1
|
Smith KA, Reed EK, Guschina I, Tyrrell VJ, Butters C, Darby MG, Katsandegwaza B, Chetty A, Horsnell WG, O'Donnell VB, Gallimore A. Helminth-induced prostaglandin signalling and dietary shifts in PUFA metabolism promote colitis-associated cancer. J Lipid Res 2025:100837. [PMID: 40490052 DOI: 10.1016/j.jlr.2025.100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 06/03/2025] [Accepted: 06/04/2025] [Indexed: 06/11/2025] Open
Abstract
Oxylipins derived from dietary polyunsaturated fatty acids (PUFAs) are key determinants of intestinal health, homeostasis and inflammatory disorders, such as colitis-associated colorectal cancer (CAC). Previous research has independently linked a high dietary omega (ω)-6:ω-3 PUFA ratio, or intestinal helminth infection, to an increased risk of CAC. However, whether these two factors interact to exacerbate disease risk and whether oxylipins contribute to this is unknown. In this study, we report that infection with the helminth Heligmosomoides polygyrus bakeri (Hpb) exacerbates tumour formation when combined with a high ω-6:ω-3 PUFA ratio diet. Dietary increases in tumour burden correlated with heightened levels of arachidonic acid (AA) and AA-derived lipoxygenase (LOX) oxylipins in the colon, including the 12/15-LOX product 12-hydroxyeicosatetraenoic acid, prior to disease onset. Although helminth infection further increased the production of 12/15-LOX oxylipins and increased expression of Alox15, responsible for producing these metabolites, inhibition of cyclooxygenase-dependent prostaglandin production with aspirin prevented helminth-exacerbation of disease. Helminth-infected mice exhibited increased phosphorylation of β-catenin in the colon, which was inhibited by EP2 and 4 antagonists. Moreover, administration of an EP agonist increased tumour burden in naive mice fed a high ω-6:ω-3 PUFA ratio diet, to the levels seen in helminth-exacerbation of disease. These data suggest that dietary changes in fatty acid composition coordinate with helminth-induced activation of EP signalling to exacerbate tumour development.
Collapse
|
2
|
Wang Y, Abuduaini N, Liu W, Song Y, Ke Z, Wang X, Jiao W, Chen S, Lin X, Yu W, Lu W, Feng B, He J. Shikonin is a novel antagonist of prostaglandin E2 receptor 4 that targets myeloid-derived suppressor cells. Genes Dis 2025; 12:101356. [PMID: 39926333 PMCID: PMC11803219 DOI: 10.1016/j.gendis.2024.101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/17/2024] [Accepted: 06/09/2024] [Indexed: 02/11/2025] Open
Affiliation(s)
- Yang Wang
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Naijipu Abuduaini
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Wenjuan Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuanjun Song
- Shanghai Municipal Health Commission, Shanghai 200125, China
| | - Zunping Ke
- Department of Gerontology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Xilong Wang
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Wei Jiao
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Si Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xianhua Lin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Weiwei Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Bo Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Jiacheng He
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai 200240, China
| |
Collapse
|
3
|
Corboz MR, Nguyen TL, Stautberg A, Cipolla D, Perkins WR, Chapman RW. Current Overview of the Biology and Pharmacology in Sugen/Hypoxia-Induced Pulmonary Hypertension in Rats. J Aerosol Med Pulm Drug Deliv 2024; 37:241-283. [PMID: 39388691 PMCID: PMC11502635 DOI: 10.1089/jamp.2024.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/03/2024] [Indexed: 10/12/2024] Open
Abstract
The Sugen 5416/hypoxia (Su/Hx) rat model of pulmonary arterial hypertension (PAH) demonstrates most of the distinguishing features of PAH in humans, including increased wall thickness and obstruction of the small pulmonary arteries along with plexiform lesion formation. Recently, significant advancement has been made describing the epidemiology, genomics, biochemistry, physiology, and pharmacology in Su/Hx challenge in rats. For example, there are differences in the overall reactivity to Su/Hx challenge in different rat strains and only female rats respond to estrogen treatments. These conditions are also encountered in human subjects with PAH. Also, there is a good translation in both the biochemical and metabolic pathways in the pulmonary vasculature and right heart between Su/Hx rats and humans, particularly during the transition from the adaptive to the nonadaptive phase of right heart failure. Noninvasive techniques such as echocardiography and magnetic resonance imaging have recently been used to evaluate the progression of the pulmonary vascular and cardiac hemodynamics, which are important parameters to monitor the efficacy of drug treatment over time. From a pharmacological perspective, most of the compounds approved clinically for the treatment of PAH are efficacious in Su/Hx rats. Several compounds that show efficacy in Su/Hx rats have advanced into phase II/phase III studies in humans with positive results. Results from these drug trials, if successful, will provide additional treatment options for patients with PAH and will also further validate the excellent translation that currently exists between Su/Hx rats and the human PAH condition.
Collapse
|
4
|
Lozahic C, Maddock H, Wheatley M, Sandhu H. Doxorubicin alters G-protein coupled receptor-mediated vasocontraction in rat coronary arteries. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5831-5845. [PMID: 38326659 DOI: 10.1007/s00210-024-02988-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Doxorubicin (Doxo)-associated cardio-and vasotoxicity has been recognised as a serious complication of cancer chemotherapy. The purpose of this novel paper was to determine the effect of Doxo on G-protein coupled receptor (GPCR)-mediated vasocontraction located on vascular smooth muscle cells. Rat left anterior descending artery segments were incubated for 24 h with 0.5 µM Doxo. The vasocontractile responses by activation of endothelin receptor type A (ETA) and type B (ETB), serotonin receptor 1B (5-HT1B) and thromboxane A2 prostanoid receptor (TP) were investigated by a sensitive myography using specific agonists, while the specificity of the GPCR agonists was verified by applying selective antagonists (i.e. ETA and ETB agonist = 10- 14-10- 7.5 M endothelin-1 (ET-1); ETA antagonist = 10 µM BQ123; ETB agonists = 10- 14-10- 7.5 M sarafotoxin 6c (S6c) and ET-1; ETB antagonist = 0.1 µM BQ788; 5-HT1B agonist = 10- 12-10- 5.5 M 5-carboxamidotryptamine (5-CT); 5-HT1B antagonist = 1 µM GR55562; TP agonist = 10- 12-10- 6.5 M U46619; TP antagonist = 1 µM Seratrodast). Our results show that 0.5 µM Doxo incubation of LAD segments leads to an increased VSMC vasocontraction through the ETB, 5-HT1B and TP GPCRs, with a 2.2-fold increase in ETB-mediated vasocontraction at 10- 10.5 M S6c, a 2.0-fold increase in 5-HT1B-mediated vasocontraction at 10- 5.5 M 5-CT, and a 1.3-fold increase in TP-mediated vasocontraction at 10- 6.5 M U46619. Further studies unravelling the involvement of intracellular GPCR signalling pathways will broaden our understanding of the Doxo-induced vasotoxicity, and thus pave the way to mitigate the adverse effects by potential implementation of adjunct therapy options.
Collapse
MESH Headings
- Animals
- Male
- Doxorubicin/pharmacology
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Vasoconstriction/drug effects
- Antibiotics, Antineoplastic/pharmacology
- Antibiotics, Antineoplastic/toxicity
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Rats, Wistar
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Receptors, Thromboxane A2, Prostaglandin H2/antagonists & inhibitors
- Receptors, Thromboxane A2, Prostaglandin H2/metabolism
- Receptors, Thromboxane A2, Prostaglandin H2/agonists
- Receptor, Serotonin, 5-HT1B/metabolism
- Rats
- Receptor, Endothelin B/metabolism
- Receptor, Endothelin B/agonists
- Receptor, Endothelin B/drug effects
- In Vitro Techniques
- Receptor, Endothelin A/metabolism
Collapse
Affiliation(s)
- Caroline Lozahic
- Research Centre for Health & Life Sciences, Coventry University, Alison Gingell Building, Priory Street, Coventry, CV1 5FB, UK
| | - Helen Maddock
- Research Centre for Health & Life Sciences, Coventry University, Alison Gingell Building, Priory Street, Coventry, CV1 5FB, UK
| | - Mark Wheatley
- Research Centre for Health & Life Sciences, Coventry University, Alison Gingell Building, Priory Street, Coventry, CV1 5FB, UK
| | - Hardip Sandhu
- Research Centre for Health & Life Sciences, Coventry University, Alison Gingell Building, Priory Street, Coventry, CV1 5FB, UK.
