1
|
Perera CJ, Hosen SZ, Khan T, Fang H, Mekapogu AR, Xu Z, Falasca M, Chari ST, Wilson JS, Pirola R, Greening DW, Apte MV. Proteomic profiling of small extracellular vesicles derived from mouse pancreatic cancer and stellate cells: Role in pancreatic cancer. Proteomics 2024; 24:e2300067. [PMID: 38570832 DOI: 10.1002/pmic.202300067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/17/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Small extracellular vesicles (sEVs) are cell-derived vesicles evolving as important elements involved in all stages of cancers. sEVs bear unique protein signatures that may serve as biomarkers. Pancreatic cancer (PC) records a very poor survival rate owing to its late diagnosis and several cancer cell-derived proteins have been reported as candidate biomarkers. However, given the pivotal role played by stellate cells (PSCs, which produce the collagenous stroma in PC), it is essential to also assess PSC-sEV cargo in biomarker discovery. Thus, this study aimed to isolate and characterise sEVs from mouse PC cells and PSCs cultured alone or as co-cultures and performed proteomic profiling and pathway analysis. Proteomics confirmed the enrichment of specific markers in the sEVs compared to their cells of origin as well as the proteins that are known to express in each of the culture types. Most importantly, for the first time it was revealed that PSC-sEVs are enriched in proteins (including G6PI, PGAM1, ENO1, ENO3, and LDHA) that mediate pathways related to development of diabetes, such as glucose metabolism and gluconeogenesis revealing a potential role of PSCs in pancreatic cancer-related diabetes (PCRD). PCRD is now considered a harbinger of PC and further research will enable to identify the role of these components in PCRD and may develop as novel candidate biomarkers of PC.
Collapse
Affiliation(s)
- Chamini J Perera
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Sm Zahid Hosen
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Tanzila Khan
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Haoyun Fang
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Cardiovascular Research, Translation and Implementation, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Alpha Raj Mekapogu
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School Faculty of Health Sciences, Curtin University, Perth, Australia
| | - Suresh T Chari
- Department of Gastroenterology, Hepatology and Nutrition, M. D Anderson Cancer Centre, University of Texas, Houston, Texas, USA
| | - Jeremy S Wilson
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Ron Pirola
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - David W Greening
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Cardiovascular Research, Translation and Implementation, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| |
Collapse
|
2
|
Wang Q, Liu J, Chen Z, Zheng J, Wang Y, Dong J. Targeting metabolic reprogramming in hepatocellular carcinoma to overcome therapeutic resistance: A comprehensive review. Biomed Pharmacother 2024; 170:116021. [PMID: 38128187 DOI: 10.1016/j.biopha.2023.116021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a heavy burden on human health with high morbidity and mortality rates. Systematic therapy is crucial for advanced and mid-term HCC, but faces a significant challenge from therapeutic resistance, weakening drug effectiveness. Metabolic reprogramming has gained attention as a key contributor to therapeutic resistance. Cells change their metabolism to meet energy demands, adapt to growth needs, or resist environmental pressures. Understanding key enzyme expression patterns and metabolic pathway interactions is vital to comprehend HCC occurrence, development, and treatment resistance. Exploring metabolic enzyme reprogramming and pathways is essential to identify breakthrough points for HCC treatment. Targeting metabolic enzymes with inhibitors is key to addressing these points. Inhibitors, combined with systemic therapeutic drugs, can alleviate resistance, prolong overall survival for advanced HCC, and offer mid-term HCC patients a chance for radical resection. Advances in metabolic research methods, from genomics to metabolomics and cells to organoids, help build the HCC metabolic reprogramming network. Recent progress in biomaterials and nanotechnology impacts drug targeting and effectiveness, providing new solutions for systemic therapeutic drug resistance. This review focuses on metabolic enzyme changes, pathway interactions, enzyme inhibitors, research methods, and drug delivery targeting metabolic reprogramming, offering valuable references for metabolic approaches to HCC treatment.
Collapse
Affiliation(s)
- Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Juan Liu
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Ziye Chen
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Jingjing Zheng
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yunfang Wang
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Tang W, Lu Q, Zhu J, Zheng X, Fang N, Ji S, Lu F. Identification of a Prognostic Signature Composed of GPI, IL22RA1, CCT6A and SPOCK1 for Lung Adenocarcinoma Based on Bioinformatic Analysis of lncRNA-Mediated ceRNA Network and Sample Validation. Front Oncol 2022; 12:844691. [PMID: 35433415 PMCID: PMC9012227 DOI: 10.3389/fonc.2022.844691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most common malignant tumors with high morbidity and mortality in China and worldwide. Long non-coding RNAs (lncRNAs) as the competing endogenous RNA (ceRNA) play an essential role in the occurrence and development of LUAD. However, identifying lncRNA-related biomarkers to improve the accuracy of LUAD prognosis remains to be determined. This study downloaded RNA sequence data from The Cancer Genome Atlas (TCGA) database and identified the differential RNAs by bioinformatics. A total of 214 lncRNA, 198 miRNA and 2989 mRNA were differentially identified between LUAD and adjacent nontumor samples. According to the ceRNA hypothesis, we constructed a lncRNA-miRNA-mRNA network including 95 protein-coding mRNAs, 7 lncRNAs and 15 miRNAs, and found 24 node genes in this network were significantly associated with the overall survival of LUAD patients. Subsequently, through LASSO regression and multivariate Cox regression analyses, a four-gene prognostic signature composed of GPI, IL22RA1, CCT6A and SPOCK1 was developed based on the node genes of the lncRNA-mediated ceRNA network, demonstrating high performance in predicting the survival and chemotherapeutic responses of low- and high-risk LUAD patients. Finally, independent prognostic factors were further analyzed and combined into a well-executed nomogram that showed strong potential for clinical applications. In summary, the data from the current study suggested that the four-gene signature obtained from analysis of lncRNA-mediated ceRNA could serve as a reliable biomarker for LUAD prognosis and evaluation of chemotherapeutic response.
Collapse
Affiliation(s)
- Wenjun Tang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China.,Department of Immunology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Qiaonan Lu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jianling Zhu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China.,Department of Immunology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiaowei Zheng
- Department of Clinical Laboratory, Puyang Hospital of Traditional Chinese Medicine, Puyang, China
| | - Na Fang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shaoping Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Feng Lu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China.,Department of Immunology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
4
|
Jung SY. Genetic Signatures of Glucose Homeostasis: Synergistic Interplay With Long-Term Exposure to Cigarette Smoking in Development of Primary Colorectal Cancer Among African American Women. Clin Transl Gastroenterol 2021; 12:e00412. [PMID: 34608882 PMCID: PMC8500576 DOI: 10.14309/ctg.0000000000000412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/22/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Insulin resistance (IR)/glucose intolerance is a critical biologic mechanism for the development of colorectal cancer (CRC) in postmenopausal women. Whereas IR and excessive adiposity are more prevalent in African American (AA) women than in White women, AA women are underrepresented in genome-wide studies for systemic regulation of IR and the association with CRC risk. METHODS With 780 genome-wide IR single-nucleotide polymorphisms (SNPs) among 4,692 AA women, we tested for a causal inference between genetically elevated IR and CRC risk. Furthermore, by incorporating CRC-associated lifestyle factors, we established a prediction model on the basis of gene-environment interactions to generate risk profiles for CRC with the most influential genetic and lifestyle factors. RESUTLS In the pooled Mendelian randomization analysis, the genetically elevated IR was associated with 9 times increased risk of CRC, but with lack of analytic power. By addressing the variation of individual SNPs in CRC in the prediction model, we detected 4 fasting glucose-specific SNPs in GCK, PCSK1, and MTNR1B and 4 lifestyles, including smoking, aging, prolonged lifetime exposure to endogenous estrogen, and high fat intake, as the most predictive markers of CRC risk. Our joint test for those risk genotypes and lifestyles with smoking revealed the synergistically increased CRC risk, more substantially in women with longer-term exposure to cigarette smoking. DISCUSSION Our findings may improve CRC prediction ability among medically underrepresented AA women and highlight genetically informed preventive interventions (e.g., smoking cessation; CRC screening to longer-term smokers) for those women at high risk with risk genotypes and behavioral patterns.
Collapse
Affiliation(s)
- Su Yon Jung
- Translational Sciences Section, School of Nursing, University of California, Los Angeles, Los Angeles, California, USA; and
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
5
|
Cheng W, Cheng Z, Weng L, Xing D, Zhang M. Asparagus Polysaccharide inhibits the Hypoxia-induced migration, invasion and angiogenesis of Hepatocellular Carcinoma Cells partly through regulating HIF1α/VEGF expression via MAPK and PI3K signaling pathway. J Cancer 2021; 12:3920-3929. [PMID: 34093799 PMCID: PMC8176233 DOI: 10.7150/jca.51407] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
Aim: Although there are so many treatment strategies used for hepatocellular carcinoma (HCC), the overall survival (OS) of HCC patients still remains very low. In our previous studies, asparagus polysaccharide (ASP) has been demonstrated to suppress proliferation, migration, invasion and angiogenesis of HCC cells under normoxic conditions in vitro. However, the inhibitory effects of ASP on the hypoxia-induced migration, invasion and angiogenesis of HCC cells still remain largely unexplored. Materials and methods: Cell Counting Kit-8 (CCK-8) assay, transwell assay, and tube formation assay were used to determine the effects of ASP on hypoxia-induced proliferation, migration, invasion and angiogenesis of HCC cells. ELISA, Western blotting analysis and immunofluorescence assay were used to confirm the effects of ASP on the expressions of HIF-1α and VEGF at the protein level. Moreover, effects of ASP on signaling pathway-related proteins were investigated by Western blotting analysis. Immunohistochemistry (IHC) assay was applied to test the effects of ASP on angiogenesis-associated proteins of tumor cells. Results: We showed that ASP effectively suppressed hypoxia-induced proliferation, migration, invasion and angiogenesis of SK-Hep1 and Hep-3B cells in a dose-dependent manner. In addition, the inhibitory effect of ASP might be partly attributed to down-regulation of HIF1α and VEGF proteins in SK-Hep1 and Hep-3B cells under hypoxic conditions. Moreover, signaling pathway study indicated that ASP significantly down-regulated the hypoxia-induced expressions of p-AKT, p-mTOR and p-ERK, while it had little effects on AKT, mTOR and ERK. Besides, SK-Hep1 xenograft tumor models in nude mice further confirmed that the inhibitory effect of ASP on xenograft tumors might be exerted partly via down-regulation of HIF1α and VEGF through blocking MAPK and PI3K signaling pathways. Conclusions: Our findings suggested that ASP suppressed the hypoxia-induced migration, invasion and angiogenesis of HCC cells partly through regulating HIF-1α/VEGF expression via MAPK and PI3K signaling pathways.
