1
|
Binienda A, Fichna J. Current understanding of free fatty acids and their receptors in colorectal cancer treatment. Nutr Res 2024; 127:133-143. [PMID: 38943731 DOI: 10.1016/j.nutres.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 07/01/2024]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related death. Currently, dietary factors are being emphasized in the pathogenesis of CRC. There is strong evidence that fatty acids (FAs) and free FA receptors (FFARs) are involved in CRC. This comprehensive review discusses the role of FAs and their receptors in CRC pathophysiology, development, and treatment. In particular, butyrate and n-3 polyunsaturated fatty acids have been found to exert anticancer properties by, among others, inhibiting proliferation and metastasis and inducing apoptosis in tumor cells. Consequently, they are used in conjunction with conventional therapies. Furthermore, FFAR gene expression is down-regulated in CRC, suggesting their suppressive character. Recent studies showed that the FFAR4 agonist, GW9508, can inhibit tumor growth. In conclusion, natural as well as synthetic FFAR ligands are considered promising candidates for CRC therapy.
Collapse
Affiliation(s)
- Agata Binienda
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
2
|
Facchin S, Bertin L, Bonazzi E, Lorenzon G, De Barba C, Barberio B, Zingone F, Maniero D, Scarpa M, Ruffolo C, Angriman I, Savarino EV. Short-Chain Fatty Acids and Human Health: From Metabolic Pathways to Current Therapeutic Implications. Life (Basel) 2024; 14:559. [PMID: 38792581 PMCID: PMC11122327 DOI: 10.3390/life14050559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The gastrointestinal tract is home to trillions of diverse microorganisms collectively known as the gut microbiota, which play a pivotal role in breaking down undigested foods, such as dietary fibers. Through the fermentation of these food components, short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate are produced, offering numerous health benefits to the host. The production and absorption of these SCFAs occur through various mechanisms within the human intestine, contingent upon the types of dietary fibers reaching the gut and the specific microorganisms engaged in fermentation. Medical literature extensively documents the supplementation of SCFAs, particularly butyrate, in the treatment of gastrointestinal, metabolic, cardiovascular, and gut-brain-related disorders. This review seeks to provide an overview of the dynamics involved in the production and absorption of acetate, propionate, and butyrate within the human gut. Additionally, it will focus on the pivotal roles these SCFAs play in promoting gastrointestinal and metabolic health, as well as their current therapeutic implications.
Collapse
Affiliation(s)
- Sonia Facchin
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Luisa Bertin
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Erica Bonazzi
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Greta Lorenzon
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Caterina De Barba
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Brigida Barberio
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Fabiana Zingone
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Daria Maniero
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Marco Scarpa
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Cesare Ruffolo
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Imerio Angriman
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| |
Collapse
|
3
|
Liu Z, Villareal L, Goodla L, Kim H, Falcon DM, Haneef M, Martin DR, Zhang L, Lee HJ, Kremer D, Lyssiotis CA, Shah YM, Lin HC, Lin HK, Xue X. Iron promotes glycolysis to drive colon tumorigenesis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166846. [PMID: 37579983 PMCID: PMC10530594 DOI: 10.1016/j.bbadis.2023.166846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer and is also the third leading cause of cancer-related death in the USA. Understanding the mechanisms of growth and progression of CRC is essential to improve treatment. Macronutrients such as glucose are energy source for a cell. Many tumor cells exhibit increased aerobic glycolysis. Increased tissue micronutrient iron levels in both mice and humans are also associated with increased colon tumorigenesis. However, if iron drives colon carcinogenesis via affecting glucose metabolism is still not clear. Here we found the intracellular glucose levels in tumor colonoids were significantly increased after iron treatment. 13C-labeled glucose flux analysis indicated that the levels of several labeled glycolytic products were significantly increased, whereas several tricarboxylic acid cycle intermediates were significantly decreased in colonoids after iron treatment. Mechanistic studies showed that iron upregulated the expression of glucose transporter 1 (GLUT1) and mediated an inhibition of the pyruvate dehydrogenase (PDH) complex function via directly binding with tankyrase and/or pyruvate dehydrogenase kinase (PDHK) 3. Pharmacological inhibition of GLUT1 or PDHK reactivated PDH complex function and reduced high iron diet-enhanced tumor formation. In conclusion, excess iron promotes glycolysis and colon tumor growth at least partly through the inhibition of the PDH complex function.
Collapse
Affiliation(s)
- Zhaoli Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Luke Villareal
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Lavanya Goodla
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Hyeoncheol Kim
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Daniel M Falcon
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Mohammad Haneef
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - David R Martin
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ho-Joon Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Kremer
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Henry C Lin
- Section of Gastroenterology, Medicine Service, New Mexico VA Health Care System, Albuquerque, NM 87108, USA; Division of Gastroenterology and Hepatology, Department of Medicine, the University of New Mexico, Albuquerque, NM, 87131, USA
| | - Hui-Kuan Lin
- Department of Pathology, Duke University, Durham, NC 27710, USA
| | - Xiang Xue
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
4
|
Baier D, Mendrina T, Schoenhacker‐Alte B, Pirker C, Mohr T, Rusz M, Regner B, Schaier M, Sgarioto N, Raynal NJ, Nowikovsky K, Schmidt WM, Heffeter P, Meier‐Menches SM, Koellensperger G, Keppler BK, Berger W. The Lipid Metabolism as Target and Modulator of BOLD-100 Anticancer Activity: Crosstalk with Histone Acetylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301939. [PMID: 37752764 PMCID: PMC10646284 DOI: 10.1002/advs.202301939] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/18/2023] [Indexed: 09/28/2023]
Abstract
The leading first-in-class ruthenium-complex BOLD-100 currently undergoes clinical phase-II anticancer evaluation. Recently, BOLD-100 is identified as anti-Warburg compound. The present study shows that also deregulated lipid metabolism parameters characterize acquired BOLD-100-resistant colon and pancreatic carcinoma cells. Acute BOLD-100 treatment reduces lipid droplet contents of BOLD-100-sensitive but not -resistant cells. Despite enhanced glycolysis fueling lipid accumulation, BOLD-100-resistant cells reveal diminished lactate secretion based on monocarboxylate transporter 1 (MCT1) loss mediated by a frame-shift mutation in the MCT1 chaperone basigin. Glycolysis and lipid catabolism converge in the production of protein/histone acetylation substrate acetyl-coenzymeA (CoA). Mass spectrometric and nuclear magnetic resonance analyses uncover spontaneous cell-free BOLD-100-CoA adduct formation suggesting acetyl-CoA depletion as mechanism bridging BOLD-100-induced lipid metabolism alterations and histone acetylation-mediated gene expression deregulation. Indeed, BOLD-100 treatment decreases histone acetylation selectively in sensitive cells. Pharmacological targeting confirms histone de-acetylation as central mode-of-action of BOLD-100 and metabolic programs stabilizing histone acetylation as relevant Achilles' heel of acquired BOLD-100-resistant cell and xenograft models. Accordingly, histone gene expression changes also predict intrinsic BOLD-100 responsiveness. Summarizing, BOLD-100 is identified as epigenetically active substance acting via targeting several onco-metabolic pathways. Identification of the lipid metabolism as driver of acquired BOLD-100 resistance opens novel strategies to tackle therapy failure.
Collapse
Affiliation(s)
- Dina Baier
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8aVienna1090Austria
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 42Vienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
| | - Theresa Mendrina
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8aVienna1090Austria
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 42Vienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
| | - Beatrix Schoenhacker‐Alte
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8aVienna1090Austria
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 42Vienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
| | - Christine Pirker
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8aVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
| | - Thomas Mohr
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8aVienna1090Austria
- Joint Metabolome FacilityUniversity of Vienna and Medical University of ViennaWaehringer Str. 38Vienna1090Austria
- ScienceConsultGuntramsdorf2351Austria
| | - Mate Rusz
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 42Vienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
- Institute of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 38Vienna1090Austria
| | - Benedict Regner
- Anna Spiegel Center of Translational ResearchDepartment of Medicine IMedical University ViennaLazarettgasse 14Vienna1090Austria
| | - Martin Schaier
- Institute of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 38Vienna1090Austria
| | - Nicolas Sgarioto
- Départment de pharmacologie et physiologieFaculté de médecineCentre de recherché de l hôpitalUniversité de MontréalSaint‐Justine (7.17.020), 3175 Chemin de la Côte Ste‐CatherineQuebecH3T1C5Canada
| | - Noël J.‐M. Raynal
- Départment de pharmacologie et physiologieFaculté de médecineCentre de recherché de l hôpitalUniversité de MontréalSaint‐Justine (7.17.020), 3175 Chemin de la Côte Ste‐CatherineQuebecH3T1C5Canada
| | - Karin Nowikovsky
- Unit of Physiology and BiophysicsDepartment of Biomedical SciencesUniversity of Veterinary Medicine ViennaVeterinaerplatz 1Vienna1210Austria
| | - Wolfgang M. Schmidt
- Neuromuscular Research DepartmentCenter for Anatomy and Cell BiologyMedical University of ViennaWähringer Str. 13Vienna1090Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8aVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
| | - Samuel M. Meier‐Menches
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 42Vienna1090Austria
- Joint Metabolome FacilityUniversity of Vienna and Medical University of ViennaWaehringer Str. 38Vienna1090Austria
- Institute of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 38Vienna1090Austria
| | - Gunda Koellensperger
- Institute of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 38Vienna1090Austria
| | - Bernhard K. Keppler
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 42Vienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8aVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
| |
Collapse
|
5
|
Rebane-Klemm E, Reinsalu L, Puurand M, Shevchuk I, Bogovskaja J, Suurmaa K, Valvere V, Moreno-Sanchez R, Kaambre T. Colorectal polyps increase the glycolytic activity. Front Oncol 2023; 13:1171887. [PMID: 37342183 PMCID: PMC10277630 DOI: 10.3389/fonc.2023.1171887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/23/2023] [Indexed: 06/22/2023] Open
Abstract
In colorectal cancer (CRC) energy metabolism research, the precancerous stage of polyp has remained rather unexplored. By now, it has been shown that CRC has not fully obtained the glycolytic phenotype proposed by O. Warburg and rather depends on mitochondrial respiration. However, the pattern of metabolic adaptations during tumorigenesis is still unknown. Understanding the interplay between genetic and metabolic changes that initiate tumor development could provide biomarkers for diagnosing cancer early and targets for new cancer therapeutics. We used human CRC and polyp tissue material and performed high-resolution respirometry and qRT-PCR to detect changes on molecular and functional level with the goal of generally describing metabolic reprogramming during CRC development. Colon polyps were found to have a more glycolytic bioenergetic phenotype than tumors and normal tissues. This was supported by a greater GLUT1, HK, LDHA, and MCT expression. Despite the increased glycolytic activity, cells in polyps were still able to maintain a highly functional OXPHOS system. The mechanisms of OXPHOS regulation and the preferred substrates are currently unclear and would require further investigation. During polyp formation, intracellular energy transfer pathways become rearranged mainly by increasing the expression of mitochondrial adenylate kinase (AK) and creatine kinase (CK) isoforms. Decreased glycolysis and maintenance of OXPHOS activity, together with the downregulation of the CK system and the most common AK isoforms (AK1 and AK2), seem to play a relevant role in CRC development.
