials and methods A retrospective analysis of 131 cancer patients with germline DNA testing and ICI treatment was performed. Results Ninety-two patients were DDR-negative (DDR-), and 39 had ≥1 DDR mutation (DDR+). DDR+ patients showed higher objective response rates (ORRs) compared to DDR- in univariate and multivariable analyses, adjusting for age and metastatic disease (62% vs. 23%, unadjusted OR = 5.41; 95% CI, 2.41-12.14; adjusted OR 5.94; 95% CI, 2.35-15.06). Similar results were seen in mismatch repair (MMR), DDR pathways with intact MMR (DDR+MMRi), and homologous recombination (HR) subgroups versus DDR- (adjusted OR MMR = 24.52; 95% CI 2.72-221.38, DDR+MMRi = 4.26; 95% CI, 1.57-11.59, HR = 4.74; 95% CI, 1.49-15.11). DDR+ patients also had higher ORRs with concurrent chemotherapy (82% vs. 39% DDR-, p=0.03) or concurrent tyrosine kinase inhibitors (50% vs. 5% DDR-, p=0.03). No significant differences in immune-related adverse events were observed between DDR+ and DDR- cohorts. Conclusion P/LP germline DDR mutations may enhance ICI response without significant additional toxicity.
Collapse
Affiliation(s)
- Michael J. Dennis
- Division of Medical Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
- Division of Head and Neck Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Sophia Bylsma
- School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Lisa Madlensky
- Division of Genomics and Precision Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Meghana S. Pagadala
- Division of Genomics and Precision Medicine, University of California, San Diego, San Diego, CA, United States
| | - Hannah Carter
- Division of Genomics and Precision Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Sandip P. Patel
- Division of Medical Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
21
|
Li PC, Zhu YF, Cao WM, Li B. ER-positive and BRCA2-mutated breast cancer: a literature review. Eur J Med Res 2024; 29:30. [PMID: 38184581 PMCID: PMC10770892 DOI: 10.1186/s40001-023-01618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/24/2023] [Indexed: 01/08/2024] Open
Abstract
BRCA2-mutated carriers have a high lifetime risk of breast cancer (BC), an early age of onset, and an increased risk of other cancers (including ovarian, pancreatic, and prostate cancer). Almost 70-80% of BRCA2-mutated BC are estrogen receptor (ER)-positive, which is a particular type of ER-positive BC that differs from sporadic ER-positive BC. This article reviews the clinicopathological features, treatment, and prognosis of ER-positive and BRCA2-mutated BC to provide a reference for clinical decision-making.
Collapse
Affiliation(s)
- Pu-Chun Li
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, 310022, China
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Yi-Fan Zhu
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, 310022, China
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| | - Bei Li
- Department of Geriatric, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| |
Collapse
|
22
|
Zhou Y, Mouw KW. DNA repair deficiency and the immune microenvironment: A pathways perspective. DNA Repair (Amst) 2024; 133:103594. [PMID: 37980867 PMCID: PMC10841828 DOI: 10.1016/j.dnarep.2023.103594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/18/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Timely and accurate repair of DNA damage is required for genomic stability, but DNA repair pathways are often lost or altered in tumors. In addition to directly impacting tumor cell response to DNA damage, DNA repair deficiency can also alter the immune microenvironment via changes in innate and adaptive immune signaling. In some settings, these changes can lead to increased sensitivity to immune checkpoint inhibitors (ICIs). In this review, we discuss the impact of specific DNA repair pathway dysfunction on immune contexture and ICI response in solid tumors.
Collapse
Affiliation(s)
- Yuzhen Zhou
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Radiation Oncology, Brigham & Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
23
|
Fang Q, Shen G, Xie Q, Guan Y, Liu X, Ren D, Zhao F, Liu Z, Ma F, Zhao J. Development of Tumor Markers for Breast Cancer Immunotherapy. Curr Mol Med 2024; 24:547-564. [PMID: 37157196 DOI: 10.2174/1566524023666230508152817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 05/10/2023]
Abstract
Although breast cancer treatment has been developed remarkably in recent years, it remains the primary cause of death among women. Immune checkpoint blockade therapy has significantly altered the way breast cancer is treated, although not all patients benefit from the changes. At present, the most effective mechanism of immune checkpoint blockade application in malignant tumors is not clear and efficacy may be influenced by many factors, including host, tumor, and tumor microenvironment dynamics. Therefore, there is a pressing need for tumor immunomarkers that can be used to screen patients and help determine which of them would benefit from breast cancer immunotherapy. At present, no single tumor marker can predict treatment efficacy with sufficient accuracy. Multiple markers may be combined to more accurately pinpoint patients who will respond favorably to immune checkpoint blockade medication. In this review, we have examined the breast cancer treatments, developments in research on the role of tumor markers in maximizing the clinical efficacy of immune checkpoint inhibitors, prospects for the identification of novel therapeutic targets, and the creation of individualized treatment plans. We also discuss how tumor markers can provide guidance for clinical practice.
Collapse
Affiliation(s)
- Qianqian Fang
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Guoshuang Shen
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Qiqi Xie
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Yumei Guan
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Xinlan Liu
- Department of Oncology, General Hospital of Ningxia Medical University, No. 804 Shengli Road, Xingqing District, Yinchuan, 750004, China
| | - Dengfeng Ren
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Fuxing Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Zhilin Liu
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| |
Collapse
|
24
|
Zhao S, Hu X, Zhou P, Li A, Chen L, Wang D, He J, Jiang Y. Molecular profiles of different PD-L1 expression in patients with esophageal squamous cell carcinoma. Cancer Biol Ther 2023; 24:2256927. [PMID: 38032149 PMCID: PMC10515684 DOI: 10.1080/15384047.2023.2256927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/05/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND PD-1/PD-L1 inhibitors are approved treatments for patients with esophageal squamous cell carcinoma (ESCC). The present investigation aspired to explore the interrelation between molecular phenotype and PD-L1 expression in ESCC. METHODS PD-L1 testing and targeted next-generation sequencing (NGS) were performed on tumoral tissues from 139 ESCC patients. Tumor-infiltrating lymphocytes (TILs) were scrutinized using a tyramide signal amplification system combined with immunohistochemistry. RESULTS Among enrolled patients, 36.7% displayed high PD-L1 expression (combined positive score [CPS] ≥10). BRCA1 and NF1 gene mutations were significantly associated with high PD-L1 expression (p < .05) while TGFβ pathway alterations were linked to low PD-L1 expression (p = .02). High copy number instability (CNI) and copy number alterations (CNA) were correlated with low PD-L1 expression. Patients with CDKN2A deletion exhibited higher PD-L1 expression. Varying types of TILs were observed across different PD-L1 expression groups. The ratio of CD8+PD-L1+ T cells and CD8+PD-1+ T cells to CD8+ T cells remained comparable in both tumoral and stromal regions, but the ratio of CD68+PD-L1+ macrophages to CD68+ macrophages was higher than the ratio of CD68+PD-1+ macrophages to CD68+ macrophages. CPS was significantly correlated with PD-L1+ lymphocytes and CD68+ macrophages in the tumoral region. CD8+ T cell infiltration was positively correlated with PD-1+ cells in both tumoral and stromal regions. CONCLUSION In this study, we presented the prevalence rates of PD-L1 expression in Chinese ESCC patients. The association of genetic profiles with PD-L1 expression levels also provide the clue that genomic phenotype may interact with the immunologic phenotype in ESCC.
Collapse
Affiliation(s)
- Songchen Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xintong Hu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Peiwen Zhou
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Ang Li
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Liguo Chen
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Duo Wang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Jiaxue He
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Yanfang Jiang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
25
|
Chen C, Lin CJ, Pei YC, Ma D, Liao L, Li SY, Fan L, Di GH, Wu SY, Liu XY, Wang YJ, Hong Q, Zhang GL, Xu LL, Li BB, Huang W, Shi JX, Jiang YZ, Hu X, Shao ZM. Comprehensive genomic profiling of breast cancers characterizes germline-somatic mutation interactions mediating therapeutic vulnerabilities. Cell Discov 2023; 9:125. [PMID: 38114467 PMCID: PMC10730692 DOI: 10.1038/s41421-023-00614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/08/2023] [Indexed: 12/21/2023] Open
Abstract
Germline-somatic mutation interactions are universal and associated with tumorigenesis, but their role in breast cancer, especially in non-Caucasians, remains poorly characterized. We performed large-scale prospective targeted sequencing of matched tumor-blood samples from 4079 Chinese females, coupled with detailed clinical annotation, to map interactions between germline and somatic alterations. We discovered 368 pathogenic germline variants and identified 5 breast cancer DNA repair-associated genes (BCDGs; BRCA1/BRCA2/CHEK2/PALB2/TP53). BCDG mutation carriers, especially those with two-hit inactivation, demonstrated younger onset, higher tumor mutation burden, and greater clinical benefits from platinum drugs, PARP inhibitors, and immune checkpoint inhibitors. Furthermore, we leveraged a multiomics cohort to reveal that clinical benefits derived from two-hit events are associated with increased genome instability and an immune-activated tumor microenvironment. We also established an ethnicity-specific tool to predict BCDG mutation and two-hit status for genetic evaluation and therapeutic decisions. Overall, this study leveraged the large sequencing cohort of Chinese breast cancers, optimizing genomics-guided selection of DNA damaging-targeted therapy and immunotherapy within a broader population.