Collapse
Affiliation(s)
- Wei Cheng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Ziwei Cheng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Lingling Weng
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Dongwei Xing
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Minguang Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| |
Collapse
|
6
|
Phosphoglycerate Mutase 1 Prevents Neuronal Death from Ischemic Damage by Reducing Neuroinflammation in the Rabbit Spinal Cord. Int J Mol Sci 2020; 21:ijms21197425. [PMID: 33050051 PMCID: PMC7582635 DOI: 10.3390/ijms21197425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
Phosphoglycerate mutase 1 (PGAM1) is a glycolytic enzyme that increases glycolytic flux in the brain. In the present study, we examined the effects of PGAM1 in conditions of oxidative stress and ischemic damage in motor neuron-like (NSC34) cells and the rabbit spinal cord. A Tat-PGAM1 fusion protein was prepared to allow easy crossing of the blood-brain barrier, and Control-PGAM1 was synthesized without the Tat peptide protein transduction domain. Intracellular delivery of Tat-PGAM1, not Control-PGAM1, was achieved in a time- and concentration-dependent manner. Immunofluorescent staining confirmed the intracellular expression of Tat-PGAM1 in NSC34 cells. Tat-PGAM1, but not Control-PGAM1, significantly alleviated H2O2-induced oxidative stress, neuronal death, mitogen-activated protein kinase, and apoptosis-inducing factor expression in NSC34 cells. After ischemia induction in the spinal cord, Tat-PGAM1 treatment significantly improved ischemia-induced neurological impairments and ameliorated neuronal cell death in the ventral horn of the spinal cord 72 h after ischemia. Tat-PGAM1 treatment significantly mitigated the ischemia-induced increase in malondialdehyde and 8-iso-prostaglandin F2α production in the spinal cord. In addition, Tat-PGAM1, but not Control-PGAM1, significantly decreased microglial activation and secretion of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α induced by ischemia in the ventral horn of the spinal cord. These results suggest that Tat-PGAM1 can be used as a therapeutic agent to reduce spinal cord ischemia-induced neuronal damage by lowering the oxidative stress, microglial activation, and secretion of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α.
Collapse
|
7
|
Luo Y, Xu T, Xie HQ, Guo Z, Zhang W, Chen Y, Sha R, Liu Y, Ma Y, Xu L, Zhao B. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on spontaneous movement of human neuroblastoma cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136805. [PMID: 32041038 DOI: 10.1016/j.scitotenv.2020.136805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Aryl hydrocarbon receptor (AhR) plays important roles in the interferences of dioxin exposure with the occurrence and development of tumors. Neuroblastoma is a kind of malignant tumor with high mortality and its occurrence is getting higher in dioxin exposed populations. However, there is still a lack of direct evidence of influences of dioxin on neuroblastoma cell migration. SK-N-SH is a human neuroblastoma cell line which has been used to reveal 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced dysregulation of certain promigratory gene. Thus, in this study, we employed SK-N-SH cells to investigate the effects of TCDD on the spontaneous movement of neuroblastoma cells, which is a short-range cell migratory behavior related to clone formation and tumor metastasis in vitro. Using unlabeled live cell imaging and high content analysis, we characterized the spontaneous movement under a full-nutrient condition in SK-N-SH cells. We found that the spontaneous movement of SK-N-SH cells was inhibited after 36- or 48-h treatment with TCDD at relative low concentrations (10-10 or 2 × 10-10 M). The TCDD-treated cells were unable to move as freely as that of control cells, resulting in less diffusive trajectories and a decreased displacement of the movement. In line with this cellular effect, the expression of pro-adhesive genes was significantly induced in time- and concentration-dependent manners after TCDD treatment. In addition, with the presence of AhR antagonist, CH223191, the effects of TCDD on the gene expression and the spontaneous cell movement were effectively reversed. Thus, we proposed that AhR-mediated up-regulation of pro-adhesive genes might be involved in the inhibitory effects of dioxin on the spontaneous movement of neuroblastoma cells. To our knowledge, this is the first piece of direct evidence about the influence of dioxin on neuroblastoma cell motility.
Collapse
Affiliation(s)
- Yali Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tuan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiling Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Wanglong Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Sha
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongchao Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
8
|
Xiao WP, Yang YF, Wu HZ, Xiong YY. Predicting the Mechanism of the Analgesic Property of Yanhusuo Based on Network Pharmacology. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19883071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Yanhusuo (Corydalis Rhizoma) extracts are widely used for the treatment of pain and inflammation. The effects of Yanhusuo in pain assays were assessed in a few studies. However, there are few studies on its analgesic mechanism. In this paper, network pharmacology was used to explore the analgesic components of Yanhusuo and its analgesic mechanism. The active components of Yanhusuo were screened by TCMSP database, combined with literature data. PharmMapper and GeneCards databases were used for screening the analgesic targets of the components. The protein interaction network diagram was drawn by String database and Cytoscape software, the gene ontology and KEGG pathway analyses of the target were performed by DAVID database, and the component–target–pathway interaction network diagram was further drawn by Cytoscape3.6.1 software. System Dock Web Site verified the molecular docking among components and targets. Finally, an interaction network of the component–target–pathway of Yanhusuo was constructed, and the functions and pathways were analyzed for preliminarily investigating the mechanism of Yanhusuo in analgesia. The results showed that the active components of analgesic in Yanhusuo were Corynoline, 13-methylpalmatrubine, dehydrocorydaline, saulatine, 2,3,9,10-tetramethoxy-13-methyl-5,6-dihydroisoquinolino[2,1-b]isoquinolin-8-on-e, and Capaurine. The mechanisms were involved in metabolic pathways, PI3k-Akt signaling pathway, pathways in cancer, and so on. The top 3 targets were NOS3, glucose-6-phosphate dehydrogenase, and glucose-6-phosphate isomerase in components-target-pathways network, and they were all enriched in metabolic pathways. Meanwhile the molecular docking showed that there was a high binding activity between the 6 components and the important target proteins, as a further certification for the subsequent network analysis. This study reveals the relationship of the components, targets, and pathways of active components in Yanhusuo, and provides new ideas and methods for further research on the analgesic mechanism of Yanhusuo.
Collapse
Affiliation(s)
- Wen-Ping Xiao
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Hubei Province, China
| | - Yan-Fang Yang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - He-Zhen Wu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yi-yi Xiong
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
9
|
Williams D, Fingleton B. Non-canonical roles for metabolic enzymes and intermediates in malignant progression and metastasis. Clin Exp Metastasis 2019; 36:211-224. [PMID: 31073762 DOI: 10.1007/s10585-019-09967-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/29/2019] [Indexed: 12/16/2022]
Abstract
Metabolic alterations are established as a hallmark of cancer. Such hallmark changes in cancer metabolism are characterized by reprogramming of energy-producing pathways and increases in the generation of biosynthetic intermediates to meet the needs of rapidly proliferating tumor cells. Various metabolic phenotypes such as aerobic glycolysis, increased glutamine consumption, and lipolysis have also been associated with the process of metastasis. However, in addition to the energy and biosynthetic alterations, a number of secondary functions of enzymes and metabolites are emerging that specifically contribute to metastasis. Here, we describe atypical intracellular roles of metabolic enzymes, extracellular functions of metabolic enzymes, roles of metabolites as signaling molecules, and epigenetic regulation mediated by altered metabolism, all of which can affect metastatic progression. We highlight how some of these mechanisms are already being exploited for therapeutic purposes, and discuss how others show similar potential.
Collapse
Affiliation(s)
- Demond Williams
- Program in Cancer Biology and Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Barbara Fingleton
- Program in Cancer Biology and Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
10
|
Nowak N, Kulma A, Gutowicz J. Up-regulation of Key Glycolysis Proteins in Cancer Development. Open Life Sci 2018; 13:569-581. [PMID: 33817128 PMCID: PMC7874691 DOI: 10.1515/biol-2018-0068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023] Open
Abstract
In rapid proliferating cancer cells, there is a need for fast ATP and lactate production, therefore cancer cells turn off oxidative phosphorylation and turn on the so called "Warburg effect". This regulating the expression of genes involved in glycolysis. According to many studies, glucose transporter 1, which supplies glucose to the cell, is the most abundantly expressed transporter in cancer cells. Hexokinase 2, is one of four hexokinase isoenzymes, is also another highly expressed enzyme in cancer cells and it functions to enhance the glycolytic rate. The up-regulation of these two proteins has been established as an important factor in promoting development and metastasis in many types of cancer. Furthermore, other enzymes involved in glycolysis pathway such as phosphoglucose isomerase and glyceraldehyde 3-phosphate dehydrogenase, exhibit additional functions in promoting tumor growth in a non-glycolytic way. This review demonstrates the pivotal role of GLUT1, HK2, PGI and GAPDH in cancer development. In particular, we look at how the multifunctional proteins, PGI and GAPDH, affect cancer cell survival. We also present various clinical cancer cases in terms of the overexpression of selected proteins, which may be considered as a therapeutic target.
Collapse
Affiliation(s)
- Nicole Nowak
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland
| | - Anna Kulma
- Department of Biotechnology, Wrocław University, 51-148 Wrocław, Poland
| | - Jan Gutowicz
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland
| |
Collapse
|
11
|
Ma YT, Xing XF, Dong B, Cheng XJ, Guo T, Du H, Wen XZ, Ji JF. Higher autocrine motility factor/glucose-6-phosphate isomerase expression is associated with tumorigenesis and poorer prognosis in gastric cancer. Cancer Manag Res 2018; 10:4969-4980. [PMID: 30464597 PMCID: PMC6208529 DOI: 10.2147/cmar.s177441] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Glucose-6-phosphate isomerase (GPI) is a glycolytic-related enzyme that inter-converts glucose-6-phosphate and fructose-6-phosphate in the cytoplasm. This protein is also secreted into the extracellular matrix by cancer cells and is, therefore, also called autocrine motility factor (AMF). Methods To clarify the roles of AMF/GPI in gastric cancer (GC), we collected 335 GC tissues and the corresponding adjacent noncancerous tissues, performed immunohistochemical studies, and analyzed the relationship between AMF/GPI expression and the patients’ clinicopathologic features. Results AMF/GPI expression was found to be significantly higher in the GC group than in the corresponding noncancerous tissue group (P<0.001). Additionally, AMF/GPI expression positively associated with a higher TNM stage and poorer prognosis in patients. Through Kaplan–Meier analysis and according to the Oncomine database, we found that AMF/GPI was overexpressed in GC tissues compared to normal mucosa, and the patients with higher AMF/GPI expression had poorer outcomes. We used AMF/GPI-silenced GC cell lines to observe how changes in AMP/GPI affect cellular phenotypes. AMF/GPI knockdown suppressed proliferation, migration, invasion, and glycolysis, and induced apoptosis in GC cells. Conclusion These findings suggest that AMF/GPI overexpression is involved in carcinogenesis and promotes the aggressive phenotypes of GC cells.
Collapse
Affiliation(s)
- Yu-Teng Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China, , .,Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China,
| | - Xiao-Fang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China, ,
| | - Bin Dong
- Department of Pathology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiao-Jing Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China, ,
| | - Ting Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China, ,
| | - Hong Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China, ,
| | - Xian-Zi Wen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China, ,
| | - Jia-Fu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China, , .,Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China,
| |
Collapse
|
12
|
Ždralević M, Marchiq I, de Padua MMC, Parks SK, Pouysségur J. Metabolic Plasiticy in Cancers-Distinct Role of Glycolytic Enzymes GPI, LDHs or Membrane Transporters MCTs. Front Oncol 2017; 7:313. [PMID: 29326883 PMCID: PMC5742324 DOI: 10.3389/fonc.2017.00313] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/04/2017] [Indexed: 01/09/2023] Open
Abstract
Research on cancer metabolism has recently re-surfaced as a major focal point in cancer field with a reprogrammed metabolism no longer being considered as a mere consequence of oncogenic transformation, but as a hallmark of cancer. Reprogramming metabolic pathways and nutrient sensing is an elaborate way by which cancer cells respond to high bioenergetic and anabolic demands during tumorigenesis. Thus, inhibiting specific metabolic pathways at defined steps should provide potent ways of arresting tumor growth. However, both animal models and clinical observations have revealed that this approach is seriously limited by an extraordinary cellular metabolic plasticity. The classical example of cancer metabolic reprogramming is the preference for aerobic glycolysis, or Warburg effect, where cancers increase their glycolytic flux and produce lactate regardless of the presence of the oxygen. This allows cancer cells to meet the metabolic requirements for high rates of proliferation. Here, we discuss the benefits and limitations of disrupting fermentative glycolysis for impeding tumor growth at three levels of the pathway: (i) an upstream block at the level of the glucose-6-phosphate isomerase (GPI), (ii) a downstream block at the level of lactate dehydrogenases (LDH, isoforms A and B), and (iii) the endpoint block preventing lactic acid export (MCT1/4). Using these examples of genetic disruption targeting glycolysis studied in our lab, we will discuss the responses of different cancer cell lines in terms of metabolic rewiring, growth arrest, and tumor escape and compare it with the broader literature.
