1
|
Moosavi SG, Rahiman N, Jaafari MR, Arabi L. Lipid nanoparticle (LNP) mediated mRNA delivery in neurodegenerative diseases. J Control Release 2025; 381:113641. [PMID: 40120689 DOI: 10.1016/j.jconrel.2025.113641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Neurodegenerative diseases (NDD) are characterized by the progressive loss of neurons and the impairment of cellular functions. Messenger RNA (mRNA) has emerged as a promising therapy for treating NDD, as it can encode missing or dysfunctional proteins and anti-inflammatory cytokines or neuroprotective proteins to halt the progression of these diseases. However, effective mRNA delivery to the central nervous system (CNS) remains a significant challenge due to the limited penetration of the blood-brain barrier (BBB). Lipid nanoparticles (LNPs) offer an efficient solution by encapsulating and protecting mRNA, facilitating transfection and intracellular delivery. This review discusses the pathophysiological mechanisms of neurological disorders, including Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), Huntington's disease (HD), ischemic stroke, spinal cord injury, and Friedreich's ataxia. Additionally, it explores the potential of LNP-mediated mRNA delivery as a therapeutic strategy for these diseases. Various approaches to overcoming BBB-related challenges and enhancing the delivery and efficacy of mRNA-LNPs are discussed, including non-invasive methods with strong potential for clinical translation. With advancements in artificial intelligence (AI)-guided mRNA and LNP design, targeted delivery, gene editing, and CAR-T cell therapy, mRNA-LNPs could significantly transform the treatment landscape for NDD, paving the way for future clinical applications.
Collapse
Affiliation(s)
- Seyedeh Ghazal Moosavi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Victorio M, Dieffenderfer J, Songkakul T, Willeke J, Bozkurt A, Pozdin VA. Wearable Wireless Functional Near-Infrared Spectroscopy System for Cognitive Activity Monitoring. BIOSENSORS 2025; 15:92. [PMID: 39996994 PMCID: PMC11853267 DOI: 10.3390/bios15020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025]
Abstract
From learning environments to battlefields to marketing teams, the desire to measure cognition and cognitive fatigue in real time has been a grand challenge in optimizing human performance. Near-infrared spectroscopy (NIRS) is an effective optical technique for measuring changes in subdermal hemodynamics, and it has been championed as a more practical method for monitoring brain function compared to MRI. This study reports on an innovative functional NIRS (fNIRS) sensor that integrates the entire system into a compact and wearable device, enabling long-term monitoring of patients. The device provides unrestricted mobility to the user with a Bluetooth connection for settings configuration and data transmission. A connected device, such as a smartphone or laptop equipped with the appropriate interface software, collects raw data, then stores and generates real-time analyses. Tests confirm the sensor is sensitive to oxy- and deoxy-hemoglobin changes on the forehead region, which indicate neuronal activity and provide information for brain activity monitoring studies.
Collapse
Affiliation(s)
- Mauro Victorio
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA
| | - James Dieffenderfer
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA (A.B.)
| | - Tanner Songkakul
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA (A.B.)
| | - Josh Willeke
- Department of Engineering Physics, Rose Hulman Institute of Technology, Terre Haute, IN 47803, USA;
| | - Alper Bozkurt
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA (A.B.)
| | - Vladimir A. Pozdin
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA
| |
Collapse
|
3
|
Singh SB, Bhattarai Y, Kafle R, Panta M, Tiwari A, Ayubcha C, Werner TJ, Alavi A, Revheim ME. A Brief History and the Use of PET in the Diagnosis and Management of Schizophrenia: An Educational Review. PET Clin 2025; 20:11-24. [PMID: 39477720 DOI: 10.1016/j.cpet.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
This article explores the role of PET in the diagnosis and treatment of schizophrenia. PET imaging can reveal neurobiologic aspects such as cerebral blood flow, glucose metabolism, receptor function, and neuroinflammation in schizophrenia. It has supported the dopaminergic hypothesis and helped distinguish symptom types and severity. Diagnostic biomarkers from PET could differentiate schizophrenia from other disorders, while predictive biomarkers might allow earlier targeted treatments. Despite significant promises, the application of PET imaging in schizophrenia is still in its nascent stage, requiring well-designed multicenter studies with large sample sizes to fully realize its clinical potential.
Collapse
Affiliation(s)
- Shashi B Singh
- Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yash Bhattarai
- Case Western Reserve University/The MetroHealth System, Cleveland, OH 44118, USA
| | - Riju Kafle
- Case Western Reserve University/The MetroHealth System, Cleveland, OH 44118, USA; Rhythm Neuropsychiatry Hospital and Research Center Pvt. Ltd, Lalitpur 44600, Nepal
| | - Marvi Panta
- Era International Hospital Pvt. Ltd, Sorakhutte, Kathmandu 20206, Nepal
| | - Atit Tiwari
- BP Koirala Institute of Health Sciences, Dharan 56700, Nepal
| | - Cyrus Ayubcha
- Harvard Medical School, Boston, MA 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Thomas J Werner
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mona-Elisabeth Revheim
- Division for Technology and Innovation, The Intervention Center, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
4
|
Zhou YP, Zhang LL, Sun Y, Brugarolas P. Imaging of Pain using Positron Emission Tomography. IRADIOLOGY 2024; 2:339-361. [PMID: 39440326 PMCID: PMC11493400 DOI: 10.1002/ird3.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 10/25/2024]
Abstract
Positron emission tomography (PET) is a noninvasive molecular imaging technique that utilizes biologically active radiolabeled compounds to image biochemical processes. As such, PET can provide important pathophysiological information associated with pain of different etiologies. As such, the information obtained using PET often combined with MRI or CT can provide useful information for diagnosing and monitoring changes associated with pain. This review covers the most important PET tracers that have been used to image pain including tracers for fundamental biological processes such as glucose metabolism and cerebral blood flow to receptor-specific tracers such as ion channels and neurotransmitters. For tracer type, we describe the structure and radiochemical synthesis of the tracer followed by a brief summary of the available preclinical and clinical studies. By providing a summary of the PET tracers that have been employed for PET imaging of pain, this review aims to serve as a reference for preclinical, translational and clinical investigators interested in molecular imaging of pain. Finally, the review ends with an outlook of the needs and opportunities in this area.
Collapse
Affiliation(s)
- Yu-Peng Zhou
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lauren L Zhang
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yang Sun
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pedro Brugarolas
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Nikmanesh Y, Mohammadi MJ, Yousefi H, Mansourimoghadam S, Taherian M. The effect of long-term exposure to toxic air pollutants on the increased risk of malignant brain tumors. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:519-530. [PMID: 35767733 DOI: 10.1515/reveh-2022-0033] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Toxic air pollutants are one of the most agent that have many acute, chronic and non-communicable diseases (NCDs) on human health under long or short-term exposure has been raised from the past to the present. The aim of this study was investigation effect of long-term exposure to toxic air pollutants on the increased risk of malignant brain tumors. Databases used to for searched were the PubMed, Web of Science, Springer and Science Direct (Scopus) and Google Scholar. 71 papers based on abstract and article text filtered. In the end after sieve we selected 7 papers. Identify all relevant studies published 1970-2022. The literature showed that exposure to toxic air pollutants and their respiration can cause disorders in different parts of the brain by transmission through the circulatory system and other mechanisms. Various unpleasant abnormalities are caused by the inhalation of toxic air pollutants in the human body that some of the most common of them include chronic lung disease, coronary heart disease and heart attacks, strokes and brain diseases (Parkinson's, Alzheimer's and multiple Sclerosis), cancers (liver, blood, prostate and brain) and eventually death. According to the finding brain health and proper functioning can be easily disrupted by various genetic or external factors such as air pollution, causing a wide range of abnormalities in the brain and malignant brain tumors. The results of this study showed that reducing the concentration of toxic pollutants in the air, that exposure to them play an increasing role in the development of brain diseases can slow down the process of abnormalities in the brain and will have significant impacts on reducing the number of people affected by them.