Collapse
Affiliation(s)
- Chao Chen
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cai-Jin Lin
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Chen Pei
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ding Ma
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li Liao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Si-Yuan Li
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Fan
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gen-Hong Di
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Song-Yang Wu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi-Yu Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yun-Jin Wang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qi Hong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
| | - Guo-Liang Zhang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lin-Lin Xu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
| | - Bei-Bei Li
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wei Huang
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Jin-Xiu Shi
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xin Hu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China.
| |
Collapse
|
26
|
Cheng JY, Hsu RC, Nieva JJ, Thomas JS. Complete response with pembrolizumab in recurrent squamous cell carcinoma of the oral tongue: A case report. Oral Oncol 2023; 147:106597. [PMID: 37857230 DOI: 10.1016/j.oraloncology.2023.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Immunotherapies such as immune checkpoint inhibitors have shown promising results in solid tumors associated with BRCA2, but there are no consistent predictors for who will respond to immunotherapy. More research is needed on the impact of this mutation in head and neck squamous cell carcinomas, particularly for recurrent/metastatic tumors. We report a case of stage IV oral squamous cell carcinoma associated with BRCA2 mutation that achieved complete remission with pembrolizumab treatment for relapsed disease.
Collapse
Affiliation(s)
- Jocelyn Y Cheng
- Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA 90033, USA.
| | - Robert C Hsu
- Division of Medical Oncology - Head and Neck, USC Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, NTT3440, Los Angeles, CA 90033, USA
| | - Jorge J Nieva
- Division of Medical Oncology - Head and Neck, USC Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, NTT3440, Los Angeles, CA 90033, USA
| | - Jacob S Thomas
- Division of Medical Oncology - Head and Neck, USC Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, NTT3440, Los Angeles, CA 90033, USA.
| |
Collapse
|
27
|
Classen S, Petersen C, Borgmann K. Crosstalk between immune checkpoint and DNA damage response inhibitors for radiosensitization of tumors. Strahlenther Onkol 2023; 199:1152-1163. [PMID: 37420037 PMCID: PMC10674014 DOI: 10.1007/s00066-023-02103-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/16/2023] [Indexed: 07/09/2023]
Abstract
PURPOSE This review article is intended to provide a perspective overview of potential strategies to overcome radiation resistance of tumors through the combined use of immune checkpoint and DNA repair inhibitors. METHODS A literature search was conducted in PubMed using the terms ("DNA repair* and DNA damage response* and intracellular immune response* and immune checkpoint inhibition* and radio*") until January 31, 2023. Articles were manually selected based on their relevance to the topics analyzed. RESULTS Modern radiotherapy offers a wide range of options for tumor treatment. Radiation-resistant subpopulations of the tumor pose a particular challenge for complete cure. This is due to the enhanced activation of molecular defense mechanisms that prevent cell death because of DNA damage. Novel approaches to enhance tumor cure are provided by immune checkpoint inhibitors, but their effectiveness, especially in tumors without increased mutational burden, also remains limited. Combining inhibitors of both immune checkpoints and DNA damage response with radiation may be an attractive option to augment existing therapies and is the subject of the data summarized here. CONCLUSION The combination of tested inhibitors of DNA damage and immune responses in preclinical models opens additional attractive options for the radiosensitization of tumors and represents a promising application for future therapeutic approaches.
Collapse
Affiliation(s)
- Sandra Classen
- Laboratory of Radiobiology and Radiation Oncology, Department of Radiotherapy and Radiation Oncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Kerstin Borgmann
- Laboratory of Radiobiology and Radiation Oncology, Department of Radiotherapy and Radiation Oncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
28
|
Mandelker D, Marra A, Zheng-Lin B, Selenica P, Blanco-Heredia J, Zhu Y, Gazzo A, Wong D, Yelskaya Z, Rai V, Somar J, Ostafi S, Mehta N, Yang C, Li Y, Brown DN, da Silva EM, Pei X, Linkov I, Terraf P, Misyura M, Ceyhan-Birsoy O, Ladanyi M, Berger M, Pareja F, Stadler Z, Offit K, Riaz N, Park W, Chou J, Capanu M, Koehler M, Rosen E, O'Reilly EM, Reis-Filho JS. Genomic Profiling Reveals Germline Predisposition and Homologous Recombination Deficiency in Pancreatic Acinar Cell Carcinoma. J Clin Oncol 2023; 41:5151-5162. [PMID: 37607324 PMCID: PMC10667000 DOI: 10.1200/jco.23.00561] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 08/24/2023] Open
Abstract
PURPOSE To determine the genetic predisposition underlying pancreatic acinar cell carcinoma (PACC) and characterize its genomic features. METHODS Both somatic and germline analyses were performed using an Food and Drug Administration-authorized matched tumor/normal sequencing assay on a clinical cohort of 28,780 patients with cancer, 49 of whom were diagnosed with PACC. For a subset of PACCs, whole-genome sequencing (WGS; n = 12) and RNA sequencing (n = 6) were performed. RESULTS Eighteen of 49 (36.7%) PACCs harbored germline pathogenic variants in homologous recombination (HR) and DNA damage response (DDR) genes, including BRCA1 (n = 1), BRCA2 (n = 12), PALB2 (n = 2), ATM (n = 2), and CHEK2 (n = 1). Thirty-one PACCs displayed pure, and 18 PACCs harbored mixed acinar cell histology. Fifteen of 31 (48%) pure PACCs harbored a germline pathogenic variant affecting HR-/DDR-related genes. BRCA2 germline pathogenic variants (11 of 31, 35%) were significantly more frequent in pure PACCs than in pancreatic adenocarcinoma (86 of 2,739, 3.1%; P < .001), high-grade serous ovarian carcinoma (67 of 1,318, 5.1%; P < .001), prostate cancer (116 of 3,401, 3.4%; P < .001), and breast cancer (79 of 3,196, 2.5%; P < .001). Genomic features of HR deficiency (HRD) were detected in 7 of 12 PACCs undergoing WGS, including 100% (n = 6) of PACCs with germline HR-related pathogenic mutations and 1 of 6 PACCs lacking known pathogenic alterations in HR-related genes. Exploratory analyses revealed that in PACCs, the repertoire of somatic driver genetic alterations and the load of neoantigens with high binding affinity varied according to the presence of germline pathogenic alterations affecting HR-/DDR-related genes and/or HRD. CONCLUSION In a large pan-cancer cohort, PACC was identified as the cancer type with the highest prevalence of both BRCA2 germline pathogenic variants and genomic features of HRD, suggesting that PACC should be considered as part of the spectrum of BRCA-related malignancies.
