1
|
Liu YJ, Liu Q, Li JQ, Ye QW, Yin SY, Liu C, Liu SL, Zou X, Ji J. Comprehensive Breslow thickness (BT)-based analysis to identify biological mechanisms associated with melanoma pathogenesis. Int Immunopharmacol 2025; 147:114065. [PMID: 39809103 DOI: 10.1016/j.intimp.2025.114065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Breslow thickness (BT), a parameter measuring the depth of invasion of abnormally proliferating melanocytes, is a key indicator of melanoma severity and prognosis. However, the mechanisms underlying the increase in BT remain elusive. Utilizing data from The Cancer Genome Atlas (TCGA) human skin cutaneous melanoma (SKCM), we identified a set of BT-related molecules and analyzed their expression and genomic heterogeneity across pan-cancerous and normal tissues. Through consensus clustering, we identified two distinct BT phenotypes in melanoma, which exhibited significant differences in clinical, genomic, and immune infiltration characteristics. High BT molecular expression was associated with reduced CD8+ T cell infiltration and poor immunotherapy response, potentially mediated by the Macrophage Migration Inhibitory Factor (MIF) signaling pathway. In vitro experiments confirmed that BT molecules, including TRIM29, SERPINB5, and RAB25, promoted melanoma development through distinct mechanisms. Notably, fibroblast-derived TRIM29 and B-cell-derived RAB25 interacted with SPP1+ monocytes/macrophages via different pathways. Our findings suggest that genomic variations leading to imbalanced expression of BT molecules across cancers contribute to increased BT, which is closely linked to an immunosuppressive microenvironment. The involvement of multiple cell types and complex intercellular interactions underscores the importance of evaluating dynamic cellular crosstalk in the tumor microenvironment to better understand BT increases and develop more effective immunotherapeutic strategies.
Collapse
Affiliation(s)
- Yuan-Jie Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Key Laboratory of Tumor System Biology of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Qing Liu
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Jia-Qi Li
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Qian-Wen Ye
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Sheng-Yan Yin
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Second Chinese Medicine Hospital, Nanjing, Jiangsu 210029, China
| | - Cong Liu
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Shen-Lin Liu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Xi Zou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Jin Ji
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
2
|
Joyce LJ, Lindsay AJ. A systematic computational analysis of the endosomal recycling pathway in glioblastoma. Biochem Biophys Rep 2024; 38:101700. [PMID: 38638676 PMCID: PMC11024495 DOI: 10.1016/j.bbrep.2024.101700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive brain cancer in adults. The standard treatment is brutal and has changed little in 20 years, and more than 85% of patients will die within two years of their diagnosis. There is thus an urgent need to identify new drug targets and develop novel therapeutic strategies to increase survival and improve quality of life. Using publicly available genomics, transcriptomics and proteomics datasets, we compared the expression of endosomal recycling pathway regulators in non-tumour brain tissue with their expression in GBM. We found that key regulators of this pathway are dysregulated in GBM and their expression levels can be linked to survival outcomes. Further analysis of the differentially expressed endosomal recycling regulators allowed us to generate an 8-gene prognostic signature that can distinguish low-risk from high-risk GBM and potentially identify tumours that may benefit from treatment with endosomal recycling inhibitors. This study presents the first systematic analysis of the endosomal recycling pathway in glioblastoma and suggests it could be a promising target for the development of novel therapies and therapeutic strategies to improve outcomes for patients.
Collapse
Affiliation(s)
- Luke J. Joyce
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| | - Andrew J. Lindsay
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| |
Collapse
|
3
|
Zhang Z, Zhang Q, Liu Z, Wang C, Chen H, Luo X, Shen L, Long C, Wei G, Liu X. Rab25 is involved in hypospadias via the β1 integrin/EGFR pathway. Exp Cell Res 2024; 436:113980. [PMID: 38401686 DOI: 10.1016/j.yexcr.2024.113980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Hypospadias is a common congenital abnormality of the penile. Abnormal regulation of critical genes involved in urethral development leads to hypospadias. We used the Rab25-/- mice and foreskin fibroblasts transfected with lentivirus in vitro and in vivo to investigate the role of Rab25 in hypospadias. METHODS The expression levels of various molecules in tissue samples and foreskin fibroblasts were confirmed using molecular biology methods (western blotting, PCR, immunohistochemistry, etc.). A scanning electron microscope (SEM) was used to visualize the external morphology of genital tubercles (GTs) of gestation day (GD) 18.5 male wild-type (WT) and Rab25-/- mice. RESULTS An expanded distal cleft and V-shaped urethral opening were observed in GD 18.5 Rab25-/- mice. We demonstrated that Rab25 mediated hypospadias through the β1 integrin/EGFR pathway. In addition, silencing Rab25 inhibited cell proliferation and migration and promoted apoptosis in the foreskin fibroblasts; Ki-67- and TUNEL-positive cells were mainly concentrated near the urethral seam. CONCLUSION These findings suggest that Rab25 plays an essential role in hypospadias by activation of β1 integrin/EGFR pathway, and Rab25 is a critical mediator of urethral seam formation in GD18.5 male fetal mice.
Collapse
Affiliation(s)
- Zhicheng Zhang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Qiang Zhang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Zhenmin Liu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Chong Wang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Hongsong Chen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Xingguo Luo
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Lianju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Chunlan Long
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Guanghui Wei
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Xing Liu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Program for Youth Innovation in Future Medicine, Chongqing Medical University, Chongqing, 400014, PR China.
| |
Collapse
|
4
|
Cho SJ, Jeong BY, Yoon SH, Park CG, Lee HY. Rab25 suppresses colon cancer cell invasion through upregulating claudin‑7 expression. Oncol Rep 2024; 51:26. [PMID: 38131227 PMCID: PMC10777460 DOI: 10.3892/or.2023.8685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023] Open
Abstract
Ras‑related protein 25 (Rab25) is a member of small GTPase and is implicated in cancer cell progression of various types of cancer. Growing evidence suggests the context‑dependent role of Rab25 in cancer invasiveness. Claudin‑7 is a tight junction protein and has been known to suppress cancer cell invasion. Although Rab25 was reported to repress cancer aggressiveness through recycling β1 integrin to the plasma membrane, the detailed underlying mechanism remains to be elucidated. The present study identified the critical role of claudin‑7 in Rab25‑induced suppression of colon cancer invasion. 3D Matrigel system and modified Boyden chamber analysis showed that enforced expression of Rab25 attenuated colon cancer cell invasion. In addition, Rab25 inactivated epidermal growth factor receptor (EGFR) and increased E‑cadherin expression. Unexpectedly, it was observed that Rab25 induces claudin‑7 expression through protein stabilization. In addition, ectopic claudin‑7 expression reduced EGFR activity and Snail expression as well as colon cancer cell invasion. However, silencing of claudin‑7 expression reversed the tumor suppressive role of Rab25, thereby increasing colon cancer cell invasiveness. Collectively, the present data indicated that Rab25 inactivates EGFR and colon cancer cell invasion by upregulating claudin‑7 expression.
Collapse
Affiliation(s)
- Su Jin Cho
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Bo Young Jeong
- Department of Cell, Developmental and Cancer Biology, School of Medicine, Oregon Health Science University, Portland, OR 97201, USA
| | - Se-Hee Yoon
- Division of Nephrology and Department of Internal Medicine, College of Medicine, Konyang University, Daejeon 35364, Republic of Korea
| | - Chang Gyo Park
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Hoi Young Lee
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| |
Collapse
|
5
|
Lam GT, Sorvina A, Martini C, Prabhakaran S, Ung BSY, Lazniewska J, Moore CR, Beck AR, Hopkins AM, Johnson IRD, Caruso MC, Hickey SM, Brooks RD, Jackett L, Karageorgos L, Foster-Smith EJ, Malone V, Klebe S, O'Leary JJ, Brooks DA, Logan JM. Altered endosomal-lysosomal biogenesis in melanoma. Neoplasia 2023; 43:100924. [PMID: 37562257 PMCID: PMC10423698 DOI: 10.1016/j.neo.2023.100924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Cutaneous melanoma is the deadliest form of skin neoplasm and its high mortality rates could be averted by early accurate detection. While the detection of melanoma is currently reliant upon melanin visualisation, research into melanosome biogenesis, as a key driver of pathogenesis, has not yielded technology that can reliably distinguish between atypical benign, amelanotic and melanotic lesions. The endosomal-lysosomal system has important regulatory roles in cancer cell biology, including a specific functional role in melanosome biogenesis. Herein, the involvement of the endosomal-lysosomal system in melanoma was examined by pooled secondary analysis of existing gene expression datasets. A set of differentially expressed endosomal-lysosomal genes was identified in melanoma, which were interconnected by biological function. To illustrate the protein expression of the dysregulated genes, immunohistochemistry was performed on samples from patients with cutaneous melanoma to reveal candidate markers. This study demonstrated the dysregulation of Syntenin-1, Sortilin and Rab25 may provide a differentiating feature between cutaneous melanoma and squamous cell carcinoma, while IGF2R may indicate malignant propensity in these skin cancers.
Collapse
Affiliation(s)
- Giang T Lam
- Clinical and Health Sciences, Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Alexandra Sorvina
- Clinical and Health Sciences, Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Carmela Martini
- Clinical and Health Sciences, Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Sarita Prabhakaran
- Department of Anatomical Pathology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Ben S-Y Ung
- Clinical and Health Sciences, Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Joanna Lazniewska
- Clinical and Health Sciences, Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Courtney R Moore
- Clinical and Health Sciences, Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Andrew R Beck
- Clinical and Health Sciences, Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Ashley M Hopkins
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Ian R D Johnson
- Clinical and Health Sciences, Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Maria C Caruso
- Clinical and Health Sciences, Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Shane M Hickey
- Clinical and Health Sciences, Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Robert D Brooks
- Clinical and Health Sciences, Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Louise Jackett
- Anatomical Pathology Department, Austin Hospital, Melbourne, Vic, Australia
| | - Litsa Karageorgos
- Clinical and Health Sciences, Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | | | - Victoria Malone
- Department of Histopathology, Trinity College Dublin, Ireland
| | - Sonja Klebe
- Department of Anatomical Pathology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; Department of Surgical Pathology, SA Pathology at Flinders Medical Centre, Adelaide, SA, Australia
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Ireland
| | - Douglas A Brooks
- Clinical and Health Sciences, Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Jessica M Logan
- Clinical and Health Sciences, Cancer Research Institute, University of South Australia, Adelaide, SA, Australia.
| |
Collapse
|
6
|
Zamora-Fuentes JM, Hernández-Lemus E, Espinal-Enríquez J. Methylation-related genes involved in renal carcinoma progression. Front Genet 2023; 14:1225158. [PMID: 37693315 PMCID: PMC10486271 DOI: 10.3389/fgene.2023.1225158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/25/2023] [Indexed: 09/12/2023] Open
Abstract
Renal carcinomas are a group of malignant tumors often originating in the cells lining the small tubes in the kidney responsible for filtering waste from the blood and urine production. Kidney tumors arise from the uncontrolled growth of cells in the kidneys and are responsible for a large share of global cancer-related morbidity and mortality. Understanding the molecular mechanisms driving renal carcinoma progression results crucial for the development of targeted therapies leading to an improvement of patient outcomes. Epigenetic mechanisms such as DNA methylation are known factors underlying the development of several cancer types. There is solid experimental evidence of relevant biological functions modulated by methylation-related genes, associated with the progression of different carcinomas. Those mechanisms can often be associated to different epigenetic marks, such as DNA methylation sites or chromatin conformation patterns. Currently, there is no definitive method to establish clear relations between genetic and epigenetic factors that influence the progression of cancer. Here, we developed a data-driven method to find methylation-related genes, so we could find relevant bonds between gene co-expression and methylation-wide-genome regulation patterns able to drive biological processes during the progression of clear cell renal carcinoma (ccRC). With this approach, we found out genes such as ITK oncogene that appear hypomethylated during all four stages of ccRC progression and are strongly involved in immune response functions. Also, we found out relevant tumor suppressor genes such as RAB25 hypermethylated, thus potentially avoiding repressed functions in the AKT signaling pathway during the evolution of ccRC. Our results have relevant implications to further understand some epigenetic-genetic-affected roles underlying the progression of renal cancer.