| |
Collapse
|
5
|
Baucom MR, Price AD, Weissman N, England L, Schuster RM, Pritts TA, Goodman MD. Desmopressin, Misoprostol, nor Carboprost Affect Platelet Aggregability Following Traumatic Brain Injury and Aspirin. J Surg Res 2024; 296:643-653. [PMID: 38359679 DOI: 10.1016/j.jss.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
INTRODUCTION Desmopressin (DDAVP) has been utilized clinically in patients taking aspirin (ASA) to improve drug-induced platelet dysfunction. Misoprostol and carboprost, prostaglandin analogs commonly used for postpartum hemorrhage, may also induce platelet aggregation. The aim of this study was to determine the effects of DDAVP, misoprostol, and carboprost administration on platelet aggregability following traumatic brain injury (TBI) in mice treated with ASA. METHODS Male C57BL/6 mice were randomized into seven groups (n = 5 each): untouched, ASA only, Saline/TBI, ASA/TBI, ASA/TBI/DDAVP 0.4 μg/kg, ASA/TBI/misoprostol 1 mg/kg, and ASA/TBI/carboprost 100 μg/kg. TBI was induced via a weight drop model 4-h after ASA (50 mg/kg) gavage. Mice were given an intraperitoneal injection of DDAVP, misoprostol, or carboprost 10 minutes after TBI. In vivo testing was completed utilizing tail vein bleed. Mice were sacrificed 30-min posttreatment and blood was collected via cardiac puncture. Whole blood was analyzed via Multiplate impedance aggregometry, rotational thromboelastometry, and TEG6s. RESULTS Mice receiving misoprostol after ASA/TBI demonstrated decreased tail vein bleeding times compared to ASA only treated mice. However, mice treated with misoprostol following ASA and TBI demonstrated decreased platelet aggregability compared to untouched mice and TBI only mice within the arachidonic acid agonist pathway. By contrast, DDAVP and carboprost did not significantly change platelet aggregability via adenosine diphosphate or arachidonic acid following ASA and TBI. However, DDAVP did decrease the platelet contribution to clot via rotational thromboelastometry. CONCLUSIONS Reversal of medication-induced platelet inhibition has become increasingly controversial after TBI. Based on these results, DDAVP, misoprostol, nor carboprost consistently improve platelet aggregability following TBI in those also treated with ASA.
Collapse
Affiliation(s)
- Matthew R Baucom
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Adam D Price
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | | - Lisa England
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | | - Timothy A Pritts
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | |
Collapse
|
6
|
Sang D, Lin K, Yang Y, Ran G, Li B, Chen C, Li Q, Ma Y, Lu L, Cui XY, Liu Z, Lv SQ, Luo M, Liu Q, Li Y, Zhang EE. Prolonged sleep deprivation induces a cytokine-storm-like syndrome in mammals. Cell 2023; 186:5500-5516.e21. [PMID: 38016470 DOI: 10.1016/j.cell.2023.10.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/17/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
Most animals require sleep, and sleep loss induces serious pathophysiological consequences, including death. Previous experimental approaches for investigating sleep impacts in mice have been unable to persistently deprive animals of both rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS). Here, we report a "curling prevention by water" paradigm wherein mice remain awake 96% of the time. After 4 days of exposure, mice exhibit severe inflammation, and approximately 80% die. Sleep deprivation increases levels of prostaglandin D2 (PGD2) in the brain, and we found that elevated PGD2 efflux across the blood-brain-barrier-mediated by ATP-binding cassette subfamily C4 transporter-induces both accumulation of circulating neutrophils and a cytokine-storm-like syndrome. Experimental disruption of the PGD2/DP1 axis dramatically reduced sleep-deprivation-induced inflammation. Thus, our study reveals that sleep-related changes in PGD2 in the central nervous system drive profound pathological consequences in the peripheral immune system.
Collapse
Affiliation(s)
- Di Sang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Keteng Lin
- National Institute of Biological Sciences, Beijing, China; College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yini Yang
- Peking University School of Life Sciences, Beijing, China
| | - Guangdi Ran
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Bohan Li
- Peking-Tsinghua Center for Life Sciences, Beijing, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chen Chen
- National Institute of Biological Sciences, Beijing, China
| | - Qi Li
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Yan Ma
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Lihui Lu
- National Institute of Biological Sciences, Beijing, China
| | - Xi-Yang Cui
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhibo Liu
- Peking-Tsinghua Center for Life Sciences, Beijing, China; Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Chongqing, China
| | - Minmin Luo
- National Institute of Biological Sciences, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Qinghua Liu
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Yulong Li
- Peking University School of Life Sciences, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China; State Key Laboratory of Membrane Biology, Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Eric Erquan Zhang
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Ye L, Wang B, Xu H, Zhang X. The Emerging Therapeutic Role of Prostaglandin E2 Signaling in Pulmonary Hypertension. Metabolites 2023; 13:1152. [PMID: 37999248 PMCID: PMC10672796 DOI: 10.3390/metabo13111152] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/28/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Mild-to-moderate pulmonary hypertension (PH) is a common complication of chronic obstructive pulmonary disease (COPD). It is characterized by narrowing and thickening of the pulmonary arteries, resulting in increased pulmonary vascular resistance (PVR) and ultimately leading to right ventricular dysfunction. Pulmonary vascular remodeling in COPD is the main reason for the increase of pulmonary artery pressure (PAP). The pathogenesis of PH in COPD is complex and multifactorial, involving chronic inflammation, hypoxia, and oxidative stress. To date, prostacyclin and its analogues are widely used to prevent PH progression in clinical. These drugs have potent anti-proliferative, anti-inflammatory, and stimulating endothelial regeneration properties, bringing therapeutic benefits to the slowing, stabilization, and even some reversal of vascular remodeling. As another well-known and extensively researched prostaglandins, prostaglandin E2 (PGE2) and its downstream signaling have been found to play an important role in various biological processes. Emerging evidence has revealed that PGE2 and its receptors (i.e., EP1-4) are involved in the regulation of pulmonary vascular homeostasis and remodeling. This review focuses on the research progress of the PGE2 signaling pathway in PH and discusses the possibility of treating PH based on the PGE2 signaling pathway.
Collapse
Affiliation(s)
- Lan Ye
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China;
| | - Bing Wang
- Department of Endocrinology and Metabolism, The Central Hospital of Dalian University of Technology, Dalian 116000, China;
| | - Hu Xu
- Health Science Center, East China Normal University, Shanghai 200241, China
| | - Xiaoyan Zhang
- Health Science Center, East China Normal University, Shanghai 200241, China
| |
Collapse
|
8
|
Zeng C, Liu J, Zheng X, Hu X, He Y. Prostaglandin and prostaglandin receptors: present and future promising therapeutic targets for pulmonary arterial hypertension. Respir Res 2023; 24:263. [PMID: 37915044 PMCID: PMC10619262 DOI: 10.1186/s12931-023-02559-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH), Group 1 pulmonary hypertension (PH), is a type of pulmonary vascular disease characterized by abnormal contraction and remodeling of the pulmonary arterioles, manifested by pulmonary vascular resistance (PVR) and increased pulmonary arterial pressure, eventually leading to right heart failure or even death. The mechanisms involved in this process include inflammation, vascular matrix remodeling, endothelial cell apoptosis and proliferation, vasoconstriction, vascular smooth muscle cell proliferation and hypertrophy. In this study, we review the mechanisms of action of prostaglandins and their receptors in PAH. MAIN BODY PAH-targeted therapies, such as endothelin receptor antagonists, phosphodiesterase type 5 inhibitors, activators of soluble guanylate cyclase, prostacyclin, and prostacyclin analogs, improve PVR, mean pulmonary arterial pressure, and the six-minute walk distance, cardiac output and exercise capacity and are licensed for patients with PAH; however, they have not been shown to reduce mortality. Current treatments for PAH primarily focus on inhibiting excessive pulmonary vasoconstriction, however, vascular remodeling is recalcitrant to currently available therapies. Lung transplantation remains the definitive treatment for patients with PAH. Therefore, it is imperative to identify novel targets for improving pulmonary vascular remodeling in PAH. Studies have confirmed that prostaglandins and their receptors play important roles in the occurrence and development of PAH through vasoconstriction, vascular smooth muscle cell proliferation and migration, inflammation, and extracellular matrix remodeling. CONCLUSION Prostacyclin and related drugs have been used in the clinical treatment of PAH. Other prostaglandins also have the potential to treat PAH. This review provides ideas for the treatment of PAH and the discovery of new drug targets.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Jing Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Xialei Zheng
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Xinqun Hu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China.
| | - Yuhu He
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China.