Collapse
Affiliation(s)
- Maša Ždralević
- Institute for Research on Cancer and Aging (IRCAN), CNRS, INSERM, Centre A. Lacassagne, University Côte d'Azur, Nice, France
| | - Ibtissam Marchiq
- Institute for Research on Cancer and Aging (IRCAN), CNRS, INSERM, Centre A. Lacassagne, University Côte d'Azur, Nice, France
| | - Monique M Cunha de Padua
- Institute for Research on Cancer and Aging (IRCAN), CNRS, INSERM, Centre A. Lacassagne, University Côte d'Azur, Nice, France
| | - Scott K Parks
- Medical Biology Department, Centre Scientifique de Monaco (CSM), Monaco, Monaco
| | - Jacques Pouysségur
- Institute for Research on Cancer and Aging (IRCAN), CNRS, INSERM, Centre A. Lacassagne, University Côte d'Azur, Nice, France.,Medical Biology Department, Centre Scientifique de Monaco (CSM), Monaco, Monaco
| |
Collapse
|
13
|
Morandi A, Taddei ML, Chiarugi P, Giannoni E. Targeting the Metabolic Reprogramming That Controls Epithelial-to-Mesenchymal Transition in Aggressive Tumors. Front Oncol 2017; 7:40. [PMID: 28352611 PMCID: PMC5348536 DOI: 10.3389/fonc.2017.00040] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/28/2017] [Indexed: 01/06/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) process allows the trans-differentiation of a cell with epithelial features into a cell with mesenchymal characteristics. This process has been reported to be a key priming event for tumor development and therefore EMT activation is now considered an established trait of malignancy. The transcriptional and epigenetic reprogramming that governs EMT has been extensively characterized and reviewed in the last decade. However, increasing evidence demonstrates a correlation between metabolic reprogramming and EMT execution. The aim of the current review is to gather the recent findings that illustrate this correlation to help deciphering whether metabolic changes are causative or just a bystander effect of EMT activation. The review is divided accordingly to the catabolic and anabolic pathways that characterize carbohydrate, aminoacid, and lipid metabolism. Moreover, at the end of each part, we have discussed a series of potential metabolic targets involved in EMT promotion and execution for which drugs are either available or that could be further investigated for therapeutic intervention.
Collapse
Affiliation(s)
- Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence , Florence , Italy
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence , Florence , Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Excellence Centre for Research, Transfer and High Education DenoTHE, University of Florence, Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence , Florence , Italy
| |
Collapse
|
14
|
Lyu Z, Chen Y, Guo X, Zhou F, Yan Z, Xing J, An J, Zhang H. Genetic variants in glucose-6-phosphate isomerase gene as prognosis predictors in hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2016; 40:698-704. [PMID: 27288297 DOI: 10.1016/j.clinre.2016.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/14/2016] [Accepted: 05/02/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Metabolic reprogramming is an important hallmark of cancer cells, including the alterations of activity and expression of enzymes in glucose metabolism. Previous studies have demonstrated the critical role of glucise-6-phosphate isomerase (GPI) in cancer initiation, metastasis and progression. However, the significance of single nucleotide polymorphisms (SNPs) in GPI gene has not been investigated in hepatocellular carcinoma (HCC). METHODS In this study, a total of 3 functional SNPs in GPI gene were genotyped in 492 HCC patients with surgical treatment. Multivariate Cox proportional hazards model and Kaplan-Meier curve were used for the analysis of overall survival (OS) and recurrence-free survival (RFS). RESULTS The homozygous variant genotypes of rs7248411 in mRNA splice sites of GPI gene were significantly associated with an increased risk of death in the multivariate analysis (Hazard ratio [HR], 2.07; 95% confidence interval [95% CI]: 1.16-3.68 in a recessive model). In stratified analysis, the association remained significant in patients with high α-fetal protein (AFP) level (HR=2.37, 95% CI 1.25-4.49). Moreover, we identified the interaction between rs7248411 and AFP level in predicting the prognosis of HCC patients (P for interaction<0.001). CONCLUSIONS Our data suggest that GPI gene polymorphism may serve as potential biomarkers to predict the OS of HCC. Further studies with different ethnicities are needed to validate our findings and generalize its clinical utility.
Collapse
Affiliation(s)
- Zhuomin Lyu
- Department of Pain Treatment, Tangdu Hospital, Fourth Military Medical University, 169, Changle West Road, Xi'an, Shaanxi, 710038, China
| | - Yibing Chen
- State Key Laboratory of Cancer Biology, Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xu Guo
- State Key Laboratory of Cancer Biology, Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Feng Zhou
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zhaoyong Yan
- Department of Pain Treatment, Tangdu Hospital, Fourth Military Medical University, 169, Changle West Road, Xi'an, Shaanxi, 710038, China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology, Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jiaze An
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 169, Changle West Road, Xi'an, Shaanxi, 710032, China.
| | - Hongxin Zhang
- Department of Pain Treatment, Tangdu Hospital, Fourth Military Medical University, 169, Changle West Road, Xi'an, Shaanxi, 710038, China.
| |
Collapse
|
15
|
Fels B, Nielsen N, Schwab A. Role of TRPC1 channels in pressure-mediated activation of murine pancreatic stellate cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:657-670. [PMID: 27670661 DOI: 10.1007/s00249-016-1176-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022]
Abstract
The tumor environment contributes importantly to tumor cell behavior and cancer progression. Aside from biochemical constituents, physical factors of the environment also influence the tumor. Growing evidence suggests that mechanics [e.g., tumor (stroma) elasticity, tissue pressure] are critical players of cancer progression. Underlying mechanobiological mechanisms involve among others the regulation of focal adhesion molecules, cytoskeletal modifications, and mechanosensitive (MS) ion channels of cancer- and tumor-associated cells. After reviewing the current concepts of cancer mechanobiology, we will focus on the canonical transient receptor potential 1 (TRPC1) channel and its role in mechano-signaling in tumor-associated pancreatic stellate cells (PSCs). PSCs are key players of pancreatic fibrosis, especially in cases of pancreatic ductal adenocarcinoma (PDAC). PDAC is characterized by the formation of a dense fibrotic stroma (desmoplasia), primarily formed by activated PSCs. Desmoplasia contributes to high pancreatic tissue pressure, which in turn activates PSCs, thereby perpetuating matrix deposition. Here, we investigated the role of the putatively mechanosensitive TRPC1 channels in murine PSCs exposed to elevated ambient pressure. Pressurization leads to inhibition of mRNA expression of MS ion channels. Migration of PSCs representing a readout of their activation is enhanced in pressurized PSCs. Knockout of TRPC1 leads to an attenuated phenotype. While TRPC1-mediated calcium influx is increased in wild-type PSCs after pressure incubation, loss of TRPC1 abolishes this effect. Our findings provide mechanistic insight how pressure, an important factor of the PDAC environment, contributes to PSC activation. TRPC1-mediated activation could be a potential target to disrupt the positive feedback of PSC activation and PDAC progression.
Collapse
Affiliation(s)
- Benedikt Fels
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Munster, Germany
| | - Nikolaj Nielsen
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Munster, Germany. .,Novo Nordisk A/S, Smørmosevej 10-12, 2880, Bagsværd, Denmark.
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Munster, Germany
| |
Collapse
|
16
|
Kim BR, Seo SH, Park MS, Lee SH, Kwon Y, Rho SB. sMEK1 inhibits endothelial cell proliferation by attenuating VEGFR-2-dependent-Akt/eNOS/HIF-1α signaling pathways. Oncotarget 2016; 6:31830-43. [PMID: 26378810 PMCID: PMC4741643 DOI: 10.18632/oncotarget.5570] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 08/15/2015] [Indexed: 12/31/2022] Open
Abstract
The suppressor of MEK null (sMEK1) protein possesses pro-apoptotic activities. In the current study, we reveal that sMEK1 functions as a novel anti-angiogenic factor by suppressing vascular endothelial growth factor (VEGF)-induced cell proliferation, migration, and capillary-like tubular structure in vitro. In addition, sMEK1 inhibited the phosphorylation of the signaling components up- and downstream of Akt, including phospholipase Cγ1 (PLC-γ1), 3-phosphoinositide-dependent protein kinase 1 (PDK1), endothelial nitric oxide synthetase (eNOS), and hypoxia-inducible factor 1 (HIF-1α) during ovarian tumor progression via binding with vascular endothelial growth factor receptor 2 (VEGFR-2). Furthermore, sMEK1 decreased tumor vascularity and inhibited tumor growth in a xenograft human ovarian tumor model. These results supply convincing evidence that sMEK1 controls endothelial cell function and subsequent angiogenesis by suppressing VEGFR-2-mediated PI3K/Akt/eNOS signaling pathway. Taken together, our results clearly suggest that sMEK1 might be a novel anti-angiogenic and anti-tumor agent for use in ovarian tumor.
Collapse
Affiliation(s)
- Boh-Ram Kim
- Research Institute, National Cancer Center, Ilsan-ro, Ilsandong-gu, Goyang-si Gyeonggi-do, Republic of Korea.,College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Global Top 5 Program, Ewha Womans University, Seoul, Republic of Korea
| | - Seung Hee Seo
- Research Institute, National Cancer Center, Ilsan-ro, Ilsandong-gu, Goyang-si Gyeonggi-do, Republic of Korea
| | - Mi Sun Park
- Research Institute, National Cancer Center, Ilsan-ro, Ilsandong-gu, Goyang-si Gyeonggi-do, Republic of Korea
| | - Seung-Hoon Lee
- Department of Life Science, Yong In University, Samga-dong, Cheoin-gu, Yongin-si Gyeonggi-do, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Global Top 5 Program, Ewha Womans University, Seoul, Republic of Korea
| | - Seung Bae Rho
- Research Institute, National Cancer Center, Ilsan-ro, Ilsandong-gu, Goyang-si Gyeonggi-do, Republic of Korea
| |
Collapse
|
17
|
Kong B, Cheng T, Wu W, Regel I, Raulefs S, Friess H, Erkan M, Esposito I, Kleeff J, Michalski CW. Hypoxia-induced endoplasmic reticulum stress characterizes a necrotic phenotype of pancreatic cancer. Oncotarget 2016; 6:32154-60. [PMID: 26452217 PMCID: PMC4741665 DOI: 10.18632/oncotarget.5168] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/22/2015] [Indexed: 01/21/2023] Open
Abstract
Stromal fibrosis and tissue necrosis are major histological sequelae of hypoxia. The hypoxia-to-fibrosis sequence is well-documented in pancreatic ductal adenocarcinoma (PDAC). However, hypoxic and necrotic PDAC phenotypes are insufficiently characterized. Recently, reduction of tuberous sclerosis expression in mice together with oncogenic Kras demonstrated a rapidly metastasizing phenotype with histologically eccentric necrosis, transitional hypoxia and devascularisation. We established cell lines from these tumors and transplanted them orthotopically into wild-type mice to test their abilities to recapitulate the histological features of the primary lesions. Notably, the necrotic phenotype was reproduced by only a subset of cell lines while others gave rise to dedifferentiated tumors with significantly reduced necrosis. In vitro analysis of the necrotic tumor-inducing cell lines revealed that these cells released a significant amount of vascular endothelial growth factor A (VEGFA). However, its release was not further increased under hypoxic conditions. Defective hypoxia-induced VEGFA secretion was not due to impaired VEGFA transcription or hypoxia-inducible factor 1-alpha activation, but rather a result of hypoxia-induced endoplasmic reticulum (ER) stress. We thus identified hypoxia-induced ER stress as an important pathway in PDACs with tissue necrosis and rapid metastasis.