Collapse
Affiliation(s)
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
7
|
Kohil A, Amir SS, Behrens A, Khan OM. A small Rho GTPase RAB25 with a potential role in chemotherapy resistance in pancreatic cancer. Cancer Biomark 2022; 36:133-145. [PMID: 36565104 DOI: 10.3233/cbm-220214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDA) is one of the major human health challenges with minimal therapeutic benefits due to its late detection, and de novo - and acquired chemotherapy resistance. OBJECTIVE In this work we unravel the potential pro-survival role of RAB25 in pancreatic cancer chemotherapy resistance and aim to identify if RAB25 is a prognostic marker of patients' survival in PDA. METHODS We used RNA sequencing, shRNA mediated gene knockdown, BioGRID open repository of CRISPR screens (ORCS), GEPIA, kmplot.com, and cBioPortal.org databases to identify the role of RAB25 in PDA cell proliferation, chemotherapy response, expression in tumour versus normal tissues, and overall patients' survival. RESULTS RNA sequencing show Rab25 to be one of the top upregulated genes in gemcitabine resistance mouse PDA cells. Knockdown of Rab25 in these cells enhanced gemcitabine toxicity. In addition, re-analysis of previously published CRISPR/Cas9 data confirm RAB25 to be responsible for chemotherapy resistance in KRASG12D mutant human pancreatic cancer cell line. Finally, we used publicly available TCGA datasets and identify the upregulation of RAB25 in tumour tissues compared to the adjacent normal tissue, co-occurrence of KRASG12 mutations with RAB25 amplifications, and poor patients' survival in cohorts with higher mRNA expression of RAB25. CONCLUSION RAB25 expression is a prognostic marker for patient's survival and gemcitabine resistance in PDA.
Collapse
Affiliation(s)
- Amira Kohil
- Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Sayeda S Amir
- Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Axel Behrens
- The Francis Crick Institute, London, UK.,Cancer Stem Cell Team, Institute of Cancer Research, London, UK
| | - Omar M Khan
- Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
8
|
Cartón-García F, Brotons B, Anguita E, Dopeso H, Tarragona J, Nieto R, García-Vidal E, Macaya I, Zagyva Z, Dalmau M, Sánchez-Martín M, van Ijzendoorn SCD, Landolfi S, Hernandez-Losa J, Schwartz Jr S, Matias-Guiu X, Ramón y Cajal S, Martínez-Barriocanal Á, Arango D. Myosin Vb as a tumor suppressor gene in intestinal cancer. Oncogene 2022; 41:5279-5288. [DOI: 10.1038/s41388-022-02508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
|
9
|
Epithelial-to-Mesenchymal Plasticity in Circulating Tumor Cell Lines Sequentially Derived from a Patient with Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13215408. [PMID: 34771571 PMCID: PMC8582537 DOI: 10.3390/cancers13215408] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/10/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Metastasis is a complex dynamic multistep process; however, our knowledge is still limited. Very few circulating tumor cells (CTCs) are metastatic precursor cells and represent the intermediate stage of metastasis. Epithelial–mesenchymal plasticity (EMP) has crucial roles in tissue development and homeostasis, and also in metastasis formation. In this study, we explored the EMP phenotype of a unique series of CTC lines, obtained from a patient with colon cancer during the disease course and treatment, by detecting markers involved in the epithelial–mesenchymal and mesenchymal–epithelial (MET) transitions. This study shows that these colon CTC lines have acquired only few mesenchymal features to migrate and intravasate, whereas an increase of MET-related markers was observed, suggesting that metastasis-competent CTCs need to revert quickly to the epithelial phenotype to reinitiate a tumor at a distant site. Abstract Metastasis is a complicated and only partially understood multi-step process of cancer progression. A subset of cancer cells that can leave the primary tumor, intravasate, and circulate to reach distant organs are called circulating tumor cells (CTCs). Multiple lines of evidence suggest that in metastatic cancer cells, epithelial and mesenchymal markers are co-expressed to facilitate the cells’ ability to go back and forth between cellular states. This feature is called epithelial-to-mesenchymal plasticity (EMP). CTCs represent a unique source to understand the EMP features in metastatic cascade biology. Our group previously established and characterized nine serial CTC lines from a patient with metastatic colon cancer. Here, we assessed the expression of markers involved in epithelial–mesenchymal (EMT) and mesenchymal–epithelial (MET) transition in these unique CTC lines, to define their EMP profile. We found that the oncogenes MYC and ezrin were expressed by all CTC lines, but not SIX1, one of their common regulators (also an EMT inducer). Moreover, the MET activator GRHL2 and its putative targets were strongly expressed in all CTC lines, revealing their plasticity in favor of an increased MET state that promotes metastasis formation.
Collapse
|
10
|
Montero-Calle A, Aranguren-Abeigon I, Garranzo-Asensio M, Poves C, Fernández-Aceñero MJ, Martínez-Useros J, Sanz R, Dziaková J, Rodriguez-Cobos J, Solís-Fernández G, Povedano E, Gamella M, Torrente-Rodríguez RM, Alonso-Navarro M, de los Ríos V, Casal JI, Domínguez G, Guzman-Aranguez A, Peláez-García A, Pingarrón JM, Campuzano S, Barderas R. Multiplexed Biosensing Diagnostic Platforms Detecting Autoantibodies to Tumor-Associated Antigens from Exosomes Released by CRC Cells and Tissue Samples Showed High Diagnostic Ability for Colorectal Cancer. ENGINEERING 2021; 7:1393-1412. [DOI: 10.1016/j.eng.2021.04.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
|
11
|
Lanauze CB, Sehgal P, Hayer K, Torres-Diz M, Pippin JA, Grant SFA, Thomas-Tikhonenko A. Colorectal Cancer-Associated Smad4 R361 Hotspot Mutations Boost Wnt/β-Catenin Signaling through Enhanced Smad4-LEF1 Binding. Mol Cancer Res 2021; 19:823-833. [PMID: 33608451 PMCID: PMC8137583 DOI: 10.1158/1541-7786.mcr-20-0721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/05/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022]
Abstract
About 10% to 30% of patients with colorectal cancer harbor either loss of or missense mutations in SMAD4, a critical component of the TGFβ signaling pathway. The pathophysiologic function of missense mutations in Smad4 is not fully understood. They usually map to the MH2 domain, specifically to residues that are involved in heterodimeric complex formation with regulatory Smads (such as Smad2/3) and ensuing transcriptional activation. These detrimental effects suggest that SMAD4 missense mutations can be categorized as loss-of-function. However, they tend to cluster in a few hotspots, which is more consistent with them acting by a gain-of-function mechanism. In this study, we investigated the functional role of Smad4 R361 mutants by re-expressing two R361 Smad4 variants in several Smad4-null colorectal cancer cell lines. As predicted, R361 mutations disrupted Smad2/3-Smad4 heteromeric complex formation and abolished canonical TGFβ signaling. In that, they were similar to SMAD4 loss. However, RNA sequencing and subsequent RT-PCR assays revealed that Smad4mut cells acquired a gene signature associated with enhanced Lef1 protein function and increased Wnt signaling. Mechanistically, Smad4 mutant proteins retained binding to Lef1 protein and drove a commensurate increase in downstream Wnt signaling as measured by TOP/FOP luciferase assay and Wnt-dependent cell motility. Consistent with these findings, human colorectal cancers with SMAD4 missense mutations were less likely to acquire activating mutations in the key Wnt pathway gene CTNNB1 (encoding β-catenin) than colorectal cancers with truncating SMAD4 nonsense mutations. IMPLICATIONS: Our studies suggest that in colorectal cancer hotspot mutations in Smad4 confer enhanced Wnt signaling and possibly heightened sensitivity to Wnt pathway inhibitors. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/19/5/823/F1.large.jpg.
Collapse
Affiliation(s)
- Claudia B Lanauze
- Division of Pathobiology, Children's Hospital of Philadelphia, Pennsylvania
- Cell & Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Priyanka Sehgal
- Division of Pathobiology, Children's Hospital of Philadelphia, Pennsylvania
| | - Katharina Hayer
- Division of Pathobiology, Children's Hospital of Philadelphia, Pennsylvania
- Department of Biomedical & Health Informatics, Children's Hospital of Philadelphia
| | - Manuel Torres-Diz
- Division of Pathobiology, Children's Hospital of Philadelphia, Pennsylvania
| | - James A Pippin
- Division of Human Genetics, Children's Hospital of Philadelphia, Pennsylvania
| | - Struan F A Grant
- Cell & Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Human Genetics, Children's Hospital of Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrei Thomas-Tikhonenko
- Division of Pathobiology, Children's Hospital of Philadelphia, Pennsylvania.
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Tang Q, Lento A, Suzuki K, Efe G, Karakasheva T, Long A, Giroux V, Islam M, Wileyto EP, Klein‐Szanto AJ, Nakagawa H, Bass A, Rustgi AK. Rab11-FIP1 mediates epithelial-mesenchymal transition and invasion in esophageal cancer. EMBO Rep 2021; 22:e48351. [PMID: 33403789 PMCID: PMC7857540 DOI: 10.15252/embr.201948351] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common subtype of esophageal cancer worldwide. The most commonly mutated gene in ESCC is TP53. Using a combinatorial genetic and carcinogenic approach, we generate a novel mouse model of ESCC expressing either mutant or null p53 and show that mutant p53 exhibits enhanced tumorigenic properties and displays a distinct genomic profile. Through RNA-seq analysis, we identify several endocytic recycling genes, including Rab Coupling Protein (Rab11-FIP1), which are significantly downregulated in mutant p53 tumor cells. In 3-dimensional (3D) organoid models, genetic knockdown of Rab11-FIP1 results in increased organoid size. Loss of Rab11-FIP1 increases tumor cell invasion in part through mutant p53 but also in an independent manner. Furthermore, loss of Rab11-FIP1 in human ESCC cell lines decreases E-cadherin expression and increases mesenchymal lineage-specific markers, suggesting induction of epithelial-mesenchymal transition (EMT). Rab11-FIP1 regulates EMT through direct inhibition of Zeb1, a key EMT transcriptional factor. Our novel findings reveal that Rab11-FIP1 regulates organoid formation, tumor cell invasion, and EMT.