| |
Collapse
|
9
|
Kurz M, Ulrich M, Bittner A, Scharf MM, Shao J, Wallenstein I, Lemoine H, Wettschureck N, Kolb P, Bünemann M. EP4 Receptor Conformation Sensor Suited for Ligand Screening and Imaging of Extracellular Prostaglandins. Mol Pharmacol 2023; 104:80-91. [PMID: 37442628 DOI: 10.1124/molpharm.122.000648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023] Open
Abstract
Prostaglandins are important lipid mediators with a wide range of functions in the human body. They act mainly via plasma membrane localized prostaglandin receptors, which belong to the G-protein coupled receptor class. Due to their localized formation and short lifetime, it is important to be able to measure the distribution and abundance of prostaglandins in time and/or space. In this study, we present a Foerster resonance energy transfer (FRET)-based conformation sensor of the human prostaglandin E receptor subtype 4 (EP4 receptor), which was capable of detecting prostaglandin E2 (PGE2)-induced receptor activation in the low nanomolar range with a good signal-to-noise ratio. The sensor retained the typical selectivity for PGE2 among arachidonic acid products. Human embryonic kidney cells stably expressing the sensor did not produce detectable amounts of prostaglandins making them suitable for a coculture approach allowing us, over time, to detect prostaglandin formation in Madin-Darby canine kidney cells and primary mouse macrophages. Furthermore, the EP4 receptor sensor proved to be suited to detect experimentally generated PGE2 gradients by means of FRET-microscopy, indicating the potential to measure gradients of PGE2 within tissues. In addition to FRET-based imaging of prostanoid release, the sensor allowed not only for determination of PGE2 concentrations, but also proved to be capable of measuring ligand binding kinetics. The good signal-to-noise ratio at a commercial plate reader and the ability to directly determine ligand efficacy shows the obvious potential of this sensor interest for screening and characterization of novel ligands of the pharmacologically important human EP4 receptor. SIGNIFICANCE STATEMENT: The authors present a biosensor based on the prostaglandin E receptor subtype 4, which is well suited to measure extracellular prostaglandin E2 (PGE2) concentration with high temporal and spatial resolution. It can be used for the imaging of PGE2 levels and gradients by means of Foerster resonance energy transfer microscopy, and for determining PGE2 release of primary cells as well as for screening purposes in a plate reader setting.
Collapse
Affiliation(s)
- Michael Kurz
- Institutes for Pharmacology and Clinical Pharmacy (M.K., M.U., A.B., I.W., M.B.) and Pharmaceutical Chemistry (M.M.S., P.K.), Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany; Department of Pharmacology (J.S., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Laser Medicine, Heinrich Heine University, Düsseldorf, Germany (H.L.); and LWL-Laboratory (H.L.), Düsseldorf, Germany
| | - Michaela Ulrich
- Institutes for Pharmacology and Clinical Pharmacy (M.K., M.U., A.B., I.W., M.B.) and Pharmaceutical Chemistry (M.M.S., P.K.), Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany; Department of Pharmacology (J.S., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Laser Medicine, Heinrich Heine University, Düsseldorf, Germany (H.L.); and LWL-Laboratory (H.L.), Düsseldorf, Germany
| | - Alwina Bittner
- Institutes for Pharmacology and Clinical Pharmacy (M.K., M.U., A.B., I.W., M.B.) and Pharmaceutical Chemistry (M.M.S., P.K.), Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany; Department of Pharmacology (J.S., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Laser Medicine, Heinrich Heine University, Düsseldorf, Germany (H.L.); and LWL-Laboratory (H.L.), Düsseldorf, Germany
| | - Magdalena Martina Scharf
- Institutes for Pharmacology and Clinical Pharmacy (M.K., M.U., A.B., I.W., M.B.) and Pharmaceutical Chemistry (M.M.S., P.K.), Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany; Department of Pharmacology (J.S., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Laser Medicine, Heinrich Heine University, Düsseldorf, Germany (H.L.); and LWL-Laboratory (H.L.), Düsseldorf, Germany
| | - Jingchen Shao
- Institutes for Pharmacology and Clinical Pharmacy (M.K., M.U., A.B., I.W., M.B.) and Pharmaceutical Chemistry (M.M.S., P.K.), Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany; Department of Pharmacology (J.S., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Laser Medicine, Heinrich Heine University, Düsseldorf, Germany (H.L.); and LWL-Laboratory (H.L.), Düsseldorf, Germany
| | - Imke Wallenstein
- Institutes for Pharmacology and Clinical Pharmacy (M.K., M.U., A.B., I.W., M.B.) and Pharmaceutical Chemistry (M.M.S., P.K.), Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany; Department of Pharmacology (J.S., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Laser Medicine, Heinrich Heine University, Düsseldorf, Germany (H.L.); and LWL-Laboratory (H.L.), Düsseldorf, Germany
| | - Horst Lemoine
- Institutes for Pharmacology and Clinical Pharmacy (M.K., M.U., A.B., I.W., M.B.) and Pharmaceutical Chemistry (M.M.S., P.K.), Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany; Department of Pharmacology (J.S., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Laser Medicine, Heinrich Heine University, Düsseldorf, Germany (H.L.); and LWL-Laboratory (H.L.), Düsseldorf, Germany
| | - Nina Wettschureck
- Institutes for Pharmacology and Clinical Pharmacy (M.K., M.U., A.B., I.W., M.B.) and Pharmaceutical Chemistry (M.M.S., P.K.), Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany; Department of Pharmacology (J.S., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Laser Medicine, Heinrich Heine University, Düsseldorf, Germany (H.L.); and LWL-Laboratory (H.L.), Düsseldorf, Germany
| | - Peter Kolb
- Institutes for Pharmacology and Clinical Pharmacy (M.K., M.U., A.B., I.W., M.B.) and Pharmaceutical Chemistry (M.M.S., P.K.), Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany; Department of Pharmacology (J.S., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Laser Medicine, Heinrich Heine University, Düsseldorf, Germany (H.L.); and LWL-Laboratory (H.L.), Düsseldorf, Germany
| | - Moritz Bünemann
- Institutes for Pharmacology and Clinical Pharmacy (M.K., M.U., A.B., I.W., M.B.) and Pharmaceutical Chemistry (M.M.S., P.K.), Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany; Department of Pharmacology (J.S., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Laser Medicine, Heinrich Heine University, Düsseldorf, Germany (H.L.); and LWL-Laboratory (H.L.), Düsseldorf, Germany
| |
Collapse
|
10
|
Nango H, Tsuruta K, Miyagishi H, Aono Y, Saigusa T, Kosuge Y. Update on the pathological roles of prostaglandin E 2 in neurodegeneration in amyotrophic lateral sclerosis. Transl Neurodegener 2023; 12:32. [PMID: 37337289 DOI: 10.1186/s40035-023-00366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by selective degeneration of upper and lower motor neurons. The pathogenesis of ALS remains largely unknown; however, inflammation of the spinal cord is a focus of ALS research and an important pathogenic process in ALS. Prostaglandin E2 (PGE2) is a major lipid mediator generated by the arachidonic-acid cascade and is abundant at inflammatory sites. PGE2 levels are increased in the postmortem spinal cords of ALS patients and in ALS model mice. Beneficial therapeutic effects have been obtained in ALS model mice using cyclooxygenase-2 inhibitors to inhibit the biosynthesis of PGE2, but the usefulness of this inhibitor has not yet been proven in clinical trials. In this review, we present current evidence on the involvement of PGE2 in the progression of ALS and discuss the potential of microsomal prostaglandin E synthase (mPGES) and the prostaglandin receptor E-prostanoid (EP) 2 as therapeutic targets for ALS. Signaling pathways involving prostaglandin receptors mediate toxic effects in the central nervous system. In some situations, however, the receptors mediate neuroprotective effects. Our recent studies demonstrated that levels of mPGES-1, which catalyzes the final step of PGE2 biosynthesis, are increased at the early-symptomatic stage in the spinal cords of transgenic ALS model mice carrying the G93A variant of superoxide dismutase-1. In addition, in an experimental motor-neuron model used in studies of ALS, PGE2 induces the production of reactive oxygen species and subsequent caspase-3-dependent cytotoxicity through activation of the EP2 receptor. Moreover, this PGE2-induced EP2 up-regulation in motor neurons plays a role in the death of motor neurons in ALS model mice. Further understanding of the pathophysiological role of PGE2 in neurodegeneration may provide new insights to guide the development of novel therapies for ALS.