Collapse
Affiliation(s)
- Bo Kong
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | - Tao Cheng
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | - Weiwei Wu
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | - Ivonne Regel
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | - Susanne Raulefs
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | - Helmut Friess
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | - Mert Erkan
- Department of Surgery, Technische Universität München (TUM), Munich, Germany.,Department of Surgery, Koc University School of Medicine, Istanbul, Turkey
| | - Irene Esposito
- Institute of Pathology, Medical University Innsbruck, Innsbruck, Austria
| | - Jörg Kleeff
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | | |
Collapse
|
18
|
Chen X, Yang M, Hao W, Han J, Ma J, Wang C, Sun S, Zheng Q. Differentiation-inducing and anti-proliferative activities of isoliquiritigenin and all-trans-retinoic acid on B16F0 melanoma cells: Mechanisms profiling by RNA-seq. Gene 2016; 592:86-98. [PMID: 27461947 DOI: 10.1016/j.gene.2016.07.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/14/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022]
Abstract
Melanoma is a cancer that arises from melanocytes, specialized pigmented cells that are found predominantly in the skin. The incidence of malignant melanoma has significantly increased over the last decade. With the development of therapy, the survival rate of some kind of cancer has been improved greatly. But the treatment of melanoma remains unsatisfactory. Much of melanoma's resistance to traditional chemotherapy is believed to arise intrinsically, by virtue of potent growth and cell survival-promoting genetic alteration. Therefore, significant attention has recently been focused on differentiation therapy, as well as differentiation inducer compounds. In previous study, we found isoliquiritigenin (ISL), a natural product extracted from licorice, could induce B16F0 melanoma cell differentiation. Here we investigated the transcriptional response of melanoma differentiation process induced by ISL and all-trans-retinoic acid (RA). Results showed that 390 genes involves in 201 biochemical pathways were differentially expressed in ISL treatment and 304 genes in 193 pathways in RA treatment. Differential expressed genes (DGEs, fold-change (FC)≥10) with the function of anti-proliferative and differentiation inducing indicated a loss of grade malignancy characteristic. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated glutathione metabolism, glycolysis/gluconeogenesis and pentose phosphate pathway were the top three relative pathway perturbed by ISL, and mitogen-activated protein kinase (MAPK) signaling pathway was the most important pathway in RA treatment. In the analysis of hierarchical clustering of DEGs, we discovered 72 DEGs involved in the process of drug action. We thought Cited1, Tgm2, Xaf1, Cd59a, Fbxo2, Adh7 may have critical role in the differentiation of melanoma. The evidence displayed herein confirms the critical role of reactive oxygen species (ROS) in melanoma pathobiology and provides evidence for future targets in the development of next-generation biomarkers and therapeutics.
Collapse
Affiliation(s)
- Xiaoyu Chen
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming Yang
- BGI-Tech, BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Wenjin Hao
- Binzhou Medical University, Yantai, Shandong 264003, China
| | - Jichun Han
- Binzhou Medical University, Yantai, Shandong 264003, China
| | - Jun Ma
- Binzhou Medical University, Yantai, Shandong 264003, China
| | - Caixia Wang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Shiguo Sun
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Qiusheng Zheng
- Binzhou Medical University, Yantai, Shandong 264003, China.
| |
Collapse
|
19
|
Payen VL, Porporato PE, Baselet B, Sonveaux P. Metabolic changes associated with tumor metastasis, part 1: tumor pH, glycolysis and the pentose phosphate pathway. Cell Mol Life Sci 2016; 73:1333-48. [PMID: 26626411 PMCID: PMC11108399 DOI: 10.1007/s00018-015-2098-5] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/16/2015] [Accepted: 11/19/2015] [Indexed: 12/16/2022]
Abstract
Metabolic adaptations are intimately associated with changes in cell behavior. Cancers are characterized by a high metabolic plasticity resulting from mutations and the selection of metabolic phenotypes conferring growth and invasive advantages. While metabolic plasticity allows cancer cells to cope with various microenvironmental situations that can be encountered in a primary tumor, there is increasing evidence that metabolism is also a major driver of cancer metastasis. Rather than a general switch promoting metastasis as a whole, a succession of metabolic adaptations is more likely needed to promote different steps of the metastatic process. This review addresses the contribution of pH, glycolysis and the pentose phosphate pathway, and a companion paper summarizes current knowledge regarding the contribution of mitochondria, lipids and amino acid metabolism. Extracellular acidification, intracellular alkalinization, the glycolytic enzyme phosphoglucose isomerase acting as an autocrine cytokine, lactate and the pentose phosphate pathway are emerging as important factors controlling cancer metastasis.
Collapse
Affiliation(s)
- Valéry L Payen
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52, box B1.53.09, 1200, Brussels, Belgium
| | - Paolo E Porporato
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52, box B1.53.09, 1200, Brussels, Belgium
| | - Bjorn Baselet
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52, box B1.53.09, 1200, Brussels, Belgium
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK∙CEN, 2400, Mol, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52, box B1.53.09, 1200, Brussels, Belgium.
| |
Collapse
|
20
|
Chan AKC, Bruce JIE, Siriwardena AK. Glucose metabolic phenotype of pancreatic cancer. World J Gastroenterol 2016; 22:3471-3485. [PMID: 27022229 PMCID: PMC4806205 DOI: 10.3748/wjg.v22.i12.3471] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/30/2016] [Accepted: 03/02/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct a global “metabolic phenotype” of pancreatic ductal adenocarcinoma (PDAC) reflecting tumour-related metabolic enzyme expression.
METHODS: A systematic review of the literature was performed using OvidSP and PubMed databases using keywords “pancreatic cancer” and individual glycolytic and mitochondrial oxidative phosphorylation (MOP) enzymes. Both human and animal studies investigating the oncological effect of enzyme expression changes and inhibitors in both an in vitro and in vivo setting were included in the review. Data reporting changes in enzyme expression and the effects on PDAC cells, such as survival and metastatic potential, were extracted to construct a metabolic phenotype.
RESULTS: Seven hundred and ten papers were initially retrieved, and were screened to meet the review inclusion criteria. 107 unique articles were identified as reporting data involving glycolytic enzymes, and 28 articles involving MOP enzymes in PDAC. Data extraction followed a pre-defined protocol. There is consistent over-expression of glycolytic enzymes and lactate dehydrogenase in keeping with the Warburg effect to facilitate rapid adenosine-triphosphate production from glycolysis. Certain isoforms of these enzymes were over-expressed specifically in PDAC. Altering expression levels of HK, PGI, FBA, enolase, PK-M2 and LDA-A with metabolic inhibitors have shown a favourable effect on PDAC, thus identifying these as potential therapeutic targets. However, the Warburg effect on MOP enzymes is less clear, with different expression levels at different points in the Krebs cycle resulting in a fundamental change of metabolite levels, suggesting that other essential anabolic pathways are being stimulated.
CONCLUSION: Further characterisation of the PDAC metabolic phenotype is necessary as currently there are few clinical studies and no successful clinical trials targeting metabolic enzymes.
Collapse
|
21
|
Tian K, Zhong W, Zhang Y, Yin B, Zhang W, Liu H. Microfluidics‑based optimization of neuroleukin‑mediated regulation of articular chondrocyte proliferation. Mol Med Rep 2015; 13:67-74. [PMID: 26573126 PMCID: PMC4686044 DOI: 10.3892/mmr.2015.4540] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 09/14/2015] [Indexed: 12/21/2022] Open
Abstract
Due to the low proliferative and migratory capacities of chondrocytes, cartilage repair remains a challenging clinical problem. Current therapeutic strategies for cartilage repair result in unsatisfactory outcomes. Autologous chondrocyte implantation (ACI) is a cell based therapy that relies on the in vitro expansion of healthy chondrocytes from the patient, during which proliferation-promoting factors are frequently used. Neuroleukin (NLK) is a multifunctional protein that possesses growth factor functions, and its expression has been associated with cartilage development and bone regeneration, however its direct role in chondrocyte proliferation remains to be fully elucidated. In the current study, the role of NLK in chondrocyte proliferation in vitro in addition to its potential to act as an exogenous factor during ACI was investigated. Furthermore, the concentration of NLK for in vitro chondrocyte culture was optimized using a microfluidic device. An NLK concentration of 12.85 ng/ml was observed to provide optimal conditions for the promotion of chondrocyte proliferation. Additionally, NLK stimulation resulted in an increase in type II collagen synthesis by chondrocytes, which is a cartilaginous secretion marker and associated with the phenotype of chondrocytes. Together these data suggest that NLK is able to promote cell proliferation and type II collagen synthesis during in vitro chondrocyte propagation, and thus may serve as an exogenous factor for ACI.
Collapse
Affiliation(s)
- Kang Tian
- Department of Orthopaedics, First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Weiliang Zhong
- Department of Orthopaedics, First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yingqiu Zhang
- Department of Orthopaedics, First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Baosheng Yin
- Department of Orthopaedics, First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Weiguo Zhang
- Department of Orthopaedics, First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Han Liu
- Department of Orthopaedics, First Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
22
|
Luc R, Tortorella SM, Ververis K, Karagiannis TC. Lactate as an insidious metabolite due to the Warburg effect. Mol Biol Rep 2015; 42:835-40. [PMID: 25670247 DOI: 10.1007/s11033-015-3859-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Although oncogenetics remains a critical component of cancer biology and therapeutic research, recent interest has been taken towards the non-genetic features of tumour development and progression, such as cancer metabolism. Specifically, it has been observed that tumour cells are inclined to preferentially undergo glycolysis despite presence of adequate oxygen. First reported by Otto Warburg in the 1920s, and now termed the 'Warburg effect', this aberrant metabolism has become of particular interest due to the prevalence of the fermentation phenotype in a variety of cancers studied. Consequently, this phenotype has proven to play a pivotal role in cancer proliferation. As such Warburg's observations are now being integrated within the modern paradigms of cancer and in this review we explore the role of lactate as an insidious metabolite due to the Warburg effect.
Collapse
Affiliation(s)
- Raymond Luc
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, 75 Commercial Road, Melbourne, VIC, Australia
| | | | | | | |
Collapse
|
23
|
Cohen R, Neuzillet C, Tijeras-Raballand A, Faivre S, de Gramont A, Raymond E. Targeting cancer cell metabolism in pancreatic adenocarcinoma. Oncotarget 2015; 6:16832-47. [PMID: 26164081 PMCID: PMC4627277 DOI: 10.18632/oncotarget.4160] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/29/2015] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is expected to become the second leading cause of cancer death by 2030. Current therapeutic options are limited, warranting an urgent need to explore innovative treatment strategies. Due to specific microenvironment constraints including an extensive desmoplastic stroma reaction, PDAC faces major metabolic challenges, principally hypoxia and nutrient deprivation. Their connection with oncogenic alterations such as KRAS mutations has brought metabolic reprogramming to the forefront of PDAC therapeutic research. The Warburg effect, glutamine addiction, and autophagy stand as the most important adaptive metabolic mechanisms of cancer cells themselves, however metabolic reprogramming is also an important feature of the tumor microenvironment, having a major impact on epigenetic reprogramming and tumor cell interactions with its complex stroma. We present a comprehensive overview of the main metabolic adaptations contributing to PDAC development and progression. A review of current and future therapies targeting this range of metabolic pathways is provided.