Collapse
Affiliation(s)
- Egle Rebane-Klemm
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Leenu Reinsalu
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Jelena Bogovskaja
- Clinic of Diagnostics, North Estonia Medical Centre, Tallinn, Estonia
| | - Kulliki Suurmaa
- Department of Gastroenterology, West Tallinn Central Hospital, Tallinn, Estonia
| | - Vahur Valvere
- Oncology and Hematology Clinic, North Estonia Medical Centre, Tallinn, Estonia
| | - Rafael Moreno-Sanchez
- Laboratorio de Control Metabólico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Barrio de los Árboles/Barrio de los Héroes, Tlalnepantla, Mexico
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| |
Collapse
|
6
|
Nwosu ZC, Song MG, di Magliano MP, Lyssiotis CA, Kim SE. Nutrient transporters: connecting cancer metabolism to therapeutic opportunities. Oncogene 2023; 42:711-724. [PMID: 36739364 PMCID: PMC10266237 DOI: 10.1038/s41388-023-02593-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
Cancer cells rely on certain extracellular nutrients to sustain their metabolism and growth. Solute carrier (SLC) transporters enable cells to acquire extracellular nutrients or shuttle intracellular nutrients across organelles. However, the function of many SLC transporters in cancer is unknown. Determining the key SLC transporters promoting cancer growth could reveal important therapeutic opportunities. Here we summarize recent findings and knowledge gaps on SLC transporters in cancer. We highlight existing inhibitors for studying these transporters, clinical trials on treating cancer by blocking transporters, and compensatory transporters used by cancer cells to evade treatment. We propose targeting transporters simultaneously or in combination with targeted therapy or immunotherapy as alternative strategies for effective cancer therapy.
Collapse
Affiliation(s)
- Zeribe Chike Nwosu
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Mun Gu Song
- Department of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea
| | | | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Sung Eun Kim
- Department of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea.
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
7
|
Potential Role of ROS in Butyrate- and Dietary Fiber-Mediated Growth Inhibition and Modulation of Cell Cycle-, Apoptosis- and Antioxidant-Relevant Proteins in LT97 Colon Adenoma and HT29 Colon Carcinoma Cells. Cancers (Basel) 2023; 15:cancers15020440. [PMID: 36672389 PMCID: PMC9857069 DOI: 10.3390/cancers15020440] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
The aim of the present study was to examine whether reactive oxygen species (ROS) contribute to chemopreventive effects of fermentation supernatants (FS) of different dietary fibers (Synergy1®, oat-, barley-, yeast β-glucan, Curdlan) and butyrate as a fermentation metabolite. LT97 and HT29 cells were treated with butyrate and FS alone or with N-acetyl-cysteine (NAC) and their impact on ROS formation, cell growth, and protein expression (Cyclin D2, p21, PARP, Bid, GPx2) was investigated. Butyrate and FS significantly decreased cell growth. ROS levels were significantly increased, particularly in LT97 cells, while co-treatment with NAC decreased ROS formation and growth inhibitory effects in both cell lines. After treatment with butyrate and FS, Cyclin D2 expression was reduced in LT97 cells and p21 expression was increased in both cell lines. Levels of full-length PARP and Bid were decreased, while levels of cleaved PARP were enhanced. GPx2 expression was significantly reduced by fiber FS in HT29 cells. A notable effect of NAC on butyrate- and FS-modulated protein expression was observed exclusively for PARP and Bid in HT29 cells. From the present results, a contribution of ROS to growth inhibitory and apoptotic effects of butyrate and FS on LT97 and HT29 cells cannot be excluded.
Collapse
|
8
|
Zou J, Xu M, Zou Y, Yang B. Physicochemical properties and microstructure of Chinese yam (Dioscorea opposita Thunb.) flour. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Vrzáčková N, Ruml T, Zelenka J. Postbiotics, Metabolic Signaling, and Cancer. Molecules 2021; 26:molecules26061528. [PMID: 33799580 PMCID: PMC8000401 DOI: 10.3390/molecules26061528] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Postbiotics are health-promoting microbial metabolites delivered as a functional food or a food supplement. They either directly influence signaling pathways of the body or indirectly manipulate metabolism and the composition of intestinal microflora. Cancer is the second leading cause of death worldwide and even though the prognosis of patients is improving, it is still poor in the substantial part of the cases. The preventable nature of cancer and the importance of a complex multi-level approach in anticancer therapy motivate the search for novel avenues of establishing the anticancer environment in the human body. This review summarizes the principal findings demonstrating the usefulness of both natural and synthetic sources of postbotics in the prevention and therapy of cancer. Specifically, the effects of crude cell-free supernatants, the short-chain fatty acid butyrate, lactic acid, hydrogen sulfide, and β-glucans are described. Contradictory roles of postbiotics in healthy and tumor tissues are highlighted. In conclusion, the application of postbiotics is an efficient complementary strategy to combat cancer.
Collapse
|
10
|
Liu P, Wang Y, Yang G, Zhang Q, Meng L, Xin Y, Jiang X. The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacol Res 2021; 165:105420. [PMID: 33434620 DOI: 10.1016/j.phrs.2021.105420] [Citation(s) in RCA: 291] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/25/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Short-chain fatty acids (SCFAs), mainly including acetate, propionate, and butyrate, are metabolites produced during the bacterial fermentation of dietary fiber in the intestinal tract. They are believed to be essential factors affecting host health. Most in vitro and ex vivo studies have shown that SCFAs affect the regulation of inflammation, carcinogenesis, intestinal barrier function, and oxidative stress, but convincing evidence in humans is still lacking. Two major SCFA signaling mechanisms have been identified: promotion of histone acetylation and activation of G-protein-coupled receptors. In this review, we introduce the production and metabolic characteristics of SCFAs, summarize the potential effects of SCFAs on the four aspects mentioned above and the possible mechanisms. SCFAs have been reported to exert a wide spectrum of positive effects and have a high potential for therapeutic use in human-related diseases.
Collapse
Affiliation(s)
- Pinyi Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China.
| | - Yanbing Wang
- Department of Orthopedic, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Ge Yang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Qihe Zhang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA.
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
11
|
How Dysregulated Ion Channels and Transporters Take a Hand in Esophageal, Liver, and Colorectal Cancer. Rev Physiol Biochem Pharmacol 2020; 181:129-222. [PMID: 32875386 DOI: 10.1007/112_2020_41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the last two decades, the understanding of how dysregulated ion channels and transporters are involved in carcinogenesis and tumor growth and progression, including invasiveness and metastasis, has been increasing exponentially. The present review specifies virtually all ion channels and transporters whose faulty expression or regulation contributes to esophageal, hepatocellular, and colorectal cancer. The variety reaches from Ca2+, K+, Na+, and Cl- channels over divalent metal transporters, Na+ or Cl- coupled Ca2+, HCO3- and H+ exchangers to monocarboxylate carriers and organic anion and cation transporters. In several cases, the underlying mechanisms by which these ion channels/transporters are interwoven with malignancies have been fully or at least partially unveiled. Ca2+, Akt/NF-κB, and Ca2+- or pH-dependent Wnt/β-catenin signaling emerge as cross points through which ion channels/transporters interfere with gene expression, modulate cell proliferation, trigger epithelial-to-mesenchymal transition, and promote cell motility and metastasis. Also miRs, lncRNAs, and DNA methylation represent potential links between the misexpression of genes encoding for ion channels/transporters, their malfunctioning, and cancer. The knowledge of all these molecular interactions has provided the basis for therapeutic strategies and approaches, some of which will be broached in this review.
Collapse
|
12
|
Al-Mousawi H, O'Mara M, Stewart G. Identification of the HT-29 cell line as a model for investigating MCT1 transporters in sigmoid colon adenocarcinoma. Biochem Biophys Res Commun 2020; 529:218-223. [PMID: 32703414 DOI: 10.1016/j.bbrc.2020.06.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022]
Abstract
MCT1 transporters play a crucial role in the symbiotic relationship between humans and their colonic microbiome by facilitating the transport of bacteria-derived short chain fatty acids. Expression of colonic MCT1 transporters, localized in surface epithelial cells, is regulated by luminal butyrate levels. However, MCT1 also transports lactate and can be used by cancer cells to facilitate anaerobic glycolysis. Using immunolocalization techniques, this study investigated whether changes in MCT1 during cancer varied between different colonic regions. Whilst MCT1 abundance did not significantly change in transverse colon adenocarcinoma (P = 0.363, N = 6, paired T-Test), there was an increase in MCT1 in sigmoid colon adenocarcinoma (P = 0.010, N = 21, paired T-test). Using RT-PCR and western blotting, three human intestinal cell lines were tested for their suitability as a MCT1 cancer cell model. Experiments with Caco-2 cells confirmed that they modelled normal cells, with MCT1 only expressed after exposure to butyrate. In contrast, MCT1 was expressed in the absence of butyrate in both HCT-8 and HT-29 cell lines, with consistently high levels of MCT1 protein being present in HT-29 cells. Furthermore, butyrate treatment of HT-29 cells significantly decreased both MCT1 protein abundance (P < 0.001, N = 4, unpaired T-test) and glycosylation of its' chaperone protein, CD147 (P < 0.001, N = 4, unpaired T-test). These data suggest that (i) MCT1 transporter abundance increases in sigmoid colon adenocarcinoma, and (ii) HT-29 cells are an appropriate cell model with which to investigate MCT1 function in this disease.
Collapse
Affiliation(s)
- Hashemeya Al-Mousawi
- School of Biology & Environmental Science, Science Centre West, University College Dublin, Dublin 4, Ireland
| | - Maurice O'Mara
- School of Biology & Environmental Science, Science Centre West, University College Dublin, Dublin 4, Ireland
| | - Gavin Stewart
- School of Biology & Environmental Science, Science Centre West, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
13
|
Wu Y, Chen Y, Lu Y, Hao H, Liu J, Huang R. Structural features, interaction with the gut microbiota and anti-tumor activity of oligosaccharides. RSC Adv 2020; 10:16339-16348. [PMID: 35498870 PMCID: PMC9053055 DOI: 10.1039/d0ra00344a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022] Open
Abstract
Some oligosaccharides are regarded as biological constituents with benefits to human health in an indirect way. They enter the intestinal tract to be fermented by the gut microbiota, causing changes in the abundance and composition of the gut microbiota and producing fermentation products such as short-chain fatty acids (SCFAs). In this review, the structural features and biological activities of eight common natural oligosaccharides were summarized, including human milk oligosaccharides (HMOS), xylo-oligosaccharides (XOS), arabinoxylo-oligosaccharides (AXOS), isomaltooligosaccharides (IMOS), chitin oligosaccharides (NACOS), mannan-oligosaccharides (MOS), galacto-oligosaccharides (GOS) and fructo-oligosaccharides (FOS). Furthermore, XOS were selected to explain the anti-tumor mechanism mediated by gut microbiota. The review aims to reveal primary structural features of natural functional oligosaccharides related to the biological activities and also provide an explanation of the anti-tumor activity of functional oligosaccharides mediated by the gut microbiota.