Collapse
Affiliation(s)
- Yousef Nikmanesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Mohammadi
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Homayon Yousefi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Masoume Taherian
- Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Paulson OB, Schousboe A, Hultborn H. The history of Danish neuroscience. Eur J Neurosci 2023; 58:2893-2960. [PMID: 37477973 DOI: 10.1111/ejn.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/04/2023] [Accepted: 05/29/2023] [Indexed: 07/22/2023]
Abstract
The history of Danish neuroscience starts with an account of impressive contributions made at the 17th century. Thomas Bartholin was the first Danish neuroscientist, and his disciple Nicolaus Steno became internationally one of the most prominent neuroscientists in this period. From the start, Danish neuroscience was linked to clinical disciplines. This continued in the 19th and first half of the 20th centuries with new initiatives linking basic neuroscience to clinical neurology and psychiatry in the same scientific environment. Subsequently, from the middle of the 20th century, basic neuroscience was developing rapidly within the preclinical university sector. Clinical neuroscience continued and was even reinforced during this period with important translational research and a close co-operation between basic and clinical neuroscience. To distinguish 'history' from 'present time' is not easy, as many historical events continue in present time. Therefore, we decided to consider 'History' as new major scientific developments in Denmark, which were launched before the end of the 20th century. With this aim, scientists mentioned will have been born, with a few exceptions, no later than the early 1960s. However, we often refer to more recent publications in documenting the developments of initiatives launched before the end of the last century. In addition, several scientists have moved to Denmark after the beginning of the present century, and they certainly are contributing to the present status of Danish neuroscience-but, again, this is not the History of Danish neuroscience.
Collapse
Affiliation(s)
- Olaf B Paulson
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, 9 Blegdamsvej, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Hultborn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Khare P, Edgecomb SX, Hamadani CM, E L Tanner E, Manickam DS. Lipid nanoparticle-mediated drug delivery to the brain. Adv Drug Deliv Rev 2023; 197:114861. [PMID: 37150326 DOI: 10.1016/j.addr.2023.114861] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Lipid nanoparticles (LNPs) have revolutionized the field of drug delivery through their applications in siRNA delivery to the liver (Onpattro) and their use in the Pfizer-BioNTech and Moderna COVID-19 mRNA vaccines. While LNPs have been extensively studied for the delivery of RNA drugs to muscle and liver targets, their potential to deliver drugs to challenging tissue targets such as the brain remains underexplored. Multiple brain disorders currently lack safe and effective therapies and therefore repurposing LNPs could potentially be a game changer for improving drug delivery to cellular targets both at and across the blood-brain barrier (BBB). In this review, we will discuss (1) the rationale and factors involved in optimizing LNPs for brain delivery, (2) ionic liquid-coated LNPs as a potential approach for increasing LNP accumulation in the brain tissue and (3) considerations, open questions and potential opportunities in the development of LNPs for delivery to the brain.
Collapse
Affiliation(s)
- Purva Khare
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| | - Sara X Edgecomb
- Department of Chemistry and Biochemistry, The University of Mississippi, MS
| | | | - Eden E L Tanner
- Department of Chemistry and Biochemistry, The University of Mississippi, MS.
| | - Devika S Manickam
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA.
| |
Collapse
|
8
|
Lia A, Di Spiezio A, Speggiorin M, Zonta M. Two decades of astrocytes in neurovascular coupling. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1162757. [PMID: 37078069 PMCID: PMC10106690 DOI: 10.3389/fnetp.2023.1162757] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
The brain is a highly energy demanding organ, which accounts in humans for the 20% of total energy consumption at resting state although comprising only 2% of the body mass. The necessary delivery of nutrients to brain parenchyma is ensured by the cerebral circulatory system, through the exchange of glucose and oxygen (O2) at the capillary level. Notably, a tight spatial and temporal correlation exists between local increases in neuronal activity and the subsequent changes in regional cerebral blood flow. The recognized concept of neurovascular coupling (NVC), also named functional hyperemia, expresses this close relationship and stands at the basis of the modern functional brain imaging techniques. Different cellular and molecular mechanisms have been proposed to mediate this tight coupling. In this context, astrocytes are ideally positioned to act as relay elements that sense neuronal activity through their perisynaptic processes and release vasodilator agents at their endfeet in contact with brain parenchymal vessels. Two decades after the astrocyte involvement in neurovascular coupling has been proposed, we here review the experimental evidence that contributed to unraveling the molecular and cellular mechanisms underlying cerebral blood flow regulation. While traveling through the different controversies that moved the research in this field, we keep a peculiar focus on those exploring the role of astrocytes in neurovascular coupling and conclude with two sections related to methodological aspects in neurovascular research and to some pathological conditions resulting in altered neurovascular coupling.
Collapse
Affiliation(s)
- Annamaria Lia
- Neuroscience Institute, National Research Council (CNR), Padua, Italy
| | - Alessandro Di Spiezio
- Neuroscience Institute, National Research Council (CNR), Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Micaela Zonta
- Neuroscience Institute, National Research Council (CNR), Padua, Italy
| |
Collapse
|
9
|
Neuronal nitric oxide synthase positive neurons in the human corpus callosum: a possible link with the callosal blood-oxygen-level dependent (BOLD) effect. Brain Struct Funct 2023; 228:511-523. [PMID: 36460768 DOI: 10.1007/s00429-022-02599-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022]
Abstract
Brain functions have been investigated in the past decades via the blood-oxygen-level dependent (BOLD) effect using functional magnetic resonance imaging. One hypothesis explaining the BOLD effect involves the Nitric Oxide (NO) gaseous neurotransmitter, possibly released also by cells in the corpus callosum (CC). The eventual presence of NO releasing neurons and/or glial cells in the CC can be assessed by immunohistochemistry. Serial sections both from paraffin-embedded and frozen samples of CC obtained from adult human brains autopsy were studied with immunohistochemistry and immunofluorescence analysis, using an antibody against the neuronal isoform of Nitric Oxide Synthase (nNOS), the enzyme synthetizing the NO. The staining revealed the presence of many nNOS-immunopositive cells in the CC, shown to be neurons with immunofluorescence. Neuronal NOS-positive neurons presented different morphologies, were more numerous 4 mm apart from the midline, and displayed a peak in the body of the CC. In some cases, they were located at the upper boundary of the CC, more densely packed in the proximity of the callosal arterioles. The significant presence of nNOS-immunopositive neurons within the commissure suggests their probable role in the CC neurovascular regulation in the adult brain and could explain the BOLD effect detected in human CC.
Collapse
|
10
|
Sousa JA, Bernardes C, Bernardo-Castro S, Lino M, Albino I, Ferreira L, Brás J, Guerreiro R, Tábuas-Pereira M, Baldeiras I, Santana I, Sargento-Freitas J. Reconsidering the role of blood-brain barrier in Alzheimer's disease: From delivery to target. Front Aging Neurosci 2023; 15:1102809. [PMID: 36875694 PMCID: PMC9978015 DOI: 10.3389/fnagi.2023.1102809] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
The existence of a selective blood-brain barrier (BBB) and neurovascular coupling are two unique central nervous system vasculature features that result in an intimate relationship between neurons, glia, and blood vessels. This leads to a significant pathophysiological overlap between neurodegenerative and cerebrovascular diseases. Alzheimer's disease (AD) is the most prevalent neurodegenerative disease whose pathogenesis is still to be unveiled but has mostly been explored under the light of the amyloid-cascade hypothesis. Either as a trigger, bystander, or consequence of neurodegeneration, vascular dysfunction is an early component of the pathological conundrum of AD. The anatomical and functional substrate of this neurovascular degeneration is the BBB, a dynamic and semi-permeable interface between blood and the central nervous system that has consistently been shown to be defective. Several molecular and genetic changes have been demonstrated to mediate vascular dysfunction and BBB disruption in AD. The isoform ε4 of Apolipoprotein E is at the same time the strongest genetic risk factor for AD and a known promoter of BBB dysfunction. Low-density lipoprotein receptor-related protein 1 (LRP-1), P-glycoprotein, and receptor for advanced glycation end products (RAGE) are examples of BBB transporters implicated in its pathogenesis due to their role in the trafficking of amyloid-β. This disease is currently devoid of strategies that change the natural course of this burdening illness. This unsuccess may partly be explained by our misunderstanding of the disease pathogenesis and our inability to develop drugs that are effectively delivered to the brain. BBB may represent a therapeutic opportunity as a target itself or as a therapeutic vehicle. In this review, we aim to explore the role of BBB in the pathogenesis of AD including the genetic background and detail how it can be targeted in future therapeutic research.