Collapse
Affiliation(s)
- Diana Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Antonio Marra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Binbin Zheng-Lin
- Gastrointestinal Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Juan Blanco-Heredia
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yingjie Zhu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Andrea Gazzo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Donna Wong
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zarina Yelskaya
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vikas Rai
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Joshua Somar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Silvana Ostafi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nikita Mehta
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ciyu Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yirong Li
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David N. Brown
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Edaise M. da Silva
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xin Pei
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Irina Linkov
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Panieh Terraf
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Maksym Misyura
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ozge Ceyhan-Birsoy
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael Berger
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Fresia Pareja
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zsofia Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wungki Park
- Gastrointestinal Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Joanne Chou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marinela Capanu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Ezra Rosen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Eileen M. O'Reilly
- Gastrointestinal Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Department of Medicine, Weill Cornell Medicine, New York, NY
- David M. Rubenstein Center for Pancreatic Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jorge S. Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
29
|
Ekram SN, Al Shanbari N, Bin Laswad BM, Alharthi A, Tayeb W, Bahha A. Checkpoint Kinase 2 (CHEK2) Gene Mutation in a Patient With Breast and Prostate Cancer: A Unique Presentation of a Rare Disease. Cureus 2023; 15:e49710. [PMID: 38161833 PMCID: PMC10757464 DOI: 10.7759/cureus.49710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Breast cancer is one of the rarest malignancies in males, with a low incidence rate compared to all breast cancers. Gene mutation plays a significant role in the pathologic process of cancer. Mutations in breast cancer gene 1 (BRCA1) and breast cancer gene 2 (BRCA2) have been associated with male breast cancer (MBC), as well as prostate cancer (PCa). Despite the etiopathogenetic similarity, combined MBC and PCa is a rare entity. This report presents the case of a 57-year-old male with a history of breast cancer who underwent modified radical mastectomy (MRM) with lymph node dissection followed by adjuvant chemoradiotherapy four years ago. The patient presented with recurrent episodes of voiding dysfunction for three months, followed by urine retention. His family history was positive for breast and lung cancer. High prostate-specific antigen (PSA) and Prostate Imaging-Reporting and Data System 5 (PI-RADS5) necessitate transrectal ultrasound-guided biopsy, which confirmed the diagnosis of PCa. Molecular genetics testing and next-generation sequencing (NGS) analysis identified heterozygous variant c.636T>G, p.(Tyr212*) in the checkpoint kinase 2 (CHEK2) gene. The patient is planned for neoadjuvant luteinizing hormone-releasing hormone (LHRH) for 3-6 months, to be followed by transurethral tunneling of the prostate (TUTP) with adjuvant LHRH. The allele frequency of this patient mutation was documented for the first time among the general population, and it has not been described in the literature. This unique and rare case was presented with clinical, morphological, and immunohistochemical features together with a review of the current literature.
Collapse
Affiliation(s)
- Samar N Ekram
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Makkah, SAU
| | - Nasser Al Shanbari
- Department of Medicine and Surgery, College of Medicine, Umm Al-Qura University, Makkah, SAU
| | - Bassam M Bin Laswad
- Department of Medicine and Surgery, College of Medicine, Umm Al-Qura University, Makkah, SAU
| | - Abdulrahman Alharthi
- Department of Medicine and Surgery, College of Medicine, Umm Al-Qura University, Makkah, SAU
| | - Waseem Tayeb
- Department of Surgery, Division of Urology, King Abdullah Medical City, Makkah, SAU
| | - Abdulbari Bahha
- Department of Surgery, Division of Urology, King Abdullah Medical City, Makkah, SAU
| |
Collapse
|
30
|
Boursi B, Wileyto EP, Mamtani R, Domchek SM, Golan T, Hood R, Reiss KA. Analysis of BRCA1- and BRCA2-Related Pancreatic Cancer and Survival. JAMA Netw Open 2023; 6:e2345013. [PMID: 38010655 PMCID: PMC10682833 DOI: 10.1001/jamanetworkopen.2023.45013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/15/2023] [Indexed: 11/29/2023] Open
Abstract
This cohort study compares the outcomes of patients with BRCA1 and BRCA-related pancreatic cancers using 2 large data sets.
Collapse
Affiliation(s)
- Ben Boursi
- Department of Oncology, Sheba Medical Center, Tel HaShomer, Israel
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia
| | - E. Paul Wileyto
- Abramson Cancer Center, University of Pennsylvania, Philadelphia
| | - Ronac Mamtani
- Abramson Cancer Center, University of Pennsylvania, Philadelphia
| | - Susan M. Domchek
- Abramson Cancer Center, University of Pennsylvania, Philadelphia
| | - Talia Golan
- Department of Oncology, Sheba Medical Center, Tel HaShomer, Israel
| | - Ryan Hood
- Abramson Cancer Center, University of Pennsylvania, Philadelphia
| | - Kim A. Reiss
- Abramson Cancer Center, University of Pennsylvania, Philadelphia
| |
Collapse
|
31
|
Mendes Serrão E, Klug M, Moloney BM, Jhaveri A, Lo Gullo R, Pinker K, Luker G, Haider MA, Shinagare AB, Liu X. Current Status of Cancer Genomics and Imaging Phenotypes: What Radiologists Need to Know. Radiol Imaging Cancer 2023; 5:e220153. [PMID: 37921555 DOI: 10.1148/rycan.220153] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Ongoing discoveries in cancer genomics and epigenomics have revolutionized clinical oncology and precision health care. This knowledge provides unprecedented insights into tumor biology and heterogeneity within a single tumor, among primary and metastatic lesions, and among patients with the same histologic type of cancer. Large-scale genomic sequencing studies also sparked the development of new tumor classifications, biomarkers, and targeted therapies. Because of the central role of imaging in cancer diagnosis and therapy, radiologists need to be familiar with the basic concepts of genomics, which are now becoming the new norm in oncologic clinical practice. By incorporating these concepts into clinical practice, radiologists can make their imaging interpretations more meaningful and specific, facilitate multidisciplinary clinical dialogue and interventions, and provide better patient-centric care. This review article highlights basic concepts of genomics and epigenomics, reviews the most common genetic alterations in cancer, and discusses the implications of these concepts on imaging by organ system in a case-based manner. This information will help stimulate new innovations in imaging research, accelerate the development and validation of new imaging biomarkers, and motivate efforts to bring new molecular and functional imaging methods to clinical radiology. Keywords: Oncology, Cancer Genomics, Epignomics, Radiogenomics, Imaging Markers Supplemental material is available for this article. © RSNA, 2023.
Collapse
Affiliation(s)
- Eva Mendes Serrão
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Maximiliano Klug
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Brian M Moloney
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Aaditeya Jhaveri
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Roberto Lo Gullo
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Katja Pinker
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Gary Luker
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Masoom A Haider
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Atul B Shinagare
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Xiaoyang Liu
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| |
Collapse
|
32
|
Tan H, Hosein PJ. Detection and therapeutic implications of homologous recombination repair deficiency in pancreatic cancer: a narrative review. J Gastrointest Oncol 2023; 14:2249-2259. [PMID: 37969835 PMCID: PMC10643583 DOI: 10.21037/jgo-23-85] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 08/25/2023] [Indexed: 11/17/2023] Open
Abstract
Background and Objective Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal cancers. A major recent advance has been the identification of a subset of patients with PDAC who harbor inherited or somatic genetic alterations that result in homologous recombination deficiency (HRD) in tumor cells. These patients often respond favorably to drugs that can exploit this vulnerability. This review outlines the biomarkers that have been developed to predict HRD and their performance related specifically to PDAC, as well as novel HRD-targeted therapies for PDAC. Methods We conducted a narrative review of the HRD in PDAC based on PubMed, Google Scholar, website and citation searches. Key Content and Findings Germline mutations in BRCA1 and BRCA2 remains the only validated biomarker for the HRD state but various platforms are now available to define HRD beyond BRCA1/2 alterations. Currently, the available evidence supports the use of platinum-based chemotherapy as well as PARP inhibitors, and there is also emerging data that immune checkpoint inhibitors can produce some durable responses in these patients. Conclusions Consistently detecting clinically significant the HRD status in PDAC has remained challenging with current commercially available platforms. Multiple novel HRD-targeted therapies for PDAC are currently in development and clinical trials, offering new opportunities for these patients.
Collapse
Affiliation(s)
- Heng Tan
- Division of Internal Medicine, Department of Medicine, University of Miami, Miami, FL, USA
| | - Peter J. Hosein
- Division of Medical Oncology, Department of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
33
|
Zattarin E, Taglialatela I, Lobefaro R, Leporati R, Fucà G, Ligorio F, Sposetti C, Provenzano L, Azzollini J, Vingiani A, Ferraris C, Martelli G, Manoukian S, Pruneri G, de Braud F, Vernieri C. Breast cancers arising in subjects with germline BRCA1 or BRCA2 mutations: Different biological and clinical entities with potentially diverse therapeutic opportunities. Crit Rev Oncol Hematol 2023; 190:104109. [PMID: 37643668 DOI: 10.1016/j.critrevonc.2023.104109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
Breast cancers (BCs) arising in carriers of germline BRCA1 and BRCA2 pathogenic variants (PVs) have long been considered as indistinguishable biological and clinical entities. However, the loss of function of BRCA1 or BRCA2 proteins has different consequences in terms of tumor cell reliance on estrogen receptor signaling and tumor microenvironment composition. Here, we review accumulating preclinical and clinical data indicating that BRCA1 or BRCA2 inactivation may differentially affect BC sensitivity to standard systemic therapies. Based on a different crosstalk between BRCA1 or BRCA2 and the ER pathway, BRCA2-mutated Hormone Receptor-positive, HER2-negative advanced BC may be less sensitive to endocrine therapy (ET) plus CDK 4/6 inhibitors (CDK 4/6i), whereas BRCA2-mutated triple-negative breast cancer (TNBC) may be especially sensitive to immune checkpoint inhibitors. If validated in future prospective studies, these data may have relevant clinical implications, thus establishing different treatment paths in patients with BRCA1 or BRCA2 PVs.