Collapse
Affiliation(s)
- Yulin Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86 20 8528 3448 +86 7592388240
| | - Yinning Chen
- Guangdong Polytechnic College 526100 Zhaoqing China
| | - Yingfang Lu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86 20 8528 3448 +86 7592388240
| | - Huili Hao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86 20 8528 3448 +86 7592388240
| | - Jun Liu
- Laboratory of Pathogenic Biology, Guangdong Medical University Zhanjiang 524023 China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86 20 8528 3448 +86 7592388240
| |
Collapse
|
14
|
Becker HM, Deitmer JW. Transport Metabolons and Acid/Base Balance in Tumor Cells. Cancers (Basel) 2020; 12:cancers12040899. [PMID: 32272695 PMCID: PMC7226098 DOI: 10.3390/cancers12040899] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
Solid tumors are metabolically highly active tissues, which produce large amounts of acid. The acid/base balance in tumor cells is regulated by the concerted interplay between a variety of membrane transporters and carbonic anhydrases (CAs), which cooperate to produce an alkaline intracellular, and an acidic extracellular, environment, in which cancer cells can outcompete their adjacent host cells. Many acid/base transporters form a structural and functional complex with CAs, coined "transport metabolon". Transport metabolons with bicarbonate transporters require the binding of CA to the transporter and CA enzymatic activity. In cancer cells, these bicarbonate transport metabolons have been attributed a role in pH regulation and cell migration. Another type of transport metabolon is formed between CAs and monocarboxylate transporters, which mediate proton-coupled lactate transport across the cell membrane. In this complex, CAs function as "proton antenna" for the transporter, which mediate the rapid exchange of protons between the transporter and the surroundings. These transport metabolons do not require CA catalytic activity, and support the rapid efflux of lactate and protons from hypoxic cancer cells to allow sustained glycolytic activity and cell proliferation. Due to their prominent role in tumor acid/base regulation and metabolism, transport metabolons might be promising drug targets for new approaches in cancer therapy.
Collapse
Affiliation(s)
- Holger M. Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany
- Correspondence:
| | - Joachim W. Deitmer
- Department of Biology, University of Kaiserslautern, D-67653 Kaiserslautern, Germany;
| |
Collapse
|
15
|
Martins SF, Mariano V, Rodrigues M, Longatto-Filho A. Human papillomavirus (HPV) 16 infection is not detected in rectal carcinoma. Infect Agent Cancer 2020; 15:17. [PMID: 32165915 PMCID: PMC7059378 DOI: 10.1186/s13027-020-00281-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction Persistence of human papillomavirus (HPV) infections is associated with squamous cell carcinomas of different human anatomic sites. Several studies have suggested a potential role for HPV infection, particularly HPV16 genotype, in rectal cancer carcinogenesis.. The aim of this study was to assess the frequency of oncogenic HPV 16 viral DNA sequences in rectal carcinomas cases retrieved from the pathology archive of Braga Hospital, North Portuga. Methods TaqMan-based type-specific real-time PCR for HPV 16 was performed using primers and probe targeting HPV16 E7 region. Results Most of the rectal cancer patients (88.5%, n = 206 patients), were symptomatic at diagnosis. The majority of the lesions (55.3%, n = 129) presented malignancies of polypoid/vegetant phenotype. 26.8% (n = 63) had synchronic metastasis at diagnosis. 26.2% (n = 61) patients had clinical indication for neoadjuvant therapy. Most patients with rectal cancer were stage IV (19.7% patients), followed by stage IIA (19.3%) and stage I (18.5%). All cases of the present series tested negative for HPV16. Conclusion The total of negative tests for HPV 16 infection is a robust argument to support the assumption that HPV 16 infection, despite of previous evidences, is not involved in rectal cancer carcinogenesis and progression.
Collapse
Affiliation(s)
- Sandra F Martins
- 1Life and Health Science Research Institute (ICVS), School of Health Sciences, School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Braga, Portugal.,Coloproctology Unit, Braga Hospital, Braga, Portugal
| | - Vânia Mariano
- Molecular Oncology Research Center, Barretos, São Paulo, Brazil
| | | | - Adhemar Longatto-Filho
- 1Life and Health Science Research Institute (ICVS), School of Health Sciences, School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Braga, Portugal.,Molecular Oncology Research Center, Barretos, São Paulo, Brazil.,5Laboratory of Medical Investigation (LIM) 14, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
16
|
Becker HM. Carbonic anhydrase IX and acid transport in cancer. Br J Cancer 2020; 122:157-167. [PMID: 31819195 PMCID: PMC7051959 DOI: 10.1038/s41416-019-0642-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/29/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Alterations in tumour metabolism and acid/base regulation result in the formation of a hostile environment, which fosters tumour growth and metastasis. Acid/base homoeostasis in cancer cells is governed by the concerted interplay between carbonic anhydrases (CAs) and various transport proteins, which either mediate proton extrusion or the shuttling of acid/base equivalents, such as bicarbonate and lactate, across the cell membrane. Accumulating evidence suggests that some of these transporters interact both directly and functionally with CAIX to form a protein complex coined the 'transport metabolon'. Transport metabolons formed between bicarbonate transporters and CAIX require CA catalytic activity and have a function in cancer cell migration and invasion. Another type of transport metabolon is formed by CAIX and monocarboxylate transporters. In this complex, CAIX functions as a proton antenna for the transporter, which drives the export of lactate and protons from the cell. Since CAIX is almost exclusively expressed in cancer cells, these transport metabolons might serve as promising targets to interfere with tumour pH regulation and energy metabolism. This review provides an overview of the current state of research on the function of CAIX in tumour acid/base transport and discusses how CAIX transport metabolons could be exploited in modern cancer therapy.
Collapse
Affiliation(s)
- Holger M Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559, Hannover, Germany.
| |
Collapse
|
17
|
Payen VL, Mina E, Van Hée VF, Porporato PE, Sonveaux P. Monocarboxylate transporters in cancer. Mol Metab 2019; 33:48-66. [PMID: 31395464 PMCID: PMC7056923 DOI: 10.1016/j.molmet.2019.07.006] [Citation(s) in RCA: 325] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023] Open
Abstract
Background Tumors are highly plastic metabolic entities composed of cancer and host cells that can adopt different metabolic phenotypes. For energy production, cancer cells may use 4 main fuels that are shuttled in 5 different metabolic pathways. Glucose fuels glycolysis that can be coupled to the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) in oxidative cancer cells or to lactic fermentation in proliferating and in hypoxic cancer cells. Lipids fuel lipolysis, glutamine fuels glutaminolysis, and lactate fuels the oxidative pathway of lactate, all of which are coupled to the TCA cycle and OXPHOS for energy production. This review focuses on the latter metabolic pathway. Scope of review Lactate, which is prominently produced by glycolytic cells in tumors, was only recently recognized as a major fuel for oxidative cancer cells and as a signaling agent. Its exchanges across membranes are gated by monocarboxylate transporters MCT1-4. This review summarizes the current knowledge about MCT structure, regulation and functions in cancer, with a specific focus on lactate metabolism, lactate-induced angiogenesis and MCT-dependent cancer metastasis. It also describes lactate signaling via cell surface lactate receptor GPR81. Major conclusions Lactate and MCTs, especially MCT1 and MCT4, are important contributors to tumor aggressiveness. Analyses of MCT-deficient (MCT+/- and MCT−/-) animals and (MCT-mutated) humans indicate that they are druggable, with MCT1 inhibitors being in advanced development phase and MCT4 inhibitors still in the discovery phase. Imaging lactate fluxes non-invasively using a lactate tracer for positron emission tomography would further help to identify responders to the treatments. In cancer, hypoxia and cell proliferation are associated to lactic acid production. Lactate exchanges are at the core of tumor metabolism. Transmembrane lactate trafficking depends on monocarboxylate transporters (MCTs). MCTs are implicated in tumor development and aggressiveness. Targeting MCTs is a therapeutic option for cancer treatment.
Collapse
Affiliation(s)
- Valéry L Payen
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium; Pole of Pediatrics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium; Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Erica Mina
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Vincent F Van Hée
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Paolo E Porporato
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium; Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Pierre Sonveaux
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
18
|
Wang G, Yu Y, Wang YZ, Wang JJ, Guan R, Sun Y, Shi F, Gao J, Fu XL. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy. J Cell Physiol 2019; 234:17023-17049. [PMID: 30888065 DOI: 10.1002/jcp.28436] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/02/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022]
Abstract
Increased risk of colorectal cancer (CRC) is associated with altered intestinal microbiota as well as short-chain fatty acids (SCFAs) reduction of output The energy source of colon cells relies mainly on three SCFAs, namely butyrate (BT), propionate, and acetate, while CRC transformed cells rely mainly on aerobic glycolysis to provide energy. This review summarizes recent research results for dysregulated glucose metabolism of SCFAs, which could be initiated by gut microbiome of CRC. Moreover, the relationship between SCFA transporters and glycolysis, which may correlate with the initiation and progression of CRC, are also discussed. Additionally, this review explores the linkage of BT to transport of SCFAs expressions between normal and cancerous colonocyte cell growth for tumorigenesis inhibition in CRC. Furthermore, the link between gut microbiota and SCFAs in the metabolism of CRC, in addition, the proteins and genes related to SCFAs-mediated signaling pathways, coupled with their correlation with the initiation and progression of CRC are also discussed. Therefore, targeting the SCFA transporters to regulate lactate generation and export of BT, as well as applying SCFAs or gut microbiota and natural compounds for chemoprevention may be clinically useful for CRCs treatment. Future research should focus on the combination these therapeutic agents with metabolic inhibitors to effectively target the tumor SCFAs and regulate the bacterial ecology for activation of potent anticancer effect, which may provide more effective application prospect for CRC therapy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Yang Yu
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu-Zhu Wang
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Rui Guan
- Information Resources Department, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yan Sun
- Information Resources Department, Hubei University of Medicine, Shiyan, Hubei, China
| | - Feng Shi
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jing Gao
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xing-Li Fu
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
19
|
Abe Y, Nakayama Y, Katsuki T, Inoue Y, Minagawa N, Torigoe T, Higure A, Sako T, Nagata N, Hirata K. The prognostic significance of the expression of monocarboxylate transporter 4 in patients with right- or left-sided colorectal cancer. Asia Pac J Clin Oncol 2018; 15:e49-e55. [PMID: 30270512 DOI: 10.1111/ajco.13077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022]
Abstract
AIM Monocarboxylate transporter 4 (MCT4) is a proton pump that exchanges lactate through the plasma membrane. The present study investigated the clinical significance of the expression of MCT4 in patients with right- or left-sided colorectal cancer (CRC). METHODS Surgical specimens from 237 CRC patients were immunohistochemically stained with polyclonal anti-MCT4 antibodies. The relationships among the MCT4 expression, the clinicopathological factors, and the prognosis were evaluated. RESULTS Thirty-six (62.1%) of 58 patients with right-sided CRC and 95 (53.1%) of 179 patients with left-sided CRC showed the high expression of MCT4. The MCT4 expression was significantly correlated with gender and lymph node metastasis in patients with right-sided CRC, and size, depth of invasion, distant metastasis, and tumor-node-metastasis stage in patients with left-sided CRC. A univariate analysis demonstrated that the expression of MCT4 was a significant prognostic factor in both right- and left-sided CRC patients. A multivariate analysis demonstrated the expression of MCT4 was a significantly independent prognostic factor in patients with left-sided CRC, but not in those with right-sided CRC. CONCLUSIONS Our results suggest that the high expression of MCT4 is a useful marker for tumor progression and a poor prognosis in CRC patients, especially those with left-sided CRC.