Collapse
Affiliation(s)
- Hiroshi Nango
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Komugi Tsuruta
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Hiroko Miyagishi
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Yuri Aono
- Department of Pharmacology, School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaechonishi, Matsudo-Shi, Chiba, 271-8587, Japan
| | - Tadashi Saigusa
- Department of Pharmacology, School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaechonishi, Matsudo-Shi, Chiba, 271-8587, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan.
| |
Collapse
|
11
|
Robb CT, Zhou Y, Felton JM, Zhang B, Goepp M, Jheeta P, Smyth DJ, Duffin R, Vermeren S, Breyer R, Narumiya S, McSorley HJ, Maizels RM, Schwarze JKJ, Rossi AG, Yao C. Metabolic regulation by prostaglandin E 2 impairs lung group 2 innate lymphoid cell responses. Allergy 2023; 78:714-730. [PMID: 36181709 PMCID: PMC10952163 DOI: 10.1111/all.15541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Group 2 innate lymphoid cells (ILC2s) play a critical role in asthma pathogenesis. Non-steroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease (NERD) is associated with reduced signaling via EP2, a receptor for prostaglandin E2 (PGE2 ). However, the respective roles for the PGE2 receptors EP2 and EP4 (both share same downstream signaling) in the regulation of lung ILC2 responses has yet been deciphered. METHODS The roles of PGE2 receptors EP2 and EP4 on ILC2-mediated lung inflammation were investigated using genetically modified mouse lines and pharmacological approaches in IL-33-induced lung allergy model. The effects of PGE2 receptors and downstream signals on ILC2 metabolic activation and effector function were examined using in vitro cell cultures. RESULTS Deficiency of EP2 rather than EP4 augments IL-33-induced mouse lung ILC2 responses and eosinophilic inflammation in vivo. In contrast, exogenous agonism of EP4 and EP2 or inhibition of phosphodiesterase markedly restricts IL-33-induced lung ILC2 responses. Mechanistically, PGE2 directly suppresses IL-33-dependent ILC2 activation through the EP2/EP4-cAMP pathway, which downregulates STAT5 and MYC pathway gene expression and ILC2 energy metabolism. Blocking glycolysis diminishes IL-33-dependent ILC2 responses in mice where endogenous PG synthesis or EP2 signaling is blocked but not in mice with intact PGE2 -EP2 signaling. CONCLUSION We have defined a mechanism for optimal suppression of mouse lung ILC2 responses by endogenous PGE2 -EP2 signaling which underpins the clinical findings of defective EP2 signaling in patients with NERD. Our findings also indicate that exogenously targeting the PGE2 -EP4-cAMP and energy metabolic pathways may provide novel opportunities for treating the ILC2-initiated lung inflammation in asthma and NERD.
Collapse
Affiliation(s)
- Calum T. Robb
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - You Zhou
- Systems Immunity University Research Institute and Division of Infection and ImmunityCardiff UniversityCardiffUK
| | - Jennifer M. Felton
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Birong Zhang
- Systems Immunity University Research Institute and Division of Infection and ImmunityCardiff UniversityCardiffUK
| | - Marie Goepp
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Privjyot Jheeta
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Danielle J. Smyth
- Division of Cell Signaling and Immunology, School of Life SciencesWellcome Trust Building, University of DundeeDundeeUK
| | - Rodger Duffin
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Sonja Vermeren
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Richard M. Breyer
- Department of Veterans AffairsTennessee Valley Health AuthorityNashvilleTennesseeUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Shuh Narumiya
- Alliance Laboratory for Advanced Medical Research and Department of Drug Discovery Medicine, Medical Innovation CenterKyoto University Graduate School of MedicineKyotoJapan
| | - Henry J. McSorley
- Division of Cell Signaling and Immunology, School of Life SciencesWellcome Trust Building, University of DundeeDundeeUK
| | - Rick M. Maizels
- Wellcome Centre for Molecular Parasitology, Institute for Infection, Immunity and InflammationUniversity of GlasgowGlasgowUK
| | - Jürgen K. J. Schwarze
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Adriano G. Rossi
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Chengcan Yao
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| |
Collapse
|
12
|
de Solla SR, King LE, Gilroy ÈAM. Environmental exposure to non-steroidal anti-inflammatory drugs and potential contribution to eggshell thinning in birds. ENVIRONMENT INTERNATIONAL 2023; 171:107638. [PMID: 36542999 DOI: 10.1016/j.envint.2022.107638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/17/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Abnormally thin eggshells can reduce avian reproductive success, and have caused rapid population declines. The best known examples of this phenomenon are the widespread population crashes in birds, mostly raptors, fish eating birds, and scavengers, caused by the pesticide DDT and its isomers in the 1960s. A variety of other chemicals have been reported to cause eggshell thinning. Non-steroidal anti-inflammatory drugs (NSAIDs), which are extensively and increasingly used in human and veterinary medicine, may be one particularly concerning group of chemicals that demonstrate an ability to impair eggshell development, based both on laboratory studies and on their known mechanism of action. In this review, we outline environmental and wildlife exposure to NSAIDs, describe the process of eggshell formation, and discuss pathways affected by NSAIDs. We list pharmaceuticals, including NSAIDs, and other compounds demonstrated to reduce eggshell thickness, and highlight their main mechanisms of action. Dosing studies empirically demonstrated that NSAIDs reduce eggshell thickness through cyclooxygenase inhibition, which suppresses prostaglandin synthesis and reduces the calcium available for the mineralization of eggshell. Using the US EPA's CompTox Chemicals Dashboard, we show that NSAIDs are predicted to strongly inhibit cyclooxygenases. NSAIDs have been observed both in the putative diet of scavenging birds, and we report examples of NSAIDs detected in eggs or tissues of wild and captive Old World vultures. We suggest that NSAIDs in the environment represent a hazard that could impair reproduction in wild birds.
Collapse
Affiliation(s)
- Shane R de Solla
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada.
| | - Laura E King
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada
| | - Ève A M Gilroy
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada
| |
Collapse
|
13
|
Wesselman HM, Nguyen TK, Chambers JM, Drummond BE, Wingert RA. Advances in Understanding the Genetic Mechanisms of Zebrafish Renal Multiciliated Cell Development. J Dev Biol 2022; 11:1. [PMID: 36648903 PMCID: PMC9844391 DOI: 10.3390/jdb11010001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cilia are microtubule-based organelles that project from the cell surface. In humans and other vertebrates, possession of a single cilium structure enables an assortment of cellular processes ranging from mechanosensation to fluid propulsion and locomotion. Interestingly, cells can possess a single cilium or many more, where so-called multiciliated cells (MCCs) possess apical membrane complexes with several dozen or even hundreds of motile cilia that beat in a coordinated fashion. Development of MCCs is, therefore, integral to control fluid flow and/or cellular movement in various physiological processes. As such, MCC dysfunction is associated with numerous pathological states. Understanding MCC ontogeny can be used to address congenital birth defects as well as acquired disease conditions. Today, researchers used both in vitro and in vivo experimental models to address our knowledge gaps about MCC specification and differentiation. In this review, we summarize recent discoveries from our lab and others that have illuminated new insights regarding the genetic pathways that direct MCC ontogeny in the embryonic kidney using the power of the zebrafish animal model.
Collapse
Affiliation(s)
| | | | | | | | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
14
|
Nango H, Kosuge Y. Present State and Future Perspectives of Prostaglandins as a Differentiation Factor in Motor Neurons. Cell Mol Neurobiol 2022; 42:2097-2108. [PMID: 34032949 PMCID: PMC11421640 DOI: 10.1007/s10571-021-01104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/18/2021] [Indexed: 11/28/2022]
Abstract
Spinal motor neurons have the longest axons that innervate the skeletal muscles of the central nervous system. Motor neuron diseases caused by spinal motor neuron cell death are incurable due to the unique and irreplaceable nature of their neural circuits. Understanding the mechanisms of neurogenesis, neuritogenesis, and synaptogenesis in motor neurons will allow investigators to develop new in vitro models and regenerative therapies for motor neuron diseases. In particular, small molecules can directly reprogram and convert into neural stem cells and neurons, and promote neuron-like cell differentiation. Prostaglandins are known to have a role in the differentiation and tissue regeneration of several cell types and organs. However, the involvement of prostaglandins in the differentiation of motor neurons from neural stem cells is poorly understood. The general cell line used in research on motor neuron diseases is the mouse neuroblastoma and spinal motor neuron fusion cell line NSC-34. Recently, our laboratory reported that prostaglandin E2 and prostaglandin D2 enhanced the conversion of NSC-34 cells into motor neuron-like cells with neurite outgrowth. Moreover, we found that prostaglandin E2-differentiated NSC-34 cells had physiological and electrophysiological properties of mature motor neurons. In this review article, we provide contemporary evidence on the effects of prostaglandins, particularly prostaglandin E2 and prostaglandin D2, on differentiation and neural conversion. We also discuss the potential of prostaglandins as candidates for the development of new therapeutic drugs for motor neuron diseases.