Collapse
Affiliation(s)
- Emma Zattarin
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ida Taglialatela
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Riccardo Lobefaro
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rita Leporati
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Fucà
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Ligorio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Caterina Sposetti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Leonardo Provenzano
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Jacopo Azzollini
- Unit of Medical Genetics, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Vingiani
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Pathology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Cristina Ferraris
- Breast Unit, Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gabriele Martelli
- Breast Unit, Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giancarlo Pruneri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Pathology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Claudio Vernieri
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
34
|
Nabbi A, Beck P, Delaidelli A, Oldridge DA, Sudhaman S, Zhu K, Yang SYC, Mulder DT, Bruce JP, Paulson JN, Raman P, Zhu Y, Resnick AC, Sorensen PH, Sill M, Brabetz S, Lambo S, Malkin D, Johann PD, Kool M, Jones DTW, Pfister SM, Jäger N, Pugh TJ. Transcriptional immunogenomic analysis reveals distinct immunological clusters in paediatric nervous system tumours. Genome Med 2023; 15:67. [PMID: 37679810 PMCID: PMC10486055 DOI: 10.1186/s13073-023-01219-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Cancer immunotherapies including immune checkpoint inhibitors and Chimeric Antigen Receptor (CAR) T-cell therapy have shown variable response rates in paediatric patients highlighting the need to establish robust biomarkers for patient selection. While the tumour microenvironment in adults has been widely studied to delineate determinants of immune response, the immune composition of paediatric solid tumours remains relatively uncharacterized calling for investigations to identify potential immune biomarkers. METHODS To inform immunotherapy approaches in paediatric cancers with embryonal origin, we performed an immunogenomic analysis of RNA-seq data from 925 treatment-naïve paediatric nervous system tumours (pedNST) spanning 12 cancer types from three publicly available data sets. RESULTS Within pedNST, we uncovered four broad immune clusters: Paediatric Inflamed (10%), Myeloid Predominant (30%), Immune Neutral (43%) and Immune Desert (17%). We validated these clusters using immunohistochemistry, methylation immune inference and segmentation analysis of tissue images. We report shared biology of these immune clusters within and across cancer types, and characterization of specific immune cell frequencies as well as T- and B-cell repertoires. We found no associations between immune infiltration levels and tumour mutational burden, although molecular cancer entities were enriched within specific immune clusters. CONCLUSIONS Given the heterogeneity of immune infiltration within pedNST, our findings suggest personalized immunogenomic profiling is needed to guide selection of immunotherapeutic strategies.
Collapse
Affiliation(s)
- Arash Nabbi
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Room 9-305, MaRS Centre, 101 College Street, Toronto, M5G 1L7, Canada
| | - Pengbo Beck
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Derek A Oldridge
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sumedha Sudhaman
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Kelsey Zhu
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Room 9-305, MaRS Centre, 101 College Street, Toronto, M5G 1L7, Canada
| | - S Y Cindy Yang
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Room 9-305, MaRS Centre, 101 College Street, Toronto, M5G 1L7, Canada
| | - David T Mulder
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Room 9-305, MaRS Centre, 101 College Street, Toronto, M5G 1L7, Canada
| | - Jeffrey P Bruce
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Room 9-305, MaRS Centre, 101 College Street, Toronto, M5G 1L7, Canada
| | - Joseph N Paulson
- Department of Biostatistics, Genentech Inc, San Francisco, CA, USA
| | - Pichai Raman
- Division of Neurosurgery, Center for Childhood Cancer Research, Department of Biomedical and Health Informatics and Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yuankun Zhu
- Division of Neurosurgery, Center for Childhood Cancer Research, Department of Biomedical and Health Informatics and Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Adam C Resnick
- Division of Neurosurgery, Center for Childhood Cancer Research, Department of Biomedical and Health Informatics and Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Martin Sill
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Sebastian Brabetz
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Sander Lambo
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - David Malkin
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Pascal D Johann
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Natalie Jäger
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Room 9-305, MaRS Centre, 101 College Street, Toronto, M5G 1L7, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
- Ontario Institute for Cancer Research, Toronto, Canada.
| |
Collapse
|
35
|
Setton J, Hadi K, Choo ZN, Kuchin KS, Tian H, Da Cruz Paula A, Rosiene J, Selenica P, Behr J, Yao X, Deshpande A, Sigouros M, Manohar J, Nauseef JT, Mosquera JM, Elemento O, Weigelt B, Riaz N, Reis-Filho JS, Powell SN, Imieliński M. Long-molecule scars of backup DNA repair in BRCA1- and BRCA2-deficient cancers. Nature 2023; 621:129-137. [PMID: 37587346 PMCID: PMC10482687 DOI: 10.1038/s41586-023-06461-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 07/20/2023] [Indexed: 08/18/2023]
Abstract
Homologous recombination (HR) deficiency is associated with DNA rearrangements and cytogenetic aberrations1. Paradoxically, the types of DNA rearrangements that are specifically associated with HR-deficient cancers only minimally affect chromosomal structure2. Here, to address this apparent contradiction, we combined genome-graph analysis of short-read whole-genome sequencing (WGS) profiles across thousands of tumours with deep linked-read WGS of 46 BRCA1- or BRCA2-mutant breast cancers. These data revealed a distinct class of HR-deficiency-enriched rearrangements called reciprocal pairs. Linked-read WGS showed that reciprocal pairs with identical rearrangement orientations gave rise to one of two distinct chromosomal outcomes, distinguishable only with long-molecule data. Whereas one (cis) outcome corresponded to the copying and pasting of a small segment to a distant site, a second (trans) outcome was a quasi-balanced translocation or multi-megabase inversion with substantial (10 kb) duplications at each junction. We propose an HR-independent replication-restart repair mechanism to explain the full spectrum of reciprocal pair outcomes. Linked-read WGS also identified single-strand annealing as a repair pathway that is specific to BRCA2 deficiency in human cancers. Integrating these features in a classifier improved discrimination between BRCA1- and BRCA2-deficient genomes. In conclusion, our data reveal classes of rearrangements that are specific to BRCA1 or BRCA2 deficiency as a source of cytogenetic aberrations in HR-deficient cells.
Collapse
Affiliation(s)
- Jeremy Setton
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin Hadi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
- Physiology and Biophysics PhD program, Weill Cornell Medicine, New York, NY, USA
| | - Zi-Ning Choo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
- Physiology and Biophysics PhD program, Weill Cornell Medicine, New York, NY, USA
| | - Katherine S Kuchin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Huasong Tian
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Arnaud Da Cruz Paula
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joel Rosiene
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julie Behr
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Xiaotong Yao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Aditya Deshpande
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Michael Sigouros
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jyothi Manohar
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jones T Nauseef
- New York Genome Center, New York, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Juan-Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Marcin Imieliński
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
- New York Genome Center, New York, NY, USA.
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
- Department of Pathology and Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
36
|
Sun Q, Hong Z, Zhang C, Wang L, Han Z, Ma D. Immune checkpoint therapy for solid tumours: clinical dilemmas and future trends. Signal Transduct Target Ther 2023; 8:320. [PMID: 37635168 PMCID: PMC10460796 DOI: 10.1038/s41392-023-01522-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/11/2023] [Accepted: 05/28/2023] [Indexed: 08/29/2023] Open
Abstract
Immune-checkpoint inhibitors (ICBs), in addition to targeting CTLA-4, PD-1, and PD-L1, novel targeting LAG-3 drugs have also been approved in clinical application. With the widespread use of the drug, we must deeply analyze the dilemma of the agents and seek a breakthrough in the treatment prospect. Over the past decades, these agents have demonstrated dramatic efficacy, especially in patients with melanoma and non-small cell lung cancer (NSCLC). Nonetheless, in the field of a broad concept of solid tumours, non-specific indications, inseparable immune response and side effects, unconfirmed progressive disease, and complex regulatory networks of immune resistance are four barriers that limit its widespread application. Fortunately, the successful clinical trials of novel ICB agents and combination therapies, the advent of the era of oncolytic virus gene editing, and the breakthrough of the technical barriers of mRNA vaccines and nano-delivery systems have made remarkable breakthroughs currently. In this review, we enumerate the mechanisms of each immune checkpoint targets, associations between ICB with tumour mutation burden, key immune regulatory or resistance signalling pathways, the specific clinical evidence of the efficacy of classical targets and new targets among different tumour types and put forward dialectical thoughts on drug safety. Finally, we discuss the importance of accurate triage of ICB based on recent advances in predictive biomarkers and diagnostic testing techniques.