Collapse
Affiliation(s)
- Qiaosi Tang
- Abramson Cancer CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Herbert Irving Comprehensive Cancer CenterDivision of Digestive and Liver DiseasesDepartment of MedicineColumbia UniversityNew YorkNYUSA
| | - Ashley Lento
- Abramson Cancer CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Kensuke Suzuki
- Herbert Irving Comprehensive Cancer CenterDivision of Digestive and Liver DiseasesDepartment of MedicineColumbia UniversityNew YorkNYUSA
| | - Gizem Efe
- Herbert Irving Comprehensive Cancer CenterDivision of Digestive and Liver DiseasesDepartment of MedicineColumbia UniversityNew YorkNYUSA
| | - Tatiana Karakasheva
- Gastrointestinal Epithelium Modeling ProgramDivision of Gastroenterology, Hepatology and NutritionChildren’s Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Apple Long
- Abramson Cancer CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Véronique Giroux
- Department of Anatomy and Cell BiologyFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQCCanada
| | - Mirazul Islam
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
| | - E Paul Wileyto
- Abramson Cancer CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Biostatistics and EpidemiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Andres J Klein‐Szanto
- Department of Pathology and Cancer Biology ProgramFox Chase Cancer CenterPhiladelphiaPAUSA
| | - Hiroshi Nakagawa
- Herbert Irving Comprehensive Cancer CenterDivision of Digestive and Liver DiseasesDepartment of MedicineColumbia UniversityNew YorkNYUSA
| | - Adam Bass
- Department of Medical OncologyDana‐Farber Cancer InstituteHarvard Medical SchoolBostonMAUSA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer CenterDivision of Digestive and Liver DiseasesDepartment of MedicineColumbia UniversityNew YorkNYUSA
| |
Collapse
|
13
|
Bernal C, Silvano M, Tapponnier Y, Anand S, Angulo C, Ruiz i Altaba A. Functional Pro-metastatic Heterogeneity Revealed by Spiked-scRNAseq Is Shaped by Cancer Cell Interactions and Restricted by VSIG1. Cell Rep 2020; 33:108372. [PMID: 33176137 DOI: 10.1016/j.celrep.2020.108372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/26/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
How cells with metastatic potential, or pro-metastatic states, arise within heterogeneous primary tumors remains unclear. Here, we have used one index primary colon cancer to develop spiked-scRNAseq to link omics-defined single-cell clusters with cell behavior. Using spiked-scRNAseq we uncover cell populations with differential metastatic potential in which pro-metastatic states are correlated with the expression of signaling and vesicle-trafficking genes. Analyzing such heterogeneity, we define an anti-metastatic, non-cell-autonomous interaction originating from non-/low-metastatic cells, and identify membrane VSIG1 as a critical mediator of this interaction. VSIG1 acts to restrict the development of pro-metastatic states autonomously and non-cell autonomously, in part by inhibiting YAP/TAZ-TEAD signaling. As VSIG1 re-expression is able to reduce metastatic behavior from multiple colon cancer cell types, the regulation of VSIG1 or its effectors opens new interventional opportunities. In general, we propose that crosstalk between cancer cells, including the action of VSIG1, dynamically defines the degree of pro-metastatic intra-tumoral heterogeneity.
Collapse
Affiliation(s)
- Carolina Bernal
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Marianna Silvano
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Yann Tapponnier
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Santosh Anand
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Cecilia Angulo
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Ariel Ruiz i Altaba
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland.
| |
Collapse
|
14
|
Cancer-driving mutations and variants of components of the membrane trafficking core machinery. Life Sci 2020; 264:118662. [PMID: 33127517 DOI: 10.1016/j.lfs.2020.118662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
The core machinery for vesicular membrane trafficking broadly comprises of coat proteins, RABs, tethering complexes and SNAREs. As cellular membrane traffic modulates key processes of mitogenic signaling, cell migration, cell death and autophagy, its dysregulation could potentially results in increased cell proliferation and survival, or enhanced migration and invasion. Changes in the levels of some components of the core machinery of vesicular membrane trafficking, likely due to gene amplifications and/or alterations in epigenetic factors (such as DNA methylation and micro RNA) have been extensively associated with human cancers. Here, we provide an overview of association of membrane trafficking with cancer, with a focus on mutations and variants of coat proteins, RABs, tethering complex components and SNAREs that have been uncovered in human cancer cells/tissues. The major cellular and molecular cancer-driving or suppression mechanisms associated with these components of the core membrane trafficking machinery shall be discussed.
Collapse
|
15
|
RAB25 confers resistance to chemotherapy by altering mitochondrial apoptosis signaling in ovarian cancer cells. Apoptosis 2020; 25:799-816. [PMID: 32901335 DOI: 10.1007/s10495-020-01635-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 01/28/2023]
Abstract
Ovarian cancer remains one of the most frequent causes of cancer-related death in women. Many patients with ovarian cancer suffer from de novo or acquired resistance to chemotherapy. Here, we report that RAB25 suppresses chemotherapy-induced mitochondrial apoptosis signaling in ovarian cancer cell lines and primary ovarian cancer cells. RAB25 blocks chemotherapy-induced apoptosis upstream of mitochondrial outer membrane permeabilization by either increasing antiapoptotic BCL-2 proteins or decreasing proapoptotic BCL-2 proteins. In particular, BAX expression negatively correlates with RAB25 expression in ovarian cancer cells. BH3 profiling assays corroborated that RAB25 decreases mitochondrial cell death priming. Suppressing RAB25 by means of RNAi or RFP14 inhibitory hydrocarbon-stapled peptide sensitizes ovarian cancer cells to chemotherapy as well as RAB25-mediated proliferation, invasion and migration. Our data suggest that RAB25 is a potential therapeutic target for ovarian cancer.
Collapse
|
16
|
O’Sullivan MJ, Lindsay AJ. The Endosomal Recycling Pathway-At the Crossroads of the Cell. Int J Mol Sci 2020; 21:ijms21176074. [PMID: 32842549 PMCID: PMC7503921 DOI: 10.3390/ijms21176074] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
The endosomal recycling pathway lies at the heart of the membrane trafficking machinery in the cell. It plays a central role in determining the composition of the plasma membrane and is thus critical for normal cellular homeostasis. However, defective endosomal recycling has been linked to a wide range of diseases, including cancer and some of the most common neurological disorders. It is also frequently subverted by many diverse human pathogens in order to successfully infect cells. Despite its importance, endosomal recycling remains relatively understudied in comparison to the endocytic and secretory transport pathways. A greater understanding of the molecular mechanisms that support transport through the endosomal recycling pathway will provide deeper insights into the pathophysiology of disease and will likely identify new approaches for their detection and treatment. This review will provide an overview of the normal physiological role of the endosomal recycling pathway, describe the consequences when it malfunctions, and discuss potential strategies for modulating its activity.
Collapse
|
17
|
Comprehensive Analysis of Expression, Clinicopathological Association and Potential Prognostic Significance of RABs in Pancreatic Cancer. Int J Mol Sci 2020; 21:ijms21155580. [PMID: 32759795 PMCID: PMC7432855 DOI: 10.3390/ijms21155580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022] Open
Abstract
RAB proteins (RABs) represent the largest subfamily of Ras-like small GTPases that regulate a wide variety of endosomal membrane transport pathways. Their aberrant expression has been demonstrated in various malignancies and implicated in pathogenesis. Using The Cancer Genome Atlas (TCGA) database, we analyzed the differential expression and clinicopathological association of RAB genes in pancreatic ductal adenocarcinoma (PDAC). Of the 62 RAB genes analyzed, five (RAB3A, RAB26, RAB25, RAB21, and RAB22A) exhibited statistically significant upregulation, while five (RAB6B, RAB8B, RABL2A, RABL2B, and RAB32) were downregulated in PDAC as compared to the normal pancreas. Racially disparate expression was also reported for RAB3A, RAB25, and RAB26. However, no clear trend of altered expression was observed with increasing stage and grade, age, and gender of the patients. PDAC from occasional drinkers had significantly higher expression of RAB21 compared to daily or weekly drinkers, whereas RAB25 expression was significantly higher in social drinkers, compared to occasional ones. The expression of RABL2A was significantly reduced in PDAC from diabetic patients, whereas RAB26 was significantly lower in pancreatitis patients. More importantly, a significant association of high expression of RAB21, RAB22A, and RAB25, and low expression of RAB6B, RABL2A, and RABL2B was observed with poorer survival of PC patients. Together, our study suggests potential diagnostic and prognostic significance of RABs in PDAC, warranting further investigations to define their functional and mechanistic significance.
Collapse
|
18
|
Wang ST, Cui WQ, Pan D, Jiang M, Chang B, Sang LX. Tea polyphenols and their chemopreventive and therapeutic effects on colorectal cancer. World J Gastroenterol 2020; 26:562-597. [PMID: 32103869 PMCID: PMC7029350 DOI: 10.3748/wjg.v26.i6.562] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/30/2019] [Accepted: 01/11/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC), a multifactorial disease, is usually induced and developed through complex mechanisms, including impact of diet and lifestyle, genomic abnormalities, change of signaling pathways, inflammatory response, oxidation stress, dysbiosis, and so on. As natural polyphenolic phytochemicals that exist primarily in tea, tea polyphenols (TPs) have been shown to have many clinical applications, especially as anticancer agents. Most animal studies and epidemiological studies have demonstrated that TPs can prevent and treat CRC. TPs can inhibit the growth and metastasis of CRC by exerting the anti-inflammatory, anti-oxidative or pro-oxidative, and pro-apoptotic effects, which are achieved by modulations at multiple levels. Many experiments have demonstrated that TPs can modulate several signaling pathways in cancer cells, including the mitogen-activated protein kinase pathway, phosphatidylinositol-3 kinase/Akt pathway, Wnt/β-catenin pathway, and 67 kDa laminin receptor pathway, to inhibit proliferation and promote cell apoptosis. In addition, novel studies have also suggested that TPs can prevent the growth and metastasis of CRC by modulating the composition of gut microbiota to improve immune system and decrease inflammatory responses. Molecular pathological epidemiology, a novel multidisciplinary investigation, has made great progress on CRC, and the further molecular pathological epidemiology research should be developed in the field of TPs and CRC. This review summarizes the existing in vitro and in vivo animal and human studies and potential mechanisms to examine the effects of tea polyphenols on CRC.
Collapse
Affiliation(s)
- Shi-Tong Wang
- Department of Cardiovascular Ultrasound, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Wen-Qi Cui
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Dan Pan
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Xuan Sang
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
19
|
Jeong H, Lim KM, Goldenring JR, Nam KT. Rab25 Deficiency Perturbs Epidermal Differentiation and Skin Barrier Function in Mice. Biomol Ther (Seoul) 2019; 27:553-561. [PMID: 31564077 PMCID: PMC6824620 DOI: 10.4062/biomolther.2019.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 11/05/2022] Open
Abstract
Rab25, a member of the Rab11 small GTPase family, is central to achieving cellular polarity in epithelial tissues. Rab25 is highly expressed in epithelial cells of various tissues including breast, vagina, cervix, the gastrointestinal tract, and skin. Rab25 plays key roles in tumorigenesis, mainly by regulating epithelial differentiation and proliferation. However, its role in skin physiology is relatively unknown. In this study, we demonstrated that Rab25 knock-out (KO) mice show a skin barrier dysfunction with high trans-epidermal water loss and low cutaneous hydration. To examine this observation, we investigated the histology and epidermal differentiation markers of the skin in Rab25 KO mice. Rab25 KO increased cell proliferation at the basal layer of epidermis, whereas the supra-basal layer remained unaffected. Ceramide, which is a critical lipid component for skin barrier function, was not altered by Rab25 KO in its distribution or amount, as determined by immunohistochemistry. Notably, levels of epidermal differentiation markers, including loricrin, involucrin, and keratins (5, 14, 1, and 10) increased prominently in Rab25 KO mice. In line with this, depletion of Rab25 with single hairpin RNA increased the expression of differentiation markers in a human keratinocyte cell line, HaCaT. Transcriptomic analysis of the skin revealed increased expression of genes associated with skin development, epidermal development, and keratinocyte differentiation in Rab25 KO mice. Collectively, these results suggested that Rab25 is involved in the regulation of epidermal differentiation and proliferation.