Collapse
Affiliation(s)
- Hiroshi Nango
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba, 274-8555, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba, 274-8555, Japan.
| |
Collapse
|
15
|
Kline HL, Yamamoto BK. Alcohol reinstatement after prolonged abstinence from alcohol drinking by female adolescent rats: Roles of cyclooxygenase-2 and the prostaglandin E 2 receptor 1. Drug Alcohol Depend 2022; 236:109491. [PMID: 35537317 DOI: 10.1016/j.drugalcdep.2022.109491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/12/2022] [Accepted: 05/01/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Adolescent alcohol misuse is a global problem that can significantly increase the reinstatement of alcohol drinking during re-exposure after abstinence, but the mechanism that causes this increase is unknown. Female adolescents are an understudied population but they are particularly vulnerable to adolescent-onset alcohol abuse. We aimed to determine how adolescent-onset alcohol drinking affects pro-inflammatory mediators endothelin-1 (ET-1), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2) in the brain and the role of COX-2 and PGE2 in EtOH reinstatement in adolescent females. METHODS Adolescent female rats were exposed to a 2-bottle choice paradigm of water vs 5% ethanol (EtOH) every other day over a 21 day period. ET-1 and COX-2 proteins were measured in the dorsal striatum (DS) after a 4 week abstinence from EtOH drinking. The COX-2 inhibitor nimesulide was then administered during abstinence prior to an EtOH reinstatement or sucrose preference or to measure PGE2 content. The PGE2 receptor 1 (EP1) antagonist SC-51089 was then administered prior to EtOH reinstatement during which EtOH intake was measured. RESULTS EtOH drinking significantly increased ET-1 by 33.8 ± 8.9% and COX-2 by 71.4 ± 24.3% in the DS. Treatment with nimesulide during abstinence attenuated EtOH intake during reinstatement after prolonged abstinence by 40.3 ± 12.4% compared to saline controls. Adolescent EtOH drinking and abstinence increased PGE2 150.5 ± 30.9% in the DS and nimesulide attenuated this increase. SC-51089 treatment during abstinence attenuated EtOH reinstatement by 48.1 ± 8.4% compared to DMSO controls. CONCLUSIONS These experiments identified a prostaglandin-mediated mechanism that offers a putative pharmacological target to attenuate EtOH reinstatement after adolescent-onset EtOH drinking.
Collapse
Affiliation(s)
- Hannah L Kline
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bryan K Yamamoto
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
16
|
Osaka T. The EP 3 and EP 4 Receptor Subtypes both Mediate the Fever-producing Effects of Prostaglandin E 2 in the Rostral Ventromedial Preoptic Area of the Hypothalamus in Rats. Neuroscience 2022; 494:25-37. [PMID: 35550162 DOI: 10.1016/j.neuroscience.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 11/29/2022]
Abstract
This study aimed to re-examine the receptor subtype that mediates the fever-producing effects of prostaglandin E2 (PGE2) in the rostral ventromedial preoptic area (rvmPOA) of the hypothalamus. Among the four subtypes of PGE2 receptors (EP1, EP2, EP3, and EP4), EP3 receptor is crucially involved in the febrile effects of PGE2. However, it is possible for other subtypes of PGE2 receptor to contribute in the central mechanism of fever generation. Accordingly, effects of microinjection of PGE2 receptor subtype-specific agonists or antagonists were examined at the locus where a microinjection of a small amount (420 fmol) of PGE2 elicited prompt increases in the O2 consumption rate (VO2), heart rate, and colonic temperature (Tc) in the rvmPOA of urethane-chloralose-anesthetized rats. The EP3 agonist sulprostone mimicked, whereas its antagonist L-798,106 reduced, the febrile effects of PGE2 microinjected into the same site. Similarly, the EP4 agonist rivenprost mimicked, whereas its antagonist ONO-AE3-208 reduced, the effects of PGE2 microinjected into the same site. In contrast, microinjection of the EP1 agonist iloprost induced a very small increase in VO2 but did not have significant influences on the heart rate and Tc, whereas its antagonist, AH6809, did not affect the PGE2-induced responses. Microinjection of the EP2 agonist butaprost had no effects on the VO2, heart rate, and Tc. The results suggest that the EP3 and EP4 receptor subtypes are both involved in the fever generated by PGE2 in the rvmPOA.
Collapse
Affiliation(s)
- Toshimasa Osaka
- National Institutes of Biomedical Innovation, Health and Nutrition, Shinjuku 162-8636, Japan.
| |
Collapse
|
17
|
Morgan LM, Martin SL, Mullins ND, Hollywood MA, Thornbury KD, Sergeant GP. Modulation of carbachol-induced Ca2+ oscillations in airway smooth muscle cells by PGE2. Cell Calcium 2022; 103:102547. [DOI: 10.1016/j.ceca.2022.102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/02/2022]
|
18
|
Deen PMT, Boone M, Schweer H, Olesen ETB, Carmone C, Wetzels JFM, Fenton RA, Kortenoeven MLA. A Vasopressin-Induced Change in Prostaglandin Receptor Subtype Expression Explains the Differential Effect of PGE2 on AQP2 Expression. Front Physiol 2022; 12:787598. [PMID: 35126177 PMCID: PMC8814457 DOI: 10.3389/fphys.2021.787598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022] Open
Abstract
Arginine vasopressin (AVP) stimulates the concentration of renal urine by increasing the principal cell expression of aquaporin-2 (AQP2) water channels. Prostaglandin E2 (PGE2) and prostaglandin2α (PGF2α) increase the water absorption of the principal cell without AVP, but PGE2 decreases it in the presence of AVP. The underlying mechanism of this paradoxical response was investigated here. Mouse cortical collecting duct (mkpCCDc14) cells mimic principal cells as they endogenously express AQP2 in response to AVP. PGE2 increased AQP2 abundance without desmopressin (dDAVP), while in the presence of dDAVP, PGE2, and PGF2α reduced AQP2 abundance. dDAVP increased the cellular PGD2 and PGE2 release and decreased the PGF2α release. MpkCCD cells expressed mRNAs for the receptors of PGE2 (EP1/EP4), PGF2 (FP), and TxB2 (TP). Incubation with dDAVP increased the expression of EP1 and FP but decreased the expression of EP4. In the absence of dDAVP, incubation of mpkCCD cells with an EP4, but not EP1/3, agonist increased AQP2 abundance, and the PGE2-induced increase in AQP2 was blocked with an EP4 antagonist. Moreover, in the presence of dDAVP, an EP1/3, but not EP4, agonist decreased the AQP2 abundance, and the addition of EP1 antagonists prevented the PGE2-mediated downregulation of AQP2. Our study shows that in mpkCCDc14 cells, reduced EP4 receptor and increased EP1/FP receptor expression by dDAVP explains the differential effects of PGE2 and PGF2α on AQP2 abundance with or without dDAVP. As the V2R and EP4 receptor, but not the EP1 and FP receptor, can couple to Gs and stimulate the cyclic adenosine monophosphate (cAMP) pathway, our data support a view that cells can desensitize themselves for receptors activating the same pathway and sensitize themselves for receptors of alternative pathways.
Collapse
Affiliation(s)
- Peter M. T. Deen
- Department of Physiology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Michelle Boone
- Department of Physiology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Horst Schweer
- Department of Pediatrics, Philipps-University Marburg, Marburg, Germany
| | - Emma T. B. Olesen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology and Nephrology, North Zealand Hospital, Hillerød, Denmark
| | - Claudia Carmone
- Department of Physiology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Jack F. M. Wetzels
- Department of Nephrology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | | | - Marleen L. A. Kortenoeven
- Department of Physiology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- *Correspondence: Marleen L. A. Kortenoeven
| |
Collapse
|
19
|
Zhang S, Li Q, Mao W, Zhao J, Gong Z, Liu B, Cao J. Prostaglandin E receptor 2 mediates the inducible effects of prostaglandin E 2 on expression of growth factors and enzymes in cattle endometrial epithelial cells and explants. Anim Sci J 2022; 93:e13766. [PMID: 36131609 DOI: 10.1111/asj.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 04/01/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022]
Abstract
Prostaglandin E2 (PGE2 ) is able to induce the expression of several growth factors and enzymes in cattle endometria. However, the specific type of PGE2 receptors which mediates this effect is not fully clear. In this study, the role of prostaglandin E receptor 2 (PTGER2) in PGE2 -mediated induction of growth factors and enzymes expression in cattle endometrial explants and epithelial cells were investigated. PTGER2 was blocked by a PTGER2 antagonist, AH6809, before PGE2 treatment, then the mRNA and protein expression levels of several growth factors and enzymes were compared with that in PGE2 alone treatment group by real-time RT-PCR and Western blotting analysis in endometrial epithelial cells and explants. Results indicated that PGE2 significantly increased the mRNA and protein levels of these growth factors and enzymes, while the rates of increment in the expression of these growth factors and enzymes were inhibited by AH6809. In addition, a PTGER2 agonist, butaprost, significantly increased the expression levels of these growth factors and enzymes, and the effect could be blocked by AH6809. In conclusion, PTGER2 was found to be one dominant receptor mediating the inducible effects of PGE2 on the expression of these growth factors and enzymes in cattle endometrial explants and epithelial cells.