Collapse
Affiliation(s)
- Yukio Abe
- Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshifumi Nakayama
- Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,Department of Surgery, Kitakyushu General Hospital, Kitakyushu, Japan
| | - Takefumi Katsuki
- Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yuzuru Inoue
- Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Noritaka Minagawa
- Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takayuki Torigoe
- Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Aiichiro Higure
- Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,Department of Surgery, Kitakyushu General Hospital, Kitakyushu, Japan
| | - Tatsuhiko Sako
- Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,Department of Surgery, Kitakyushu General Hospital, Kitakyushu, Japan
| | - Naoki Nagata
- Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,Department of Surgery, Kitakyushu General Hospital, Kitakyushu, Japan
| | - Keiji Hirata
- Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
20
|
Bedford A, Gong J. Implications of butyrate and its derivatives for gut health and animal production. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2018; 4:151-159. [PMID: 30140754 PMCID: PMC6104520 DOI: 10.1016/j.aninu.2017.08.010] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/10/2017] [Indexed: 02/06/2023]
Abstract
Butyrate is produced by microbial fermentation in the large intestine of humans and animals. It serves as not only a primary nutrient that provides energy to colonocytes, but also a cellular mediator regulating multiple functions of gut cells and beyond, including gene expression, cell differentiation, gut tissue development, immune modulation, oxidative stress reduction, and diarrhea control. Although there are a large number of studies in human medicine using butyrate to treat intestinal disease, the importance of butyrate in maintaining gut health has also attracted significant research attention to its application for animal production, particularly as an alternative to in-feed antibiotics. Due to the difficulties of using butyrate in practice (i.e., offensive odor and absorption in the upper gut), different forms of butyrate, such as sodium butyrate and butyrate glycerides, have been developed and examined for their effects on gut health and growth performance across different species. Butyrate and its derivatives generally demonstrate positive effects on animal production, including enhancement of gut development, control of enteric pathogens, reduction of inflammation, improvement of growth performance (including carcass composition), and modulation of gut microbiota. These benefits are more evident in young animals, and variations in the results have been reported. The present article has critically reviewed recent findings in animal research on butyrate and its derivatives in regard to their effects and mechanisms behind and discussed the implications of these findings for improving animal gut health and production. In addition, significant findings of medical research in humans that are relevant to animal production have been cited.
Collapse
|
21
|
Li X, Yu X, Dai D, Song X, Xu W. The altered glucose metabolism in tumor and a tumor acidic microenvironment associated with extracellular matrix metalloproteinase inducer and monocarboxylate transporters. Oncotarget 2018; 7:23141-55. [PMID: 27009812 PMCID: PMC5029616 DOI: 10.18632/oncotarget.8153] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/13/2016] [Indexed: 02/06/2023] Open
Abstract
Extracellular matrix metalloproteinase inducer, also knowns as cluster of differentiation 147 (CD147) or basigin, is a widely distributed cell surface glycoprotein that is involved in numerous physiological and pathological functions, especially in tumor invasion and metastasis. Monocarboxylate transporters (MCTs) catalyze the proton-linked transport of monocarboxylates such as L-lactate across the plasma membrane to preserve the intracellular pH and maintain cell homeostasis. As a chaperone to some MCT isoforms, CD147 overexpression significantly contributes to the metabolic transformation of tumor. This overexpression is characterized by accelerated aerobic glycolysis and lactate efflux, and it eventually provides the tumor cells with a metabolic advantage and an invasive phenotype in the acidic tumor microenvironment. This review highlights the roles of CD147 and MCTs in tumor cell metabolism and the associated molecular mechanisms. The regulation of CD147 and MCTs may prove to be with a therapeutic potential for tumors through the metabolic modification of the tumor microenvironment.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiaozhou Yu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Dong Dai
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiuyu Song
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
22
|
Lee JY, Lee I, Chang WJ, Ahn SM, Lim SH, Kim HS, Yoo KH, Jung KS, Song HN, Cho JH, Kim SY, Kim KM, Lee S, Kim ST, Park SH, Lee J, Park JO, Park YS, Lim HY, Kang WK. MCT4 as a potential therapeutic target for metastatic gastric cancer with peritoneal carcinomatosis. Oncotarget 2017; 7:43492-43503. [PMID: 27224918 PMCID: PMC5190039 DOI: 10.18632/oncotarget.9523] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 05/05/2016] [Indexed: 12/27/2022] Open
Abstract
Monocarboxylate transporters (MCTs) play a major role in up-regulation of glycolysis and adaptation to acidosis. However, the role of MCTs in gastric cancer (GC) is not fully understood. We investigated the potential utilization of a new cancer therapy for GC. We characterized the expression patterns of the MCT isoforms 1, 2, and 4 and investigated the role of MCT in GC through in vitro and in vivo tests using siRNA targeting MCTs. In GC cell lines, MCT1, 2, and 4 were up-regulated with different expression levels; MCT1 and MCT4 were more widely expressed in GC cell lines compared with MCT2. Inhibition of MCTs by siRNA or AR-C155858 reduced cell viability and lactate uptake in GC cell lines. The effect of inhibition of MCTs on tumor growth was also confirmed in xenograft models. Furthermore, MCT inhibition in GC cells increased the sensitivity of cells to radiotherapy or chemotherapy. Compared with normal gastric tissue, no significant alterations of expression levels in tumors were identified for MCT1 and MCT2, whereas a significant increase in MCT4 expression was observed. Most importantly, MCT4 was highly overexpressed in malignant cells of acsites and its silencing resulted in reduced tumor cell proliferation and lactate uptake in malignant ascites. Our study suggests that MCT4 is a clinically relevant target in GC with peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Ji Yun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - InKyoung Lee
- Biological Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Jin Chang
- Division of Hematology-Oncology, Department of Medicine, Korea University College of Medicine, Seoul, Korea
| | - Su Min Ahn
- Innovative Cancer Medicine Institute, Samsung Cancer Center, Samsung Medical Center, Seoul, Korea.,Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Hee Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hae Su Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kwai Han Yoo
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki Sun Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Haa-Na Song
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Hyun Cho
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Young Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyoung-Mee Kim
- Innovative Cancer Medicine Institute, Samsung Cancer Center, Samsung Medical Center, Seoul, Korea.,Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soojin Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Suk Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ho Yeong Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Sivaprakasam S, Bhutia YD, Yang S, Ganapathy V. Short-Chain Fatty Acid Transporters: Role in Colonic Homeostasis. Compr Physiol 2017; 8:299-314. [PMID: 29357130 PMCID: PMC6019286 DOI: 10.1002/cphy.c170014] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Short-chain fatty acids (SCFA; acetate, propionate, and butyrate) are generated in colon by bacterial fermentation of dietary fiber. Though diffusion in protonated form is a significant route, carrier-mediated mechanisms constitute the major route for the entry of SCFA in their anionic form into colonic epithelium. Several transport systems operate in cellular uptake of SCFA. MCT1 (SLC16A1) and MCT4 (SLC16A3) are H+-coupled and mediate electroneutral transport of SCFA (H+: SCFA stoichiometry; 1:1). MCT1 is expressed both in the apical membrane and basolateral membrane of colonic epithelium whereas MCT4 specifically in the basolateral membrane. SMCT1 (SLC5A8) and SMCT2 (SLC5A12) are Na+-coupled; SMCT1-mediated transport is electrogenic (Na+: SCFA stoichiometry; 2:1) whereas SMCT2-mediated transport is electroneutral (Na+: SCFA stoichiometry; 1:1). SMCT1 and SMCT2 are expressed exclusively in the apical membrane. An anion-exchange mechanism also operates in the apical membrane in which SCFA entry in anionic form is coupled to bicarbonate efflux; the molecular identity of this exchanger however remains unknown. All these transporters are subject to regulation, notably by their substrates themselves; this process involves cell-surface receptors with SCFA as signaling molecules. There are significant alterations in the expression of these transporters in ulcerative colitis and colon cancer. The tumor-associated changes occur via transcriptional regulation by p53 and HIF1α and by promoter methylation. As SCFA are obligatory for optimal colonic health, the transporters responsible for the entry and transcellular transfer of these bacterial products in colonic epithelium are critical determinants of colonic function under physiological conditions and in disease states. © 2018 American Physiological Society. Compr Physiol 8:299-314, 2018.
Collapse
Affiliation(s)
- Sathish Sivaprakasam
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Yangzom D. Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Shengping Yang
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
24
|
van der Beek CM, Dejong CHC, Troost FJ, Masclee AAM, Lenaerts K. Role of short-chain fatty acids in colonic inflammation, carcinogenesis, and mucosal protection and healing. Nutr Rev 2017; 75:286-305. [PMID: 28402523 DOI: 10.1093/nutrit/nuw067] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Short-chain fatty acids (SCFAs), mainly acetate, propionate, and butyrate, produced by microbial fermentation of undigested food substances are believed to play a beneficial role in human gut health. Short-chain fatty acids influence colonic health through various mechanisms. In vitro and ex vivo studies show that SCFAs have anti-inflammatory and anticarcinogenic effects, play an important role in maintaining metabolic homeostasis in colonocytes, and protect colonocytes from external harm. Animal studies have found substantial positive effects of SCFAs or dietary fiber on colonic disease, but convincing evidence in humans is lacking. Most human intervention trials have been conducted in the context of inflammatory bowel disease. Only a limited number of those trials are of high quality, showing little or no favorable effect of SCFA treatment over placebo. Opportunities for future research include exploring the use of combination therapies with anti-inflammatory drugs, prebiotics, or probiotics; the use of prodrugs in the setting of carcinogenesis; or the direct application of SCFAs to improve mucosal healing after colonic surgery.
Collapse
Affiliation(s)
- Christina M van der Beek
- C.M. van der Beek, C.H.C. Dejong, F.J. Troost, A.A.M. Masclee, and K. Lenaerts are with Top Institute Food and Nutrition, Wageningen, the Netherlands. C.M. van der Beek, C.H.C. Dejong, and K. Lenaerts are with the Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands. C.H.C. Dejong is with the School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center+, Maastricht, the Netherlands. F.J. Troost and A.A.M. Masclee are with the Department of Internal Medicine, Division of Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Cornelis H C Dejong
- C.M. van der Beek, C.H.C. Dejong, F.J. Troost, A.A.M. Masclee, and K. Lenaerts are with Top Institute Food and Nutrition, Wageningen, the Netherlands. C.M. van der Beek, C.H.C. Dejong, and K. Lenaerts are with the Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands. C.H.C. Dejong is with the School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center+, Maastricht, the Netherlands. F.J. Troost and A.A.M. Masclee are with the Department of Internal Medicine, Division of Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Freddy J Troost
- C.M. van der Beek, C.H.C. Dejong, F.J. Troost, A.A.M. Masclee, and K. Lenaerts are with Top Institute Food and Nutrition, Wageningen, the Netherlands. C.M. van der Beek, C.H.C. Dejong, and K. Lenaerts are with the Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands. C.H.C. Dejong is with the School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center+, Maastricht, the Netherlands. F.J. Troost and A.A.M. Masclee are with the Department of Internal Medicine, Division of Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Ad A M Masclee
- C.M. van der Beek, C.H.C. Dejong, F.J. Troost, A.A.M. Masclee, and K. Lenaerts are with Top Institute Food and Nutrition, Wageningen, the Netherlands. C.M. van der Beek, C.H.C. Dejong, and K. Lenaerts are with the Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands. C.H.C. Dejong is with the School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center+, Maastricht, the Netherlands. F.J. Troost and A.A.M. Masclee are with the Department of Internal Medicine, Division of Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Kaatje Lenaerts
- C.M. van der Beek, C.H.C. Dejong, F.J. Troost, A.A.M. Masclee, and K. Lenaerts are with Top Institute Food and Nutrition, Wageningen, the Netherlands. C.M. van der Beek, C.H.C. Dejong, and K. Lenaerts are with the Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands. C.H.C. Dejong is with the School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center+, Maastricht, the Netherlands. F.J. Troost and A.A.M. Masclee are with the Department of Internal Medicine, Division of Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| |
Collapse
|
25
|
Ruan Y, Zeng F, Cheng Z, Zhao X, Fu P, Chen H. High expression of monocarboxylate transporter 4 predicts poor prognosis in patients with lung adenocarcinoma. Oncol Lett 2017; 14:5727-5734. [PMID: 29113201 PMCID: PMC5661367 DOI: 10.3892/ol.2017.6964] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/17/2017] [Indexed: 01/07/2023] Open
Abstract
Monocarboxylate transporter 4 (MCT-4) serves a key function in transporting lactate across the plasma membrane in various types of human cancer. Evidence indicates that MCT-4 expression is associated with non-small cell lung cancer; however, the distribution and clinical significance of MCT-4 in the lung adenocarcinoma (AC) subtype remain unknown. Thus, the aim of the present study was to explore the clinicopathological significance and prognostic values of MCT-4 expression in lung AC. Quantum dots-based immunofluorescence histochemistry was performed to observe the expression of MCT-4 in 146 specimens of lung AC and corresponding normal lung tissues. MCT-4 protein and mRNA were detected by western blotting and reverse transcription-quantitative polymerase chain reaction from 30 fresh samples of lung AC and corresponding normal lung tissues. Of the 146 samples, 25 (17.1%) exhibited high and 121 (82.9%) exhibited low MCT-4 expression. MCT-4, at the protein and mRNA level, was significantly increased in tumor specimens compared with corresponding normal lung tissue (P<0.05). MCT-4 protein expression was significantly associated with depth of invasion (P=0.034). A survival curve analysis indicated that high MCT-4 expression in lung AC was associated with a decreased overall survival rate (P=0.001). Multivariate analysis demonstrated that high MCT-4 level was an independent prognostic factor (hazard ratio, 3.192; 95% confidence interval, 1.804–5.646; P=0.001) for patients with lung AC. The results have demonstrated that high MCT-4 expression is significantly associated with the poor prognosis and disease progression of patients with lung AC. Therefore, MCT-4 may be a candidate therapeutic target in lung AC.