Collapse
Affiliation(s)
- João André Sousa
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Catarina Bernardes
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Sara Bernardo-Castro
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Lino
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Inês Albino
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Lino Ferreira
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - José Brás
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Miguel Tábuas-Pereira
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Inês Baldeiras
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - João Sargento-Freitas
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
11
|
Cha M, Eum YJ, Kim K, Kim L, Bak H, Sohn JH, Cheong C, Lee BH. Diffusion tensor imaging reveals sex differences in pain sensitivity of rats. Front Mol Neurosci 2023; 16:1073963. [PMID: 36937048 PMCID: PMC10017469 DOI: 10.3389/fnmol.2023.1073963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Studies on differences in brain structure and function according to sex are reported to contribute to differences in behavior and cognition. However, few studies have investigated brain structures or used tractography to investigate gender differences in pain sensitivity. The identification of tracts involved in sex-based structural differences that show pain sensitivity has remained elusive to date. Here, we attempted to demonstrate the sex differences in pain sensitivity and to clarify its relationship with brain structural connectivity. In this study, pain behavior test and brain diffusion tensor imaging (DTI) were performed in male and female rats and tractography was performed on the whole brain using fiber tracking software. We selected eight brain regions related to pain and performed a tractography analysis of these regions. Fractional anisotropy (FA) measurements using automated tractography revealed sex differences in the anterior cingulate cortex (ACC)-, prefrontal cortex (PFC)-, and ventral posterior thalamus-related brain connections. In addition, the results of the correlation analysis of pain sensitivity and DTI tractography showed differences in mean, axial, and radial diffusivities, as well as FA. This study revealed the potential of DTI for exploring circuits involved in pain sensitivity. The behavioral and functional relevance's of measures derived from DTI tractography is demonstrated by their relationship with pain sensitivity.
Collapse
Affiliation(s)
- Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Ji Eum
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Kyeongmin Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Leejeong Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeji Bak
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Hun Sohn
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chaejoon Cheong
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea
- *Correspondence: Chaejoon Cheong,
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Bae Hwan Lee,
| |
Collapse
|
12
|
Murrant CL, Fletcher NM. Capillary communication: the role of capillaries in sensing the tissue environment, coordinating the microvascular, and controlling blood flow. Am J Physiol Heart Circ Physiol 2022; 323:H1019-H1036. [PMID: 36149771 DOI: 10.1152/ajpheart.00088.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Historically, capillaries have been viewed as the microvascular site for flux of nutrients to cells and removal of waste products. Capillaries are the most numerous blood vessel segment within the tissue, whose vascular wall consists of only a single layer of endothelial cells and are situated within microns of each cell of the tissue, all of which optimizes capillaries for the exchange of nutrients between the blood compartment and the interstitial space of tissues. There is, however, a growing body of evidence to support that capillaries play an important role in sensing the tissue environment, coordinating microvascular network responses, and controlling blood flow. Much of our growing understanding of capillaries stems from work in skeletal muscle and more recent work in the brain, where capillaries can be stimulated by products released from cells of the tissue during increased activity and are able to communicate with upstream and downstream vascular segments, enabling capillaries to sense the activity levels of the tissue and send signals to the microvascular network to coordinate the blood flow response. This review will focus on the emerging role that capillaries play in communication between cells of the tissue and the vascular network required to direct blood flow to active cells in skeletal muscle and the brain. We will also highlight the emerging central role that disruptions in capillary communication may play in blood flow dysregulation, pathophysiology, and disease.
Collapse
Affiliation(s)
- Coral L Murrant
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Nicole M Fletcher
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
13
|
Neuronal nitric oxyde synthase positive neurons in human indusium griseum. Brain Struct Funct 2022; 227:1981-1994. [PMID: 35396620 PMCID: PMC9232420 DOI: 10.1007/s00429-022-02484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/16/2022] [Indexed: 11/12/2022]
Abstract
The study was designed to analyze the nNOS positive neurons present in the indusium griseum by describing their distribution and morphology. To this purpose, sagittal serial sections from paraffin or frozen autopsy specimens of corpus callosum including the overlying indusium griseum were processed by immunohistochemistry and immunofluorescence, using an antibody against the neuronal form of the enzyme nitric oxyde synthase. To test the specificity of the antibody used, Western Blot was performed in the indusium griseum of the same specimens. The stainings revealed the presence of many neuronal nitric oxyde synthase-immunopositive neurons in human indusium griseum, located along both rostral-caudal and medio-lateral directions. In particular, they were more numerous 1 mm apart from the midline, and their number peaked over the body of the corpus callosum. They showed different morphologies; in some cases, they were located at the boundary between indusium griseum and corpus callosum, more densely packed in proximity to the pial arteries penetrating into the corpus callosum. The significant presence and distribution of neuronal nitric oxyde synthase-immunopositive neurons suggests that indusium griseum likely plays a functional role in the neurovascular regulation within the corpus callosum.
Collapse
|
14
|
Yoon J, Shin M, Kim D, Lim J, Kim HW, Kang T, Choi JW. Bionanohybrid composed of metalloprotein/DNA/MoS 2/peptides to control the intracellular redox states of living cells and its applicability as a cell-based biomemory device. Biosens Bioelectron 2022; 196:113725. [PMID: 34678652 DOI: 10.1016/j.bios.2021.113725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/17/2021] [Indexed: 12/13/2022]
Abstract
The development of cell-based bioelectronic devices largely depends on the direct control of intracellular redox states. However, most related studies have focused on the accurate measurement of electrical signals from living cells, whereas direct intracellular state control remains largely unexplored. Here, we developed a biocompatible transmembranal bionanohybrid structure composed of a recombinant metalloprotein, DNA, molybdenum disulfide nanoparticles (MoS2), and peptides to control intracellular redox states, which can be used as a cell-based biomemory device. Using the capacitance of MoS2 located inside the cell, the bionanohybrid controled the intracellular redox states of living cells by recording and extracting intracellular charges, which inturn was achieved by activating (writing) and deactivating (erasing) the cells. As a proof of concept, cell-based biomemory functions including writing, reading, and erasing were successfully demonstrated and confirmed via electrochemical methods and patch-clamp analyses, resulting in the development of the first in vitro cell-based biomemory device. This newly developed bionanohybrid provides a novel approach to control cellular redox states for cell-based bioelectronic applications, and can be applicable in a wide range of biological fields including bioelectronic medicine and intracellular redox status regulation.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea
| | - Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea
| | - Dongyeon Kim
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea
| | - Joungpyo Lim
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea
| | - Hyun-Woong Kim
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea
| | - Taewook Kang
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea.
| |
Collapse
|
15
|
Mukli P, Nagy Z, Racz FS, Portoro I, Hartmann A, Stylianou O, Debreczeni R, Bereczki D, Eke A. Two-Tiered Response of Cardiorespiratory-Cerebrovascular Network to Orthostatic Challenge. Front Physiol 2021; 12:622569. [PMID: 33737882 PMCID: PMC7960776 DOI: 10.3389/fphys.2021.622569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/08/2021] [Indexed: 12/23/2022] Open
Abstract
Dynamic interdependencies within and between physiological systems and subsystems are key for homeostatic mechanisms to establish an optimal state of the organism. These interactions mediate regulatory responses elicited by various perturbations, such as the high-pressure baroreflex and cerebral autoregulation, alleviating the impact of orthostatic stress on cerebral hemodynamics and oxygenation. The aim of this study was to evaluate the responsiveness of the cardiorespiratory-cerebrovascular networks by capturing linear and nonlinear interdependencies to postural changes. Ten young healthy adults participated in our study. Non-invasive measurements of arterial blood pressure (from that cardiac cycle durations were derived), breath-to-breath interval, cerebral blood flow velocity (BFV, recorded by transcranial Doppler sonography), and cerebral hemodynamics (HbT, total hemoglobin content monitored by near-infrared spectroscopy) were performed for 30-min in resting state, followed by a 1-min stand-up and a 1-min sit-down period. During preprocessing, noise was filtered and the contribution of arterial blood pressure was regressed from BFV and HbT signals. Cardiorespiratory-cerebrovascular networks were reconstructed by computing pair-wise Pearson-correlation or mutual information between the resampled signals to capture their linear and/or nonlinear interdependencies, respectively. The interdependencies between cardiac, respiratory, and cerebrovascular dynamics showed a marked weakening after standing up persisting throughout the sit-down period, which could mainly be attributed to strikingly attenuated nonlinear coupling. To summarize, we found that postural changes induced topological changes in the cardiorespiratory-cerebrovascular network. The dissolution of nonlinear networks suggests that the complexity of key homeostatic mechanisms maintaining cerebral hemodynamics and oxygenation is indeed sensitive to physiological perturbations such as orthostatic stress.