Collapse
Affiliation(s)
- Qian Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Cong Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Liangliang Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
37
|
Najafabadi MG, Gray GK, Kong LR, Gupta K, Perera D, Naylor H, Brugge JS, Venkitaraman AR, Shehata M. A transcriptional response to replication stress selectively expands a subset of Brca2-mutant mammary epithelial cells. Nat Commun 2023; 14:5206. [PMID: 37626143 PMCID: PMC10457340 DOI: 10.1038/s41467-023-40956-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Germline BRCA2 mutation carriers frequently develop luminal-like breast cancers, but it remains unclear how BRCA2 mutations affect mammary epithelial subpopulations. Here, we report that monoallelic Brca2mut/WT mammary organoids subjected to replication stress activate a transcriptional response that selectively expands Brca2mut/WT luminal cells lacking hormone receptor expression (HR-). While CyTOF analyses reveal comparable epithelial compositions among wildtype and Brca2mut/WT mammary glands, Brca2mut/WT HR- luminal cells exhibit greater organoid formation and preferentially survive and expand under replication stress. ScRNA-seq analysis corroborates the expansion of HR- luminal cells which express elevated transcript levels of Tetraspanin-8 (Tspan8) and Thrsp, plus pathways implicated in replication stress survival including Type I interferon responses. Notably, CRISPR/Cas9-mediated deletion of Tspan8 or Thrsp prevents Brca2mut/WT HR- luminal cell expansion. Our findings indicate that Brca2mut/WT cells activate a transcriptional response after replication stress that preferentially favours outgrowth of HR- luminal cells through the expression of interferon-responsive and mammary alveolar genes.
Collapse
Affiliation(s)
| | - G Kenneth Gray
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA, USA
| | - Li Ren Kong
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
- The Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, NUS School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, National University of Singapore, Singapore, Singapore
| | - Komal Gupta
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
- The Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, National University of Singapore, Singapore, Singapore
| | - David Perera
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
| | - Huw Naylor
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA, USA
| | - Ashok R Venkitaraman
- MRC Cancer Unit, University of Cambridge, Cambridge, UK.
- The Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- Institute of Molecular & Cellular Biology Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.
| | - Mona Shehata
- Department of Oncology, University of Cambridge, Cambridge, UK.
- MRC Cancer Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
38
|
Barroso-Sousa R, Pacífico JP, Sammons S, Tolaney SM. Tumor Mutational Burden in Breast Cancer: Current Evidence, Challenges, and Opportunities. Cancers (Basel) 2023; 15:3997. [PMID: 37568813 PMCID: PMC10417019 DOI: 10.3390/cancers15153997] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Tumor mutational burden (TMB) correlates with tumor neoantigen burden, T cell infiltration, and response to immune checkpoint inhibitors in many solid tumor types. Based on data from the phase II KEYNOTE-158 study, the anti-PD-1 antibody pembrolizumab was granted approval for treating patients with advanced solid tumors and TMB ≥ 10 mutations per megabase. However, this trial did not include any patients with metastatic breast cancer; thus, several questions remain unanswered about the true role of TMB as a predictive biomarker of benefit to immune checkpoint inhibitor therapy in breast cancer. In this review, we will discuss the challenges and opportunities in establishing TMB as a predictive biomarker of benefit to immunotherapy in metastatic breast cancer.
Collapse
Affiliation(s)
- Romualdo Barroso-Sousa
- Dasa Institute for Education and Research (IEPD), Brasilia 71635-580, DF, Brazil
- Dasa Oncology, Hospital Brasilia, Brasilia 71635-580, DF, Brazil
| | - Jana Priscila Pacífico
- Dasa Institute for Education and Research (IEPD), Brasilia 71635-580, DF, Brazil
- Dasa Oncology, Hospital Brasilia, Brasilia 71635-580, DF, Brazil
| | - Sarah Sammons
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Sara M. Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
39
|
Toss A, Ponzoni O, Riccò B, Piombino C, Moscetti L, Combi F, Palma E, Papi S, Tenedini E, Tazzioli G, Dominici M, Cortesi L. Management of PALB2-associated breast cancer: A literature review and case report. Clin Case Rep 2023; 11:e7747. [PMID: 37621724 PMCID: PMC10444947 DOI: 10.1002/ccr3.7747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 08/26/2023] Open
Abstract
Germline pathogenic variants (PV) of the PALB2 tumor suppressor gene are associated with an increased risk of breast, pancreatic, and ovarian cancer. In previous research, PALB2-associated breast cancer showed aggressive clinicopathological phenotypes, particularly triple-negative subtype, and higher mortality regardless of tumor stage, type of chemotherapy nor hormone receptor status. The identification of this germline alteration may have an impact on clinical management of breast cancer (BC) from the surgical approach to the systemic treatment choice. We herein report the case of a patient with a germline PV of PALB2, diagnosed with locally advanced PD-L1 positive triple-negative BC, who progressed after an immune checkpoint inhibitor (ICI)-containing regimen and then experienced a pathologic complete response after platinum-based chemotherapy. This case report hints a major role of the germline PALB2 alteration compared to the PD-L1 expression as cancer driver and gives us the opportunity to extensively review and discuss the available literature on the optimal management of PALB2-associated BC. Overall, our case report and review of the literature provide additional evidence that the germline analysis of PALB2 gene should be included in routine genetic testing for predictive purposes and to refine treatment algorithms.
Collapse
Affiliation(s)
- Angela Toss
- Department of Oncology and HematologyAzienda Ospedaliero‐Universitaria di ModenaModenaItaly
- Department of Medical and Surgical SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Ornella Ponzoni
- Department of Oncology and HematologyAzienda Ospedaliero‐Universitaria di ModenaModenaItaly
| | - Beatrice Riccò
- Department of Oncology and HematologyAzienda Ospedaliero‐Universitaria di ModenaModenaItaly
| | - Claudia Piombino
- Department of Oncology and HematologyAzienda Ospedaliero‐Universitaria di ModenaModenaItaly
| | - Luca Moscetti
- Department of Oncology and HematologyAzienda Ospedaliero‐Universitaria di ModenaModenaItaly
| | - Francesca Combi
- Unit of Breast Surgical OncologyAzienda Ospedaliero‐Universitaria di ModenaModenaItaly
- Department of Biomedical, Metabolic and Neural Sciences, International Doctorate School in Clinical and Experimental MedicineUniversity of Modena and Reggio EmiliaModenaItaly
| | - Enza Palma
- Unit of Breast Surgical OncologyAzienda Ospedaliero‐Universitaria di ModenaModenaItaly
| | - Simona Papi
- Unit of Breast Surgical OncologyAzienda Ospedaliero‐Universitaria di ModenaModenaItaly
| | - Elena Tenedini
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics UnitAzienda Ospedaliero‐Universitaria di ModenaModenaItaly
| | - Giovanni Tazzioli
- Department of Medical and Surgical SciencesUniversity of Modena and Reggio EmiliaModenaItaly
- Unit of Breast Surgical OncologyAzienda Ospedaliero‐Universitaria di ModenaModenaItaly
| | - Massimo Dominici
- Department of Oncology and HematologyAzienda Ospedaliero‐Universitaria di ModenaModenaItaly
- Department of Medical and Surgical SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Laura Cortesi
- Department of Oncology and HematologyAzienda Ospedaliero‐Universitaria di ModenaModenaItaly
| |
Collapse
|
40
|
Hwang J, Shi X, Elliott A, Arnoff TE, McGrath J, Xiu J, Walker P, Bergom HE, Day A, Ahmed S, Tape S, Makovec A, Ali A, Shaker RM, Toye E, Passow R, Lozada JR, Wang J, Lou E, Mouw KW, Carneiro BA, Heath EI, McKay RR, Korn WM, Nabhan C, Ryan CJ, Antonarakis ES. Metastatic Prostate Cancers with BRCA2 versus ATM Mutations Exhibit Divergent Molecular Features and Clinical Outcomes. Clin Cancer Res 2023; 29:2702-2713. [PMID: 37126020 DOI: 10.1158/1078-0432.ccr-22-3394] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/29/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
PURPOSE In patients with metastatic prostate cancer (mPC), ATM and BRCA2 mutations dictate differences in PARPi inhibitor response and other therapies. We interrogated the molecular features of ATM- and BRCA2-mutated mPC to explain the divergent clinical outcomes and inform future treatment decisions. EXPERIMENTAL DESIGN We examined a novel set of 1,187 mPCs after excluding microsatellite-instable (MSI) tumors. We stratified these based on ATM (n = 88) or BRCA2 (n = 98) mutations. As control groups, mPCs with mutations in 12 other homologous recombination repair (HRR) genes were considered non-BRCA2/ATM HRR-deficient (HRDother, n = 193), whereas lack of any HRR mutations were considered HRR-proficient (HRP; n = 808). Gene expression analyses were performed using Limma. Real-world overall survival was determined from insurance claims data. RESULTS In noncastrate mPCs, only BRCA2-mutated mPCs exhibited worse clinical outcomes to AR-targeted therapies. In castrate mPCs, both ATM and BRCA2 mutations exhibited worse clinical outcomes to AR-targeted therapies. ATM-mutated mPCs had reduced TP53 mutations and harbored coamplification of 11q13 genes, including CCND1 and genes in the FGF family. BRCA2-mutated tumors showed elevated genomic loss-of-heterozygosity scores and were often tumor mutational burden high. BRCA2-mutated mPCs had upregulation of cell-cycle genes and were enriched in cell-cycle signaling programs. This was distinct from ATM-mutated tumors. CONCLUSIONS Tumoral ATM and BRCA2 mutations are associated with differential clinical outcomes when patients are stratified by treatments, including hormonal or taxane therapies. ATM- and BRCA2-mutated tumors exhibited differences in co-occurring molecular features. These unique molecular features may inform therapeutic decisions and development of novel therapies.