Collapse
Affiliation(s)
- Romain Cohen
- INSERM U728, Beaujon University Hospital (AP-HP – PRES Paris 7 Diderot), Clichy La Garenne, France
| | - Cindy Neuzillet
- INSERM U728, Beaujon University Hospital (AP-HP – PRES Paris 7 Diderot), Clichy La Garenne, France
- Department of Medical Oncology, Henri Mondor University Hospital, Créteil, France
| | | | - Sandrine Faivre
- Medical Oncology, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Armand de Gramont
- New Drug Evaluation Laboratory, Centre of Experimental Therapeutics and Medical Oncology, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Eric Raymond
- Medical Oncology, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
24
|
The role of hypoxia inducible factor-1 in hepatocellular carcinoma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:409272. [PMID: 25101278 PMCID: PMC4101982 DOI: 10.1155/2014/409272] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 06/06/2014] [Indexed: 02/06/2023]
Abstract
Hypoxia is a common feature of many solid tumors, including hepatocellular carcinoma (HCC). Hypoxia can promote tumor progression and induce radiation and chemotherapy resistance. As one of the major mediators of hypoxic response, hypoxia inducible factor-1 (HIF-1) has been shown to activate hypoxia-responsive genes, which are involved in multiple aspects of tumorigenesis and cancer progression, including proliferation, metabolism, angiogenesis, invasion, metastasis and therapy resistance. It has been demonstrated that a high level of HIF-1 in the HCC microenvironment leads to enhanced proliferation and survival of HCC cells. Accordingly, overexpression, of HIF-1 is associated with poor prognosis in HCC. In this review, we described the mechanism by which HIF-1 is regulated and how HIF-1 mediates the biological effects of hypoxia in tissues. We also summarized the latest findings concerning the role of HIF-1 in the development of HCC, which could shed light on new therapeutic approaches for the treatment of HCC.
Collapse
|
25
|
Wang K, Demir IE, D'Haese JG, Tieftrunk E, Kujundzic K, Schorn S, Xing B, Kehl T, Friess H, Ceyhan GO. The neurotrophic factor neurturin contributes toward an aggressive cancer cell phenotype, neuropathic pain and neuronal plasticity in pancreatic cancer. Carcinogenesis 2013; 35:103-13. [PMID: 24067900 DOI: 10.1093/carcin/bgt312] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Neurotrophic factors possess an emerging role in the pathophysiology of several gastrointestinal disorders, regulating innervation, pain sensation and disease-associated neuroplasticity. Here, we aimed at characterizing the role of the neurotrophic factor neurturin (NRTN) and its receptor glial-cell-line-derived neurotrophic factor receptor alpha-2 (GFRα-2) in pancreatic cancer (PCa) and pancreatic neuropathy. For this purpose, NRTN and GFRα-2 were studied in normal human pancreas and PCa tissues via immunohistochemistry, quantitative reverse transcription-polymerase chain reaction, immunoblotting and correlated to abdominal pain. The impact of NRTN/GFRα-2 on PCa cell (PCC) biology was investigated via exposure to hypoxia, 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide viability and matrigel invasion assays in native and specific small interfering RNA-silenced PCCs. To assess the influence of NRTN on pancreatic neuroplasticity and neural invasion (NI), its impact was explored via an in vitro 'neuroplasticity assay' and a 3D neural migration assay. NRTN and GFRα-2 demonstrated a site-specific upregulation in PCa, predominantly in nerves, PCCs and extracellular matrix. Patients with severe pain demonstrated higher intraneural GFRα-2 immunoreactivity than patients with no pain. PCa tissue and PCCs contained increased amounts of NRTN, which was suppressed under hypoxia. NRTN promoted PCC invasiveness, and silencing of NRTN limited both PCC proliferation and invasion. Depletion of NRTN from PCa tissue extracts and PCC supernatants decreased axonal sprouting in neuronal cultures but did not influence glial density. Silencing of NRTN in PCCs boosted NI. We conclude that increased NRTN/GFRα-2 in PCa seems to promote an aggressive PCC phenotype and neuroplasticity in PCa. Accelerated NI following NRTN suppression constitutes a novel explanation for the attraction of PCC to nerves in the hypoxic PCa tumor microenvironment. SUMMARY PCa is characterized by intrapancreatic neuroplasticity and NI. Here, we show that PCC produce the neurotrophic factor NRTN, which reinforces their biological properties, triggers neuroplastic alterations, NI and influences pain sensation via the GFRα-2 receptor.
Collapse
Affiliation(s)
- Kun Wang
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, Munich D-81675, Germany and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Cardiac function is required for blood circulation and systemic oxygen delivery. However, the heart has intrinsic oxygen demands that must be met to maintain effective contractility. Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that functions as a master regulator of oxygen homeostasis in all metazoan species. HIF-1 controls oxygen delivery, by regulating angiogenesis and vascular remodeling, and oxygen utilization, by regulating glucose metabolism and redox homeostasis. Analysis of animal models suggests that by activation of these homeostatic mechanisms, HIF-1 plays a critical protective role in the pathophysiology of ischemic heart disease and pressure-overload heart failure.
Collapse
Affiliation(s)
- Gregg L Semenza
- Vascular Program, Institute for Cell Engineering; Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, and Biological Chemistry; and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
27
|
Goudarzi H, Iizasa H, Furuhashi M, Nakazawa S, Nakane R, Liang S, Hida Y, Yanagihara K, Kubo T, Nakagawa K, Kobayashi M, Irimura T, Hamada JI. Enhancement of in vitro cell motility and invasiveness of human malignant pleural mesothelioma cells through the HIF-1α-MUC1 pathway. Cancer Lett 2013; 339:82-92. [PMID: 23879962 DOI: 10.1016/j.canlet.2013.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/09/2013] [Accepted: 07/15/2013] [Indexed: 01/18/2023]
Abstract
In this study, we examined the effects of hypoxia on the malignancy of human malignant pleural mesothelioma (MPM) cell lines, and found (1) hypoxia enhanced motility and invasiveness of human malignant pleural mesothelioma (MPM) cells; (2) this phenomenon resulted from increased expression of sialylated MUC1 through the activation of HIF-1 pathway; (3) two HIF-binding sites located in the promoter region of MUC1 were important for MUC1 transactivation under hypoxia. These findings are useful for better understanding molecular mechanisms of aggressive behavior of MPM cells and for targeting them in the clinical therapies for MPM patients.
Collapse
Affiliation(s)
- Houman Goudarzi
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kang R, Tang D. Autophagy in pancreatic cancer pathogenesis and treatment. Am J Cancer Res 2012; 2:383-396. [PMID: 22860230 PMCID: PMC3410583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/23/2012] [Indexed: 06/01/2023] Open
Abstract
Pancreatic cancer is the fourth most common cancer to cause death due to advanced stage at diagnosis and poor response to current treatment. Autophagy is the lysosome-mediated degradation pathway which plays a critical role in cellular defense, quality control, and energy metabolism. Targeting autophagy is now an exciting field for translational cancer research, as autophagy dysfunction is among the hallmarks of cancer. Pancreatic tumors have elevated autophagy under basal conditions when compared with other epithelial cancers. This review describes our current understanding of the interaction between autophagy and pancreatic cancer development, including risk factors (e.g., pancreatitis, smoking, and alcohol use), tumor microenvironment (e.g., hypoxia and stromal cells), and molecular biology (e.g., K-Ras and p53) of pancreatic cancer. The importance of the HMGB1-RAGE pathway in regulation of autophagy and pancreatic cancer is also presented. Finally, we describe current studies involving autophagy inhibition using either pharmacological inhibitors (e.g., chloroquine) or RNA interference of essential autophagy genes that regulate chemotherapy sensitivity in pancreatic cancer. Summarily, autophagy plays multiple roles in the regulation of pancreatic cancer pathogenesis and treatment, although the exact mechanisms remain unknown.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh Cancer InstitutePittsburgh, Pennsylvania 15219, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh Cancer InstitutePittsburgh, Pennsylvania 15219, USA
- Hillman Cancer Center, University of Pittsburgh Cancer InstitutePittsburgh, Pennsylvania 15219, USA
| |
Collapse
|
29
|
Staubach S, Hanisch FG. Lipid rafts: signaling and sorting platforms of cells and their roles in cancer. Expert Rev Proteomics 2011; 8:263-77. [PMID: 21501018 DOI: 10.1586/epr.11.2] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lipid rafts are defined as microdomains within the lipid bilayer of cellular membranes that assemble subsets of transmembrane or glycosylphosphatidylinisotol-anchored proteins and lipids (cholesterol and sphingolipids) and experimentally resist extraction in cold detergent (detergent-resistant membrane). These highly dynamic raft domains are essential in signaling processes and also form sorting platforms for targeted protein traffic. Lipid rafts are involved in protein endocytosis that occurs via caveolae or flotillin-dependent pathways. Non-constitutive protein components of rafts fluctuate dramatically in cancer with impacts on cell proliferation, signaling, protein trafficking, adhesion and apoptosis. This article focuses on the identification of candidate cancer-associated biomarkers in carcinoma cells using state-of-the-art proteomics.
Collapse
Affiliation(s)
- Simon Staubach
- Institute of Biochemistry II, Medical Faculty, University of Cologne, Köln, Germany
| | | |
Collapse
|
30
|
Dong X, Li Y, Chang P, Tang H, Hess KR, Abbruzzese JL, Li D. Glucose metabolism gene variants modulate the risk of pancreatic cancer. Cancer Prev Res (Phila) 2011; 4:758-66. [PMID: 21411499 DOI: 10.1158/1940-6207.capr-10-0247] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Long-term type 2 diabetes is a known risk factor for pancreatic cancer (PC). We hypothesized that genetic variants in glucose metabolism modify individual susceptibility to PC, especially those associated with diabetes. We retrospectively genotyped 26 single-nucleotide polymorphisms of 5 glucose metabolism genes: glucokinase (GCK), glutamine-fructose-6-phosphate transaminase 1 (GFPT1), glucose phosphate isomerase (GPI), hexokinase 2 (HK2), and O-linked N-acetylglucosamine transferase (OGT) in a case-control study of PC conducted at MD Anderson during 2004 to 2010. Initial genotyping was conducted in 706 patients with PC and 706 cancer-free controls by using the Sequenom method. A HK2 genotype (R844K) with low frequency of homozygous variant was further examined in additional 948 patients and 476 controls. In the combined set of 1,654 cases and 1,182 controls, we showed a significant association of the HK2 R844K GA/AA genotype with reduced PC risk (OR = 0.78; 95% CI, 0.64-0.94; P = 0.009) and a significant interaction with diabetes (P(interaction) < 0.001). The HK2 R844K GA/AA genotype was associated with a reduced risk of PC among nondiabetic individuals (OR = 0.68; 95% CI, 0.56-0.83) but with increased risk among diabetic patients (OR = 3.69; 95% CI, 2.34-5.82). These risk associations remained statistically significant when the analysis was restricted to whites or after exclusion of recent onset diabetes. No significant main effect of other genes or significant interaction of genotype with other risk factors was observed. The findings show a potential role of HK2 gene, alone or in interaction with diabetes, in modifying the risk of PC.