Collapse
Affiliation(s)
- Peter Mukli
- Department of Physiology, Semmelweis University, Budapest, Hungary.,Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Nagy
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | | | - Istvan Portoro
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Andras Hartmann
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.,Institute for Globally Distributed Open Research and Education (IGDORE), Stockholm, Sweden
| | - Orestis Stylianou
- Department of Physiology, Semmelweis University, Budapest, Hungary.,Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | | | - Daniel Bereczki
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Andras Eke
- Department of Physiology, Semmelweis University, Budapest, Hungary.,Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.,Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
16
|
Lassen A, Stokely E, Vorstrup S, Goldman T, Henriksen JH. Neuro-SPECT: On the development and function of brain emission tomography in the Copenhagen area. Clin Physiol Funct Imaging 2020; 41:10-24. [PMID: 32956526 DOI: 10.1111/cpf.12663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/17/2020] [Accepted: 09/09/2020] [Indexed: 11/29/2022]
Abstract
This review describes the development of single-photon emission tomography (SPECT) in the Copenhagen area under the leadership of the internationally renown scientist, Niels A. Lassen, and the history leading up to construction of the tomograph. Measurements of global cerebral blood flow (CBF) in the 1940s and 1950s were performed by Kety & Schmidt and Lassen & Munck. Determination of regional cerebral blood flow (rCBF) by intra-arterial injection of 133 Xe and measurement with a 254-multicrystal scintillation detector and a computer system was a major step forward in the study of physiology and pathophysiology of cortical cerebral blood flow. Tomography with radioisotope ligands, including non-invasive administration, was advanced in different centres during the 1970s. An emission tomograph, the Tomomatic 64, was developed as a result of a multidisciplinary Danish and international collaboration. It was the first emission tomograph to provide dynamic data that could produce cross-sectional rCBF images. The present description of the construction and function of the Tomomatic 64 includes comparison with other contemporary and later brain-dedicated SPECT systems. Basic and clinical application of the Tomomatic 64 in Copenhagen resulted in several hundred important scientific publications and improved diagnostics for patients with a variety of neurological disorders. It is concluded that the development of the Tomomatic 64 was a major step forward in the study and examination of rCBF and brain function related to several brain disorders, in addition to vascular diseases.
Collapse
Affiliation(s)
- Anders Lassen
- Department of Computer Science (DIKU), Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Ernest Stokely
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sissel Vorstrup
- Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| | - Tomasz Goldman
- Department of Computer Science (DIKU), Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jens H Henriksen
- Department of Clinical Physiology and Nuclear Medicine, Faculty of Health Science, Center for Functional and Diagnostic Imaging and Research 260, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Fujita N, Kunimune S, Okada S. Contribution of the dorsolateral prefrontal cortex activation, ankle muscle activities, and coactivation during dual-tasks to postural steadiness: a pilot study. J Phys Ther Sci 2020; 32:467-472. [PMID: 32753789 PMCID: PMC7344285 DOI: 10.1589/jpts.32.467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/15/2020] [Indexed: 11/24/2022] Open
Abstract
[Purpose] To examine the influence of dorsolateral prefrontal cortex (DLPFC) activation,
ankle muscle activities, and coactivation on postural steadiness during dual-tasks.
[Participants and Methods] A total of 14 participants (8 males, 6 females) were included.
The participants stood straight on the force plate, and performed 3 different tasks: 1) a
quiet standing (single-task), 2) a repetition of a number (dual-task 1: DT1), and 3) a
serial subtraction (dual-task 2: DT2). We divided the participants into 2 groups (S and L
group) according to whether their center of pressure paths in the dual-tasks were shorter
or longer than those in the single-task. The EMG activity of the gastrocnemius lateralis
and tibialis anterior were measured; the oxygenated hemoglobin (oxy-Hb) level in the DLPFC
were measured using fNIRS. [Results] The results revealed that oxy-Hb in the left DLPFC
increased significantly in all participants during DT2 compared to a single-task. Further,
we found that the S group exhibited a higher rate of tibialis anterior activity and ankle
muscle coactivation than the L group during DT2. [Conclusion] We concluded that the
increase of the DLPFC activation varied with the dual-tasks; moreover, younger individuals
modulate their standing posture using different strategies for posture steadiness during
posture-calculating task.
Collapse
Affiliation(s)
- Nobuko Fujita
- Division of Physical Therapy, Department of Rehabilitation, Faculty of Health Sciences, Naragakuen University: 3-15-1 Nakatomigaoka, Nara-shi, Nara 631-8524, Japan
| | - Sho Kunimune
- Department of Physical Therapy, Faculty of Health Science, Osaka Yukioka College of Health Science, Japan
| | - Shuichi Okada
- Department of Human Development, Graduate School of Human Development and Environment, Kobe University, Japan
| |
Collapse
|
18
|
Nobre AC, van Ede F. Under the Mind's Hood: What We Have Learned by Watching the Brain at Work. J Neurosci 2020; 40:89-100. [PMID: 31630115 PMCID: PMC6939481 DOI: 10.1523/jneurosci.0742-19.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/14/2019] [Accepted: 08/01/2019] [Indexed: 01/08/2023] Open
Abstract
Imagine you were asked to investigate the workings of an engine, but to do so without ever opening the hood. Now imagine the engine fueled the human mind. This is the challenge faced by cognitive neuroscientists worldwide aiming to understand the neural bases of our psychological functions. Luckily, human ingenuity comes to the rescue. Around the same time as the Society for Neuroscience was being established in the 1960s, the first tools for measuring the human brain at work were becoming available. Noninvasive human brain imaging and neurophysiology have continued developing at a relentless pace ever since. In this 50 year anniversary, we reflect on how these methods have been changing our understanding of how brain supports mind.
Collapse
Affiliation(s)
- Anna Christina Nobre
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom, and
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Freek van Ede
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom, and
| |
Collapse
|
19
|
In vivo imaging for neurovascular disease research. Arch Pharm Res 2019; 42:263-273. [PMID: 30756309 DOI: 10.1007/s12272-019-01128-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/29/2019] [Indexed: 01/10/2023]
Abstract
Connections between various cell types in the brain enable cognitive function. The neurovascular unit is a structure composed of different cell types that regulate neurovascular coupling, blood-brain barrier permeability, and other interactions with peripheral systems. The relationship among the components of the neurovascular unit is complex and difficult to study without the use of in vivo neurovascular disease imaging. In this review, we introduce principles and examples of various in vivo optical imaging techniques including laser Doppler flowmetry, laser speckle contrast imaging, intrinsic optical signal imaging, optical coherence tomography, and two-photon microscopy. Furthermore, we introduce recent advances of in vivo imaging and future directions for promoting neurovascular disease research.
Collapse
|
20
|
Burlakoti A, Kumaratilake J, Taylor J, Henneberg M. Asymmetries of total arterial supply of cerebral hemispheres do not exist. Heliyon 2019; 5:e01086. [PMID: 30671556 PMCID: PMC6328356 DOI: 10.1016/j.heliyon.2018.e01086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/19/2018] [Accepted: 12/19/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Total blood supply to an organ, or its part, is proportional to its function. The aim of this project was to investigate whether there is a lateralisation of total functions of cerebral hemispheres by determining differences in the arterial blood supply to left and right cerebral hemispheres. METHODS Diameters of right and left anterior, middle and posterior cerebral arteries were measured at specific sites and cross-sectional areas calculated in 203 adult brains (51 donated and dissected brain specimens and 152 cerebral arterial Computed Tomography Angiography and Magnetic Resonance Angiography images). FINDINGS The sample size was large enough to provide a power of detecting as significant differences of 4%, but neither of the average cross-sectional areas of right anterior, middle and posterior cerebral arteries were significantly different from those of the anterior, middle and posterior cerebral arteries of the left side. Furthermore, combined areas of the three right cerebral arteries were not significantly different from combined areas of the left three arteries. This clearly indicates that the blood supply into the right cerebral hemisphere is not different from that of the left cerebral hemisphere. Therefore, there is no total functional lateralisation between the two cerebral hemispheres. CONCLUSION Brain lateralisation, frequently discussed in the literature, does not deferentially influence the total activity levels of cerebral hemispheres.