Collapse
Affiliation(s)
- Justin Hwang
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Xiaolei Shi
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | | | - Taylor E Arnoff
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | | | | | | | - Hannah E Bergom
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Abderrahman Day
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Shihab Ahmed
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Sydney Tape
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Allison Makovec
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Atef Ali
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Rami M Shaker
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Eamon Toye
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Rachel Passow
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - John R Lozada
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Jinhua Wang
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Emil Lou
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Benedito A Carneiro
- Legorreta Cancer Center at Brown University, Lifespan Cancer Center, Providence, Rhode Island
| | | | | | - W Michael Korn
- Caris Life Sciences, Irving, Texas
- Division of Hematology/Oncology, UC San Francisco, San Francisco, California
| | | | - Charles J Ryan
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Prostate Cancer Foundation, Santa Monica, California
| | - Emmanuel S Antonarakis
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| |
Collapse
|
41
|
Klapp V, Álvarez-Abril B, Leuzzi G, Kroemer G, Ciccia A, Galluzzi L. The DNA Damage Response and Inflammation in Cancer. Cancer Discov 2023; 13:1521-1545. [PMID: 37026695 DOI: 10.1158/2159-8290.cd-22-1220] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/27/2023] [Accepted: 02/23/2023] [Indexed: 04/08/2023]
Abstract
Genomic stability in normal cells is crucial to avoid oncogenesis. Accordingly, multiple components of the DNA damage response (DDR) operate as bona fide tumor suppressor proteins by preserving genomic stability, eliciting the demise of cells with unrepairable DNA lesions, and engaging cell-extrinsic oncosuppression via immunosurveillance. That said, DDR sig-naling can also favor tumor progression and resistance to therapy. Indeed, DDR signaling in cancer cells has been consistently linked to the inhibition of tumor-targeting immune responses. Here, we discuss the complex interactions between the DDR and inflammation in the context of oncogenesis, tumor progression, and response to therapy. SIGNIFICANCE Accumulating preclinical and clinical evidence indicates that DDR is intimately connected to the emission of immunomodulatory signals by normal and malignant cells, as part of a cell-extrinsic program to preserve organismal homeostasis. DDR-driven inflammation, however, can have diametrically opposed effects on tumor-targeting immunity. Understanding the links between the DDR and inflammation in normal and malignant cells may unlock novel immunotherapeutic paradigms to treat cancer.
Collapse
Affiliation(s)
- Vanessa Klapp
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Beatriz Álvarez-Abril
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Department of Hematology and Oncology, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Giuseppe Leuzzi
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, New York, New York
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, New York, New York
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Sandra and Edward Meyer Cancer Center, New York, New York
- Caryl and Israel Englander Institute for Precision Medicine, New York, New York
| |
Collapse
|
42
|
Kornepati AVR, Rogers CM, Sung P, Curiel TJ. The complementarity of DDR, nucleic acids and anti-tumour immunity. Nature 2023; 619:475-486. [PMID: 37468584 DOI: 10.1038/s41586-023-06069-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/11/2023] [Indexed: 07/21/2023]
Abstract
Immune checkpoint blockade (ICB) immunotherapy is a first-line treatment for selected cancers, yet the mechanisms of its efficacy remain incompletely understood. Furthermore, only a minority of patients with cancer benefit from ICB, and there is a lack of fully informative treatment response biomarkers. Selectively exploiting defects in DNA damage repair is also a standard treatment for cancer, spurred by enhanced understanding of the DNA damage response (DDR). DDR and ICB are closely linked-faulty DDR produces immunogenic cancer neoantigens that can increase the efficacy of ICB therapy, and tumour mutational burden is a good but imperfect biomarker for the response to ICB. DDR studies in ICB efficacy initially focused on contributions to neoantigen burden. However, a growing body of evidence suggests that ICB efficacy is complicated by the immunogenic effects of nucleic acids generated from exogenous DNA damage or endogenous processes such as DNA replication. Chemotherapy, radiation, or selective DDR inhibitors (such as PARP inhibitors) can generate aberrant nucleic acids to induce tumour immunogenicity independently of neoantigens. Independent of their functions in immunity, targets of immunotherapy such as cyclic GMP-AMP synthase (cGAS) or PD-L1 can crosstalk with DDR or the DNA repair machinery to influence the response to DNA-damaging agents. Here we review the rapidly evolving, multifaceted interfaces between DDR, nucleic acid immunogenicity and immunotherapy efficacy, focusing on ICB. Understanding these interrelated processes could explain ICB treatment failures and reveal novel exploitable therapeutic vulnerabilities in cancers. We conclude by addressing major unanswered questions and new research directions.
Collapse
Affiliation(s)
- Anand V R Kornepati
- Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, TX, USA
| | - Cody M Rogers
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA
| | - Patrick Sung
- Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, TX, USA
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA
- University of Texas Health San Antonio MD Anderson Cancer Center, San Antonio, TX, USA
| | - Tyler J Curiel
- Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, TX, USA.
- University of Texas Health San Antonio MD Anderson Cancer Center, San Antonio, TX, USA.
- Department of Medicine, University of Texas Health, San Antonio, TX, USA.
- Dartmouth Health, Dartmouth Cancer Center and the Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
43
|
Inoue T, Sekito S, Kageyama T, Sugino Y, Sasaki T. Roles of the PARP Inhibitor in BRCA1 and BRCA2 Pathogenic Mutated Metastatic Prostate Cancer: Direct Functions and Modification of the Tumor Microenvironment. Cancers (Basel) 2023; 15:2662. [PMID: 37174127 PMCID: PMC10177034 DOI: 10.3390/cancers15092662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer cells frequently exhibit defects in DNA damage repair (DDR), leading to genomic instability. Mutations in DDR genes or epigenetic alterations leading to the downregulation of DDR genes can result in increased dependency on other DDR pathways. Therefore, DDR pathways could be a treatment target for various cancers. In fact, polyadenosine diphosphatase ribose polymerase (PARP) inhibitors, such as olaparib (Lynparza®), have shown remarkable therapeutic efficacy against BRCA1/2-mutant cancers through synthetic lethality. Recent genomic analytical advancements have revealed that BRCA1/BRCA2 pathogenic variants are the most frequent mutations among DDR genes in prostate cancer. Currently, the PROfound randomized controlled trial is investigating the efficacy of a PARP inhibitor, olaparib (Lynparza®), in patients with metastatic castration-resistant prostate cancer (mCRPC). The efficacy of the drug is promising, especially in patients with BRCA1/BRCA2 pathogenic variants, even if they are in the advanced stage of the disease. However, olaparib (Lynparza®) is not effective in all BRCA1/2 mutant prostate cancer patients and inactivation of DDR genes elicits genomic instability, leading to alterations in multiple genes, which eventually leads to drug resistance. In this review, we summarize PARP inhibitors' basic and clinical mechanisms of action against prostate cancer cells and discuss their effects on the tumor microenvironment.