Collapse
Affiliation(s)
- Yushu Ruan
- Department of Respiratory Medicine, First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443003, P.R. China
| | - Fanjun Zeng
- Department of Respiratory Medicine, First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443003, P.R. China
| | - Zhiqiang Cheng
- Department of Pathology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Xianda Zhao
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Pin Fu
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Honglei Chen
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
26
|
Diehl K, Dinges LA, Helm O, Ammar N, Plundrich D, Arlt A, Röcken C, Sebens S, Schäfer H. Nuclear factor E2-related factor-2 has a differential impact on MCT1 and MCT4 lactate carrier expression in colonic epithelial cells: a condition favoring metabolic symbiosis between colorectal cancer and stromal cells. Oncogene 2017; 37:39-51. [DOI: 10.1038/onc.2017.299] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/03/2017] [Accepted: 07/21/2017] [Indexed: 12/28/2022]
|
27
|
Yao Z, Xie F, Li M, Liang Z, Xu W, Yang J, Liu C, Li H, Zhou H, Qu LH. Oridonin induces autophagy via inhibition of glucose metabolism in p53-mutated colorectal cancer cells. Cell Death Dis 2017; 8:e2633. [PMID: 28230866 PMCID: PMC5386482 DOI: 10.1038/cddis.2017.35] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/21/2016] [Accepted: 01/10/2017] [Indexed: 12/26/2022]
Abstract
The Warburg effect is an important characteristic of tumor cells, making it an attractive therapeutic target. Current anticancer drug development strategies predominantly focus on inhibitors of the specific molecular effectors involved in tumor cell proliferation. These drugs or natural compounds, many of which target the Warburg effect and the underlying mechanisms, still need to be characterized. To elucidate the anticancer effects of a natural diterpenoid, oridonin, we first demonstrated the anticancer activity of oridonin both in vitro and in vivo in colorectal cancer (CRC) cells. Then miRNA profiling of SW480 cells revealed those intracellular signaling related to energy supply was affected by oridonin, suggesting that glucose metabolism is a potential target for CRC therapy. Moreover, our results indicated that oridonin induced metabolic imbalances by significantly inhibiting glucose uptake and reducing lactate export through significantly downregulating the protein levels of GLUT1 and MCT1 in vitro and vivo. However, the ATP level in oridonin-treated CRC cells was not decreased when oridonin blocked the glucose supply, indicating that oridonin induced autophagy process, an important ATP source in cancer cells. The observation was then supported by the results of LC3-II detection and transmission electron microscopy analysis, which confirmed the presence of autophagy. Furthermore, p-AMPK was rapidly deactivated following oridonin treatment, resulting in downregulation of GLUT1 and induction of autophagy in the cancer cells. Thus our finding helped to clarify the anticancer mechanisms of oridonin and suggested it could be applied as a glucose metabolism-targeting agent for cancer treatment.
Collapse
Affiliation(s)
- Zhuo Yao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Fuhua Xie
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Min Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zirui Liang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wenli Xu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jianhua Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chang Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hongwangwang Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hui Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liang-Hu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
28
|
Sharma M, Shukla G. Metabiotics: One Step ahead of Probiotics; an Insight into Mechanisms Involved in Anticancerous Effect in Colorectal Cancer. Front Microbiol 2016; 7:1940. [PMID: 27994577 PMCID: PMC5133260 DOI: 10.3389/fmicb.2016.01940] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer is closely associated with environment, diet and lifestyle. Normally it is treated with surgery, radiotherapy or chemotherapy but increasing systemic toxicity, resistance and recurrence is prompting scientists to devise new potent and safer alternate prophylactic or therapeutic strategies. Among these, probiotics, prebiotics, synbiotics, and metabiotics are being considered as the promising candidates. Metabiotics or probiotic derived factors can optimize various physiological functions of the host and offer an additional advantage to be utilized even in immunosuppressed individuals. Interestingly, anti colon cancer potential of probiotic strains has been attributable to metabiotics that have epigenetic, antimutagenic, immunomodulatory, apoptotic, and antimetastatic effects. Thus, it's time to move one step further to utilize metabiotics more smartly by avoiding the risks associated with probiotics even in certain normal/or immuno compromised host. Here, an attempt is made to provide insight into the adverse effects associated with probiotics and beneficial aspects of metabiotics with main emphasis on the modulatory mechanisms involved in colon cancer.
Collapse
Affiliation(s)
- Mridul Sharma
- Department of Microbiology, Panjab University Chandigarh, India
| | - Geeta Shukla
- Department of Microbiology, Panjab University Chandigarh, India
| |
Collapse
|
29
|
Toward a cancer-specific diet. Clin Nutr 2016; 35:1188-95. [DOI: 10.1016/j.clnu.2015.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/13/2015] [Accepted: 01/18/2015] [Indexed: 01/01/2023]
|
30
|
Al-Mosauwi H, Ryan E, McGrane A, Riveros-Beltran S, Walpole C, Dempsey E, Courtney D, Fearon N, Winter D, Baird A, Stewart G. Differential protein abundance of a basolateral MCT1 transporter in the human gastrointestinal tract. Cell Biol Int 2016; 40:1303-1312. [PMID: 27634412 DOI: 10.1002/cbin.10684] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 09/05/2016] [Indexed: 11/06/2022]
Abstract
Bacterially derived short chain fatty acids (SCFAs), such as butyrate, are vital in maintaining the symbiotic relationship that exists between humans and their gastrointestinal microbial populations. A key step in this process is the transport of SCFAs across colonic epithelial cells via MCT1 transporters. This study investigated MCT1 protein abundance in various human intestinal tissues. Initial RT-PCR analysis confirmed the expected MCT1 RNA expression pattern of colon > small intestine > stomach. Using surgical resection samples, immunoblot analysis detected higher abundance of a 45 kDa MCT1 protein in colonic tissue compared to ileum tissue (P < 0.001, N = 4, unpaired t-test). Importantly, MCT1 abundance was found to be significantly lower in sigmoid colon compared to ascending colon (P < 0.01, N = 8-11, ANOVA). Finally, immunolocalization studies confirmed MCT1 to be abundant in the basolateral membranes of surface epithelial cells of the ascending, transverse, and descending colon, but significantly less prevalent in the sigmoid colon (P < 0.05, N = 5-21, ANOVA). In conclusion, these data confirm that basolateral MCT1 protein abundance is correlated to levels of bacterially derived SCFAs along the human gastrointestinal tract. These findings highlight the importance of precise tissue location in studies comparing colonic MCT1 abundance between normal and diseased states.
Collapse
Affiliation(s)
- Hashemeya Al-Mosauwi
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Room 2.55, Belfield, Dublin 4, Ireland
| | - Elizabeth Ryan
- Institute for Clinical Outcomes Research and Education, St.Vincent's University Hospital, Dublin, Ireland.,College of Life Sciences and Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| | - Alison McGrane
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Room 2.55, Belfield, Dublin 4, Ireland
| | - Stefanie Riveros-Beltran
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Room 2.55, Belfield, Dublin 4, Ireland
| | - Caragh Walpole
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Room 2.55, Belfield, Dublin 4, Ireland
| | - Eugene Dempsey
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Room 2.55, Belfield, Dublin 4, Ireland
| | - Danielle Courtney
- Institute for Clinical Outcomes Research and Education, St.Vincent's University Hospital, Dublin, Ireland.,College of Life Sciences and Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| | - Naomi Fearon
- Institute for Clinical Outcomes Research and Education, St.Vincent's University Hospital, Dublin, Ireland.,College of Life Sciences and Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| | - Desmond Winter
- Institute for Clinical Outcomes Research and Education, St.Vincent's University Hospital, Dublin, Ireland
| | - Alan Baird
- College of Life Sciences and Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| | - Gavin Stewart
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Room 2.55, Belfield, Dublin 4, Ireland
| |
Collapse
|
31
|
Ferro S, Azevedo-Silva J, Casal M, Côrte-Real M, Baltazar F, Preto A. Characterization of acetate transport in colorectal cancer cells and potential therapeutic implications. Oncotarget 2016; 7:70639-70653. [PMID: 28874966 PMCID: PMC5342580 DOI: 10.18632/oncotarget.12156] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/02/2016] [Indexed: 12/17/2022] Open
Abstract
Acetate, together with other short chain fatty acids has been implicated in colorectal cancer (CRC) prevention/therapy. Acetate was shown to induce apoptosis in CRC cells. The precise mechanism underlying acetate transport across CRC cells membrane, that may be implicated in its selectivity towards CRC cells, is not fully understood and was addressed here. We also assessed the effect of acetate in CRC glycolytic metabolism and explored its use in combination with the glycolytic inhibitor 3-bromopyruvate (3BP). We provide evidence that acetate enters CRC cells by the secondary active transporters MCT1 and/or MCT2 and SMCT1 as well as by facilitated diffusion via aquaporins. CRC cell exposure to acetate upregulates the expression of MCT1, MCT4 and CD147, while promoting MCT1 plasma membrane localization. We also observed that acetate increases CRC cell glycolytic phenotype and that acetate-induced apoptosis and anti-proliferative effect was potentiated by 3BP. Our data suggest that acetate selectivity towards CRC cells might be explained by the fact that aquaporins and MCTs are found overexpressed in CRC clinical cases. Our work highlights the importance that acetate transport regulation has in the use of drugs such as 3BP as a new therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Suellen Ferro
- CBMA- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal.,ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - João Azevedo-Silva
- CBMA- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Margarida Casal
- CBMA- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Manuela Côrte-Real
- CBMA- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Fatima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Preto
- CBMA- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
32
|
Martins SF, Amorim R, Viana-Pereira M, Pinheiro C, Costa RFA, Silva P, Couto C, Alves S, Fernandes S, Vilaça S, Falcão J, Marques H, Pardal F, Rodrigues M, Preto A, Reis RM, Longatto-Filho A, Baltazar F. Significance of glycolytic metabolism-related protein expression in colorectal cancer, lymph node and hepatic metastasis. BMC Cancer 2016; 16:535. [PMID: 27460659 PMCID: PMC4962413 DOI: 10.1186/s12885-016-2566-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 07/14/2016] [Indexed: 02/08/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common malignancies and a leading cause of cancer death worldwide. Most cancer cells display high rates of glycolysis with production of lactic acid, which is then exported to the microenvironment by monocarboxylate transporters (MCTs). The main aim of this study was to evaluate the significance of MCT expression in a comprehensive series of primary CRC cases, lymph node and hepatic metastasis. Methods Expressions of MCT1, MCT4, CD147 and GLUT1 were studied in human samples of CRC, lymph node and hepatic metastasis, by immunohistochemistry. Results All proteins were overexpressed in primary CRC, lymph node and hepatic metastasis, when compared with non-neoplastic tissue, with exception of MCT1 in lymph node and hepatic metastasis. MCT1 and MCT4 expressions were associated with CD147 and GLUT1 in primary CRC. These markers were associated with clinical pathological features, reflecting the putative role of these metabolism-related proteins in the CRC setting. Conclusion These findings provide additional evidence for the pivotal role of MCTs in CRC maintenance and progression, and support the use of MCTs as biomarkers and potential therapeutic targets in primary and metastatic CRC.