Collapse
Affiliation(s)
- Arjun Burlakoti
- School of Health Sciences, University of South Australia, Australia
- Adelaide Medical School, Biological and Anthropology and Comparative Anatomy Research Unit, The University of Adelaide, Australia
| | - Jaliya Kumaratilake
- Adelaide Medical School, Biological and Anthropology and Comparative Anatomy Research Unit, The University of Adelaide, Australia
| | - Jamie Taylor
- Magnetic Resonance Imaging Centre, Royal Adelaide Hospital, Australia
| | - Maciej Henneberg
- Adelaide Medical School, Biological and Anthropology and Comparative Anatomy Research Unit, The University of Adelaide, Australia
- Institute of Evolutionary Medicine, University of Zurich, Switzerland
| |
Collapse
|
21
|
Yerys BE, Herrington JD, Bartley GK, Liu HS, Detre JA, Schultz RT. Arterial spin labeling provides a reliable neurobiological marker of autism spectrum disorder. J Neurodev Disord 2018; 10:32. [PMID: 30541425 PMCID: PMC6292037 DOI: 10.1186/s11689-018-9250-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 11/14/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Research on neurobiological markers of autism spectrum disorder (ASD) has been elusive. However, radionuclide studies of cerebral blood flow (CBF) have shown decreased blood flow (hypoperfusion) in the temporal lobes of individuals with ASD across ages and intelligence. This observation fits with current neuroscientific models that implicate temporal regions in social perception and social cognition. Arterial spin labeled perfusion MRI allows noninvasive quantification of regional CBF as part of a multimodal MRI protocol. This method is almost entirely absent from ASD research to date. Our a priori hypothesis was that children with ASD would present with hypoperfusion in the temporal lobes-most notably the fusiform gyrus (given its prominent role in ASD social perception deficits). We also sought to examine the reproducibility of CBF measures, and their relationship to individual differences in facial recognition and ASD symptoms. METHODS A total of 58 males (33 with ASD) between the ages of 12 and 17 years participated in the study. All children completed two arterial spin labeling and structural (T1) scans using a 3 T Siemens Verio scanner approximately 8 weeks apart, as well as behavioral testing at time 1 that included diagnostic measures and the Benton Facial Recognition Test. CBF was the key dependent variable, as was facial recognition performance, and ASD symptoms. The two scans were used for reliability analyses. RESULTS The ASD group showed hypoperfusion in the bilateral fusiform gyrus and in right inferior temporal gyrus. Intra-class correlations showed moderate to good reliability across time within both groups, and no diagnostic group × time interactions. CBF in the left fusiform gyrus was significantly positively correlated with facial recognition. No significant correlations were observed with core ASD symptoms. CONCLUSIONS Arterial spin labeling revealed hypoperfusion in children with ASD in regions critical to social perception and cognition. The left fusiform gyrus plays an important role in facial recognition, and greater CBF in this region was correlated with more normative facial recognition performance in children with ASD. This study takes an important first step in establishing CBF of the temporal lobes as a reliable marker of ASD.
Collapse
Affiliation(s)
- Benjamin E. Yerys
- Center for Autism Research, The Children’s Hospital of Philadelphia, Roberts Center for Pediatric Research, 2716 South Street, 5th floor, Philadelphia, PA 19146-2305 USA
- Department of Psychiatry, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104 USA
| | - John D. Herrington
- Center for Autism Research, The Children’s Hospital of Philadelphia, Roberts Center for Pediatric Research, 2716 South Street, 5th floor, Philadelphia, PA 19146-2305 USA
- Department of Psychiatry, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104 USA
| | - Gregory K. Bartley
- Center for Autism Research, The Children’s Hospital of Philadelphia, Roberts Center for Pediatric Research, 2716 South Street, 5th floor, Philadelphia, PA 19146-2305 USA
| | - Hua-Shan Liu
- Department of Neurology, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104 USA
| | - John A. Detre
- Department of Neurology, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104 USA
| | - Robert T. Schultz
- Center for Autism Research, The Children’s Hospital of Philadelphia, Roberts Center for Pediatric Research, 2716 South Street, 5th floor, Philadelphia, PA 19146-2305 USA
- Department of Psychiatry, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104 USA
- Department of Pediatrics, Perelman School Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104 USA
| |
Collapse
|
22
|
Molecular imaging in dementia: Past, present, and future. Alzheimers Dement 2018; 14:1522-1552. [DOI: 10.1016/j.jalz.2018.06.2855] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/02/2018] [Accepted: 06/03/2018] [Indexed: 12/14/2022]
|
23
|
Naro A, Chillura A, Portaro S, Bramanti A, De Luca R, Bramanti P, Calabrò RS. Novel Approaches to the Diagnosis of Chronic Disorders of Consciousness: Detecting Peripersonal Space by Using Ultrasonics. Front Neurol 2018; 9:47. [PMID: 29459847 PMCID: PMC5807342 DOI: 10.3389/fneur.2018.00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/18/2018] [Indexed: 01/17/2023] Open
Abstract
The assessment of behavioral responsiveness in patients suffering from chronic disorders of consciousness (DoC), including Unresponsive Wakefulness Syndrome (UWS) and Minimally Conscious State (MCS), is challenging. Even if a patient is unresponsive, he/she may be covertly aware in reason of a cognitive-motor dissociation, i.e., a preservation of cognitive functions despite a solely reflexive behavioral responsiveness. The approach of an external stimulus to the peripersonal space (PPS) modifies some biological measures (e.g., hand-blink reflex amplitude) to the purpose of defensive responses from threats. Such modulation depends on a top-down control of subcortical neural circuits, which can be explored through changes in cerebral blood flow velocity (CBFV), using functional transcranial Doppler (fTCD) and, thus, gaining useful, indirect information on brain connectivity. These data may be used for the DoC differential diagnosis. We evaluated the changes in CBFV by measuring the pulsatility index (PI) in 21 patients with DoC (10 patients with MCS and 11 with UWS) and 25 healthy controls (HC) during a passive movement and motor imagery (MI) task in which the hand of the subject approached and, then, moved away from the subject’s face. In the passive movement task, the PI increased progressively in the HCs when the hand was moved toward the face and, then, it decreased when the hand was removed from the face. The PI increased when the hand was moved toward the face in patients with DoC, but then, it remained high when the hand was removed from the face and up to 30 s after the end of the movement in the patients with MCS (both MCS+ and MCS−) and 1 min in those with UWS, thus differentiating between patients with MCS and UWS. In the MI task, all the HCs, three out of four patients with MCS+, and one out of six patients with MCS− showed an increase–decrease PI change, whereas the remaining patients with MCS and all the patients with UWS showed no PI changes. Even though there is the possibility that our findings will not be replicated in all patients with DoC, we propose fTCD as a rapid and very easy tool to differentiate between patients with MCS and UWS, by identifying residual top-down modulation processes from higher-order cortical areas to sensory-motor integration networks related to the PPS, when using passive movement tasks.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS centro Neurolesi Bonino-Pulejo, Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Soundhar A, Udesh R, Mehta A, Schindler J, Jeevanantham V, Gleason T, Thirumala PD. Delirium Following Transcatheter Aortic Valve Replacement: National Inpatient Sample Analysis. J Cardiothorac Vasc Anesth 2017; 31:1977-1984. [DOI: 10.1053/j.jvca.2017.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Indexed: 12/14/2022]
|
25
|
The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron 2017; 96:17-42. [PMID: 28957666 DOI: 10.1016/j.neuron.2017.07.030] [Citation(s) in RCA: 1509] [Impact Index Per Article: 188.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023]
Abstract
The concept of the neurovascular unit (NVU), formalized at the 2001 Stroke Progress Review Group meeting of the National Institute of Neurological Disorders and Stroke, emphasizes the intimate relationship between the brain and its vessels. Since then, the NVU has attracted the interest of the neuroscience community, resulting in considerable advances in the field. Here the current state of knowledge of the NVU will be assessed, focusing on one of its most vital roles: the coupling between neural activity and blood flow. The evidence supports a conceptual shift in the mechanisms of neurovascular coupling, from a unidimensional process involving neuronal-astrocytic signaling to local blood vessels to a multidimensional one in which mediators released from multiple cells engage distinct signaling pathways and effector systems across the entire cerebrovascular network in a highly orchestrated manner. The recently appreciated NVU dysfunction in neurodegenerative diseases, although still poorly understood, supports emerging concepts that maintaining neurovascular health promotes brain health.