Collapse
Affiliation(s)
- Haengdueng Jeong
- Severance Biomedical Science Institute and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - James R Goldenring
- Epithelial Biology Center and Department of Surgery, Vanderbilt University School of Medicine and the Nashville VA Medical Center, Nashville, TN 37232, USA
| | - Ki Taek Nam
- Severance Biomedical Science Institute and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
20
|
Jansen AML, Ghosh P, Dakal TC, Slavin TP, Boland CR, Goel A. Novel candidates in early-onset familial colorectal cancer. Fam Cancer 2019; 19:1-10. [PMID: 31555933 DOI: 10.1007/s10689-019-00145-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/15/2019] [Indexed: 12/12/2022]
Abstract
In 20-30% of patients suspected of a familial colorectal cancer (CRC) syndrome, no underlying genetic cause is detected. Recent advances in whole exome sequencing have generated evidence for new CRC-susceptibility genes including POLE, POLD1 and NTHL1¸ but many patients remain unexplained. Whole exome sequencing was performed on DNA from nine patients from five different families with familial clusters of CRC in which traditional genetic testing failed to yield a diagnosis. Variants were filtered by minor allele frequencies, followed by prioritization based on in silico prediction tools, and the presence in cancer susceptibility genes or genes in cancer-associated pathways. Effects of frameshift variants on protein structure were modeled using I-Tasser. One known pathogenic variant in POLD1 was detected (p.S478N), together with variants in 17 candidate genes not previously associated with CRC. Additional in silico analysis using SIFT, PROVEAN and PolyPhen on the 14 missense variants indicated a possible damaging effect in nine of 14 variants. Modeling of the insertions/deletions showed a damaging effect of two variants in NOTCH2 and CYP1B1. One family was explained by a mutation in a known familial CRC gene. In the remaining four families, the most promising candidates found are a frameshift NOTCH2 and a missense RAB25 variant. This study provides potential novel candidate variants in unexplained familial CRC patients, however, functional validation is imperative to confirm the role of these variants in CRC tumorigenesis. Additionally, while whole exome sequencing enables detection of variants throughout the exome, other causes explaining the familial phenotype such as multiple single nucleotide polymorphisms accumulating to a polygenic risk or epigenetic events, might be missed with this approach.
Collapse
Affiliation(s)
- Anne M L Jansen
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Dallas, TX, USA
| | - Pradipta Ghosh
- Departments of Medicine and Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tikam C Dakal
- Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Thomas P Slavin
- Division of Clinical Cancer Genomics City of Hope, Department of Medical Oncology, National Medical Center, Duarte, CA, USA
| | - C Richard Boland
- Departments of Medicine and Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Dallas, TX, USA.
- Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, 91016, USA.
| |
Collapse
|
21
|
Jeong H, Lim KM, Kim KH, Cho Y, Lee B, Knowles BC, Roland JT, Zwerner JP, Goldenring JR, Nam KT. Loss of Rab25 promotes the development of skin squamous cell carcinoma through the dysregulation of integrin trafficking. J Pathol 2019; 249:227-240. [PMID: 31144312 DOI: 10.1002/path.5311] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/22/2019] [Accepted: 05/09/2019] [Indexed: 11/09/2022]
Abstract
Rab25 can function as both a tumor suppressor and a tumor promoter across different tissues. This study sought to clarify the role of Rab25 as a tumor suppressor in skin squamous cell carcinoma (SCC). Rab25 loss was closely associated with neoplastic transition in both humans and mice. Rab25 loss was well correlated with increased cell proliferation and poor differentiation in human SCC. While Rab25 knockout (KO) in mice did not induce spontaneous tumor formation, it did significantly accelerate tumor generation and promote malignant transformation in a mouse two-stage skin carcinogenesis model. Xenografting of a Rab25-deficient human keratinocyte cell line, HaCaT, also elicited neoplastic transformation. Notably, Rab25 deficiency led to dysregulation of integrins β1, β4, and α6, which matched well with increased epidermal proliferation and impaired desmosome-tight junction formation. Rab25 deficiency induced impairment of integrin recycling, leading to the improper expression of integrins. In line with this, significant attenuation of integrin β1, β4, and α6 expression was identified in human SCCs where Rab25 was deficient. Collectively, these results suggest that loss of Rab25 promotes the development and neoplastic transition of SCC through dysregulation of integrin trafficking. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Haengdueng Jeong
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Kwang H Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yejin Cho
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Buhyun Lee
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byron C Knowles
- Epithelial Biology Center and Department of Surgery, Vanderbilt University School of Medicine and the Nashville VA Medical Center, Nashville, TN, USA
| | - Joseph T Roland
- Epithelial Biology Center and Department of Surgery, Vanderbilt University School of Medicine and the Nashville VA Medical Center, Nashville, TN, USA
| | - Jeffrey P Zwerner
- Department of Dermatology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James R Goldenring
- Epithelial Biology Center and Department of Surgery, Vanderbilt University School of Medicine and the Nashville VA Medical Center, Nashville, TN, USA
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
22
|
Huang M, Wang Y. Targeted Quantitative Proteomic Approach for Probing Altered Protein Expression of Small GTPases Associated with Colorectal Cancer Metastasis. Anal Chem 2019; 91:6233-6241. [PMID: 30943010 PMCID: PMC6506370 DOI: 10.1021/acs.analchem.9b00938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Genes encoding the small GTPases of the Ras superfamily are among the most frequently mutated or dysregulated in human cancer. No systematic studies, however, have yet been conducted for assessing the implications of small GTPases in the metastatic transformation of colorectal cancer (CRC). By utilizing a recently established high-throughput multiple-reaction monitoring (MRM)-based workflow together with stable isotope labeling by amino acids in cell culture (SILAC), we investigated comprehensively the relative expression of the small GTPase proteome in a pair of matched primary/metastatic CRC cell lines (SW480/SW620). Among the 83 quantified small GTPases, 25 exhibited at least a 1.5-fold difference in protein expression in SW480 and SW620 cells. In particular, SAR1B protein was found to be substantially down-regulated in SW620 relative to SW480 cells. In addition, bioinformatic analyses revealed that diminished SAR1B mRNA expression is significantly associated with higher CRC stages and unfavorable patient prognosis, in support of a potential role of SAR1B in suppressing CRC metastasis. In addition, diminished SAR1B expression could stimulate epithelial-mesenchymal transition (EMT), thereby promoting motility and in vitro metastasis of SW480 cells. In summary, we profiled systematically, by employing an MRM-based targeted proteomic method, the differential expression of small GTPase proteins in a matched pair of primary/metastatic CRC cell lines. Our results revealed the potential roles of SAR1B in suppressing CRC metastasis and in the prognosis of CRC patients.
Collapse
Affiliation(s)
- Ming Huang
- Environmental Toxicology Graduate Program, University of California at Riverside, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California at Riverside, Riverside, California 92521-0403, United States
- Department of Chemistry, University of California at Riverside, Riverside, California 92521-0403, United States
| |
Collapse
|
23
|
Yu X, Fang Z, Li G, Zhang S, Liu M, Wang Y. High RASEF expression is associated with a significantly better prognosis in colorectal cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4276-4282. [PMID: 31949824 PMCID: PMC6962987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 07/31/2018] [Indexed: 06/10/2023]
Abstract
This study mainly studied the correlation of RASEF expression and the clinical index of colorectal cancer by tissue microarray (TMAs, HCol-Adel180sur-06) containing tissue samples of 90 colorectal cancers. The results showed that RASEF was significantly highly expressed both in nuclei (3.07±1.95 vs 1.83±1.74, P=0.000) and cytoplasm (7.74±2.08 vs 5.83±1.97, P=0.000) compared to their para-carcinoma tissues, which was in line with the data of the Oncomine database. The correlation between RASEF expression and microsatellite instability, analyzed by Spearman's correlation analysis showed that RASEF expression in colorectal cancer cytoplasm was correlated significantly with the mismatch repair genes MLH1 (P=0.037; r=0.227) and MSH6 (P=0.038; r=0.224). Additionally, high RASEF expression was associated with a significantly better prognosis (45.3% vs 8%, P=0.041), which was consistent with the data of the Human Protein Atlas. Subsequently, Cox analysis of multi-factor survival showed that RASEF expression was an independent predictive factor for colorectal cancer (P=0.001). Thus, we speculated that RASEF may be a suppressor gene, and may inhibit the development of colorectal cancer through participating in DNA repair processes.
Collapse
Affiliation(s)
- Xin Yu
- Department of Internal Medicine, Sino-Singapore Eco-City Hospital of Tianjin Medical UniversityTianjin, China
| | - Zhenhuan Fang
- Department of Internal Medicine, Sino-Singapore Eco-City Hospital of Tianjin Medical UniversityTianjin, China
| | - Guodong Li
- Department of General Surgery, The Fourth-Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Shujun Zhang
- Department of Pathology, The Fourth-Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Ming Liu
- Department of General Surgery, The Fourth-Affiliated Hospital of Harbin Medical UniversityHarbin, China
- Bio-Bank of Department of General Surgery, The Fourth-Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Ying Wang
- Shanghai Outdo Biotech Co., Ltd.Shanghai, China
| |
Collapse
|
24
|
Zhu Y, Liang S, Pan H, Cheng Z, Rui X. Inhibition of miR-1247 on cell proliferation and invasion in bladder cancer through its downstream target of RAB36. J Biosci 2018; 43:365-373. [PMID: 29872024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recently, microRNA-1247 (miR-1247) has been reported to function as tumour suppressor in several cancer types, including pancreatic cancer, hepatocellular cancer and lung cancer. However, the biological function of miR-1247 in bladder cancer and the underlying mechanisms have remained largely uncovered. In this study, the expression of miR-1247 was significantly downregulated, while RAB36 protein was remarkably upregulated in bladder cancer tissues and cell lines compared with that in paired adjacent normal tissues or normal cell line (SU-HUC-1). The function of miR-1247 and RAB36 in the cell viability, proliferation and invasion of bladder cancer cells (T24 and J82) was assessed by CCK-8, colony formation and Transwell assay, respectively. Gain of function studies showed that upregulation of miR-1247 significantly inhibited cell proliferation and invasion capacity of bladder cancer cells. Consistently, downregulation of RAB36 mimicked the suppressive effects of miR-1247 overexpression in bladder cancer cells. Importantly, miR-1247 was confirmed to target the 30untranslated region (UTR) of RAB36 and downregulated its expression using luciferase reporter assay and Western blot assays. In conclusion, these results provide the first clues regarding the role of miR-1247 might be a potential therapeutic agent and diagnostic marker of bladder cancer by inhibiting RAB36 expression.