Collapse
Affiliation(s)
- Sandra Fernandes Martins
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Surgery Department, Hospitalar Center Trás-os-Montes e Alto Douro, Chaves Unit, Chaves, Portugal
| | - Ricardo Amorim
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Marta Viana-Pereira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Céline Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil.,Barretos School of Health Sciences Dr. Paulo Prata - FACISB, Barretos, São Paulo, Brazil
| | | | - Patrícia Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,General Surgery Resident at Braga Hospital, Braga, Portugal
| | - Carla Couto
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara Alves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sónia Vilaça
- Hepatobiliary Unit, Braga Hospital, Braga, Portugal
| | | | | | | | | | - Ana Preto
- Center of Molecular and Environmental Biology (CBMA)/Department of Biology, University of Minho, Braga, Portugal
| | - Rui Manuel Reis
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Adhemar Longatto-Filho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil.,Laboratory of Medical Investigation (LIM) 14, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
33
|
Abstract
Highlights Fermentation of the dietary fiber by intestinal microflora results in production of butyrate.Butyrate possesses anticarcinogenic effect at the colonic level.Three transporters (MCT1, SMCT1 and BCRP) regulate the intracellular concentration of BT in colonic epithelial cells.Changes in the expression of these transporters occur in colorectal cancer. Abstract Colorectal cancer (CRC) is one of the most common solid tumors worldwide. Consumption of dietary fiber is associated with a low risk of developing CRC. The fermentation of the dietary fiber by intestinal microflora results in production of butyrate (BT). This short-chain fatty acid is an important metabolic substrate in normal colonic epithelial cells and has important homeostatic functions at the colonic level. Because the cellular effects of BT (e.g. inhibition of histone deacetylases) are dependent on its intracellular concentration, knowledge on the mechanisms involved in BT membrane transport and its regulation seems particularly relevant. In this review, we will present the carrier-mediated mechanisms involved in BT membrane transport at the colonic epithelial level and their regulation, with an emphasis on CRC. Several xenobiotics known to modulate the risk for developing CRC are able to interfere with BT transport at the intestinal level. Thus, interference with BT transport certainly contributes to the anticarcinogenic or procarcinogenic effect of these compounds and these compounds may interfere with the anticarcinogenic effect of BT. Finally, we suggest that differences in BT transport between normal colonocytes and tumoral cells contribute to the "BT paradox" (the apparent opposing effect of BT in CRC cells and normal colonocytes).
Collapse
|
34
|
Shimoyama Y, Akihara Y, Kirat D, Iwano H, Hirayama K, Kagawa Y, Ohmachi T, Matsuda K, Okamoto M, Kadosawa T, Yokota H, Taniyama H. Expression of Monocarboxylate Transporter 1 in Oral and Ocular Canine Melanocytic Tumors. Vet Pathol 2016; 44:449-57. [PMID: 17606506 DOI: 10.1354/vp.44-4-449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Solid tumors are composed of a heterogeneous population of cells surviving in various concentrations of oxygen. In a hypoxic environment, tumor cells generally up-regulate glycolysis and, therefore, generate more lactate that must be expelled from the cell through proton transporters to prevent intracellular acidosis. Monocarboxylate transporter 1 (MCT1) is a major proton transporter in mammalian cells that transports monocarboxylates, such as lactate and pyruvate, together with a proton across the plasma membrane. Melanocytic neoplasia occurs frequently in dogs, but the prognosis is highly site-dependent. In this study, 50 oral canine melanomas, which were subdivided into 3 histologic subtypes, and 17 ocular canine melanocytic neoplasms (14 melanocytomas and 3 melanomas) were used to examine and compare MCT1 expression. Immunohistochemistry using a polyclonal chicken anti-rat MCT1 antibody showed that most oral melanoma exhibited cell membrane staining, although there were no significant differences observed among the 3 histologic subtypes. In contrast, the majority of ocular melanocytic tumors were not immunoreactive. Additionally, we documented the presence of a 45-kDa band in cell membrane protein Western blots, and sequencing of a reverse transcriptase polymerase chain reaction band of expected size confirmed its identity as a partial canine MCT1 transcript in 3 oral tumors. Increased MCT1 expression in oral melanomas compared with ocular melanocytic tumors may reflect the very different biology between these tumors in dogs. These results are the first to document canine MCT1 expression in canine tumors and suggest that increased MCT1 expression may provide a potential therapeutic target for oral melanoma.
Collapse
Affiliation(s)
- Y Shimoyama
- Department of Veterinary Pathology, School of Veterinary Medicine, Rakuno Gakuen University, 582-1 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lactate promotes PGE2 synthesis and gluconeogenesis in monocytes to benefit the growth of inflammation-associated colorectal tumor. Oncotarget 2016; 6:16198-214. [PMID: 25938544 PMCID: PMC4594635 DOI: 10.18632/oncotarget.3838] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 03/20/2015] [Indexed: 01/19/2023] Open
Abstract
Reprogramming energy metabolism, such as enhanced glycolysis, is an Achilles' heel in cancer treatment. Most studies have been performed on isolated cancer cells. Here, we studied the energy-transfer mechanism in inflammatory tumor microenvironment. We found that human THP-1 monocytes took up lactate secreted from tumor cells through monocarboxylate transporter 1. In THP-1 monocytes, the oxidation product of lactate, pyruvate competed with the substrate of proline hydroxylase and inhibited its activity, resulting in the stabilization of HIF-1α under normoxia. Mechanistically, activated hypoxia-inducible factor 1-α in THP-1 monocytes promoted the transcriptions of prostaglandin-endoperoxide synthase 2 and phosphoenolpyruvate carboxykinase, which were the key enzyme of prostaglandin E2 synthesis and gluconeogenesis, respectively, and promote the growth of human colon cancer HCT116 cells. Interestingly, lactate could not accelerate the growth of colon cancer directly in vivo. Instead, the human monocytic cells affected by lactate would play critical roles to ‘feed’ the colon cancer cells. Thus, recycling of lactate for glucose regeneration was reported in cancer metabolism. The anabolic metabolism of monocytes in inflammatory tumor microenvironment may be a critical event during tumor development, allowing accelerated tumor growth.
Collapse
|
36
|
Vaish V, Khare T, Verma M, Khare S. Epigenetic therapy for colorectal cancer. Methods Mol Biol 2015; 1238:771-82. [PMID: 25421691 DOI: 10.1007/978-1-4939-1804-1_40] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aberrations in epigenome that include alterations in DNA methylation, histone acetylation, and miRNA (microRNA) expression may govern the progression of colorectal cancer (CRC). These epigenetic changes affect every phase of tumor development from initiation to metastasis. Since epigenetic alterations can be reversed by DNA demethylating and histone acetylating agents, current status of the implication of epigenetic therapy in CRC is discussed in this article. Interestingly, DNA methyltransferase inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi) have shown promising results in controlling cancer progression. The information provided here might be useful in developing personalized medicine approaches.
Collapse
Affiliation(s)
- Vivek Vaish
- Section of Gastroenterology and Hepatology, Department of Internal Medicine, University of Missouri, Columbia, MO, 65212, USA
| | | | | | | |
Collapse
|
37
|
Down-regulation of monocarboxylate transporter 1 (MCT1) gene expression in the colon of piglets is linked to bacterial protein fermentation and pro-inflammatory cytokine-mediated signalling. Br J Nutr 2015; 113:610-7. [PMID: 25656974 DOI: 10.1017/s0007114514004231] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The present study investigated the influence of bacterial metabolites on monocarboxylate transporter 1 (MCT1) expression in pigs using in vivo, ex vivo and in vitro approaches. Piglets (n 24) were fed high-protein (26 %) or low-protein (18 %) diets with or without fermentable carbohydrates. Colonic digesta samples were analysed for a broad range of bacterial metabolites. The expression of MCT1, TNF-α, interferon γ (IFN-γ) and IL-8 was determined in colonic tissue. The expression of MCT1 was lower and of TNF-α and IL-8 was higher with high-protein diets (P< 0·05). MCT1 expression was positively correlated with l-lactate, whereas negatively correlated with NH₃ and putrescine (P< 0·05). The expression of IL-8 and TNF-α was negatively correlated with l-lactate and positively correlated with NH₃ and putrescine, whereas the expression of IFN-γ was positively correlated with histamine and 4-ethylphenol (P< 0·05). Subsequently, porcine colonic tissue and Caco-2 cells were incubated with Na-butyrate, NH₄Cl or TNF-α as selected bacterial metabolites or mediators of inflammation. Colonic MCT1 expression was higher after incubation with Na-butyrate (P< 0·05) and lower after incubation with NH₄Cl or TNF-α (P< 0·05). Incubation of Caco-2 cells with increasing concentrations of these metabolites confirmed the up-regulation of MCT1 expression by Na-butyrate (linear, P< 0·05) and down-regulation by TNF-α and NH₄Cl (linear, P< 0·05). The high-protein diet decreased the expression of MCT1 in the colon of pigs, which appears to be linked to NH₃- and TNF-α-mediated signalling.