Collapse
|
26
|
Cermak SA, Trombly CA, Hausser J, Tiernan AM. Effects of Lateralized Tasks on Unilateral Neglect after Right Cerebral Vascular Accident. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/153944929101100502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study examined whether activities designed to stimulate the right hemisphere of the brain resulted in decreased neglect in patients with right cerebral vascular accident (CVA) and unilateral neglect (UN) and, conversely, whether activities designed to stimulate the left hemisphere resulted in increased left neglect. An alternating treatment, single subject design was used with five subjects, ages 57 to 74, who demonstrated neglect on both the Schenkenberg Line Bisection Test and the behavioral subtest of the Behavioral Inattention Test. Each subject received 8 days of baseline measures (Schenkenberg Line Bisection Test) and 10 days of treatment, during which the subjects were alternately engaged in the groups of tasks intended to arouse a particular hemisphere, followed by six to eight baseline measures. Line bisection scores were taken after each treatment. The significance of change in UN after either group of activities was determined by visual inspection and semi-statistical analysis using the two standard deviation band method. The findings did not support the hypotheses. Two subjects demonstrated no significant change after either treatment phase; one subject showed a significant decrease in neglect after both phases of treatment; one subject showed a significant decrease in neglect after activities designed to stimulate the right hemisphere but no change after activities to facilitate the left hemisphere; and one subject showed a significant increase in neglect after both types of treatment. Results are discussed in terms of severity of impairment, fatigue effect, spontaneous recovery, and the adequacy of the tasks to differentially activate a single hemisphere.
Collapse
|
27
|
Volianitis S, Secher NH. Cardiovascular control during whole body exercise. J Appl Physiol (1985) 2016; 121:376-90. [PMID: 27311439 PMCID: PMC5007320 DOI: 10.1152/japplphysiol.00674.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 06/10/2016] [Indexed: 12/25/2022] Open
Abstract
It has been considered whether during whole body exercise the increase in cardiac output is large enough to support skeletal muscle blood flow. This review addresses four lines of evidence for a flow limitation to skeletal muscles during whole body exercise. First, even though during exercise the blood flow achieved by the arms is lower than that achieved by the legs (∼160 vs. ∼385 ml·min(-1)·100 g(-1)), the muscle mass that can be perfused with such flow is limited by the capacity to increase cardiac output (42 l/min, highest recorded value). Secondly, activation of the exercise pressor reflex during fatiguing work with one muscle group limits flow to other muscle groups. Another line of evidence comes from evaluation of regional blood flow during exercise where there is a discrepancy between flow to a muscle group when it is working exclusively and when it works together with other muscles. Finally, regulation of peripheral resistance by sympathetic vasoconstriction in active muscles by the arterial baroreflex is critical for blood pressure regulation during exercise. Together, these findings indicate that during whole body exercise muscle blood flow is subordinate to the control of blood pressure.
Collapse
Affiliation(s)
- Stefanos Volianitis
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark; and
| | - Niels H Secher
- The Copenhagen Muscle Research Center, Department of Anesthesiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Higashida RT, Halbach VV, Barnwell SL, Dowd CF, Hieshima GB. Thrombolytic Therapy in Acute Stroke. J Endovasc Ther 2016. [DOI: 10.1177/152660289500100103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Purpose: To report the safety and efficacy of local, direct, intra-arterial and intravenous fibrinolysis treatment in selected cases of clinically symptomatic patients with acute occlusion of the intracranial cerebral arteries and dural sinuses. Methods: Patients with acute progressive neurological deterioration, in spite of systemic anticoagulation and/or antiplatelet medications, presenting with occlusion of a major intracranial cerebral artery or dural sinus were treated. From a transfemoral approach through a guiding catheter, a 2.5F microcatheter was guided directly into the intracranial cerebral circulation and embedded within the clot. Infusion of urokinase was then performed directly into the thrombus until lysis was attained. Results: In 36 total patients, 27 cases were treated for an acute arterial occlusion in 45 vascular territories. Clinically, there was neurological improvement in 18 (66.7%) cases. Complications directly related to therapy included symptomatic intracranial hemorrhage in three cases (11.1%), which included 1 case (3.7%) of vessel perforation. In 8 (29.6%) patients, there was no evidence of clinical improvement, and in long-term follow-up there were 9 (33.3%) patient deaths. Nine patients were treated for an intracerebral dural sinus thrombosis in ten vascular territories by local urokinase infusion. In 7 (77.8%) cases, there was angiographic evidence of clot lysis and clinical improvement of the patient's neurological condition. Minor complications including infection and noncerebral sites of bleeding occurred in 3 (33.3%) patients, requiring adjustment in urokinase infusion therapy. Conclusions: Local, direct intra-arterial or intravenous infusion of thrombolytic drugs for treatment of stroke patients may improve overall patient morbidity and mortality related to acute thromboembolic disease in the central nervous system. Further clinical studies are warranted to evaluate this form of therapy.
Collapse
Affiliation(s)
| | | | - Stanley L. Barnwell
- Department of Neurological Surgery and Neuroradiology, University of Oregon Health Sciences Center, Portland, Oregon
| | | | | |
Collapse
|
29
|
Hughes AJ, Upshaw JN, Macaulay GM, Rutherford BJ. Enhancing the ecological validity of tests of lateralization and hemispheric interaction: Evidence from fixated displays of letters or symbols of varying complexity. Brain Cogn 2016; 106:1-12. [PMID: 27155160 DOI: 10.1016/j.bandc.2016.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
Abstract
Two experiments expand upon behavioural evidence of interactions among lateralization, hemispheric interaction, and task complexity with findings from an ecologically valid procedure. Target displays of letters or symbols were presented at fixation in go/no-go matching tasks of physical or categorical identity. Simultaneously with the target, a distractor appeared in the left visual field or right visual field to weight processing of the target to the hemisphere ipsilateral to the distractor, or the distractor did not appear at all. Comparison of the respective distractor-present trials with distractor-absent trials measures the relative costs or benefits of hemispheric interaction. Both experiments found that 3-item displays were processed faster and more accurately than displays of 5 items, suggesting they are relatively simple. Accuracy to the simple tasks showed left-hemisphere lateralization in the lexical task, right-hemisphere lateralization in the spatial task, a cost of hemispheric interaction compared to the advantaged hemisphere, and a benefit of hemispheric interaction compared to the less-advantaged hemisphere, suggesting that the contributions of the less-advantaged hemisphere interfere with processing, and that the advantaged hemisphere controls the lion's share. In contrast, 5-item displays for physical match in both experiments showed a significant benefit to accuracy of hemispheric interaction compared to the left hemisphere, an insignificant benefit compared to the right hemisphere, no lateralization, no cost of hemispheric interaction, and a consequence to performance that was more costly to the hemisphere that had been advantaged in simple tasks, suggesting that the advantaged hemisphere relinquishes control as tasks become more complex and complementary processing results from both increased collaboration and decreased lateralization between the hemispheres. The findings expand upon behavioural evidence, converge with imaging evidence, and suggest future directions for brain mapping.
Collapse
|
30
|
Kanno I, Masamoto K. Bridging macroscopic and microscopic methods for the measurements of cerebral blood flow: Toward finding the determinants in maintaining the CBF homeostasis. PROGRESS IN BRAIN RESEARCH 2016; 225:77-97. [PMID: 27130412 DOI: 10.1016/bs.pbr.2016.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Methods exist to evaluate the cerebral blood flow (CBF) at both the macroscopic and microscopic spatial scales. These methods provide complementary information for understanding the mechanism in maintaining an adequate blood supply in response to neural demand. The macroscopic CBF assesses perfusion flow, which is usually measured using radioactive tracers, such as diffusible, nondiffusible, or microsphere. Each of them determines CBF based on indicator dilution principle or particle fraction principle under the assumption that CBF is steady state during the measurement. Macroscopic CBF therefore represents averaged CBF over a certain space and time domains. On the other hand, the microscopic CBF assesses bulk flow, usually measures using real-time microscopy. The method assesses hemodynamics of microvessels, ie, vascular dimensions and flow velocities of fluorescently labeled or nonlabeled RBC and plasma markers. The microscopic CBF continuously fluctuates in time and space. Smoothing out this heterogeneity may lead to underestimation in the macroscopic CBF. To link the two measurements, it is needed to introduce a common parameter which is measurable for the both methods, such as mean transit time. Additionally, applying the defined physiological and/or pharmacological perturbation may provide a good exercise to determine how the specific perturbations interfere the quantitative relationships between the macroscopic and microscopic CBF. Finally, bridging these two-scale methods potentially gives a further indication how the absolute CBF is regulated with respect to a specific type of the cerebrovascular tones or capillary flow velocities in the brain.