Collapse
Affiliation(s)
- Xiaoqun Dong
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Sato K, Saida K, Yanagawa T, Fukuda T, Shirakura K, Shinozaki H, Watanabe H. Differential Responses of Myogenic C2C12 Cells to Hypoxia between Growth and Muscle-Induction Phases: Growth, Differentiation and Motility. J Phys Ther Sci 2011. [DOI: 10.1589/jpts.23.161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Kaori Sato
- Course of Health Sciences, Gunma University Graduate School of Medicine
| | - Kosuke Saida
- Department of Physical Therapy, Gunma University School of Health Sciences
| | - Takashi Yanagawa
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine
| | - Toshio Fukuda
- Course of Health Sciences, Gunma University Graduate School of Medicine
- Department of Cytopathology, Gunma University School of Health Sciences
| | - Kenji Shirakura
- Department of Rehabilitation, Gunma University Graduate School of Medicine
| | - Hiromitsu Shinozaki
- Course of Health Sciences, Gunma University Graduate School of Medicine
- Department of Nursing, Gunma University School of Health Sciences
| | - Hideomi Watanabe
- Department of Physical Therapy, Gunma University School of Health Sciences
- Course of Health Sciences, Gunma University Graduate School of Medicine
| |
Collapse
|
32
|
Dong X, Tang H, Hess KR, Abbruzzese JL, Li D. Glucose metabolism gene polymorphisms and clinical outcome in pancreatic cancer. Cancer 2010; 117:480-91. [PMID: 20845477 DOI: 10.1002/cncr.25612] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 07/29/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND Altered glucose metabolism is the most common metabolic hallmark of malignancies. The authors tested the hypothesis that glucose metabolism gene variations affect clinical outcome in pancreatic cancer. METHODS The authors retrospectively genotyped 26 single nucleotide polymorphisms from 5 glucose metabolism genes in 154 patients with localized disease and validated the findings in 552 patients with different stages of pancreatic adenocarcinoma. Association between genotypes and overall survival (OS) was evaluated using multivariate Cox proportional hazard regression models with adjustment for clinical predictors. RESULTS Glucokinase (GCK) IVS1 + 9652C > T and hexokinase 2 (HK2) N692N homozygous variants were significantly associated with reduced OS in the training set of 154 patients (P < .001). These associations were confirmed in the validation set of 552 patients and in the combined dataset of all 706 patients (P ≤ .001). In addition, HK2 R844K variant K allele was associated with a better survival in the validation set and the combined dataset (P ≤ .001). When data were further analyzed by disease stage, glutamine-fructose-6-phosphate transaminase (GFPT1) IVS14-3094T>C, HK2 N692N and R844K in patients with localized disease and GCK IVS1 + 9652C>T in patients with advanced disease were significant independent predictors for OS (P ≤ .001). Haplotype CGG of GPI and GCTATGG of HK2 were associated with better OS, respectively, with P values of .004 and .007. CONCLUSIONS The authors demonstrated that glucose metabolism gene polymorphisms affect clinical outcome in pancreatic cancer. These observations support a role of abnormal glucose metabolism in pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Xiaoqun Dong
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 7703-4009, USA
| | | | | | | | | |
Collapse
|
33
|
Diagnostic value of glucose-6-phosphate isomerase in rheumatoid arthritis. Clin Chim Acta 2010; 411:2049-53. [PMID: 20826128 DOI: 10.1016/j.cca.2010.08.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 08/18/2010] [Accepted: 08/30/2010] [Indexed: 01/19/2023]
Abstract
BACKGROUND Although glucose-6-phosphate isomerase (G6PI), anti-G6PI antibodies and G6PI-containing immune complexes (G6PI-CIC) have proved high expression in patients with rheumatoid arthritis (RA), comprehensive evaluation of the G6PI-derived markers, G6PI antigen, anti-G6PI Abs, G6PI-CIC and G6PI mRNA, in the diagnosis of RA remains necessary. METHODS We measured G6PI antigen, anti-G6PI Abs, C1q/G6PI-CIC as well as anti-cyclic citrullinated peptide antibodies (anti-CCP Abs) in serum and concomitantly synovial fluid (SF) by ELISA in RA, other rheumatic diseases and healthy controls. The G6PI mRNA expression in peripheral blood mononuclear cells (PBMCs) was assessed with real-time PCR. RESULTS As compared with non-RA patients, RA patients had increased levels of G6PI antigen, anti-G6PI Abs, C1q/G6PI-CIC and G6PI mRNA expression in sera or PBMCs, and increased levels of G6PI and C1q/G6PI-CIC in SF. The serum G6PI levels in RA patients positively correlated with anti-G6PI Abs, C1q/G6PI-CIC, G6PI mRNA, anti-CCP Abs, RF, CRP and ESR, respectively. The area under curve analyses demonstrated that serum G6PI had the best discriminating power for RA and active RA followed by C1q/G6PI-CIC, anti-G6PI Abs and G6PI mRNA. The simultaneous use of serum G6PI and anti-CCP Abs assays in the form of either of them tested positive gave improved sensitivities of 88.1% for RA and 95.8% for active RA. CONCLUSIONS Despite the elevated expression of all G6PI-derived markers in RA, the serum G6PI has the best discriminating power among the four G6PI-derived markers. The serum G6PI determination either alone or in combination with anti-CCP Abs improves the diagnosis of RA.
Collapse
|
34
|
Abstract
In this review we summarize the evidence for a role for hypoxic response in the biology of metastasis, with a particular emphasis on the metastasis of breast cancer and the function of the hypoxia inducible factor (HIF).
Collapse
Affiliation(s)
- Helene Rundqvist
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, CA 92093, USA
| | | |
Collapse
|
35
|
Hypoxia and pluripotency in embryonic and embryonal carcinoma stem cell biology. Differentiation 2009; 78:159-68. [PMID: 19604622 DOI: 10.1016/j.diff.2009.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 06/01/2009] [Accepted: 06/18/2009] [Indexed: 01/16/2023]
Abstract
Low oxygen availability (hypoxia) is a hallmark of rapidly proliferating tumors and has been suggested to be a characteristic of the embryonic and adult stem cell niche. The idea of relating cancer to stem cells is increasingly popular due to the identification of specific cancer stem cells sharing the typical plasticity and motility of pluripotent stem cells. Hypoxia plays a critical role in early embryonic development and in tumor progression, participating in processes such as angiogenesis, apoptosis, cell migration, invasion and metastasis. Some of the molecular pathways that have been shown to mediate these hypoxia-induced responses, such as the hypoxia inducible factor (HIF)-1alpha and Notch signaling, appear to be active in both embryonic and neoplastic pluripotent stem cells. Nevertheless, the mechanisms underlying these regulatory processes are not yet fully understood. In this review, we attempt to shed some light on the mechanisms involved in hypoxia-dependent processes related to stem cell features and tumor progression, such as the maintenance of the undifferentiated state, cell proliferation, tumor neovascularization, extra-cellular matrix degradation and motility factor up-regulation. With this purpose in mind, we summarize recent observations in embryonic, adult and cancer stem cells that demonstrate the parallelism existing in their hypoxia responses. Finally, based on the observations of our own laboratory and others, we suggest that the comparative analysis of the response to low oxygen levels of embryonic stem cells and cancer stem cells (such as embryonal carcinoma cells), may throw fresh light on our understanding of the mechanisms underlying hypoxia-induced invasiveness and the resistance to anticancer treatments, thereby stimulating the development of novel therapeutic strategies.
Collapse
|
36
|
Chen J, Kobayashi M, Darmanin S, Qiao Y, Gully C, Zhao R, Kondo S, Wang H, Wang H, Yeung SCJ, Lee MH. Hypoxia-mediated up-regulation of Pim-1 contributes to solid tumor formation. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:400-11. [PMID: 19528349 DOI: 10.2353/ajpath.2009.080972] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tumor hypoxia directly promotes genomic instability and facilitates cell survival, resulting in tumors with a more aggressive phenotype. The proto-oncogene pim-1 regulates apoptosis and the cell cycle by phosphorylating target proteins. Overexpression of Pim-1 can cause genomic instability and contribute to lymphomagenesis. It is not clear whether Pim-1 is involved in hypoxia-mediated tumor survival in solid tumors. Here, we show that hypoxia can stabilize Pim-1 by preventing its ubiquitin-mediated proteasomal degradation and can cause Pim-1 translocation from the cytoplasm to the nucleus. Importantly, overexpression of Pim-1 increases NIH3T3 cell transformation exclusively under hypoxic conditions, suggesting that Pim-1 expression under hypoxia may be implicated in the transformation process of solid tumors. Also, blocking Pim-1 function by introduction of dominant negative Pim-1 resensitizes pancreatic cancer cells to apoptosis induced by glucose-deprivation under hypoxia. Introduction of short interfering RNAs for Pim-1 also resensitizes cancer cells to glucose deprivation under hypoxic conditions, while forced overexpression of Pim-1 causes solid tumor cells to become resistant to glucose deprivation. Moreover, dominant negative Pim-1 reduces tumorigenicity in pancreatic cancer cells and HeLa xenograft mouse models. Together, our studies indicate that Pim-1 plays a distinct role in solid tumor formation in vivo, implying that Pim-1 may be a novel target for cancer therapy.
Collapse
Affiliation(s)
- Jian Chen
- Department of Surgical Oncology, Division of Cancer-Related Genes, Institute for Genetic Medicine, Hokkaido University Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chen J, Kobayashi M, Darmanin S, Qiao Y, Gully C, Zhao R, Yeung SC, Lee MH. Pim-1 plays a pivotal role in hypoxia-induced chemoresistance. Oncogene 2009; 28:2581-92. [PMID: 19483729 DOI: 10.1038/onc.2009.124] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hypoxia changes the responses of cancer cells to many chemotherapy agents, resulting in chemoresistance. The underlying molecular mechanism of hypoxia-induced drug resistance remains unclear. Pim-1 is a survival kinase, which phosphorylates Bad at serine 112 to antagonize drug-induced apoptosis. Here we show that hypoxia increases Pim-1 in a hypoxia-inducible factor-1alpha-independent manner. Inhibition of Pim-1 function by dominant-negative Pim-1 dramatically restores the drug sensitivity to apoptosis induced by chemotherapy under hypoxic conditions in both in vitro and in vivo tumor models. Introduction of siRNAs for Pim-1 also resensitizes cancer cells to chemotherapy drugs under hypoxic conditions, whereas forced overexpression of Pim-1 endows solid tumor cells with resistance to cisplatin, even under normoxia. Dominant-negative Pim-1 prevents a decrease in mitochondrial transmembrane potential in solid tumor cells, which is normally induced by cisplatin (CDDP), followed by the reduced activity of Caspase-3 and Caspase-9, indicating that Pim-1 participates in hypoxia-induced drug resistance through the stabilization of mitochondrial transmembrane potential. Our results demonstrate that Pim-1 is a pivotal regulator involved in hypoxia-induced chemoresistance. Targeting Pim-1 may improve the chemotherapeutic strategy for solid tumors.