Collapse
Affiliation(s)
- Yudi Zhu
- Department of Urology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China,
| | | | | | | | | |
Collapse
|
25
|
Inhibition of miR-1247 on cell proliferation and invasion in bladder cancer through its downstream target of RAB36. J Biosci 2018. [DOI: 10.1007/s12038-018-9755-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Hong KS, Jeon EY, Chung SS, Kim KH, Lee RA. Epidermal growth factor-mediated Rab25 pathway regulates integrin β1 trafficking in colon cancer. Cancer Cell Int 2018. [PMID: 29515334 PMCID: PMC5836438 DOI: 10.1186/s12935-018-0526-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Integrins play a critical role in carcinogenesis. Integrin β1 localization is regulated by the guanosine-5′-triphosphate hydrolase Rab25 and integrin β1 levels are elevated in the serum of colon cancer patients; thus, the present study examined the effects of epidermal growth factor (EGF) and Rab25 on integrin β1 localization in colon cancer cells. Methods HCT116 human colon cancer cells were treated with increasing concentrations of EGF, and cell proliferation and protein expression were monitored by MTT and western blot analyses, respectively. Cell fractionation was performed to determine integrin β1 localization in the membrane and cytosol. Integrin β1 extracellular shedding was monitored by enzyme-linked immunosorbent assays (ELISAs) with culture supernatants from stimulated cells. HCT116 cells were transfected with Rab25-specific siRNA to determine the significance of Rab25 in integrin β1 trafficking in the presence of EGF. Results Total integrin β1 expression increased in response to EGF and subsequently decreased at 24 h post-stimulation. A similar decrease was observed in purified membrane fractions, whereas no changes were observed in cytosolic levels. ELISAs using media from stimulated cell cultures demonstrated increased integrin β1 levels corresponding to the decrease observed in membrane fractions, suggesting that EGF induces integrin receptor shedding. EGF stimulation in Rab25-knockdown cells resulted in integrin β1 accumulation in the membrane, suggesting that Rab25 promotes integrin endocytosis. Conclusions Integrin β1 is shed from colon cancer cells in response to EGF stimulation in a Rab25-dependent manner. These results further the present understanding of the role of integrin β1 in colon cancer progression.
Collapse
Affiliation(s)
- Kyung Sook Hong
- 1Department of Surgery and Critical Care Medicine, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Eun-Young Jeon
- 2Ewha Medical Research Institute, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Soon Sup Chung
- 3Department of Surgery, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Kwang Ho Kim
- 3Department of Surgery, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Ryung-Ah Lee
- 3Department of Surgery, Ewha Womans University College of Medicine, Seoul, South Korea
| |
Collapse
|
27
|
Rab25 acts as an oncogene in luminal B breast cancer and is causally associated with Snail driven EMT. Oncotarget 2018; 7:40252-40265. [PMID: 27259233 PMCID: PMC5130006 DOI: 10.18632/oncotarget.9730] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/10/2016] [Indexed: 12/13/2022] Open
Abstract
The Rab GTPases regulate vesicular trafficking machinery that transports and delivers a diverse pool of cargo, including growth factor receptors, integrins, nutrient receptors and junction proteins to specific intracellular sites. The trafficking machinery is indeed a major posttranslational modifier and is critical for cellular homeostasis. Deregulation of this stringently controlled system leads to a wide spectrum of disorders including cancer. Herein we demonstrate that Rab25, a key GTPase, mostly decorating the apical recycling endosome, is a dichotomous variable in breast cancer cell lines with higher mRNA and protein expression in Estrogen Receptor positive (ER+ve) lines. Rab25 and its effector, Rab Coupling Protein (RCP) are frequently coamplified and coordinately elevated in ER+ve breast cancers. In contrast, Rab25 levels are decreased in basal-like and almost completely lost in claudin-low tumors. This dichotomy exists despite the presence of the 1q amplicon that hosts Rab25 across breast cancer subtypes and is likely due to differential methylation of the Rab25 promoter. Functionally, elevated levels of Rab25 drive major hallmarks of cancer including indefinite growth and metastasis but in case of luminal B breast cancer only. Importantly, in such ER+ve tumors, coexpression of Rab25 and its effector, RCP is significantly associated with a markedly worsened clinical outcome. Importantly, in claudin-low cell lines, exogenous Rab25 markedly inhibits cell migration. Similarly, during Snail-induced epithelial to mesenchymal transition (EMT) exogenous Rab25 potently reverses Snail-driven invasion. Overall, this study substantiates a striking context dependent role of Rab25 in breast cancer where Rab25 is amplified and enhances aggressiveness in luminal B cancers while in claudin-low tumors, Rab25 is lost indicating possible anti-tumor functions.
Collapse
|
28
|
Loss of Myosin Vb in colorectal cancer is a strong prognostic factor for disease recurrence. Br J Cancer 2017; 117:1689-1701. [PMID: 29024942 PMCID: PMC5729446 DOI: 10.1038/bjc.2017.352] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/24/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023] Open
Abstract
Background: Selecting the most beneficial treatment regimens for colorectal cancer (CRC) patients remains challenging due to a lack of prognostic markers. Members of the Myosin family, proteins recognised to have a major role in trafficking and polarisation of cells, have recently been reported to be closely associated with several types of cancer and might thus serve as potential prognostic markers in the context of CRC. Methods: We used a previously established meta-analysis of publicly available gene expression data to analyse the expression of different members of the Myosin V family, namely MYO5A, 5B, and 5C, in CRC. Using laser-microdissected material as well as tissue microarrays from paired human CRC samples, we validated both RNA and protein expression of Myosin Vb (MYO5B) and its known adapter proteins (RAB8A and RAB25) in an independent patient cohort. Finally, we assessed the prognostic value of both MYO5B and its adapter-coupled combinatorial gene expression signatures. Results: The meta-analysis as well as an independent patient cohort study revealed a methylation-independent loss of MYO5B expression in CRC that matched disease progression. Although MYO5B mutations were identified in a small number of patients, these cannot be solely responsible for the common downregulation observed in CRC patients. Significantly, CRC patients with low MYO5B expression displayed shorter overall, disease-, and metastasis-free survival, a trend that was further reinforced when RAB8A expression was also taken into account. Conclusions: Our data identify MYO5B as a powerful prognostic biomarker in CRC, especially in early stages (stages I and II), which might help stratifying patients with stage II for adjuvant chemotherapy.
Collapse
|
29
|
Stapled peptide inhibitors of RAB25 target context-specific phenotypes in cancer. Nat Commun 2017; 8:660. [PMID: 28939823 PMCID: PMC5610242 DOI: 10.1038/s41467-017-00888-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
Recent evidence has established a role for the small GTPase RAB25, as well as related effector proteins, in enacting both pro-oncogenic and anti-oncogenic phenotypes in specific cellular contexts. Here we report the development of all-hydrocarbon stabilized peptides derived from the RAB-binding FIP-family of proteins to target RAB25. Relative to unmodified peptides, optimized stapled peptides exhibit increased structural stability, binding affinity, cell permeability, and inhibition of RAB25:FIP complex formation. Treatment of cancer cell lines in which RAB25 is pro-oncogenic with an optimized stapled peptide, RFP14, inhibits migration, and proliferation in a RAB25-dependent manner. In contrast, RFP14 treatment augments these phenotypes in breast cancer cells in which RAB25 is tumor suppressive. Transcriptional profiling identified significantly altered transcripts in response to RAB25 expression, and treatment with RFP14 opposes this expression profile. These data validate the first cell-active chemical probes targeting RAB-family proteins and support the role of RAB25 in regulating context-specific oncogenic phenotypes. The Ras-family small GTPase RAB25 can exert both pro- and anti-oncogenic functions. Here, the authors develop all-hydrocarbon stabilized peptides targeting RAB25 and influencing the context-specificity phenotypes in cancer cell lines.
Collapse
|
30
|
Secretory RAB GTPase 3C modulates IL6-STAT3 pathway to promote colon cancer metastasis and is associated with poor prognosis. Mol Cancer 2017; 16:135. [PMID: 28784136 PMCID: PMC5547507 DOI: 10.1186/s12943-017-0687-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 06/26/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND RAB GTPases are important in the regulation of membrane trafficking and cell movement. Recently, exocytic RABs have received increasing attention in cancer research. However, the functional roles of exocytic RABs in colorectal carcinogenesis remain to be elucidated. METHODS Immunohistochemistry analysis of a microarray containing 215 colorectal adenocarcinoma tissues was used to identify the association between exocytic RABs and patient prognosis. Complementary functional RAB3C overexpression and knockdown experiments were performed. The molecular mechanism of RAB3C in inducing colon cancer cell metastasis was determined. RESULTS High RAB3C expression in patients was found to be significantly associated with advanced pathological stage, distant metastasis and poor prognosis. Multivariate analyses showed that high RAB3C expression was an independent prognostic marker in overall (P = 0.001) and disease-free survival (P < 0.001). Furthermore, our experimental results showed an increase in the migration and invasion ability of RAB3C-overexpressing colon cancer cells and increased metastatic nodules in a mouse metastasis model. The effect of RAB3C-overexpressing cell-conditioned medium was found to significantly promote the migration ability of parental colon cancer cells, thus suggesting that the promotion of migration is exocytosis dependent. Upregulation of other exocytic RABs was also seen in RAB3C-overexpressing cells. Through microarray and proteomics analyses, increased production of multiple cytokines was observed in RAB3C-overexpressing cell lines, and the IL-6 pathway was the top pathway whose members exhibited gene expression changes after RAB3C overexpression, according to Ingenuity Pathway Analysis. Blocking IL-6 with IL-6 antibody treatment or IL-6 knockdown significantly inhibited the migration potential of RAB3C-overexpressing colon cancer cells. In addition, IL-6 was found to induce STAT3 phosphorylation in RAB3C-overexpressing colon cancer cells, thus promoting migration. Ruxolitinib, a JAK2 inhibitor, was found to significantly inhibit RAB3C-induced colon cancer cell migration. CONCLUSIONS Our study revealed that RAB3C overexpression promotes tumor metastasis and is associated with poor prognosis in colorectal cancer, through modulating the ability of cancer cells to release IL-6 through exocytosis and activate the JAK2-STAT3 signaling pathway. These results further suggest that inhibition of STAT3 phosphorylation in the RAB3C-IL-6-STAT3 axis by using Ruxolitinib may be a new therapeutic strategy to combat metastatic colon cancers.
Collapse
|
31
|
Wang S, Hu C, Wu F, He S. Rab25 GTPase: Functional roles in cancer. Oncotarget 2017; 8:64591-64599. [PMID: 28969096 PMCID: PMC5610028 DOI: 10.18632/oncotarget.19571] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/19/2017] [Indexed: 12/17/2022] Open
Abstract
Rab25, a small GTPase belongs to the Rab protein family, has a pivotal role in cancer pathophysiology. Rab25 governs cell-surface receptors recycling and cellular signaling pathways activation, allowing it to control a diverse range of cellular functions, including cell proliferation, cell motility and cell death. Aberrant expression of Rab25 was linked to cancer development. Majority of research findings revealed that Rab25 is an oncogene. Elevated expression of Rab25 was correlated with poor prognosis and aggressiveness of renal, lung, breast, ovarian and other cancers. However, tumor suppressor function of Rab25 was reported in several cancers, such as colorectal cancer, indicating the tumor type-specific function of Rab25. In this review, we recapitulate the current knowledge of Rab25 in cancer development and therapy.