Collapse
Affiliation(s)
- Takahiro Inoue
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Japan; (S.S.); (T.K.); (Y.S.); (T.S.)
| | | | | | | | | |
Collapse
|
44
|
Landen CN, Molinero L, Hamidi H, Sehouli J, Miller A, Moore KN, Taskiran C, Bookman M, Lindemann K, Anderson C, Berger R, Myers T, Beiner M, Reid T, Van Nieuwenhuysen E, Green A, Okamoto A, Aghajanian C, Thaker PH, Blank SV, Khor VK, Chang CW, Lin YG, Pignata S. Influence of Genomic Landscape on Cancer Immunotherapy for Newly Diagnosed Ovarian Cancer: Biomarker Analyses from the IMagyn050 Randomized Clinical Trial. Clin Cancer Res 2023; 29:1698-1707. [PMID: 36595569 PMCID: PMC10150250 DOI: 10.1158/1078-0432.ccr-22-2032] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/30/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
PURPOSE To explore whether patients with BRCA1/2-mutated or homologous recombination deficient (HRD) ovarian cancers benefitted from atezolizumab in the phase III IMagyn050 (NCT03038100) trial. PATIENTS AND METHODS Patients with newly diagnosed ovarian cancer were randomized to either atezolizumab or placebo with standard chemotherapy and bevacizumab. Programmed death-ligand 1 (PD-L1) status of tumor-infiltrating immune cells (IC) was determined centrally (VENTANA SP142 assay). Genomic alterations, including deleterious BRCA1/2 alterations, genomic loss of heterozygosity (gLOH), tumor mutation burden (TMB), and microsatellite instability (MSI), were evaluated using the FoundationOne assay. HRD was defined as gLOH ≥ 16%, regardless of BRCA1/2 mutation status. Potential associations between progression-free survival (PFS) and genomic biomarkers were evaluated using standard correlation analyses and log-rank of Kaplan-Meier estimates. RESULTS Among biomarker-evaluable samples, 22% (234/1,050) harbored BRCA1/2 mutations and 46% (446/980) were HRD. Median TMB was low irrespective of BRCA1/2 or HRD. Only 3% (29/1,024) had TMB ≥10 mut/Mb, and 0.3% (3/1,022) were MSI-high. PFS was better in BRCA2-mutated versus BRCA2-non-mutated tumors and in HRD versus proficient tumors. PD-L1 positivity (≥1% expression on ICs) was associated with HRD but not BRCA1/2 mutations. PFS was not improved by adding atezolizumab in BRCA2-mutated or HRD tumors; there was a trend toward enhanced PFS with atezolizumab in BRCA1-mutated tumors. CONCLUSIONS Most ovarian tumors have low TMB despite BRCA1/2 mutations or HRD. Neither BRCA1/2 mutation nor HRD predicted enhanced benefit from atezolizumab. This is the first randomized double-blind trial in ovarian cancer demonstrating that genomic instability triggered by BRCA1/2 mutation or HRD is not associated with improved sensitivity to immune checkpoint inhibitors. See related commentary by Al-Rawi et al., p. 1645.
Collapse
Affiliation(s)
- Charles N. Landen
- Gynecologic Oncology Group Foundation (GOG-F) and Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, Virginia
| | - Luciana Molinero
- Oncology Biomarker Development, Genentech, Inc., South San Francisco, California
| | - Habib Hamidi
- Oncology Biomarker Development, Genentech, Inc., South San Francisco, California
| | - Jalid Sehouli
- Arbeitsgemeinschaft Gynaekologische Onkologie (AGO)/Nord-Ostdeutsche Gesellschaft für Gynäkologische Onkologie (North-Eastern German Society of Gynaecologic Oncology; NOGGO) and Charité-Medical University of Berlin (Campus Virchow Klinikum), Berlin, Germany
| | - Austin Miller
- GOG-F and Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kathleen N. Moore
- GOG-F and Stephenson Cancer Center at the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, and Sarah Cannon Research Institute, Nashville, Tennessee
| | - Cagatay Taskiran
- Turkish Society of Gynecologic Oncology (TRSGO) and Koc University School of Medicine and VKV American Hospital, Istanbul, Turkey
| | - Michael Bookman
- GOG-F and Kaiser Permanente Northern California, San Francisco, California
| | - Kristina Lindemann
- Nordic Society of Gynaecological Oncology (NSGO) and Department of Gynecological Oncology, Division of Cancer Medicine, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Regina Berger
- AGO-Austria and Department for Gynecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
| | - Tashanna Myers
- GOG-F and Baystate Medical Center, Springfield, Massachusetts
| | - Mario Beiner
- Israeli Society of Gynecologic Oncology (ISGO) and Gynecologic Oncology Division, Meir Medical Center, Tel Aviv University, Kfar Saba, Israel
| | - Thomas Reid
- GOG-F and Kettering Medical Center, Kettering, Ohio
| | - Els Van Nieuwenhuysen
- Belgium and Luxembourg Gynaecological Oncology Group (BGOG) and UZ Leuven Gasthuisberg, Leuven, Belgium
| | - Andrew Green
- GOG-F and Northeast Georgia Medical Center, Gainesville, Georgia
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Carol Aghajanian
- GOG-F and Memorial Sloan Kettering Cancer Center, New York, New York
| | - Premal H. Thaker
- GOG-F and Washington University School of Medicine, St. Louis, Missouri
| | | | - Victor K. Khor
- Product Development Oncology, Genentech, Inc., South San Francisco, California
| | - Ching-Wei Chang
- Personalized Healthcare and Early Development Oncology Biostatistics, Genentech, Inc., South San Francisco, California
| | - Yvonne G. Lin
- Product Development Oncology, Genentech, Inc., South San Francisco, California
| | - Sandro Pignata
- Multicentre Italian Trials in Ovarian Cancer and Gynecologic Malignancies (MITO) and Istituto Nazionale Tumori IRCCS Fondazione G Pascale, Napoli, Italy
| |
Collapse
|
45
|
Peng M, Ying Y, Zhang Z, Liu L, Wang W. Reshaping the Pancreatic Cancer Microenvironment at Different Stages with Chemotherapy. Cancers (Basel) 2023; 15:cancers15092448. [PMID: 37173915 PMCID: PMC10177210 DOI: 10.3390/cancers15092448] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/09/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
The dynamic tumor microenvironment, especially the immune microenvironment, during the natural progression and/or chemotherapy treatment is a critical frontier in understanding the effects of chemotherapy on pancreatic cancer. Non-stratified pancreatic cancer patients always receive chemotherapeutic strategies, including neoadjuvant chemotherapy and adjuvant chemotherapy, predominantly according to their physical conditions and different disease stages. An increasing number of studies demonstrate that the pancreatic cancer tumor microenvironment could be reshaped by chemotherapy, an outcome caused by immunogenic cell death, selection and/or education of preponderant tumor clones, adaptive gene mutations, and induction of cytokines/chemokines. These outcomes could in turn impact the efficacy of chemotherapy, making it range from synergetic to resistant and even tumor-promoting. Under chemotherapeutic impact, the metastatic micro-structures in the primary tumor may be built to leak tumor cells into the lymph or blood vasculature, and micro-metastatic/recurrent niches rich in immunosuppressive cells may be recruited by cytokines and chemokines, which provide housing conditions for these circling tumor cells. An in-depth understanding of how chemotherapy reshapes the tumor microenvironment may lead to new therapeutic strategies to block its adverse tumor-promoting effects and prolong survival. In this review, reshaped pancreatic cancer tumor microenvironments due to chemotherapy were reflected mainly in immune cells, pancreatic cancer cells, and cancer-associated fibroblast cells, quantitatively, functionally, and spatially. Additionally, small molecule kinases and immune checkpoints participating in this remodeling process caused by chemotherapy are suggested to be blocked reasonably to synergize with chemotherapy.