Collapse
|
38
|
Nedjadi T, Moran AW, Al-Rammahi MA, Shirazi-Beechey SP. Characterization of butyrate transport across the luminal membranes of equine large intestine. Exp Physiol 2014; 99:1335-47. [PMID: 25172888 DOI: 10.1113/expphysiol.2014.077982] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The diet of the horse, pasture forage (grass), is fermented by the equine colonic microbiota to short-chain fatty acids, notably acetate, propionate and butyrate. Short-chain fatty acids provide a major source of energy for the horse and contribute to many vital physiological processes. We aimed to determine both the mechanism of butyrate uptake across the luminal membrane of equine colon and the nature of the protein involved. To this end, we isolated equine colonic luminal membrane vesicles. The abundance and activity of cysteine-sensitive alkaline phosphatase and villin, intestinal luminal membrane markers, were significantly enriched in membrane vesicles compared with the original homogenates. In contrast, the abundance of GLUT2 protein and the activity of Na(+)-K(+)-ATPase, known markers of the intestinal basolateral membrane, were hardly detectable. We demonstrated, by immunohistochemistry, that monocarboxylate transporter 1 (MCT1) protein is expressed on the luminal membrane of equine colonocytes. We showed that butyrate transport into luminal membrane vesicles is energized by a pH gradient (out < in) and is not Na(+) dependent. Moreover, butyrate uptake is time and concentration dependent, with a Michaelis-Menten constant of 5.6 ± 0.45 mm and maximal velocity of 614 ± 55 pmol s(-1) (mg protein)(-1). Butyrate transport is significantly inhibited by p-chloromercuribenzoate, phloretin and α-cyano-4-hydroxycinnamic acid, all potent inhibitors of MCT1. Moreover, acetate and propionate, as well as the monocarboxylates pyruvate and lactate, also inhibit butyrate uptake. Data presented here support the conclusion that transport of butyrate across the equine colonic luminal membrane is predominantly accomplished by MCT1.
Collapse
Affiliation(s)
- Taoufik Nedjadi
- Epithelial Function and Development Group, Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Andrew W Moran
- Epithelial Function and Development Group, Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Miran A Al-Rammahi
- Epithelial Function and Development Group, Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Soraya P Shirazi-Beechey
- Epithelial Function and Development Group, Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| |
Collapse
|
39
|
Planell N, Lozano JJ, Mora-Buch R, Masamunt MC, Jimeno M, Ordás I, Esteller M, Ricart E, Piqué JM, Panés J, Salas A. Transcriptional analysis of the intestinal mucosa of patients with ulcerative colitis in remission reveals lasting epithelial cell alterations. Gut 2013; 62:967-76. [PMID: 23135761 DOI: 10.1136/gutjnl-2012-303333] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Ulcerative colitis (UC) is a chronic condition characterised by the relapsing inflammation despite previous endoscopic and histological healing. Our objective was to identify the molecular signature associated with UC remission. DESIGN We performed whole-genome transcriptional analysis of colonic biopsies from patients with histologically active and inactive UC, and non-inflammatory bowel disease (non-IBD) controls. Real-time reverse transcriptase-PCR and immunostaining were used for validating selected genes in independent cohorts of patients. RESULTS Microarray analysis (n=43) demonstrates that UC patients in remission present an intestinal transcriptional signature that significantly differs from that of non-IBD controls and active patients. Fifty-four selected genes were validated in an independent cohort of patients (n=30). Twenty-nine of these genes were significantly regulated in UC-in-remission subjects compared with non-IBD controls, including a large number of epithelial cell-expressed genes such as REG4, S100P, SERPINB5, SLC16A1, DEFB1, AQP3 and AQP8, which modulate epithelial cell growth, sensitivity to apoptosis and immune function. Expression of inflammation-related genes such as REG1A and IL8 returned to control levels during remission. REG4, S100P, SERPINB5 and REG1A protein expression was confirmed by immunohistochemistry (n=23). CONCLUSIONS Analysis of the gene signature associated with remission allowed us to unravel pathways permanently deregulated in UC despite histological recovery. Given the strong link between the regulation of some of these genes and the growth and dissemination of gastrointestinal cancers, we believe their aberrant expression in UC may provide a mechanism for epithelial hyper-proliferation and, in the context of malignant transformation, for tumour growth.
Collapse
Affiliation(s)
- Núria Planell
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Colorectal carcinogenesis: a cellular response to sustained risk environment. Int J Mol Sci 2013; 14:13525-41. [PMID: 23807509 PMCID: PMC3742201 DOI: 10.3390/ijms140713525] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/07/2013] [Accepted: 06/14/2013] [Indexed: 12/13/2022] Open
Abstract
The current models for colorectal cancer (CRC) are essentially linear in nature with a sequential progression from adenoma through to carcinoma. However, these views of CRC development do not explain the full body of published knowledge and tend to discount environmental influences. This paper proposes that CRC is a cellular response to prolonged exposure to cytotoxic agents (e.g., free ammonia) as key events within a sustained high-risk colonic luminal environment. This environment is low in substrate for the colonocytes (short chain fatty acids, SCFA) and consequently of higher pH with higher levels of free ammonia and decreased mucosal oxygen supply as a result of lower visceral blood flow. All of these lead to greater and prolonged exposure of the colonic epithelium to a cytotoxic agent with diminished aerobic energy availability. Normal colonocytes faced with this unfavourable environment can transform into CRC cells for survival through epigenetic reprogramming to express genes which increase mobility to allow migration and proliferation. Recent data with high protein diets confirm that genetic damage can be increased, consistent with greater CRC risk. However, this damage can be reversed by increasing SCFA supply by feeding fermentable fibre as resistant starch or arabinoxylan. High protein, low carbohydrate diets have been shown to alter the colonic environment with lower butyrate levels and apparently greater mucosal exposure to ammonia, consistent with our hypothesis. Evidence is drawn from in vivo and in vitro genomic and biochemical studies to frame experiments to test this proposition.
Collapse
|
41
|
Havenaar R. Intestinal health functions of colonic microbial metabolites: a review. Benef Microbes 2013; 2:103-14. [PMID: 21840809 DOI: 10.3920/bm2011.0003] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review tries to find a scientific answer on the following two questions: (1) to what extent do we understand the specific role of colonic microbial metabolites, especially short-chain fatty acids (SCFA), in maintaining the health status and prevention of diseases of the colon and the host; (2) to what extent can we influence or even control the formation of colonic microbial metabolites which are beneficial for the health status. The review focuses on the following topics: energy source, intestinal motility, defence barrier, oxidative stress with special attention for antiinflammatory and anti-carcinogen functions, and satiety. Also the risk of overproduction of SCFA is discussed. Reviewing the literature as present today, it can be concluded that physiological levels of SCFA are vital for the health and well-being of the host and that the presence of carbohydrates (dietary fibre, prebiotics) is essential to favour the metabolic activity in the direction of carbohydrate fermentation. For optimal motor activity of the ileum and colon, to regulate the physiological intestinal mobility, steadily fermentable dietary fibres or prebiotics are crucial. The formation of SCFA, especially propionate and butyrate, up to high physiological levels in the colon, much likely also contributes to the defence mechanisms of the intestinal wall. No final answer can be given yet about the role of SCFA in anti-inflammation and anti-carcinogenicity, but recently published research shows possible mechanisms in this field. The intake of prebiotics or specific dietary fibres promotes the formation of SCFA within the physiological range, and more or less specifically increases the levels of propionate and butyrate. In this way, they provide benefit to the host, especially the natural regulation of the digestive system.
Collapse
|
42
|
Hartmann S, Agostinelli C, Diener J, Döring C, Fanti S, Zinzani PL, Gallamini A, Bergmann L, Pileri S, Hansmann ML. GLUT1 expression patterns in different Hodgkin lymphoma subtypes and progressively transformed germinal centers. BMC Cancer 2012; 12:586. [PMID: 23228169 PMCID: PMC3537691 DOI: 10.1186/1471-2407-12-586] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 12/02/2012] [Indexed: 11/10/2022] Open
Abstract
Background Increased glycolytic activity is a hallmark of cancer, allowing staging and restaging with 18F-fluorodeoxyglucose-positron-emission-tomography (PET). Since interim-PET is an important prognostic tool in Hodgkin lymphoma (HL), the aim of this study was to investigate the expression of proteins involved in the regulation of glucose metabolism in the different HL subtypes and their impact on clinical outcome. Methods Lymph node biopsies from 54 HL cases and reactive lymphoid tissue were stained for glucose transporter 1 (GLUT1), lactate dehydrogenase A (LDHA) and lactate exporter proteins MCT1 and MCT4. In a second series, samples from additional 153 HL cases with available clinical data were stained for GLUT1 and LDHA. Results Membrane bound GLUT1 expression was frequently observed in the tumor cells of HL (49% of all cases) but showed a broad variety between the different Hodgkin lymphoma subtypes: Nodular sclerosing HL subtype displayed a membrane bound GLUT1 expression in the Hodgkin-and Reed-Sternberg cells in 56% of the cases. However, membrane bound GLUT1 expression was more rarely observed in tumor cells of lymphocyte rich classical HL subtype (30%) or nodular lymphocyte predominant HL subtype (15%). Interestingly, in both of these lymphocyte rich HL subtypes as well as in progressively transformed germinal centers, reactive B cells displayed strong expression of GLUT1. LDHA, acting downstream of glycolysis, was also expressed in 44% of all cases. We evaluated the prognostic value of different GLUT1 and LDHA expression patterns; however, no significant differences in progression free or overall survival were found between patients exhibiting different GLUT1 or LDHA expression patterns. There was no correlation between GLUT1 expression in HRS cells and PET standard uptake values. Conclusions In a large number of cases, HRS cells in classical HL express high levels of GLUT1 and LDHA indicating glycolytic activity in the tumor cells. Although interim-PET is an important prognostic tool, a predictive value of GLUT1 or LDHA staining of the primary diagnostic biopsy could not be demonstrated. However, we observed GLUT1 expression in progressively transformed germinal centers and hyperplastic follicles, explaining false positive results in PET. Therefore, PET findings suggestive of HL relapse should always be confirmed by histology.
Collapse
Affiliation(s)
- Sylvia Hartmann
- Senckenberg Institute of Pathology, Goethe University, Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lee I, Lee SJ, Kang WK, Park C. Inhibition of Monocarboxylate Transporter 2 Induces Senescence-Associated Mitochondrial Dysfunction and Suppresses Progression of Colorectal Malignancies In Vivo. Mol Cancer Ther 2012; 11:2342-51. [DOI: 10.1158/1535-7163.mct-12-0488] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Fusarium mycotoxin-contaminated wheat containing deoxynivalenol alters the gene expression in the liver and the jejunum of broilers. Animal 2012; 6:278-91. [PMID: 22436186 DOI: 10.1017/s1751731111001601] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The effects of mycotoxins in the production of animal feed were investigated using broiler chickens. For the feeding trial, naturally Fusarium mycotoxin-contaminated wheat was used, which mainly contained deoxynivalenol (DON). The main effects of DON are reduction of the feed intake and reduced weight gain of broilers. At the molecular level, DON binds to the 60 S ribosomal subunit and subsequently inhibits protein synthesis at the translational level. However, little is known about other effects of DON, for example, at the transcriptional level. Therefore, a microarray analysis was performed, which allows the investigation of thousands of transcripts in one experiment. In the experiment, 20 broilers were separated into four groups of five broilers each at day 1 after hatching. The diets consisted of a control diet and three diets with calculated, moderate concentrations of 1.0, 2.5 and 5.0 mg DON/kg feed, which was attained by exchanging uncontaminated wheat with naturally mycotoxin-contaminated wheat up to the intended DON concentration. The broilers were held at standard conditions for 23 days. Three microarrays were used per group to determine the significant alterations of the gene expression in the liver (P < 0.05), and qPCR was performed on the liver and the jejunum to verify the results. No significant difference in BW, feed intake or feed conversion rate was observed. The nutrient uptake into the hepatic and jejunal cells seemed to be influenced by genes: SLC2A5 (fc: -1.54, DON2.5), which facilitates glucose and fructose transport and SLC7A10 (fc: +1.49, DON5), a transporter of d-serine and other neutral amino acids. In the jejunum, the palmitate transport might be altered by SLC27A4 (fc: -1.87, DON5) and monocarboxylates uptake by SLC16A1 (fc: -1.47, DON5). The alterations of the SLC gene expression may explain the reduced weight gain of broilers chronically exposed to DON-contaminated wheat. The decreased expressions of EIF2AK3 (fc: -1.29, DON2.5/5) and DNAJC3 (fc: -1.44, DON2.5) seem to be related to the translation inhibition. The binding of DON to the 60 S ribosomal subunit and the subsequent translation inhibition might be counterbalanced by the downregulation of EIF2AK3 and DNAJC3. The genes PARP1, MPG, EME1, XPAC, RIF1 and CHAF1B are mainly related to single-strand DNA modifications and showed an increased expression in the group with 5 mg DON/kg feed. The results indicate that significantly altered gene expression was already occurring at 2.5 mg DON/kg feed.