Collapse
Affiliation(s)
- Sisi Wang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
32
|
Klunder LJ, Faber KN, Dijkstra G, van IJzendoorn SCD. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027888. [PMID: 28213466 DOI: 10.1101/cshperspect.a027888] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we highlight recent advances with regard to the molecular mechanisms of cell polarity-controlled epithelial homeostasis and immunity in the human intestine.
Collapse
Affiliation(s)
- Leon J Klunder
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Sven C D van IJzendoorn
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
33
|
Xiong J, Li S, Zeng X. High Rab25 expression associates with Ki67/TP53/CD133/VEGFR expression predicts poor prognosis in gastric cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:7792-7800. [PMID: 31966627 PMCID: PMC6965299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 04/26/2017] [Indexed: 06/10/2023]
Abstract
Rab25 belongs to Rab GTPases which regulating vesicle trafficking of various extracellular and intracellular resources. Aberrant high Rab25 expression is closely linked to cancer development including gastric cancer. However, the underlying mechanism of Ras25 in gastric cancer is still unclear. In this study, we determined to investigate the potential association between Rab25 and four tumor markers, including Ki67 (a well-known hallmarker of tumor proliferation), TP53 (tumor p53, a master tumor regulator associated with cell apoptosis), CD133 (a common cancer stem cell marker) and VEGFR (Vascular endothelial growth factor receptor, an efficient therapy target for gastric cancer). The results indicated that Rab25 expression in both cytoplasm and nucleus was significantly higher in gastric cancer tissues than para-carcinoma tissues. High Rab25 nucleus expression was positively associated with distant metastasis (M stage) and clinical (cTNM) stage, while Rab25 nucleus expression correlated with M stage, cTNM stage and regional lymph metastasis stage (N stage). Survival analysis revealed that high Rab25 cytoplasm/nucleus expression predicted shorter overall survival time of patients with gastric cancer. Rab25 expression was significantly associated with Ki67 expression, TP53 expression, CD133 expressionand VEGFR expression in gastric cancer. In conclusion, our results indicated that Rab25 behaved as an oncogene in gastric cancer related to Ki67/TP53/CD133/VEGFR expression and suggested Rab25 to be a prognostic marker.
Collapse
Affiliation(s)
- Jixian Xiong
- Institute of Molecular Medicine, School of Medicine, Shenzhen UniversityShenzhen, Guangdong, China
| | - Shuiming Li
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen UniversityShenzhen, Guangdong, China
| | - Xiandong Zeng
- Department of Physical and Chemical Analysis, Shenzhen Nanshan Center for Disease Control and PreventionShenzhen, Guangdong, China
| |
Collapse
|
34
|
Hu C, Chen B, Zhou Y, Shan Y. High expression of Rab25 contributes to malignant phenotypes and biochemical recurrence in patients with prostate cancer after radical prostatectomy. Cancer Cell Int 2017; 17:45. [PMID: 28400705 PMCID: PMC5387234 DOI: 10.1186/s12935-017-0411-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
Background Ras-related protein 25 (Rab25) functions either as an oncogene or a tumor suppressor with a cancer type-dependent manner. We aimed to investigate clinical significance of Rab25 in prostate cancer (PCa). Methods Quantitative real-time polymerase chain reaction, Western blot and immunohistochemistry were respectively performed to detect Rab25 mRNA and protein expression in PCa and adjacent non-cancerous prostate tissues. Receiver-operating characteristic curve analysis was used to evaluate predictive diagnostic value of Rab25. Associations of Rab25 expression with various clinicopathological characteristics and biochemical recurrence-free survival of PCa patients were statistically evaluated. In vitro, PCa cell proliferation was assessed by CCK-8 assay, and the cell migration and invasion activities were evaluated by Transwell assay, following the transfection of Rab25 small interfering RNA. Results Ras-related protein 25 mRNA and protein expression in PCa tissues were both significantly higher than adjacent non-cancerous prostate tissues (both P < 0.001). The area under the curve of Rab25 immunoreactive score (IRS) was 0.896 (P < 0.001) with 74.0% sensitivity and 95.0% specificity. High Rab25 IRS was significantly associated with high Gleason score (P = 0.02) and distant metastasis (P = 0.01). PCa patients with high Rab25 IRS had shorter overall and biochemical recurrence-free survivals than those with low Rab25 IRS (both P < 0.001). Cox regression analysis identified Rab25 as an independent biomarker for both overall and biochemical recurrence-free survivals of PCa patients. By exploring its activities in vitro, Rab25 downregulation was found to inhibit PCa cell proliferation, migration and invasion. Conclusions High expression of Rab25 may contribute to malignant progression and biochemical recurrence of PCa patients after radical prostatectomy. Electronic supplementary material The online version of this article (doi:10.1186/s12935-017-0411-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunhui Hu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 China
| | - Beibei Chen
- Department of Intensive Care Unit, Huai'an First People's Hospital, Huai'an, 223300 Jiangsu China
| | - Yibin Zhou
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 China
| | - Yuxi Shan
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 China
| |
Collapse
|
35
|
Ding B, Cui B, Gao M, Li Z, Xu C, Fan S, He W. Knockdown of Ras-Related Protein 25 (Rab25) Inhibits the In Vitro Cytotoxicity and In Vivo Antitumor Activity of Human Glioblastoma Multiforme Cells. Oncol Res 2017; 25:331-340. [PMID: 28281975 PMCID: PMC7841148 DOI: 10.3727/096504016x14736286083065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ras-related protein 25 (Rab25) is a member of the Rab family, and it has been reported to play an important role in tumorigenesis. However, its direct involvement in human glioblastoma multiforme (GBM) is still unclear. The aim of the current study was to investigate the potential role of Rab25 in the growth, proliferation, invasion, and migration of human GBM. Our results showed that Rab25 expression was significantly higher in human GBM cell lines compared with a normal astrocyte cell line. In vitro functional studies revealed that knockdown of Rab25 reduced cell proliferation and inhibited invasion and migration of GBM cells. In vivo experiments showed that knockdown of Rab25 attenuated the tumor growth in nude mice. Finally, knockdown of Rab25 significantly inhibited the phosphorylation levels of PI3K and AKT in GBM cells. Taken together, these findings indicate that Rab25 may act as a tumor promoter in human GBM and that approaches to target Rab25 may provide a novel strategy to treat this disease.
Collapse
|
36
|
Kang L, Hao X, Tang Y, Wei X, Gong Y. RABEX-5 overexpression in gastric cancer is correlated with elevated MMP-9 level. Am J Transl Res 2016; 8:2365-2374. [PMID: 27347344 PMCID: PMC4891449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/23/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE This study aimed to investigate mRNA and protein expression levels of RABEX-5 and matrix metalloproteinase-9 (MMP-9), their mutual correlation, and biological behavior in gastric cancer (GC) patients. METHODS The expression levels of RABEX-5 and MMP-9 were determined by real-time quantitative PCR and Western blotting in cell lines, GC tissues, and adjacent normal tissues. In addition, RABEX-5 and MMP-9 expression was analyzed by immunohistochemistry in formalin-fixed tissues from 113 GC patients. RESULTS The mRNA and protein expression levels of RABEX-5 and MMP-9 in GC cell lines and GC tissues were higher than those in normal gastric mucosa cell line and adjacent normal tissues. RABEX-5 expression and MMP-9 expression in GC tissues were significantly and positively correlated. In addition, the size of tumor (p<0.001), Lauren's classification (p=0.009), and N stage (p<0.001) were identified as the relative factors of RABEX-5 expression, whereas the expression of MMP-9 was correlated with N stage (p=0.003). The results of the multivariate analysis revealed that the independent predictive factors of overall survival were T stage (hazard ratio (HR)=2.382; p=0.028), N stage (HR=1.755; p<0.001), RABEX-5 expression (HR=0.452; p=0.004), and MMP-9 expression (HR=0.561; p=0.032). CONCLUSIONS RABEX-5 and MMP-9 expression levels were elevated in GC tissues and were associated with tumor invasion, metastasis, and prognosis. Therefore, they may be promising prognostic indicators of survival in GC patients.
Collapse
Affiliation(s)
- Lili Kang
- Department of Gastroenterology, Tianjin Hospital of ITCWM, Nankai Hospital Sanwei Road, Nankai District, Tianjin 300100, China
| | - Xuwen Hao
- Department of Gastroenterology, Tianjin Hospital of ITCWM, Nankai Hospital Sanwei Road, Nankai District, Tianjin 300100, China
| | - Yanping Tang
- Department of Gastroenterology, Tianjin Hospital of ITCWM, Nankai Hospital Sanwei Road, Nankai District, Tianjin 300100, China
| | - Xiaodong Wei
- Department of Gastroenterology, Tianjin Hospital of ITCWM, Nankai Hospital Sanwei Road, Nankai District, Tianjin 300100, China
| | - Yanxia Gong
- Department of Gastroenterology, Tianjin Hospital of ITCWM, Nankai Hospital Sanwei Road, Nankai District, Tianjin 300100, China
| |
Collapse
|
37
|
Boulay PL, Mitchell L, Turpin J, Huot-Marchand JÉ, Lavoie C, Sanguin-Gendreau V, Jones L, Mitra S, Livingstone JM, Campbell S, Hallett M, Mills GB, Park M, Chodosh L, Strathdee D, Norman JC, Muller WJ. Rab11-FIP1C Is a Critical Negative Regulator in ErbB2-Mediated Mammary Tumor Progression. Cancer Res 2016; 76:2662-74. [PMID: 26933086 PMCID: PMC5070470 DOI: 10.1158/0008-5472.can-15-2782] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/05/2016] [Indexed: 02/06/2023]
Abstract
Rab coupling protein (FIP1C), an effector of the Rab11 GTPases, including Rab25, is amplified and overexpressed in 10% to 25% of primary breast cancers and correlates with poor clinical outcome. Rab25 is also frequently silenced in triple-negative breast cancer, suggesting its ability to function as either an oncogene or a tumor suppressor, depending on the breast cancer subtype. However, the pathobiologic role of FIP family members, such as FIP1C, in a tumor-specific setting remains elusive. In this study, we used ErbB2 mouse models of human breast cancer to investigate FIP1C function in tumorigenesis. Doxycycline-induced expression of FIP1C in the MMTV-ErbB2 mouse model resulted in delayed mammary tumor progression. Conversely, targeted deletion of FIP1C in the mammary epithelium of an ErbB2 model coexpressing Cre recombinase led to accelerated tumor onset. Genetic and biochemical characterization of these FIP1C-proficient and -deficient tumor models revealed that FIP1C regulated E-cadherin (CDH1) trafficking and ZONAB (YBX3) function in Cdk4-mediated cell-cycle progression. Furthermore, we demonstrate that FIP1C promoted lysosomal degradation of ErbB2. Consistent with our findings in the mouse, the expression of FIP1C was inversely correlated with ErbB2 levels in breast cancer patients. Taken together, our findings indicate that FIP1C acts as a tumor suppressor in the context of ErbB2-positive breast cancer and may be therapeutically exploited as an alternative strategy for targeting aberrant ErbB2 expression. Cancer Res; 76(9); 2662-74. ©2016 AACR.