Collapse
Affiliation(s)
- Shuangyi Zhang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Qianru Li
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Wei Mao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiamin Zhao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhiguo Gong
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Bo Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Jinshan Cao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
20
|
DUSP-1 Induced by PGE 2 and PGE 1 Attenuates IL-1β-Activated MAPK Signaling, Leading to Suppression of NGF Expression in Human Intervertebral Disc Cells. Int J Mol Sci 2021; 23:ijms23010371. [PMID: 35008797 PMCID: PMC8745672 DOI: 10.3390/ijms23010371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
The molecular mechanism of discogenic low back pain (LBP) involves nonphysiological nerve invasion into a degenerated intervertebral disc (IVD), induced by nerve growth factor (NGF). Selective cyclooxygenase (COX)-2 inhibitors are mainly used in the treatment of LBP, and act by suppressing the inflammatory mediator prostaglandin E2 (PGE2), which is induced by inflammatory stimuli, such as interleukin-1β (IL-1β). However, in our previous in vitro study using cultured human IVD cells, we demonstrated that the induction of NGF by IL-1β is augmented by a selective COX-2 inhibitor, and that PGE2 and PGE1 suppress NGF expression. Therefore, in this study, to elucidate the mechanism of NGF suppression by PGE2 and PGE1, we focused on mitogen-activated protein kinases (MAPKs) and its phosphatase, dual-specificity phosphatase (DUSP)-1. IL-1β-induced NGF expression was altered in human IVD cells by MAPK pathway inhibitors. PGE2 and PGE1 enhanced IL-1β-induced DUSP-1 expression, and suppressed the phosphorylation of MAPKs in human IVD cells. In DUSP-1 knockdown cells established using small interfering RNA, IL-1β-induced phosphorylation of MAPKs was enhanced and prolonged, and NGF expression was significantly enhanced. These results suggest that PGE2 and PGE1 suppress IL-1β-induced NGF expression by suppression of the MAPK signaling pathway, accompanied by increased DUSP-1 expression.
Collapse
|
21
|
Song CY, Singh P, Motiwala M, Shin JS, Lew J, Dutta SR, Gonzalez FJ, Bonventre JV, Malik KU. 2-Methoxyestradiol Ameliorates Angiotensin II-Induced Hypertension by Inhibiting Cytosolic Phospholipase A 2α Activity in Female Mice. Hypertension 2021; 78:1368-1381. [PMID: 34628937 PMCID: PMC8516072 DOI: 10.1161/hypertensionaha.121.18181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. We tested the hypothesis that CYP1B1 (cytochrome P450 1B1)-17β-estradiol metabolite 2-methoxyestradiol protects against Ang II (angiotensin II)–induced hypertension by inhibiting group IV cPLA2α (cytosolic phospholipase A2α) activity and production of prohypertensive eicosanoids in female mice. Ang II (700 ng/kg per minute, SC) increased mean arterial blood pressure (BP), systolic and diastolic BP measured by radiotelemetry, renal fibrosis, and reactive oxygen species production in wild-type mice (cPLA2α+/+/Cyp1b1+/+) that were enhanced by ovariectomy and abolished in intact and ovariectomized-cPLA2α−/−/Cyp1b1+/+ mice. Ang II–induced increase in SBP measured by tail-cuff, renal fibrosis, reactive oxygen species production, and cPLA2α activity measured by its phosphorylation in the kidney, and urinary excretion of prostaglandin E2 and thromboxane A2 metabolites were enhanced in ovariectomized-cPLA2α+/+/Cyp1b1+/+ and intact cPLA2α+/+/Cyp1b1−/− mice. 2-Methoxyestradiol and arachidonic acid metabolism inhibitor 5,8,11,14-eicosatetraynoic acid attenuated the Ang II–induced increase in SBP, renal fibrosis, reactive oxygen species production, and urinary excretion of prostaglandin E2, and thromboxane A2 metabolites in ovariectomized-cPLA2α+/+/Cyp1b1+/+ and intact cPLA2α+/+/Cyp1b1−/− mice. Antagonists of prostaglandin E2 and thromboxane A2 receptors EP1 and EP3 and TP, respectively, inhibited Ang II–induced increases in SBP and reactive oxygen species production and renal fibrosis in ovariectomized-cPLA2α+/+/Cyp1b1+/+ and intact cPLA2α+/+/Cyp1b1−/− mice. These data suggest that CYP1B1-generated metabolite 2-methoxyestradiol mitigates Ang II–induced hypertension and renal fibrosis by inhibiting cPLA2α activity, reducing prostaglandin E2, and thromboxane A2 production and stimulating EP1 and EP3 and TP receptors, respectively. Thus, 2-methoxyestradiol and the drugs that selectively block EP1 and EP3 and TP receptors could be useful in treating hypertension and its pathogenesis in females.
Collapse
Affiliation(s)
- Chi Young Song
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee HSC, Memphis (C.Y.S., P.S., M.M., J.S.S., J.L., S.R.D., K.U.M.)
| | - Purnima Singh
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee HSC, Memphis (C.Y.S., P.S., M.M., J.S.S., J.L., S.R.D., K.U.M.)
| | - Mustafa Motiwala
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee HSC, Memphis (C.Y.S., P.S., M.M., J.S.S., J.L., S.R.D., K.U.M.)
| | - Ji Soo Shin
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee HSC, Memphis (C.Y.S., P.S., M.M., J.S.S., J.L., S.R.D., K.U.M.)
| | - Jessica Lew
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee HSC, Memphis (C.Y.S., P.S., M.M., J.S.S., J.L., S.R.D., K.U.M.)
| | - Shubha R. Dutta
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee HSC, Memphis (C.Y.S., P.S., M.M., J.S.S., J.L., S.R.D., K.U.M.)
| | - Frank J. Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Joseph V. Bonventre
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (J.V.B.)
| | - Kafait U. Malik
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee HSC, Memphis (C.Y.S., P.S., M.M., J.S.S., J.L., S.R.D., K.U.M.)
| |
Collapse
|
22
|
Biologically active lipids in the regulation of lymphangiogenesis in disease states. Pharmacol Ther 2021; 232:108011. [PMID: 34614423 DOI: 10.1016/j.pharmthera.2021.108011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/31/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023]
Abstract
Lymphatic vessels have crucial roles in the regulation of interstitial fluids, immune surveillance, and the absorption of dietary fat in the intestine. Lymphatic function is also closely related to the pathogenesis of various disease states such as inflammation, lymphedema, endometriosis, liver dysfunction, and tumor metastasis. Lymphangiogenesis, the formation of new lymphatic vessels from pre-existing lymphatic vessels, is a critical determinant in the above conditions. Although the effect of growth factors on lymphangiogenesis is well-characterized, and biologically active lipids are known to affect smooth muscle contractility and vasoaction, there is accumulating evidence that biologically active lipids are also important inducers of growth factors and cytokines that regulate lymphangiogenesis. This review discusses recent advances in our understanding of biologically active lipids, including arachidonic acid metabolites, sphingosine 1-phosphate, and lysophosphatidic acid, as regulators of lymphangiogenesis, and the emerging importance of the lymphangiogenesis as a therapeutic target.
Collapse
|
23
|
Mansley MK, Niklas C, Nacken R, Mandery K, Glaeser H, Fromm MF, Korbmacher C, Bertog M. Prostaglandin E2 stimulates the epithelial sodium channel (ENaC) in cultured mouse cortical collecting duct cells in an autocrine manner. J Gen Physiol 2021; 152:151804. [PMID: 32442241 PMCID: PMC7398144 DOI: 10.1085/jgp.201912525] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/30/2020] [Accepted: 04/21/2020] [Indexed: 12/26/2022] Open
Abstract
Prostaglandin E2 (PGE2) is the most abundant prostanoid in the kidney, affecting a wide range of renal functions. Conflicting data have been reported regarding the effects of PGE2 on tubular water and ion transport. The amiloride-sensitive epithelial sodium channel (ENaC) is rate limiting for transepithelial sodium transport in the aldosterone-sensitive distal nephron. The aim of the present study was to explore a potential role of PGE2 in regulating ENaC in cortical collecting duct (CCD) cells. Short-circuit current (ISC) measurements were performed using the murine mCCDcl1 cell line known to express characteristic properties of CCD principal cells and to be responsive to physiological concentrations of aldosterone and vasopressin. PGE2 stimulated amiloride-sensitive ISC via basolateral prostaglandin E receptors type 4 (EP4) with an EC50 of ∼7.1 nM. The rapid stimulatory effect of PGE2 on ISC resembled that of vasopressin. A maximum response was reached within minutes, coinciding with an increased abundance of β-ENaC at the apical plasma membrane and elevated cytosolic cAMP levels. The effects of PGE2 and vasopressin were nonadditive, indicating similar signaling cascades. Exposing mCCDcl1 cells to aldosterone caused a much slower (∼2 h) increase of the amiloride-sensitive ISC. Interestingly, the rapid effect of PGE2 was preserved even after aldosterone stimulation. Furthermore, application of arachidonic acid also increased the amiloride-sensitive ISC involving basolateral EP4 receptors. Exposure to arachidonic acid resulted in elevated PGE2 in the basolateral medium in a cyclooxygenase 1 (COX-1)–dependent manner. These data suggest that in the cortical collecting duct, locally produced and secreted PGE2 can stimulate ENaC-mediated transepithelial sodium transport.