Collapse
Affiliation(s)
- J Chen
- Division of Cancer-Related Genes, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Tennant DA, Durán RV, Boulahbel H, Gottlieb E. Metabolic transformation in cancer. Carcinogenesis 2009; 30:1269-80. [PMID: 19321800 DOI: 10.1093/carcin/bgp070] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In 2000, Douglas Hanahan and Robert Weinberg published a review detailing the six hallmarks of cancer. These are six phenotypes that a tumour requires in order to become a fully fledged malignancy: persistent growth signals, evasion of apoptosis, insensitivity to anti-growth signals, unlimited replicative potential, angiogenesis and invasion and metastasis. However, it is becoming increasingly clear that these phenotypes do not portray the whole story and that other hallmarks are necessary: one of which is a shift in cellular metabolism. The tumour environment creates a unique collection of stresses to which cells must adapt in order to survive. This environment is formed by the uncontrolled proliferation of cells, which ignore the cues that would create normal tissue architecture. As a result, the cells forming the tumour are exposed to low oxygen and nutrient levels, as well as high levels of toxic cellular waste products, which is thought to propel cells towards a more transformed phenotype, resistant to cell death and pro-metastatic.
Collapse
Affiliation(s)
- Daniel A Tennant
- Cancer Research UK, Beatson Institute for Cancer Research, Glasgow, G61 1BD, UK
| | | | | | | |
Collapse
|
39
|
The tumor microenvironment and metastatic disease. Clin Exp Metastasis 2008; 26:19-34. [PMID: 18543068 DOI: 10.1007/s10585-008-9182-2] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 05/12/2008] [Indexed: 12/15/2022]
Abstract
The microenvironment of solid tumors is a heterogeneous, complex milieu for tumor growth and survival that includes features such as acidic pH, low nutrient levels, elevated interstitial fluid pressure (IFP) and chronic and fluctuating levels of oxygenation that relate to the abnormal vascular network that exists in tumors. The metastatic potential of tumor cells is believed to be regulated by interactions between the tumor cells and their extracellular environment (extracellular matrix (ECM)). These interactions can be modified by the accumulation of genetic changes and by the transient alterations in gene expression induced by the local tumor microenvironment. Clinical and experimental evidence suggests that altered gene expression in response to the hypoxic microenvironment is a contributing factor to increased metastatic efficiency. A number of genes that have been implicated in the metastatic process, involving angiogenesis, intra/extravasation, survival and growth, have been found to be hypoxia-responsive. The various metastatic determinants, genetic and epigenetic, somatic and inherited may serve as precedents for the future identification of more genes that are involved in metastasis. Much research has focused on genetic and molecular properties of the tumor cells themselves. In the present review we discuss the epigenetic and physiological regulation of metastasis and emphasize the need for further studies on the interactions between the pathophysiologic tumor microenvironment and the tumor extracellular matrix.
Collapse
|
40
|
Prognostic significance of 18F-FDG uptake in primary osteosarcoma after but not before chemotherapy: a possible association with autocrine motility factor/phosphoglucose isomerase expression. Clin Exp Metastasis 2008; 25:427-35. [PMID: 18301993 DOI: 10.1007/s10585-008-9147-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 02/05/2008] [Indexed: 10/22/2022]
Abstract
Response to neoadjuvant chemotherapy is a significant prognostic factor for osteosarcoma (OS). 18-F-fluorodeoxy-D: -glucose (FDG) positron emission tomography (PET) is a noninvasive imaging modality that correlates with histological grading in musculoskeletal sarcomas. To determine the prognostic value of FDG PET in patients receiving chemotherapy, 13 patients were evaluated by FDG-PET, and followed for more than 4 years. FDG PET standardized uptake values before (SUV1) and after (SUV2) chemotherapy were analyzed and correlated with the expression of metastasis-related glycolytic enzyme, autocrine motility factor (AMF)/phosphoglucose isomerase (PGI) by immunohistochemical examination in surgically excised tumors. Although mean SUV1 for OS patients with metastatic lesions were similar to those in the completely disease-free (CDF) group (6.5 vs. 6.6, respectively, P = 0.975), mean SUV2 for OS with metastatic lesions were significantly higher than those in the CDF group (5.1 vs. 2.5, respectively, P = 0.0445). Interestingly, immunohistochemical analysis using anti-AMF/PGI antibody revealed that SUV2 correlated significantly with the AMF/PGI staining titers (P = 0.0303), while no correlation between SUV1 and the AMF/PGI staining titers existed (P = 0.964). The present study suggests that FDG PET after chemotherapy may provide information for AMF/PGI-related metastatic potentiality of residual tumors located out side of the area surgically resected afterward, and then lead to a useful prediction of the patients' prognosis.
Collapse
|
41
|
Adamski JK, Estlin EJ, Makin GWJ. The cellular adaptations to hypoxia as novel therapeutic targets in childhood cancer. Cancer Treat Rev 2008; 34:231-46. [PMID: 18207646 DOI: 10.1016/j.ctrv.2007.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 11/26/2007] [Accepted: 11/27/2007] [Indexed: 01/19/2023]
Abstract
Exposure of tumour cells to reduced levels of oxygen (hypoxia) is a common finding in adult tumours. Hypoxia induces a myriad of adaptive changes within tumour cells which result in increased anaerobic glycolysis, new blood vessel formation, genetic instability and a decreased responsiveness to both radio and chemotherapy. Hypoxia correlates with disease stage and outcome in adult epithelial tumours and increasingly it is becoming apparent that hypoxia is also important in paediatric tumours. Despite its adverse effects upon tumour response to treatment hypoxia offers several avenues for new drug development. Bioreductive agents already exist, which are preferentially activated in areas of hypoxia, and thus have less toxicity for normal tissue. Additionally the adaptive cellular response to hypoxia offers several novel targets, including vascular endothelial growth factor (VEGF), carbonic anhydrase, and the central regulator of the cellular response to hypoxia, hypoxia inducible factor-1 (HIF-1). Novel agents have emerged against all of these targets and are at various stages of clinical and pre-clinical development. Hypoxia offers an exciting opportunity for new drug development that can include paediatric tumours at an early stage.
Collapse
Affiliation(s)
- J K Adamski
- School of Cancer and Imaging Studies, Faculty of Medical and Human Studies, University of Manchester, United Kingdom.
| | | | | |
Collapse
|
42
|
Funasaka T, Raz A. The role of autocrine motility factor in tumor and tumor microenvironment. Cancer Metastasis Rev 2008; 26:725-35. [PMID: 17828376 DOI: 10.1007/s10555-007-9086-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Autocrine motility factor (AMF) is a tumor-secreted cytokine and is abundant at tumor sites, where it may affect the process of tumor growth and metastasis. AMF is a multifunctional protein capable of affecting cell migration, invasion, proliferation, and survival, and possesses phosphoglucose isomerase activity and can catalyze the step in glycolysis and gluconeogenesis. Here, we review the role of AMF and tumor environment on malignant processes. The outcome of metastasis depends on multiple interactions between tumor cells and homeostatic mechanisms, therefore elucidation of the tumor/host interactions in the tumor microenvironment is essential in the development of new prevention and treatment strategies. Such knowledge might provide clues to develop new future therapeutic approaches for human cancers.
Collapse
Affiliation(s)
- Tatsuyoshi Funasaka
- Tumor Progression and Metastasis Program, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | | |
Collapse
|
43
|
Zhang L, Hill RP. Hypoxia enhances metastatic efficiency in HT1080 fibrosarcoma cells by increasing cell survival in lungs, not cell adhesion and invasion. Cancer Res 2007; 67:7789-97. [PMID: 17699784 DOI: 10.1158/0008-5472.can-06-4221] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study examined possible mechanisms for hypoxia-increased metastasis in a green fluorescent protein-labeled human fibrosarcoma cell line (HT1080). The efficiency of the lung arrest of tumor cells, which can be dependent on the adhesive potential of the tumor cells, was assessed by measuring the level of integrin alpha3beta1 protein and by adhesion assays, whereas the extravasation potential was examined by an invasion assay. These properties were not changed by exposure to hypoxia, indicating that lung arrest and extravasation are unlikely to play a major role in the effect of hypoxia on metastasis in this model. The main effect of hypoxic exposure was found to be increased survival after lung arrest as determined by clonogenic assay of tumor cells recovered from mouse lungs after i.v. injection. Concomitantly, apoptosis was identified as responsible for the death of lung-arrested cells, suggesting the involvement of an altered apoptotic response following hypoxic exposure of these cells. Consistent with this finding, we found that the effect of hypoxia on both increased metastasis and survival of arrested cells was inhibited by treatment with farnesylthiosalicylic acid. However, this effect was not due to down-regulation of hypoxia-inducible factor-1alpha, a mechanism of action of this drug reported by previous studies. Further detailed studies of the mechanisms of action of the drug are needed.
Collapse
Affiliation(s)
- Li Zhang
- Research Division, Ontario Cancer Institute/Princess Margaret Hospital, Toronto, Ontario, Canada
| | | |
Collapse
|
44
|
Hatayama K, Higuchi H, Kimura M, Takeda M, Ono H, Watanabe H, Takagishi K. Histologic changes after meniscal repair using radiofrequency energy in rabbits. Arthroscopy 2007; 23:299-304. [PMID: 17349474 DOI: 10.1016/j.arthro.2006.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 09/22/2006] [Accepted: 10/31/2006] [Indexed: 02/02/2023]
Abstract
PURPOSE Our purpose was to investigate histologic changes in the rabbit meniscus after meniscal repair via radiofrequency energy (RFE). METHODS Twenty Japanese white rabbits underwent bilateral knee arthrotomies, and a longitudinal tear was made in the avascular area of both medial menisci. On the right knees, RFE treatment (60 degrees C and 40 W) was performed on the femoral surface of the meniscal tear in monopolar mode. On the left knees, the meniscus was left untreated as a control. The rabbits were killed at 0, 1, 2, 4, or 12 weeks after surgery, and all medial menisci were examined histologically. The expression of autocrine motility factor in meniscal fibrochondrocytes was examined by immunohistochemical analysis. RESULTS Histologic examination at baseline showed fusion of collagen fibers in the tear. Failure of fusion was found in 2 of 4 menisci at 2 weeks and 1 of 4 menisci at 4 and 12 weeks. One week after surgery, the specimens showed an acellular area as a result of fibrochondrocyte death. The acellular area expanded deeper until 4 weeks and was reduced at 12 weeks. On the femoral surface of the RFE-treated area, fibroblast proliferation was found at 2 weeks, and fibroblasts had invaded into the meniscus tissue from the meniscal surface at 12 weeks. Immunohistochemical analysis showed that the expression of autocrine motility factor in RFE-treated menisci was significantly higher than that in control menisci from 1 to 12 weeks. CONCLUSIONS RFE treatment at 60 degrees C and 40 W fused the collagen fiber in the meniscal tear in rabbits just after surgery. After RFE treatment, an acellular area developed as a result of fibrochondrocyte damage. RFE caused fibroblast proliferation at 2 weeks. The acellular area was reduced by cell repopulation at 12 weeks. CLINICAL RELEVANCE RFE may induce fibroblast proliferation for meniscal repair.
Collapse
Affiliation(s)
- Kazuhisa Hatayama
- Department of Orthopaedic Surgery, Gunma University Faculty of Medicine, Maebashi, Japan.
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
BACKGROUND Pancreatic cancer remains one of the most lethal of all solid tumours of the gastrointestinal tract. It is characterized by late diagnosis, aggressive local invasion, early metastasis and resistance to chemoradiotherapy. Increasing knowledge regarding the molecular events behind the growth and invasion of pancreatic cancer may lead to new targets for intervention. METHODS A search of Pubmed and Medline databases was undertaken using the keywords pancreatic cancer, gastrointestinal cancer, hypoxia, angiogenesis and anti-angiogenesis therapy. RESULTS Hypoxia is the driving force behind angiogenesis in pancreatic cancers. Research into angiogenesis has shown many different sites that can be targeted by agents such as tyrosine kinase inhibitors. CONCLUSION Anti-angiogenic therapy could be an important adjunct to conventional chemotherapy treatment of gastrointestinal neoplasia.