Collapse
Affiliation(s)
- Pierre-Luc Boulay
- Department of Biochemistry, McGill University, Rosalind and Morris Goodman Cancer Research Montreal, Québec, Canada
| | - Louise Mitchell
- Integrin Cell Biology Cancer Research UK Beaston Institute, Glasgow, United Kingdom
| | - Jason Turpin
- Department of Biochemistry, McGill University, Rosalind and Morris Goodman Cancer Research Montreal, Québec, Canada
| | - Julie-Émilie Huot-Marchand
- Department of Biochemistry, McGill University, Rosalind and Morris Goodman Cancer Research Montreal, Québec, Canada
| | - Cynthia Lavoie
- Department of Biochemistry, McGill University, Rosalind and Morris Goodman Cancer Research Montreal, Québec, Canada
| | - Virginie Sanguin-Gendreau
- Department of Biochemistry, McGill University, Rosalind and Morris Goodman Cancer Research Montreal, Québec, Canada
| | - Laura Jones
- Department of Biochemistry, McGill University, Rosalind and Morris Goodman Cancer Research Montreal, Québec, Canada
| | - Shreya Mitra
- Department of System Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Julie M Livingstone
- Department of Biochemistry, McGill University, Rosalind and Morris Goodman Cancer Research Montreal, Québec, Canada
| | - Shirley Campbell
- Department of Pharmacology, University of Montreal, Québec, Canada
| | - Michael Hallett
- Department of Biochemistry, McGill University, Rosalind and Morris Goodman Cancer Research Montreal, Québec, Canada
| | - Gordon B Mills
- Department of System Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Morag Park
- Department of Biochemistry, McGill University, Rosalind and Morris Goodman Cancer Research Montreal, Québec, Canada
| | - Lewis Chodosh
- Cancer Biology Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Douglas Strathdee
- Integrin Cell Biology Cancer Research UK Beaston Institute, Glasgow, United Kingdom
| | - Jim C Norman
- Integrin Cell Biology Cancer Research UK Beaston Institute, Glasgow, United Kingdom
| | - William J Muller
- Department of Biochemistry, McGill University, Rosalind and Morris Goodman Cancer Research Montreal, Québec, Canada.
| |
Collapse
|
38
|
Kang SM, Nam KY, Jung SY, Song KH, Kho S, No KT, Choi HK, Song JY. Inhibition of cancer cell invasion by new ((3,4-dihydroxy benzylidene)hydrazinyl)pyridine-3-sulfonamide analogs. Bioorg Med Chem Lett 2015; 26:1322-8. [PMID: 26810259 DOI: 10.1016/j.bmcl.2015.12.093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/23/2015] [Accepted: 12/28/2015] [Indexed: 01/24/2023]
Abstract
Rab GTPases regulate various types of intracellular membrane trafficking in all eukaryotes. Since Rab27a and its multiple effectors are involved in exocytosis of lysosome-related organelles and play a major role in malignancy, compounds targeting Rab27a could be likely used to inhibit invasive growth and tumor metastasis. Thus, we designed and synthesized several compounds based on the previously reported Rab27a-targeting synthetic compounds identified by virtual screening, and investigated their anti-metastatic effects in MDA-MB231 and A375 cells. Among the synthesized compounds, (E)-N-(3-chlorophenyl)-6-(2-(3,4-dihydroxy benzylidene)hydrazinyl)pyridine-3-sulfonamide (3d) and (E)-N-benzyl-6-(2-(3,4-dihydroxy benzylidene)hydrazinyl)-N-methylpyridine-3-sulfonamide (3f) significantly inhibited the invasiveness of both tumor cell lines. Compounds 3d and 3f also decreased the levels of signature extracellular matrix marker proteins (fibronectin, collagen, and α-smooth muscle actin) and representative mesenchymal cell markers (N-cadherin and vimentin). Taken together, our results suggest that novel sulfonamide analogs have anti-metastatic activity in breast and melanoma cancer cell lines and may be used as therapeutic agents to treat malignant cancer.
Collapse
Affiliation(s)
- Seong-Mook Kang
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea
| | - Ky-Youb Nam
- Center for Development and Commercialization Anti-Cancer Therapeutics, Asan Medical Center, Seoul 138-736, Republic of Korea
| | - Seung-Youn Jung
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea
| | - Kyung-Hee Song
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea
| | - Seongho Kho
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea
| | - Kyoung Tai No
- Department of Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Hyun Kyung Choi
- Department of Medicinal Chemistry, Jungwon University, Goesan 367-805, Republic of Korea.
| | - Jie-Young Song
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea.
| |
Collapse
|
39
|
Overexpression of Rab25 promotes hepatocellular carcinoma cell proliferation and invasion. Tumour Biol 2015; 37:7713-8. [PMID: 26692100 DOI: 10.1007/s13277-015-4606-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/07/2015] [Indexed: 01/17/2023] Open
Abstract
Rab25 was reported to be associated with several human cancers and malignant biological behavior of cancer cells. The goal of the present study was to determine its expression pattern and biological function in human hepatocellular carcinoma (HCC). We examined Rab25 protein in 92 cases of HCC tissues and 3 HCC cell lines. The results showed that Rab25 was upregulated in HCC tissues and cells compared with normal liver tissues and cell line. Rab25 overexpression correlated with advanced tumor stage and nodal metastasis. Rab25 small interfering RNA (siRNA) was employed in Bel7402 and SK-Hep-1 cell lines. Cell Counting Kit-8 (CCK-8) assay and colony formation assay showed that Rab25 depletion blocked cell growth rate and inhibited colony formation ability. Transwell assay showed that Rab25 depletion negatively regulated the invading ability of HCC cells. To explore the possible mechanisms, we checked several signaling pathways and found that Rab25 depletion downregulated AKT phosphorylation. In addition, luciferase reporter assay showed that Rab25 depletion inhibited the Wnt signaling pathway and its target genes such as cyclin D1, c-myc, and MMP7. In conclusion, Rab25 is overexpressed in human HCC and contributes to cancer cell proliferation and invasion possibly through regulation of the Wnt signaling pathway.
Collapse
|
40
|
Sui J, Li X, Xing J, Cao F, Wang H, Gong H, Zhang W. Lentivirus-mediated silencing of USO1 inhibits cell proliferation and migration of human colon cancer cells. Med Oncol 2015; 32:218. [DOI: 10.1007/s12032-015-0658-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/15/2015] [Indexed: 12/18/2022]
|
41
|
Seven D, Dogan S, Kiliç E, Karaman E, Koseoglu H, Buyru N. Downregulation of Rab25 activates Akt1 in head and neck squamous cell carcinoma. Oncol Lett 2015; 10:1927-1931. [PMID: 26622777 DOI: 10.3892/ol.2015.3433] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 06/11/2015] [Indexed: 12/31/2022] Open
Abstract
Several studies have suggested that Ras-associated binding 25 protein (Rab25) is involved in the pathogenesis of human cancer. Although it has been demonstrated that the development of head and neck squamous cell carcinoma (HNSCC) is the result of an accumulation of multiple sequential genetic and epigenetic alterations in key genes with important functions in cell growth and the cell cycle, recent studies have indicated that HNSCC is a complex and heterogenous disease. To the best of our knowledge, there is no data regarding the regulation of the Rab25 gene at the mRNA or protein level in HNSCC. Furthermore, available data on Rab25 expression in other types of cancer are conflicting. The aim of the present study was to investigate whether Rab25 is involved in the development and/or progression of HNSCC, and to analyze the mechanisms underlying its effects in this type of cancer. The expression of Rab25 mRNA in HNSCC tissues and adjacent non-tumor tissue samples was measured using reverse transcription-quantitative polymerase chain reaction, while the level of the Rab25, Akt1 and phosphorylated-Akt1 proteins was measured using western blotting. Expression of Rab25 mRNA and protein was downregulated in 69.1% and 56.1% of tumor tissue samples, respectively. This downregulation was associated with an increase in p-Akt1 expression, in the absence of a change in total Akt1 protein levels, in tumor tissues compared with normal tissues. The current findings suggest that Rab25 acts as a tumor suppressor in HNSCC.
Collapse
Affiliation(s)
- Didem Seven
- Department of Medical Biology, Istanbul University, Cerrahpasa Medical Faculty, Istanbul 34098, Turkey
| | - Soydan Dogan
- Department of Medical Biology, Istanbul University, Cerrahpasa Medical Faculty, Istanbul 34098, Turkey
| | - Erkan Kiliç
- Department of Otorhinolaryngology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul 34098, Turkey
| | - Emin Karaman
- Department of Otorhinolaryngology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul 34098, Turkey
| | - Hikmet Koseoglu
- Department of Medical Biology, Istanbul University, Cerrahpasa Medical Faculty, Istanbul 34098, Turkey
| | - Nur Buyru
- Department of Medical Biology, Istanbul University, Cerrahpasa Medical Faculty, Istanbul 34098, Turkey
| |
Collapse
|
42
|
Heiler S, Mu W, Zöller M, Thuma F. The importance of claudin-7 palmitoylation on membrane subdomain localization and metastasis-promoting activities. Cell Commun Signal 2015; 13:29. [PMID: 26054340 PMCID: PMC4459675 DOI: 10.1186/s12964-015-0105-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/21/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Claudin-7 (cld7), a tight junction (TJ) component, is also found basolaterally and in the cytoplasm. Basolaterally located cld7 is enriched in glycolipid-enriched membrane domains (GEM), where it associates with EpCAM (EpC). The conditions driving cld7 out of TJ into GEM, which is associated with a striking change in function, were not defined. Thus, we asked whether cld7 serines or palmitoylation affect cld7 location and protein, particularly EpCAM, associations. RESULTS HEK cells were transfected with EpCAM and wild type cld7 or cld7, where serine phopsphorylation or the palmitoylation sites (AA184, AA186) (cld7(mPalm)) were mutated. Exchange of individual serine phosphorylation sites did not significantly affect the GEM localization and the EpCAM association. Instead, cld7(mPalm) was poorly recruited into GEM. This has consequences on migration and invasiveness as palmitoylated cld7 facilitates integrin and EpCAM recruitment, associates with cytoskeletal linker proteins and cooperates with MMP14, CD147 and TACE, which support motility, matrix degradation and EpCAM cleavage. On the other hand, only cld7(mPalm) associates with TJ proteins. CONCLUSION Cld7 palmitoylation prohibits TJ integration and fosters GEM recruitment. Via associated molecules, palmitoylated cld7 supports motility and invasion.