Collapse
Affiliation(s)
- Morag K Mansley
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Niklas
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Regina Nacken
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kathrin Mandery
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Hartmut Glaeser
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Korbmacher
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Marko Bertog
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
24
|
Biringer RG. A Review of Prostanoid Receptors: Expression, Characterization, Regulation, and Mechanism of Action. J Cell Commun Signal 2021; 15:155-184. [PMID: 32970276 PMCID: PMC7991060 DOI: 10.1007/s12079-020-00585-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022] Open
Abstract
Prostaglandin signaling controls a wide range of biological processes from blood pressure homeostasis to inflammation and resolution thereof to the perception of pain to cell survival. Disruption of normal prostanoid signaling is implicated in numerous disease states. Prostaglandin signaling is facilitated by G-protein-coupled, prostanoid-specific receptors and the array of associated G-proteins. This review focuses on the expression, characterization, regulation, and mechanism of action of prostanoid receptors with particular emphasis on human isoforms.
Collapse
Affiliation(s)
- Roger G Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Blvd, Bradenton, FL, 34211, USA.
| |
Collapse
|
25
|
Ogazon del Toro A, Jimenez L, Serrano Rubi M, Castillo A, Hinojosa L, Martinez Rendon J, Cereijido M, Ponce A. Prostaglandin E2 Enhances Gap Junctional Intercellular Communication in Clonal Epithelial Cells. Int J Mol Sci 2021; 22:5813. [PMID: 34071686 PMCID: PMC8198183 DOI: 10.3390/ijms22115813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Prostaglandins are a group of lipids that produce diverse physiological and pathological effects. Among them, prostaglandin E2 (PGE2) stands out for the wide variety of functions in which it participates. To date, there is little information about the influence of PGE2 on gap junctional intercellular communication (GJIC) in any type of tissue, including epithelia. In this work, we set out to determine whether PGE2 influences GJIC in epithelial cells (MDCK cells). To this end, we performed dye (Lucifer yellow) transfer assays to compare GJIC of MDCK cells treated with PGE2 and untreated cells. Our results indicated that (1) PGE2 induces a statistically significant increase in GJIC from 100 nM and from 15 min after its addition to the medium, (2) such effect does not require the synthesis of new mRNA or proteins subunits but rather trafficking of subunits already synthesized, and (3) such effect is mediated by the E2 receptor, which, in turn, triggers a signaling pathway that includes activation of adenylyl cyclase and protein kinase A (PKA). These results widen the knowledge regarding modulation of gap junctional intercellular communication by prostaglandins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Arturo Ponce
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, CDMX, México C.P. 07360, Mexico; (A.O.d.T.); (L.J.); (M.S.R.); (A.C.); (L.H.); (J.M.R.); (M.C.)
| |
Collapse
|
26
|
Roberts MJ, May LT, Keen AC, Liu B, Lam T, Charlton SJ, Rosethorne EM, Halls ML. Inhibition of the Proliferation of Human Lung Fibroblasts by Prostacyclin Receptor Agonists is Linked to a Sustained cAMP Signal in the Nucleus. Front Pharmacol 2021; 12:669227. [PMID: 33995100 PMCID: PMC8116805 DOI: 10.3389/fphar.2021.669227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a chronic and progressive fibrotic lung disease, and current treatments are limited by their side effects. Proliferation of human lung fibroblasts in the pulmonary interstitial tissue is a hallmark of this disease and is driven by prolonged ERK signalling in the nucleus in response to growth factors such as platelet-derived growth factor (PDGF). Agents that increase cAMP have been suggested as alternative therapies, as this second messenger can inhibit the ERK cascade. We previously examined a panel of eight Gαs-cAMP-coupled G protein-coupled receptors (GPCRs) endogenously expressed in human lung fibroblasts. Although the cAMP response was important for the anti-fibrotic effects of GPCR agonists, the magnitude of the acute cAMP response was not predictive of anti-fibrotic efficacy. Here we examined the reason for this apparent disconnect by stimulating the Gαs-coupled prostacyclin receptor and measuring downstream signalling at a sub-cellular level. MRE-269 and treprostinil caused sustained cAMP signalling in the nucleus and complete inhibition of PDGF-induced nuclear ERK and fibroblast proliferation. In contrast, iloprost caused a transient increase in nuclear cAMP, there was no effect of iloprost on PDGF-induced ERK in the nucleus, and this agonist was much less effective at reversing PDGF-induced proliferation. This suggests that sustained elevation of cAMP in the nucleus is necessary for efficient inhibition of PDGF-induced nuclear ERK and fibroblast proliferation. This is an important first step towards understanding of the signalling events that drive GPCR inhibition of fibrosis.
Collapse
Affiliation(s)
- Maxine J Roberts
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom.,Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia
| | - Lauren T May
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia
| | - Alastair C Keen
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia
| | - Bonan Liu
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia
| | - Terrance Lam
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia
| | - Steven J Charlton
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom.,Excellerate Bioscience Ltd., BioCity, Nottingham, United Kingdom
| | - Elizabeth M Rosethorne
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia
| |
Collapse
|
27
|
Sandhu HK, Neuman JC, Schaid MD, Davis SE, Connors KM, Challa R, Guthery E, Fenske RJ, Patibandla C, Breyer RM, Kimple ME. Rat prostaglandin EP3 receptor is highly promiscuous and is the sole prostanoid receptor family member that regulates INS-1 (832/3) cell glucose-stimulated insulin secretion. Pharmacol Res Perspect 2021; 9:e00736. [PMID: 33694300 PMCID: PMC7947324 DOI: 10.1002/prp2.736] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic elevations in fatty acid metabolites termed prostaglandins can be found in circulation and in pancreatic islets from mice or humans with diabetes and have been suggested as contributing to the β‐cell dysfunction of the disease. Two‐series prostaglandins bind to a family of G‐protein‐coupled receptors, each with different biochemical and pharmacological properties. Prostaglandin E receptor (EP) subfamily agonists and antagonists have been shown to influence β‐cell insulin secretion, replication, and/or survival. Here, we define EP3 as the sole prostanoid receptor family member expressed in a rat β‐cell‐derived line that regulates glucose‐stimulated insulin secretion. Several other agonists classically understood as selective for other prostanoid receptor family members also reduce glucose‐stimulated insulin secretion, but these effects are only observed at relatively high concentrations, and, using a well‐characterized EP3‐specific antagonist, are mediated solely by cross‐reactivity with rat EP3. Our findings confirm the critical role of EP3 in regulating β‐cell function, but are also of general interest, as many agonists supposedly selective for other prostanoid receptor family members are also full and efficacious agonists of EP3. Therefore, care must be taken when interpreting experimental results from cells or cell lines that also express EP3.
Collapse
Affiliation(s)
- Harpreet K Sandhu
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Joshua C Neuman
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Interdepartmental Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael D Schaid
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Interdepartmental Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarah E Davis
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelsey M Connors
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Romith Challa
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Erin Guthery
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Rachel J Fenske
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Interdepartmental Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Chinmai Patibandla
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Richard M Breyer
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michelle E Kimple
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Interdepartmental Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
28
|
Marcolina A, Vu K, Annaswamy TM. Lumbar Spinal Stenosis and Potential Management With Prostaglandin E1 Analogs. Am J Phys Med Rehabil 2021; 100:297-302. [PMID: 33065578 DOI: 10.1097/phm.0000000000001620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
ABSTRACT Lumbar spinal stenosis is one of the most commonly diagnosed spinal disorders worldwide and remains a major cause for surgery in older adults. Lumbar spinal stenosis is clinically defined as a progressive degenerative disorder with low back pain and associated neurogenic intermittent claudication. Conservative and surgical management of lumbar spinal stenosis has been shown to be minimally effective on its symptoms. A treatment option that has not been investigated in the United States is the utilization of prostaglandin E1 analogs, which have been used primarily in Japan for the treatment of lumbar spinal stenosis since the 1980s. The vasodilatory and antiplatelet aggregation effects of prostaglandin E1 presumably improve symptoms of lumbar spinal stenosis by increasing blood flow to the spinal nerve roots. This brief report examines the potential vascular pathology of lumbar spinal stenosis, reviews evidence on the use of prostaglandin E1 analog limaprost in Japan for lumbar spinal stenosis, and briefly discusses misoprostol as a possible alternative in the United States. The studies summarized in this report suggest that prostaglandin E1 analogs may provide benefit as a conservative treatment option for patients with lumbar spinal stenosis. However, higher-quality studies conducted in the United States and comparison with other currently used conservative treatments are required before it can be recommended for routine clinical use.