Collapse
Affiliation(s)
- Giuseppe Garcea
- Department of Hepatobiliary Surgery, The Leicester General Hospital, Leicester, UK.
| | | | | | | | | |
Collapse
|
46
|
Dobashi Y, Watanabe H, Sato Y, Hirashima S, Yanagawa T, Matsubara H, Ooi A. Differential expression and pathological significance of autocrine motility factor/glucose-6-phosphate isomerase expression in human lung carcinomas. J Pathol 2007; 210:431-40. [PMID: 17029220 DOI: 10.1002/path.2069] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To clarify the involvement of autocrine motility factor (AMF) in the phenotype and biological profiles of human lung carcinomas, we analysed protein and mRNA expression in a total of 180 cases. Immunohistochemistry revealed positive staining in 67.2%, with the highest frequency in squamous cell carcinoma (SCC; 90.8%) and the lowest in small cell carcinoma (SmCC; 27.8%). In SCC, the staining frequency and intensity correlated with the degree of morphological differentiation. Generally, the expression levels in immunoblotting analysis corresponded well with immunohistochemical positivity. However, there was less agreement between protein and mRNA levels: in SmCC and large cell carcinomas (LCCs), mRNA showed higher, but protein showed lower expression. Among non-small cell lung carcinomas (NSCLCs), AMF protein levels correlated inversely with tumour size, but tumours exhibiting lymph node metastasis showed higher mRNA expression. In cultured lung carcinoma cells which comprised all histological subtypes, AMF was detected in the lysates of all ten cell lines. Secreted AMF protein was detected in the conditioned media from six cell lines, most of which were SmCC or LCC. Thus, a particular subset of lung carcinomas secrete AMF, which may promote cell motility via autocrine stimulation through its cognate receptor and cause the biological aggressiveness seen in SmCC and LCC. Moreover, treatment by proteasome inhibitors resulted in increased cellular AMF in five cell lines, suggesting that intracellular AMF levels are regulated by both secretion and proteasome-dependent degradation. In conclusion, AMF was detected in a major proportion of lung carcinomas, and may play a part not only in proliferation and/or progression of the tumours, but also, possibly, in the differentiation of SCC. Furthermore, higher mRNA expression may be related to the high metastatic potential of NSCLC and increased protein secretion, leading to a more aggressive phenotype, such as the invasiveness of SmCC and LCC.
Collapse
MESH Headings
- Adenocarcinoma/chemistry
- Adenocarcinoma/pathology
- Carcinoma, Large Cell/chemistry
- Carcinoma, Large Cell/pathology
- Carcinoma, Non-Small-Cell Lung/chemistry
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Small Cell/chemistry
- Carcinoma, Small Cell/pathology
- Carcinoma, Squamous Cell/chemistry
- Carcinoma, Squamous Cell/pathology
- Cell Differentiation
- Cell Line, Tumor
- Cysteine Proteinase Inhibitors/pharmacology
- Female
- Glucose-6-Phosphate Isomerase/analysis
- Humans
- Immunohistochemistry/methods
- In Situ Hybridization/methods
- Lung Neoplasms/chemistry
- Lung Neoplasms/pathology
- Lymphatic Metastasis/pathology
- Male
- Neoplasm Proteins/analysis
- RNA, Messenger/analysis
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Y Dobashi
- Department of Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan.
| | | | | | | | | | | | | |
Collapse
|
47
|
Semenza GL. Development of novel therapeutic strategies that target HIF-1. Expert Opin Ther Targets 2006; 10:267-80. [PMID: 16548775 DOI: 10.1517/14728222.10.2.267] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Activity of hypoxia-inducible factor 1 (HIF-1) is increased in human cancers as a result of the physiological induction of HIF-1alpha in response to intratumoural hypoxia and as a result of genetic alterations that activate oncogenes and inactivate tumour suppressor genes. In many cancer types, increased HIF-1alpha expression is associated with increased risk of patient mortality. HIF-1 plays important roles in every major aspect of cancer biology through the transcriptional regulation of hundreds of genes. The efficacy of many novel anticancer agents that target signal transduction pathways may be due in part to their indirect inhibition of HIF-1. Several novel compounds with anticancer activity have been shown to inhibit HIF-1 and may be useful as components of individualised multidrug therapeutic regimens chosen based on molecular analyses of tumour biopsies.
Collapse
Affiliation(s)
- Gregg L Semenza
- Vascular Biology Program of the Johns Hopkins Institute for Cell Engineering, Broadway Research Building, Suite 671, 733 North Broadway, Baltimore, MD 21205, USA.
| |
Collapse
|
48
|
Abstract
Most cancer cells exhibit increased glycolysis and use this metabolic pathway for generation of ATP as a main source of their energy supply. This phenomenon is known as the Warburg effect and is considered as one of the most fundamental metabolic alterations during malignant transformation. In recent years, there are significant progresses in our understanding of the underlying mechanisms and the potential therapeutic implications. Biochemical and molecular studies suggest several possible mechanisms by which this metabolic alteration may evolve during cancer development. These mechanisms include mitochondrial defects and malfunction, adaptation to hypoxic tumor microenvironment, oncogenic signaling, and abnormal expression of metabolic enzymes. Importantly, the increased dependence of cancer cells on glycolytic pathway for ATP generation provides a biochemical basis for the design of therapeutic strategies to preferentially kill cancer cells by pharmacological inhibition of glycolysis. Several small molecules have emerged that exhibit promising anticancer activity in vitro and in vivo, as single agent or in combination with other therapeutic modalities. The glycolytic inhibitors are particularly effective against cancer cells with mitochondrial defects or under hypoxic conditions, which are frequently associated with cellular resistance to conventional anticancer drugs and radiation therapy. Because increased aerobic glycolysis is commonly seen in a wide spectrum of human cancers and hypoxia is present in most tumor microenvironment, development of novel glycolytic inhibitors as a new class of anticancer agents is likely to have broad therapeutic applications.
Collapse
Affiliation(s)
- H Pelicano
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
49
|
Schaller M, Stohl W, Benoit V, Tan SM, Johansen L, Ditzel HJ. Patients with inflammatory arthritic diseases harbor elevated serum and synovial fluid levels of free and immune-complexed glucose-6-phosphate isomerase (G6PI). Biochem Biophys Res Commun 2006; 349:838-45. [PMID: 16949042 DOI: 10.1016/j.bbrc.2006.08.105] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 08/18/2006] [Indexed: 11/23/2022]
Abstract
In K/BxN mice, anti-glucose-6-phosphate isomerase (G6PI) IgG antibodies (Abs) cause joint-specific inflammation and destruction. Anti-G6PI Abs are also present in humans with inflammatory arthritis, especially among patients with rheumatoid arthritis (RA). A contributing factor to the induction of such autoantibodies may be upregulated expression of the corresponding antigen G6PI in affected tissues and/or increased levels of G6PI in the circulation. To determine G6PI levels and the presence of free G6PI and/or G6PI-containing immune complexes in sera and synovial fluids (SF) of patients with different arthritides, serum and SF obtained concomitantly from 91 clinically well-defined arthritis patients were assessed in a blinded manner for G6PI enzymatic assay and for G6PI protein concentration by ELISA. Sera and SF from patients with immune-based inflammatory arthritis contained significantly higher levels of G6PI enzymatic activity compared to sera or SF from patients with non-immune-based inflammatory arthritis or healthy controls. In addition, significantly higher levels of total G6PI protein concentration (including both enzymatically active and inactive forms) were present in sera of RA patients vs. those with other immune-based or non-immune-based inflammatory arthritis.G6PI in sera and SF were present both as G6PI-containing immune complexes and as free G6PI, with the majority of free G6PI existing as tetramers with lesser amounts of dimers and monomers. Levels of G6PI enzymatic activity in the sera of most immune-based inflammatory arthritis patients are elevated and may reflect ongoing inflammation and cell destruction. The high serum levels of enzymatically inactive forms of G6PI in RA relative to those in other arthritic diseases are partially due to G6PI-containing immune complexes, a portion of which also contains C1q. Overall, our study supports the notion that elevated G6PI levels present in patients with immune-based inflammatory arthritis may contribute to elevated levels of anti-G6PI Abs and G6PI/anti-G6PI immune complexes. This, in turn, may trigger production of proinflammatory cytokines and perpetuate the inflammatory process.
Collapse
Affiliation(s)
- Monica Schaller
- Department of Immunology, IMM2, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
50
|
Angst E, Sibold S, Tiffon C, Weimann R, Gloor B, Candinas D, Stroka D. Cellular differentiation determines the expression of the hypoxia-inducible protein NDRG1 in pancreatic cancer. Br J Cancer 2006; 95:307-13. [PMID: 16832411 PMCID: PMC2360652 DOI: 10.1038/sj.bjc.6603256] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
N-myc downstream-regulated gene-1 (NDRG1) is a recently described hypoxia-inducible protein that is upregulated in various human cancers. Pancreatic ductal adenocarcinoma, called pancreatic cancer, is a highly aggressive cancer that is characterised by its avascular structure, which results in a severe hypoxic environment. In this study, we investigated whether NDRG1 is upregulated in these tumours, thus providing a novel marker for malignant cells in the pancreas. By immunohistochemistry, we observed that NDRG1 was highly expressed in well-differentiated cells of pancreatic cancer, whereas the poorly differentiated tumour cells were negative. In addition, hyperplastic islets and ducts of nonquiescent pancreatic tissue were positive. To further explore its selective expression in tumours, two well-established pancreatic cancer cell lines of unequal differentiation status were exposed to 2% oxygen. NDRG1 mRNA and protein were upregulated by hypoxia in the moderately differentiated Capan-1 cells; however, its levels remained unchanged in the poorly differentiated Panc-1 cell line. Taken together, our data suggest that NDRG1 will not serve as a reliable marker of tumour cells in the pancreas, but may serve as a marker of differentiation. Furthermore, we present the novel finding that cellular differentiation may be an important factor that determines the hypoxia-induced regulation of NDRG1.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Differentiation
- Cell Hypoxia
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Immunohistochemistry
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Tumor Cells, Cultured
- Up-Regulation/genetics
Collapse
Affiliation(s)
- E Angst
- Department of Clinical Research, Visceral and Transplant Surgery, University Hospital Bern, Murtenstrasse 35, Bern 3010, Switzerland
| | - S Sibold
- Department of Clinical Research, Visceral and Transplant Surgery, University Hospital Bern, Murtenstrasse 35, Bern 3010, Switzerland
| | - C Tiffon
- Department of Clinical Research, Visceral and Transplant Surgery, University Hospital Bern, Murtenstrasse 35, Bern 3010, Switzerland
| | - R Weimann
- Institute of Pathology, University of Bern, Bern 3010, Switzerland
| | - B Gloor
- Department of Clinical Research, Visceral and Transplant Surgery, University Hospital Bern, Murtenstrasse 35, Bern 3010, Switzerland
| | - D Candinas
- Department of Clinical Research, Visceral and Transplant Surgery, University Hospital Bern, Murtenstrasse 35, Bern 3010, Switzerland
| | - D Stroka
- Department of Clinical Research, Visceral and Transplant Surgery, University Hospital Bern, Murtenstrasse 35, Bern 3010, Switzerland
- E-mail:
| |
Collapse
|