Collapse
Affiliation(s)
- I Kanno
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan.
| | - K Masamoto
- Brain Science Inspired Life Support Research Center, University of Electro-Communications, Tokyo, Japan
| |
Collapse
|
31
|
Abstract
ABSTRACTLearning difficulties affect up to 20 percent of school-aged children. While many children “grow out” of their disability, a significant proportion experience ongoing problems which can hinder academic, social, and emotional development.Neuropsychological models suggest that these children may suffer from subtle deficits in memory and organizational abilities, which make them vulnerable within a classroom environment. Understanding the specific neuropsychological strengths and weaknesses of children with learning difficulties may provide information regarding the most appropriate form of intervention and the likelihood of its success.In recent study at the Royal Children's Hospital, Melbourne, 160 learning disabled children were evaluated. Findings from the group suggested a high frequency of general health problems as well as mild episodes of central nervous system dysfunction. Neuropsychological data showed that the sample, as a whole, performed within the average range on standardized intellectual measures, but achieved poor results on measures of new learning and executive function. Furthermore, data supported the presence of a number of patterns of learning disability, including linguistic deficit, non-verbal deficit, and information processing deficit. These subtypes are discussed with reference to educational characteristics, and models of intervention are suggested.
Collapse
|
32
|
An analysis of cerebral blood flow from middle cerebral arteries during cognitive tasks via functional transcranial Doppler recordings. Neurosci Res 2014; 84:19-26. [DOI: 10.1016/j.neures.2014.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 11/20/2022]
|
33
|
Gejl M, Rungby J, Brock B, Gjedde A. At the centennial of Michaelis and Menten, competing Michaelis-Menten steps explain effect of GLP-1 on blood-brain transfer and metabolism of glucose. Basic Clin Pharmacol Toxicol 2014; 115:162-71. [PMID: 24684709 DOI: 10.1111/bcpt.12240] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/17/2014] [Indexed: 12/16/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is a potent insulinotropic incretin hormone with both pancreatic and extrapancreatic effects. Studies of GLP-1 reveal significant effects in regions of brain tissue that regulate appetite and satiety. GLP-1 mimetics are used for the treatment of type 2 diabetes mellitus. GLP-1 interacts with peripheral functions in which the autonomic nervous system plays an important role, and emerging pre-clinical findings indicate a potential neuroprotective role of the peptide, for example in models of stroke and in neurodegenerative disorders. A century ago, Leonor Michaelis and Maud Menten described the steady-state enzyme kinetics that still apply to the multiple receptors, transporters and enzymes that define the biochemical reactions of the brain, including the glucose-dependent impact of GLP-1 on blood-brain glucose transfer and metabolism. This MiniReview examines the potential of GLP-1 as a molecule of interest for the understanding of brain energy metabolism and with reference to the impact on brain metabolism related to appetite and satiety regulation, stroke and neurodegenerative disorders. These effects can be understood only by reference to the original formulation of the Michaelis-Menten equation as applied to a chain of kinetically controlled steps. Indeed, the effects of GLP-1 receptor activation on blood-brain glucose transfer and brain metabolism of glucose depend on the glucose concentration and relative affinities of the steps both in vitro and in vivo, as in the pancreas.
Collapse
Affiliation(s)
- Michael Gejl
- Department of Biomedicine - Pharmacology, Aarhus University, Aarhus, Denmark; Centre for Advanced Imaging, The University of Queensland, Brisbane, Qld, Australia
| | | | | | | |
Collapse
|
34
|
|
35
|
Laughlin MH, Davis MJ, Secher NH, van Lieshout JJ, Arce-Esquivel AA, Simmons GH, Bender SB, Padilla J, Bache RJ, Merkus D, Duncker DJ. Peripheral circulation. Compr Physiol 2013; 2:321-447. [PMID: 23728977 DOI: 10.1002/cphy.c100048] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood flow (BF) increases with increasing exercise intensity in skeletal, respiratory, and cardiac muscle. In humans during maximal exercise intensities, 85% to 90% of total cardiac output is distributed to skeletal and cardiac muscle. During exercise BF increases modestly and heterogeneously to brain and decreases in gastrointestinal, reproductive, and renal tissues and shows little to no change in skin. If the duration of exercise is sufficient to increase body/core temperature, skin BF is also increased in humans. Because blood pressure changes little during exercise, changes in distribution of BF with incremental exercise result from changes in vascular conductance. These changes in distribution of BF throughout the body contribute to decreases in mixed venous oxygen content, serve to supply adequate oxygen to the active skeletal muscles, and support metabolism of other tissues while maintaining homeostasis. This review discusses the response of the peripheral circulation of humans to acute and chronic dynamic exercise and mechanisms responsible for these responses. This is accomplished in the context of leading the reader on a tour through the peripheral circulation during dynamic exercise. During this tour, we consider what is known about how each vascular bed controls BF during exercise and how these control mechanisms are modified by chronic physical activity/exercise training. The tour ends by comparing responses of the systemic circulation to those of the pulmonary circulation relative to the effects of exercise on the regional distribution of BF and mechanisms responsible for control of resistance/conductance in the systemic and pulmonary circulations.
Collapse
Affiliation(s)
- M Harold Laughlin
- Department of Medical Pharmacology and Physiology, and the Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Portnow LH, Vaillancourt DE, Okun MS. The history of cerebral PET scanning: from physiology to cutting-edge technology. Neurology 2013; 80:952-6. [PMID: 23460618 PMCID: PMC3653214 DOI: 10.1212/wnl.0b013e318285c135] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 10/24/2012] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To review the discoveries underpinning the introduction of cerebral PET scanning and highlight its modern applications. BACKGROUND Important discoveries in neurophysiology, brain metabolism, and radiotracer development in the post-World War II period provided the necessary infrastructure for the first cerebral PET scan. METHODS A complete review of the literature was undertaken to search for primary and secondary sources on the history of PET imaging. Searches were performed in PubMed, Google Scholar, and select individual journal Web sites. Written autobiographies were obtained through the Society for Neuroscience Web site at www.sfn.org. A reference book on the history of radiology, Naked to the Bone, was reviewed to corroborate facts and to locate references. The references listed in all the articles and books obtained were reviewed. RESULTS The neurophysiologic sciences required to build cerebral PET imaging date back to 1878. The last 60 years have produced an evolution of technological advancements in brain metabolism and radiotracer development. These advancements facilitated the development of modern cerebral PET imaging. Several key scientists were involved in critical discoveries and among them were Angelo Mosso, Charles Roy, Charles Sherrington, John Fulton, Seymour Kety, Louis Sokoloff, David E. Kuhl, Gordon L. Brownell, Michael Ter-Pogossian, Michael Phelps, and Edward Hoffman. CONCLUSIONS Neurophysiology, metabolism, and radiotracer development in the postwar era synergized the development of the technology necessary for cerebral PET scanning. Continued use of PET in clinical trials and current developments in PET-CT/MRI hybrids has led to advancement in diagnosis, management, and treatment of neurologic disorders.
Collapse
Affiliation(s)
- Leah H Portnow
- Department of Neurology, Center for Movement Disorders & Neurorestoration, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | |
Collapse
|
37
|
Paulson OB, Kanno I, Reivich M, Sokoloff L. History of International Society for Cerebral Blood Flow and Metabolism. J Cereb Blood Flow Metab 2012; 32:1099-106. [PMID: 22186671 PMCID: PMC3390811 DOI: 10.1038/jcbfm.2011.183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interest in the brain's circulation dates back more than a century and has been steadily growing. Quantitative methods for measurements of cerebral blood flow (CBF) and energy metabolism became available in the middle of the 20th century and gave a new boost to the research. Scientific meetings dealing with CBF and metabolism were arranged, and the fast growing research led to a demand for a specialized journal. In this scientific environment, the International Society for Cerebral Blood Flow and Metabolism (ISCBFM) and its official Journal of Cerebral Metabolism were established in 1981 and has since then been a major success. The development of new brain imaging methods has had a major impact. Regulation of CBF and ischemia has been the main topics at the meetings. A new field of brain mapping research emerged and has now its own society and meetings. Brain emission tomography research has grown within the society and is now an integrated part. The ISCBFM is a sound society, and support of young scientists is among its goals. Several awards have been established. Other activities including summer schools, courses, satellite meetings, and Gordon conferences have contributed to the success of the society and strengthened the research.