Collapse
Affiliation(s)
- Maozhen Peng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Ying
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zheng Zhang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
46
|
Keane F, Bajwa R, Selenica P, Park W, Roehrl MH, Reis-Filho JS, Mandelker D, O'Reilly EM. Dramatic, durable response to therapy in gBRCA2-mutated pancreas neuroendocrine carcinoma: opportunity and challenge. NPJ Precis Oncol 2023; 7:40. [PMID: 37087482 PMCID: PMC10122663 DOI: 10.1038/s41698-023-00376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/30/2023] [Indexed: 04/24/2023] Open
Abstract
Poorly differentiated pancreatic neuroendocrine tumors (PDNEC), are a subtype of pancreatic cancer encompassing both small cell and large cell neuroendocrine carcinoma subtypes, and are characterized as distinct in terms of biology and prognosis compared to the more common pancreatic adenocarcinoma. Until recently, there has been a paucity of data on the genomic features of this cancer type. We describe a male patient diagnosed with PDNEC and extensive metastatic disease in the liver at diagnosis. Genomic analysis demonstrated a germline pathogenic variant in BRCA2 with somatic loss-of-heterozygosity of the BRCA2 wild-type allele. Following a favorable response to platinum-based chemotherapy (and the addition of immunotherapy), the patient received maintenance therapy with olaparib, which resulted in a further reduction on follow-up imaging (Fig. 1). After seventeen months of systemic control with olaparib, the patient developed symptomatic central nervous system metastases, which harboured a BRCA2 reversion mutation. No other sites of disease progression were observed. Herein, we report an exceptional outcome through the incorporation of a personalized management approach for a patient with a pancreatic PDNEC, guided by comprehensive genomic sequencing.
Collapse
Affiliation(s)
- Fergus Keane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
| | - Raazi Bajwa
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wungki Park
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Michael H Roehrl
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Diana Mandelker
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Diagnostic Molecular Genetics Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eileen M O'Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
47
|
Griesinger L, Nyarko-Odoom A, Martinez SA, Shen NW, Ring KL, Gaughan EM, Mills AM. PD-L1 and MHC Class I Expression in High-grade Ovarian Cancers, Including Platinum-resistant Recurrences Treated With Checkpoint Inhibitor Therapy. Appl Immunohistochem Mol Morphol 2023; 31:197-203. [PMID: 36812389 DOI: 10.1097/pai.0000000000001108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/10/2023] [Indexed: 02/24/2023]
Abstract
Immune-modulating therapies targeting the programmed cell death-1/programmed cell death ligand-1 (PD-L1) immunosuppressive system have been used successfully in many solid tumor types. There is evidence that biomarkers such as PD-L1 and major histocompatibility complex (MHC) class I help identify candidates for anti-programmed cell death-1/PD-L1 checkpoint inhibition, though the evidence is limited in ovarian malignancies. PD-L1 and MHC Class I immunostaining was performed on pretreatment whole tissue sections in 30 cases of high-grade ovarian carcinoma. The PD-L1 combined positive score was calculated (a score of ≥1 is considered positive). MHC class I status was categorized as an intact or subclonal loss. In patients who received immunotherapy, drug response was assessed using RECIST criteria. PD-L1 was positive in 26 of 30 cases (87%; combined positive score: 1 to 100). Seven of 30 patients showed subclonal loss of MHC class I (23%), and this occurred in both PD-L1 negative (3/4; 75%) and PD-L1 positive (4/26; 15%) cases. Only 1 of 17 patients who received immunotherapy in the setting of a platinum-resistant recurrence responded to the addition of immunotherapy, and all 17 died of disease. In the setting of recurrent disease, patients did not respond to immunotherapy regardless of PD-L1/MHC class I status, suggesting that these immunostains may not be effective predictive biomarkers in this setting. Subclonal loss of expression of MHC class I occurs in ovarian carcinoma, including in PD-L1 positive cases, suggesting that the 2 pathways of immune evasion may not be mutually exclusive and that it may be important to interrogate MHC class I status in PD-L1 positive tumors to identify additional immune evasion mechanisms in these tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Elizabeth M Gaughan
- Department of Hematology and Oncology, University of Virginia, Charlottesville, VA
| | | |
Collapse
|
48
|
Kang K, Wu Y, Han C, Wang L, Wang Z, Zhao A. Homologous recombination deficiency in triple-negative breast cancer: Multi-scale transcriptomics reveals distinct tumor microenvironments and limitations in predicting immunotherapy response. Comput Biol Med 2023; 158:106836. [PMID: 37031511 DOI: 10.1016/j.compbiomed.2023.106836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/17/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and has the highest proportion of homologous recombination deficiency (HRD). HRD has been considered a biomarker of response to immune checkpoint inhibitors (ICIs), but the reality is more complicated. A comprehensive comparison of the tumor microenvironment (TME) in HRD and non-HRD TNBC samples may be helpful. METHODS Datasets from single-cell, spatial, and bulk RNA-sequencing were collected to explore the role of HRD in the development of TME at multiple scales. Based on the findings in the TME, machine learning algorithms were used to construct a response prediction model in eleven ICI therapy cohorts. RESULTS A more exhausted phenotype of T cells and a more tolerogenic phenotype of dendritic cells were found in the non-HRD group. HRD reprograms the predominant phenotype of cancer-associated fibroblasts (CAFs) from myofibroblastic CAFs to inflammatory-like CAFs. As interactions between myofibroblastic CAFs and other cells, DPP4-chemokines associated with reduced immune cell recruitment were unique in the non-HRD group. The prediction model based on DPP4-related genes had acceptable performance in predicting response, prognosis, and immune cell content. Higher HRD scores in bulk RNA-sequencing samples indicated more activated immune cell function, but not higher immune cell content, which may be affected by factors such as antigen-presenting capacity. CONCLUSIONS Based on multi-scale transcriptomics, our findings comprehensively reveal differences in the TME between HRD and non-HRD samples. Combining HRD with the prediction model or other methods for assessing immune cell content, may better predict response to ICIs in TNBC.
Collapse
Affiliation(s)
- Kai Kang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yijun Wu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chang Han
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhile Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
49
|
Licata L, Mariani M, Rossari F, Viale G, Notini G, Naldini MM, Bosi C, Piras M, Dugo M, Bianchini G. Tissue- and liquid biopsy-based biomarkers for immunotherapy in breast cancer. Breast 2023; 69:330-341. [PMID: 37003065 PMCID: PMC10070181 DOI: 10.1016/j.breast.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy and now represent the mainstay of treatment for many tumor types, including triple-negative breast cancer and two agnostic registrations. However, despite impressive durable responses suggestive of an even curative potential in some cases, most patients receiving ICIs do not derive a substantial benefit, highlighting the need for more precise patient selection and stratification. The identification of predictive biomarkers of response to ICIs may play a pivotal role in optimizing the therapeutic use of such compounds. In this Review, we describe the current landscape of tissue and blood biomarkers that could serve as predictive factors for ICI treatment in breast cancer. The integration of these biomarkers in a "holistic" perspective aimed at developing comprehensive panels of multiple predictive factors will be a major step forward towards precision immune-oncology.
Collapse
Affiliation(s)
- Luca Licata
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy; School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Mariani
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy; School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Federico Rossari
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy; School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy; San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Viale
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy; School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Giulia Notini
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy; School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Maria Naldini
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy; School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy; San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carlo Bosi
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy; School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Marta Piras
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy
| | - Matteo Dugo
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy; School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Giampaolo Bianchini
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy; School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
50
|
van Weverwijk A, de Visser KE. Mechanisms driving the immunoregulatory function of cancer cells. Nat Rev Cancer 2023; 23:193-215. [PMID: 36717668 DOI: 10.1038/s41568-022-00544-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 01/31/2023]
Abstract
Tumours display an astonishing variation in the spatial distribution, composition and activation state of immune cells, which impacts their progression and response to immunotherapy. Shedding light on the mechanisms that govern the diversity and function of immune cells in the tumour microenvironment will pave the way for the development of more tailored immunomodulatory strategies for the benefit of patients with cancer. Cancer cells, by virtue of their paracrine and juxtacrine communication mechanisms, are key contributors to intertumour heterogeneity in immune contextures. In this Review, we discuss how cancer cell-intrinsic features, including (epi)genetic aberrations, signalling pathway deregulation and altered metabolism, play a key role in orchestrating the composition and functional state of the immune landscape, and influence the therapeutic benefit of immunomodulatory strategies. Moreover, we highlight how targeting cancer cell-intrinsic parameters or their downstream immunoregulatory pathways is a viable strategy to manipulate the tumour immune milieu in favour of antitumour immunity.
Collapse
Affiliation(s)
- Antoinette van Weverwijk
- Division of Tumour Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Karin E de Visser
- Division of Tumour Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands.
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands.
| |
Collapse
|