Collapse
|
45
|
Fine EJ, Segal-Isaacson CJ, Feinman RD, Herszkopf S, Romano MC, Tomuta N, Bontempo AF, Negassa A, Sparano JA. Targeting insulin inhibition as a metabolic therapy in advanced cancer: a pilot safety and feasibility dietary trial in 10 patients. Nutrition 2012; 28:1028-35. [PMID: 22840388 DOI: 10.1016/j.nut.2012.05.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/06/2012] [Accepted: 05/11/2012] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Most aggressive cancers demonstrate a positive positron emission tomographic (PET) result using ¹⁸F-2-fluoro-2-deoxyglucose (FDG), reflecting a glycolytic phenotype. Inhibiting insulin secretion provides a method, consistent with published mechanisms, for limiting cancer growth. METHODS Eligible patients with advanced incurable cancers had a positive PET result, an Eastern Cooperative Oncology Group performance status of 0 to 2, normal organ function without diabetes or recent weight loss, and a body mass index of at least 20 kg/m². Insulin inhibition, effected by a supervised carbohydrate dietary restriction (5% of total kilocalories), was monitored for macronutrient intake, body weight, serum electrolytes, β-hydroxybutyrate, insulin, and insulin-like growth factors-1 and -2. An FDG-PET scan was obtained at study entry and exit. RESULTS Ten subjects completed 26 to 28 d of the study diet without associated unsafe adverse effects. Mean caloric intake decreased 35 ± 6% versus baseline, and weight decreased by a median of 4% (range 0.0-6.1%). In nine patients with prior rapid disease progression, five with stable disease or partial remission on PET scan after the diet exhibited a three-fold higher dietary ketosis than those with continued progressive disease (n = 4, P = 0.018). Caloric intake (P = 0.65) and weight loss (P = 0.45) did not differ in those with stable disease or partial remission versus progressive disease. Ketosis was associated inversely with serum insulin levels (P = 0.03). CONCLUSION Preliminary data demonstrate that an insulin-inhibiting diet is safe and feasible in selected patients with advanced cancer. The extent of ketosis, but not calorie deficit or weight loss, correlated with stable disease or partial remission. Further study is needed to assess insulin inhibition as complementary to standard cytotoxic and endocrine therapies.
Collapse
Affiliation(s)
- Eugene J Fine
- Department of Radiology (Nuclear Medicine), Albert Einstein College of Medicine, Bronx, New York, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pinheiro C, Longatto-Filho A, Azevedo-Silva J, Casal M, Schmitt FC, Baltazar F. Role of monocarboxylate transporters in human cancers: state of the art. J Bioenerg Biomembr 2012; 44:127-39. [PMID: 22407107 DOI: 10.1007/s10863-012-9428-1] [Citation(s) in RCA: 289] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Monocarboxylate transporters (MCTs) belong to the SLC16 gene family, presently composed by 14 members. MCT1-MCT4 are proton symporters, which mediate the transmembrane transport of pyruvate, lactate and ketone bodies. The role of MCTs in cell homeostasis has been characterized in detail in normal tissues, however, their role in cancer is still far from understood. Most solid tumors are known to rely on glycolysis for energy production and this activity leads to production of important amounts of lactate, which are exported into the extracellular milieu, contributing to the acidic microenvironment. In this context, MCTs will play a dual role in the maintenance of the hyper-glycolytic acid-resistant phenotype of cancer, allowing the maintenance of the high glycolytic rates by performing lactate efflux, and pH regulation by the co-transport of protons. Thus, they constitute attractive targets for cancer therapy, which have been little explored. Here we review the literature on the role of MCTs in solid tumors in different locations, such as colon, central nervous system, breast, lung, gynecologic tract, prostate, stomach, however, there are many conflicting results and in most cases there are no functional studies showing the dependence of the tumors on MCT expression and activity. Additional studies on MCT expression in other tumor types, confirmation of the results already published as well as additional functional studies are needed to deeply understand the role of MCTs in cancer maintenance and aggressiveness.
Collapse
Affiliation(s)
- Céline Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | | | | | | | | | | |
Collapse
|
47
|
A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br J Nutr 2012; 108:820-31. [DOI: 10.1017/s0007114512001948] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) is a leading cause of preventable cancer deaths worldwide, with dietary factors being recognised as key risk modifiers. Foods containing dietary fibre are protective to a degree that the World Cancer Research Fund classifies the evidence supporting their consumption as ‘convincing’. The mechanisms by which fibre components protect against CRC remain poorly understood, especially their interactions with the gut microbiome. Fibre is a composite of indigestible plant polysaccharides and it is emerging that fermentable fibres, including resistant starch (RS), are particularly important. RS fermentation induces SCFA production, in particular, relatively high butyrate levels, and in vitro studies have shown that this acid has strong anti-tumorigenic properties. Butyrate inhibits proliferation and induces apoptosis of CRC cell lines at physiological concentrations. These effects are attributed to butyrate's ability to alter gene transcription by inhibiting histone deacetylase activity. However, the more recent discovery of G-protein coupled receptors that bind butyrate and other SCFA and data obtained from proteomic and genomic experiments suggest that alternative pathways are involved. Here, we review the mechanisms involved in butyrate-induced apoptosis in CRC cells and, additionally, the potential role this SCFA may play in mediating key processes in tumorigenesis including genomic instability, inflammation and cell energy metabolism. This discussion may help to inform the development of strategies to lower CRC risk at the individual and population levels.
Collapse
|
48
|
The effect of clotrimazole on energy substrate uptake and carcinogenesis in intestinal epithelial cells. Anticancer Drugs 2012; 23:220-9. [PMID: 22075978 DOI: 10.1097/cad.0b013e32834d9ad2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Clotrimazole has anticarcinogenic activity in several cell types. Our aims were to investigate the anticarcinogenic effect of clotrimazole in a tumoral intestinal epithelial (Caco-2) cell line, to compare it with the effect in a nontumoral intestinal epithelial cell line (IEC-6 cells), and to investigate inhibition of energy substrate uptake as a mechanism contributing to it. The effect of clotrimazole on cell proliferation, viability and differentiation, H-deoxyglucose (H-DG), H-O-methyl-glucose (H-OMG), and C-butyrate uptake, as well as mRNA expression levels of glucose transporters was assessed. In Caco-2 cells, clotrimazole decreased cellular viability and proliferation and increased cell differentiation. The effect on cell proliferation and viability was potentiated by rhodamine123. Clotrimazole also decreased cellular viability and proliferation in IEC-6 cells, but increased the cellular DNA synthesis rate and had no effect on cell differentiation. Exposure of Caco-2 cells to clotrimazole (10 µmol/l) for 1 and 7 days increased (by 20-30%) the uptake of H-DG and H-OMG, respectively, but had no effect on C-butyrate uptake. The effect on H-DG and H-OMG transport was maximal at 10 µmol/l, and the pharmacological characteristics of transport were not changed. However, clotrimazole changed the mRNA expression levels of the facilitative glucose transporter 2 and the Na-dependent glucose cotransporter. Clotrimazole exhibits comparable cytotoxic effects in tumoral and nontumoral intestinal epithelial cell lines. In Caco-2 cells, the cytotoxic effect of clotrimazole was strongly potentiated by the inhibition of oxidative phosphorylation. Moreover, stimulation of glucose uptake might be a compensation mechanism in response to the glycolysis inhibition caused by clotrimazole.
Collapse
|
49
|
Zinc sensing receptor signaling, mediated by GPR39, reduces butyrate-induced cell death in HT29 colonocytes via upregulation of clusterin. PLoS One 2012; 7:e35482. [PMID: 22545109 PMCID: PMC3335870 DOI: 10.1371/journal.pone.0035482] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/16/2012] [Indexed: 02/06/2023] Open
Abstract
Zinc enhances epithelial proliferation, protects the digestive epithelial layer and has profound antiulcerative and antidiarrheal roles in the colon. Despite the clinical significance of this ion, the mechanisms linking zinc to these cellular processes are poorly understood. We have previously identified an extracellular Zn2+ sensing G-protein coupled receptor (ZnR) that activates Ca2+ signaling in colonocytes, but its molecular identity as well as its effects on colonocytes' survival remained elusive. Here, we show that Zn2+, by activation of the ZnR, protects HT29 colonocytes from butyrate induced cell death. Silencing of the G-protein coupled receptor GPR39 expression abolished ZnR-dependent Ca2+ release and Zn2+-dependent survival of butyrate-treated colonocytes. Importantly, GPR39 also mediated ZnR-dependent upregulation of Na+/H+ exchange activity as this activity was found in native colon tissue but not in tissue obtained from GPR39 knock-out mice. Although ZnR-dependent upregulation of Na+/H+ exchange reduced the cellular acid load induced by butyrate, it did not rescue HT29 cells from butyrate induced cell death. ZnR/GPR39 activation however, increased the expression of the anti-apoptotic protein clusterin in butyrate-treated cells. Furthermore, silencing of clusterin abolished the Zn2+-dependent survival of HT29 cells. Altogether, our results demonstrate that extracellular Zn2+, acting through ZnR, regulates intracellular pH and clusterin expression thereby enhancing survival of HT29 colonocytes. Moreover, we identify GPR39 as the molecular moiety of ZnR in HT29 and native colonocytes.
Collapse
|
50
|
Sun WJ, Zhou X, Zheng JH, Lu MD, Nie JY, Yang XJ, Zheng ZQ. Histone acetyltransferases and deacetylases: molecular and clinical implications to gastrointestinal carcinogenesis. Acta Biochim Biophys Sin (Shanghai) 2012; 44:80-91. [PMID: 22194016 DOI: 10.1093/abbs/gmr113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Histone acetyltransferases and deacetylases are two groups of enzymes whose opposing activities govern the dynamic levels of reversible acetylation on specific lysine residues of histones and many other proteins. Gastrointestinal (GI) carcinogenesis is a major cause of morbidity and mortality worldwide. In addition to genetic and environmental factors, the role of epigenetic abnormalities such as aberrant histone acetylation has been recognized to be pivotal in regulating benign tumorigenesis and eventual malignant transformation. Here we provide an overview of histone acetylation, list the major groups of histone acetyltransferases and deacetylases, and cover in relatively more details the recent studies that suggest the links of these enzymes to GI carcinogenesis. As potential novel therapeutics for GI and other cancers, histone deacetylase inhibitors are also discussed.
Collapse
Affiliation(s)
- Wei-Jian Sun
- The 2nd Affiliated Hospital, Wenzhou Medical College, China
| | | | | | | | | | | | | |
Collapse
|