Collapse
Affiliation(s)
- Olaf B Paulson
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
38
|
Salinet ASM, Panerai RB, Robinson TG. Effects of active, passive and motor imagery paradigms on cerebral and peripheral hemodynamics in older volunteers: a functional TCD study. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:997-1003. [PMID: 22502887 DOI: 10.1016/j.ultrasmedbio.2012.02.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 01/09/2012] [Accepted: 02/16/2012] [Indexed: 05/31/2023]
Abstract
This study aimed to compare the response of metabolic-induced cerebral hemodynamic changes measured using transcranial Doppler (TCD) ultrasonography during passive, active and motor imagery paradigms, and associated peripheral hemodynamic responses. Continuous recordings of bilateral cerebral blood flow velocity (CBFv), blood pressure, heart rate and end-tidal CO(2) were performed in 12 right-handed subjects (aged ≥45 y) before, during and after 60 s of active, passive and mental-imagined paradigms. The results revealed no significant difference in CBFv responses between the paradigms and, furthermore, the temporal patterns of the hemodynamic responses showed some degree of similarity. Moreover, significant changes were seen in cerebral and peripheral hemodynamic responses for all paradigms. Our results suggest that active, passive and motor imagery paradigms can be used interchangeably to assess hemodynamic responses. This will enable more detailed noninvasive assessment in patients, where voluntary movement is not possible, but where abnormalities of cerebral hemodynamic control mechanisms can be anticipated.
Collapse
Affiliation(s)
- Angela S M Salinet
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.
| | | | | |
Collapse
|
39
|
Bandettini PA. Twenty years of functional MRI: the science and the stories. Neuroimage 2012; 62:575-88. [PMID: 22542637 DOI: 10.1016/j.neuroimage.2012.04.026] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 04/09/2012] [Accepted: 04/10/2012] [Indexed: 11/25/2022] Open
Abstract
Since its inception over twenty years ago, the field of functional magnetic resonance imaging (fMRI) has grown in usage, sophistication, range of applications, and impact. After twenty years, it's useful to briefly look back as well as forward - to size up just how far we have come and speculate just how far we may go. This is an introduction to the special issue of "Twenty years of fMRI: the science and the stories." The one-hundred and three papers in this special issue highlight the major methodological developments and controversies of fMRI from a first person perspective over the past twenty years. The growth of this field is not just fascinating from a science and technology perspective, but also from a human perspective. Most who were fortunate enough to be part of this effort at the beginning, as well as those who jumped in along the way have their fair share of interesting stories consisting of top rate science as well as intense thought and effort, good or bad fortune, and some claim to a contribution. These stories are in the following papers, written by the current leaders in the field and the innovators throughout the twenty year history. The categories, designed to cover every aspect of the emergence and development of fMRI, include: pre-fMRI; the first BOLD brain activation results; developments in pulse sequences, imaging methods, and hardware for fMRI; methodological developments, issues, and mechanisms; new paradigm designs; education; and the future. Within this issue, we have a collage of overlapping, complementary, yet sometimes contradictory accounts of what happened during the breathtakingly diverse and intense development of this still growing field over the past twenty years.
Collapse
Affiliation(s)
- Peter A Bandettini
- Section on Functional Imaging Methods and Functional MRI Core Facility, National Institute of Mental Health, Bethesda, MD 20892, USA.
| |
Collapse
|
40
|
Abstract
The motor system has been intensively studied using the emerging neuroimaging technologies over the last twenty years. These include early applications of positron emission tomography of brain perfusion, metabolic rate and receptor function, as well as functional magnetic resonance imaging, tractography from diffusion weighted imaging, and transcranial magnetic stimulation. Motor system research has the advantage of the existence of extensive electrophysiological and anatomical information from comparative studies which enables cross-validation of new methods. We review the impact of neuroimaging on the understanding of diverse motor functions, including motor learning, decision making, inhibition and the mirror neuron system. In addition, we show how imaging of the motor system has supported a powerful platform for bidirectional translational neuroscience. In one direction, it has provided the opportunity to study safely the processes of neuroplasticity, neural networks and neuropharmacology in stroke and movement disorders and offers a sensitive tool to assess novel therapeutics. In the reverse direction, imaging of clinical populations has promoted innovations in cognitive theory, experimental design and analysis. We highlight recent developments in the analysis of structural and functional connectivity in the motor system; the advantages of integration of multiple methodologies; and new approaches to experimental design using formal models of cognitive-motor processes.
Collapse
|
41
|
CHUMACEIRO CORALDÍAZ. Serendipity in the Theater: Maude Adams as James M. Barrie's American Muse. JOURNAL OF CREATIVE BEHAVIOR 2011. [DOI: 10.1002/j.2162-6057.2003.tb00833.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Linnman C, Moulton EA, Barmettler G, Becerra L, Borsook D. Neuroimaging of the periaqueductal gray: state of the field. Neuroimage 2011; 60:505-22. [PMID: 22197740 DOI: 10.1016/j.neuroimage.2011.11.095] [Citation(s) in RCA: 293] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 01/18/2023] Open
Abstract
This review and meta-analysis aims at summarizing and integrating the human neuroimaging studies that report periaqueductal gray (PAG) involvement; 250 original manuscripts on human neuroimaging of the PAG were identified. A narrative review and meta-analysis using activation likelihood estimates is included. Behaviors covered include pain and pain modulation, anxiety, bladder and bowel function and autonomic regulation. Methods include structural and functional magnetic resonance imaging, functional connectivity measures, diffusion weighted imaging and positron emission tomography. Human neuroimaging studies in healthy and clinical populations largely confirm the animal literature indicating that the PAG is involved in homeostatic regulation of salient functions such as pain, anxiety and autonomic function. Methodological concerns in the current literature, including resolution constraints, imaging artifacts and imprecise neuroanatomical labeling are discussed, and future directions are proposed. A general conclusion is that PAG neuroimaging is a field with enormous potential to translate animal data onto human behaviors, but with some growing pains that can and need to be addressed in order to add to our understanding of the neurobiology of this key region.
Collapse
Affiliation(s)
- Clas Linnman
- Pain and Analgesia Imaging Neuroscience group, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA.
| | | | | | | | | |
Collapse
|
43
|
Turner R. The NIH experience in first advancing fMRI. Neuroimage 2011; 62:632-6. [PMID: 21855641 DOI: 10.1016/j.neuroimage.2011.07.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/19/2011] [Accepted: 07/22/2011] [Indexed: 11/19/2022] Open
Abstract
The introduction of functional MRI at NIH in 1992 was the outcome of research goals first formulated by Turner in 1983. Between 1988 and 1990, Turner worked at NIH on actively-shielded gradient coils and the implementation of EPI-based techniques, especially diffusion-weighted EPI. His work on hypoxia in cat brain in 1990 directly inspired Ken Kwong's demonstration of BOLD contrast in humans at MGH in May 1991. Turner collaborated actively with this MGH team, the first group to map entirely noninvasively human brain activity due to visual stimulation. He introduced BOLD fMRI at NIH in February 1992. This paper reviews the steps that led up to BOLD EPI, and Turner's initial applications of BOLD fMRI at NIH.
Collapse
Affiliation(s)
- Robert Turner
- Department of Neurophysics, Max-Planck-Institute for Human Cognitive Brain Sciences, Stephanstrasse 1A, 04103 Leipzig, Germany.
| |
Collapse
|
44
|
A lawful first-person psychology involving a causal consciousness: A psychoanalytic solution. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x0007206x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Consciousness and making choices. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x0007182x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
|
47
|
|
48
|
Abstract
AbstractInvestigations of the function of consciousness in human information processing have focused mainly on two questions: (1) Where does consciousness enter into the information processing sequence, and (2) how does conscious processing differ from preconscious and unconscious processing? Input analysis is thought to be initially “preconscious” and “pre-attentive” - fast, involuntary, and automatic. This is followed by “conscious,” “focal-attentive” analysis, which is relatively slow, voluntary, and flexible. It is thought that simple, familiar stimuli can be identified preconsciously, but conscious processing is needed to identify complex, novel stimuli. Conscious processing has also been thought to be necessary for choice, learning and memory, and the organization of complex, novel responses, particularly those requiring planning, reflection, or creativity.The present target article reviews evidence that consciousness performs none of these functions. Consciousness nearly alwaysresultsfrom focal-attentive processing (as a form of output) but does not itselfenter intothis or any other form of human information processing. This suggests that the term “conscious process” needs reexamination. Consciousnessappearsto be necessary in a variety of tasks because they require focal-attentive processing; if consciousness is absent, focal-attentive processing is absent. From afirst-person perspective, however, conscious statesarecausally effective. First-person accounts arecomplementaryto third-person accounts. Although they can be translated into third-person accounts, they cannot be reduced to them.
Collapse
|
49
|
|
50
|
On the premature demise of causal functions for consciousness in human information processing. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00071831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|