Collapse
Affiliation(s)
- Sarah Heiler
- Department of Tumor Cell Biology, University Hospital of Surgery, Im Neuenheimer Feld 365, 69120, Heidelberg, Germany.
| | - Wei Mu
- Department of Tumor Cell Biology, University Hospital of Surgery, Im Neuenheimer Feld 365, 69120, Heidelberg, Germany.
| | - Margot Zöller
- Department of Tumor Cell Biology, University Hospital of Surgery, Im Neuenheimer Feld 365, 69120, Heidelberg, Germany.
| | - Florian Thuma
- Department of Tumor Cell Biology, University Hospital of Surgery, Im Neuenheimer Feld 365, 69120, Heidelberg, Germany.
| |
Collapse
|
43
|
Gargalionis AN, Karamouzis MV, Adamopoulos C, Papavassiliou AG. Protein trafficking in colorectal carcinogenesis--targeting and bypassing resistance to currently applied treatments. Carcinogenesis 2015; 36:607-615. [DOI: 10.1093/carcin/bgv052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
|
44
|
Li Y, Jia Q, Zhang Q, Wan Y. Rab25 upregulation correlates with the proliferation, migration, and invasion of renal cell carcinoma. Biochem Biophys Res Commun 2015; 458:745-50. [PMID: 25686498 DOI: 10.1016/j.bbrc.2015.01.144] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 01/29/2015] [Indexed: 01/15/2023]
Abstract
Renal cell carcinoma (RCC) is a common urological cancer with a poor prognosis. A recent cohort study revealed that the median survival of RCC patients was only 1.5 years and that <10% of the patients in the study survived up to 5 years. In tumor development, Rab GTPase are known to play potential roles such as regulation of cell proliferation, migration, invasion, communication, and drug resistance in multiple tumors. However, the correlation between Rabs expression and the occurrence, development, and metastasis of RCC remains unclear. In this study, we analyzed the transcriptional levels of 52 Rab GTPases in RCC patients. Our results showed that high levels of Rab25 expression were significantly correlated with RCC invasion classification (P < 0.01), lymph-node metastasis (P < 0.001), and pathological stage (P < 0.01). Conversely, in 786-O and A-498 cells, knocking down Rab25 protein expression inhibited cell proliferation, migration, and invasion. Our results also demonstrated that Rab25 is a target gene of let-7d, and further suggested that Rab25 upregulation in RCC is due to diminished expression of let-7d. These findings indicate that Rab25 might be a novel candidate molecule involved in RCC development, thus identifying a potential biological therapeutic target for RCC.
Collapse
Affiliation(s)
- Yuanyuan Li
- Biomedical Analysis Center, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory of Cytomics, Chongqing, China
| | - Qingzhu Jia
- Biomedical Analysis Center, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory of Cytomics, Chongqing, China
| | - Qian Zhang
- Department of Urology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Ying Wan
- Biomedical Analysis Center, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory of Cytomics, Chongqing, China.
| |
Collapse
|
45
|
Abstract
Integrins are a family of transmembrane cell surface molecules that constitute the principal adhesion receptors for the extracellular matrix (ECM) and are indispensable for the existence of multicellular organisms. In vertebrates, 24 different integrin heterodimers exist with differing substrate specificity and tissue expression. Integrin–extracellular-ligand interaction provides a physical anchor for the cell and triggers a vast array of intracellular signalling events that determine cell fate. Dynamic remodelling of adhesions, through rapid endocytic and exocytic trafficking of integrin receptors, is an important mechanism employed by cells to regulate integrin–ECM interactions, and thus cellular signalling, during processes such as cell migration, invasion and cytokinesis. The initial concept of integrin traffic as a means to translocate adhesion receptors within the cell has now been expanded with the growing appreciation that traffic is intimately linked to the cell signalling apparatus. Furthermore, endosomal pathways are emerging as crucial regulators of integrin stability and expression in cells. Thus, integrin traffic is relevant in a number of pathological conditions, especially in cancer. Nearly a decade ago we wrote a Commentary in Journal of Cell Science entitled ‘Integrin traffic’. With the advances in the field, we felt it would be appropriate to provide the growing number of researchers interested in integrin traffic with an update.
Collapse
Affiliation(s)
| | - Hellyeh Hamidi
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
| | - Jonna Alanko
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
| | - Pranshu Sahgal
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
| |
Collapse
|
46
|
Abstract
Oncogenic alterations of epidermal growth factor receptor (EGFR) signaling are frequently observed in lung cancer patients with worse differentiation and poor prognosis. However, the therapeutic efficacy of EGFR-tyrosine kinase inhibitors (TKIs) is currently limited in selected patients with EGFR mutations. Therefore, in this study, we investigated the potential molecular mechanism that contributes to cell viability and the response of gefitinib, one of the EGFR-TKIs, in lung cancer models with wide-type EGFR (wtEGFR). Interestingly, we found that EGF-induced EGFR endocytosis is existed differently between gefitinib-sensitive and -insensitive lung cancer cell lines. Suppressing EGFR endocytos decreased cell viability and increased apoptotic cell death in gefitinib-insensitive lung cancer with wtEGFR in vitro and in vivo. In addition, we found that Rab25 was differentially expressed in between gefitinib-sensitive and -insensitive lung cancer cells. Rab25 knockdown caused the changed EGFR endocytosis and reverted the gefitinib response in gefitinib-sensitive lung cancer with wtEGFR in vitro and in vivo. Taken together, our findings suggest a novel insight that EGFR endocytosis is a rational therapeutic target in lung cancer with wtEGFR, in which the combined efficacy with gefitinib is expected. Furthermore, we demonstrated that Rab25 plays an important role in EGFR endocytosis and gefitinib therapy.
Collapse
|
47
|
Bhuin T, Roy JK. Rab11 in disease progression. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2015; 4:1-8. [PMID: 25815277 PMCID: PMC4359700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/24/2014] [Accepted: 12/16/2014] [Indexed: 10/26/2022]
Abstract
Membrane/protein trafficking in the secretory/biosynthetic and endocytic pathways is mediated by vesicles. Vesicle trafficking in eukaryotes is regulated by a class of small monomeric GTPases: the Rab protein family. Rab proteins represent the largest branch of the Ras superfamily GTPases, and have been concerned in a variety of intracellular vesicle trafficking and different intracellular signalling pathways. Rab11 (a subfamily of the Ypt/Rab gene family), an evolutionarily conserved ubiquitously expressed subfamily of Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomes. Rabs have been grouped into different subfamilies based on the distinct unambiguous sequence motifs. Three members: Rab11a, Rab11b and Rab25 make up the Rab11 GTPase subfamily. In this review article, we describe an overview over Rab11 subfamily with a brief structural aspect and its roles in implicating different disease progression.
Collapse
Affiliation(s)
- Tanmay Bhuin
- Cell and Developmental Biology Unit, Department of Zoology, The University of Burdwan, Golapbag-713104, India.
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi-221 005, India.,Corresponding author: Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi-221 005, India.
| |
Collapse
|
48
|
Claudin-7 expression induces mesenchymal to epithelial transformation (MET) to inhibit colon tumorigenesis. Oncogene 2014; 34:4570-80. [PMID: 25500541 DOI: 10.1038/onc.2014.385] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 09/12/2014] [Accepted: 10/13/2014] [Indexed: 12/12/2022]
Abstract
In normal colon, claudin-7 is one of the highly expressed claudin proteins and its knockdown in mice results in altered epithelial cell homeostasis and neonatal death. Notably, dysregulation of the epithelial homeostasis potentiates oncogenic transformation and growth. However, the role of claudin-7 in the regulation of colon tumorigenesis remains poorly understood. Using a large colorectal cancer (CRC) patient database and mouse models of colon cancer, we found claudin-7 expression to be significantly downregulated in cancer samples. Most notably, forced claudin-7 expression in poorly differentiated and highly metastatic SW620 colon cancer cells induced epithelial characteristics and inhibited their growth in soft agar and tumor growth in vivo. By contrast, knockdown of claudin-7 in HT-29 or DLD-1 cells induced epithelial-to-mesenchymal transition (EMT), colony formation, xenograft-tumor growth in athymic mice and invasion. Importantly, a claudin-7 signature gene profile generated by overlapping the DEGs (differentially expressed genes in a high-throughput transcriptome analysis using claudin-7-manipulated cells) with human claudin-7 signature genes identified high-risk CRC patients. Furthermore, Rab25, a colon cancer suppressor and regulator of the polarized cell trafficking constituted one of the highly upregulated DEGs in claudin-7 overexpressing cells. Notably, silencing of Rab25 expression counteracted the effects of claudin-7 expression and not only increased proliferation and cell invasion but also increased the expression of p-Src and mitogen-activated protein kinase-extracellular signal-regulated kinase 1/2 that were suppressed upon claudin-7 overexpression. Of interest, CRC cell lines, which exhibited decreased claudin-7 expression, also exhibited promoter DNA hypermethylation, a modification associated with transcriptional silencing. Taken together, our data demonstrate a previously undescribed role of claudin-7 as a colon cancer suppressor and suggest that loss of claudin-7 potentiates EMT to promote colon cancer, in a manner dependent on Rab25.
Collapse
|
49
|
Fan Y, Wang L, Han X, Liu X, Ma H. Rab25 is responsible for phosphoinositide 3-kinase/AKT‑mediated cisplatin resistance in human epithelial ovarian cancer cells. Mol Med Rep 2014; 11:2173-8. [PMID: 25405658 DOI: 10.3892/mmr.2014.2963] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 09/12/2014] [Indexed: 11/05/2022] Open
Abstract
Rab25, a member of the Rab family of small guanosine triphosphatase, was reported to have an essential role in the development of human epithelial ovarian cancer. The present study demonstrated that Rab25 mediated the sensitivity of ovarian cancer to cisplatin, a first‑line chemotherapeutic agent for the treatment of ovarian cancer in the clinic. Overexpression of Rab25 and increased phosphoinositide 3‑kinase (PI3K)/AKT signaling were detected in cisplatin‑resistant SKOV‑3 cells compared with those in cisplatin‑sensitive ES‑2 cells. The results of the present study indicated that cisplatin resistance was primarily due to reduced G1 cell cycle arrest following cisplatin treatment in SKOV‑3 cells. By contrast, the corresponding phenomenon was not observed following treatment with a Rab25‑specific small interfering RNA or treatment with the PI3K/AKT inhibitor LY294002. Of note, inhibition of the PI3K/AKT pathway reduced Rab25 gene expression and sensitized SKOV‑3 cells to cisplatin. Furthermore, knockdown of Rab25 showed an effect comparable with blocking the PI3K/AKT pathway. In conclusion, the results of the present study demonstrated that PI3K/AKT and Rab25 significantly contributed to cisplatin resistance in human epithelial ovarian cancer; in addition, silencing Rab25 or inhibiting the PI3K/AKT pathway markedly increased the sensitivity of these cells to cisplatin.
Collapse
Affiliation(s)
- Yang Fan
- Department of Obstetrics and Gynecology, Ningxia People's Hospital, Yinchuan, Ningxia 750000, P.R. China
| | - Long Wang
- Department of Stomatology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xuechuan Han
- Department of Obstetrics and Gynecology, Ningxia People's Hospital, Yinchuan, Ningxia 750000, P.R. China
| | - Xueqin Liu
- Department of Obstetrics and Gynecology, Ningxia People's Hospital, Yinchuan, Ningxia 750000, P.R. China
| | - Hongyun Ma
- Department of Obstetrics and Gynecology, Ningxia People's Hospital, Yinchuan, Ningxia 750000, P.R. China
| |
Collapse
|
50
|
Wang X, Li S. Protein mislocalization: mechanisms, functions and clinical applications in cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1846:13-25. [PMID: 24709009 PMCID: PMC4141035 DOI: 10.1016/j.bbcan.2014.03.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 02/20/2014] [Accepted: 03/27/2014] [Indexed: 12/21/2022]
Abstract
The changes from normal cells to cancer cells are primarily regulated by genome instability, which foster hallmark functions of cancer through multiple mechanisms including protein mislocalization. Mislocalization of these proteins, including oncoproteins, tumor suppressors, and other cancer-related proteins, can interfere with normal cellular function and cooperatively drive tumor development and metastasis. This review describes the cancer-related effects of protein subcellular mislocalization, the related mislocalization mechanisms, and the potential application of this knowledge to cancer diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Shulin Li
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| |
Collapse
|