Collapse
Affiliation(s)
- Austin Marcolina
- From the Department of Physical Medicine & Rehabilitation (PM&R), UT Southwestern Medical Center, Dallas, Texas (AM, TMA); UT Southwestern Medical Center, Dallas, Texas (KV); and VA North Texas Health Care System, Dallas VA Medical Center, Dallas, Texas (TMA)
| | | | | |
Collapse
|
29
|
Vleeshouwers W, van den Dries K, de Keijzer S, Joosten B, Lidke DS, Cambi A. Characterization of the Signaling Modalities of Prostaglandin E2 Receptors EP2 and EP4 Reveals Crosstalk and a Role for Microtubules. Front Immunol 2021; 11:613286. [PMID: 33643295 PMCID: PMC7907432 DOI: 10.3389/fimmu.2020.613286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/18/2020] [Indexed: 11/13/2022] Open
Abstract
Prostaglandin E2 (PGE2) is a lipid mediator that modulates the function of myeloid immune cells such as macrophages and dendritic cells (DCs) through the activation of the G protein-coupled receptors EP2 and EP4. While both EP2 and EP4 signaling leads to an elevation of intracellular cyclic adenosine monophosphate (cAMP) levels through the stimulating Gαs protein, EP4 also couples to the inhibitory Gαi protein to decrease the production of cAMP. The receptor-specific contributions to downstream immune modulatory functions are still poorly defined. Here, we employed quantitative imaging methods to characterize the early EP2 and EP4 signaling events in myeloid cells and their contribution to the dissolution of adhesion structures called podosomes, which is a first and essential step in DC maturation. We first show that podosome loss in DCs is primarily mediated by EP4. Next, we demonstrate that EP2 and EP4 signaling leads to distinct cAMP production profiles, with EP4 inducing a transient cAMP response and EP2 inducing a sustained cAMP response only at high PGE2 levels. We further find that simultaneous EP2 and EP4 stimulation attenuates cAMP production, suggesting a reciprocal control of EP2 and EP4 signaling. Finally, we demonstrate that efficient signaling of both EP2 and EP4 relies on an intact microtubule network. Together, these results enhance our understanding of early EP2 and EP4 signaling in myeloid cells. Considering that modulation of PGE2 signaling is regarded as an important therapeutic possibility in anti-tumor immunotherapy, our findings may facilitate the development of efficient and specific immune modulators of PGE2 receptors.
Collapse
Affiliation(s)
- Ward Vleeshouwers
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sandra de Keijzer
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ben Joosten
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Diane S Lidke
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
30
|
Heeney A, Rogers AC, Mohan H, Mc Dermott F, Baird AW, Winter DC. Prostaglandin E 2 receptors and their role in gastrointestinal motility - Potential therapeutic targets. Prostaglandins Other Lipid Mediat 2021; 152:106499. [PMID: 33035691 DOI: 10.1016/j.prostaglandins.2020.106499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/20/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022]
Abstract
Prostaglandin E2 (PGE2) is found throughout the gastrointestinal tract in a diverse variety of functions and roles. The recent discovery of four PGE2 receptor subtypes in intestinal muscle layers as well as in the enteric plexus has led to much interest in the study of their roles in gut motility. Gut dysmotility has been implicated in functional disease processes including irritable bowel syndrome (IBS) and slow transit constipation, and lubiprostone, a PGE2 derivative, has recently been licensed to treat both conditions. The diversity of actions of PGE2 in the intestinal tract is attributed to its differing effects on its downstream receptor types, as well as their varied distribution in the gut, in both health and disease. This review aims to identify the role and distribution of PGE2 receptors in the intestinal tract, and aims to elucidate their distinct role in gut motor function, with a specific focus on functional intestinal pathologies.
Collapse
Affiliation(s)
- A Heeney
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland.
| | - A C Rogers
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - H Mohan
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - F Mc Dermott
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland
| | - A W Baird
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland
| | - D C Winter
- Institute for Clinical Outcomes, Research and Education (ICORE), St Vincent's University Hospital, Elm Park, Dublin 4, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| |
Collapse
|
31
|
Braune S, Küpper JH, Jung F. Effect of Prostanoids on Human Platelet Function: An Overview. Int J Mol Sci 2020; 21:ijms21239020. [PMID: 33260972 PMCID: PMC7730041 DOI: 10.3390/ijms21239020] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Prostanoids are bioactive lipid mediators and take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. In this review, we focus on their influence on platelets, which are key elements in thrombosis and hemostasis. The function of platelets is influenced by mediators in the blood and the vascular wall. Activated platelets aggregate and release bioactive substances, thereby activating further neighbored platelets, which finally can lead to the formation of thrombi. Prostanoids regulate the function of blood platelets by both activating or inhibiting and so are involved in hemostasis. Each prostanoid has a unique activity profile and, thus, a specific profile of action. This article reviews the effects of the following prostanoids: prostaglandin-D2 (PGD2), prostaglandin-E1, -E2 and E3 (PGE1, PGE2, PGE3), prostaglandin F2α (PGF2α), prostacyclin (PGI2) and thromboxane-A2 (TXA2) on platelet activation and aggregation via their respective receptors.
Collapse
|
32
|
Maddipati KR. Non-inflammatory Physiology of "Inflammatory" Mediators - Unalamation, a New Paradigm. Front Immunol 2020; 11:580117. [PMID: 33117385 PMCID: PMC7575772 DOI: 10.3389/fimmu.2020.580117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/28/2020] [Indexed: 12/31/2022] Open
Abstract
Many small molecules (mostly lipids derived from polyunsaturated fatty acids) and proteins (e. g., cytokines and chemokines) are labeled as inflammatory mediators for their role in eliciting physiological responses to injury. While acute inflammatory events are controlled by anti-inflammatory drugs, lasting damage to the tissues as a result of persistent inflammation is increasingly viewed as the root cause of many chronic diseases that include cardiovascular, neurological, and metabolic disorders, rheumatoid arthritis, and cancer. Interestingly, some of the “inflammatory” mediators also participate in normal developmental physiology without eliciting inflammation. Anti-inflammatory drugs that target the biosynthesis of these mediators are too indiscriminate to distinguish their two divergent physiological roles. A more precise definition of these two physiological processes partaken by the “inflammatory” mediators is warranted to identify their differences. The new paradigm is named “unalamation” ('ə‘n'əlAmāSH(ə)n) to distinguish from inflammation and to identify appropriate intervention strategies to mitigate inflammation associated pathophysiology without affecting the normal developmental physiology.
Collapse
|
33
|
Norel X, Sugimoto Y, Ozen G, Abdelazeem H, Amgoud Y, Bouhadoun A, Bassiouni W, Goepp M, Mani S, Manikpurage HD, Senbel A, Longrois D, Heinemann A, Yao C, Clapp LH. International Union of Basic and Clinical Pharmacology. CIX. Differences and Similarities between Human and Rodent Prostaglandin E 2 Receptors (EP1-4) and Prostacyclin Receptor (IP): Specific Roles in Pathophysiologic Conditions. Pharmacol Rev 2020; 72:910-968. [PMID: 32962984 PMCID: PMC7509579 DOI: 10.1124/pr.120.019331] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Prostaglandins are derived from arachidonic acid metabolism through cyclooxygenase activities. Among prostaglandins (PGs), prostacyclin (PGI2) and PGE2 are strongly involved in the regulation of homeostasis and main physiologic functions. In addition, the synthesis of these two prostaglandins is significantly increased during inflammation. PGI2 and PGE2 exert their biologic actions by binding to their respective receptors, namely prostacyclin receptor (IP) and prostaglandin E2 receptor (EP) 1-4, which belong to the family of G-protein-coupled receptors. IP and EP1-4 receptors are widely distributed in the body and thus play various physiologic and pathophysiologic roles. In this review, we discuss the recent advances in studies using pharmacological approaches, genetically modified animals, and genome-wide association studies regarding the roles of IP and EP1-4 receptors in the immune, cardiovascular, nervous, gastrointestinal, respiratory, genitourinary, and musculoskeletal systems. In particular, we highlight similarities and differences between human and rodents in terms of the specific roles of IP and EP1-4 receptors and their downstream signaling pathways, functions, and activities for each biologic system. We also highlight the potential novel therapeutic benefit of targeting IP and EP1-4 receptors in several diseases based on the scientific advances, animal models, and human studies. SIGNIFICANCE STATEMENT: In this review, we present an update of the pathophysiologic role of the prostacyclin receptor, prostaglandin E2 receptor (EP) 1, EP2, EP3, and EP4 receptors when activated by the two main prostaglandins, namely prostacyclin and prostaglandin E2, produced during inflammatory conditions in human and rodents. In addition, this comparison of the published results in each tissue and/or pathology should facilitate the choice of the most appropriate model for the future studies.
Collapse
Affiliation(s)
- Xavier Norel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yukihiko Sugimoto
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Gulsev Ozen
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Heba Abdelazeem
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yasmine Amgoud
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amel Bouhadoun
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Wesam Bassiouni
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Marie Goepp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Salma Mani
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Hasanga D Manikpurage
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amira Senbel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Dan Longrois
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Akos Heinemann
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Chengcan Yao
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Lucie H Clapp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| |
Collapse
|
34
|
Mizuno H, Kihara Y. Druggable Lipid GPCRs: Past, Present, and Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:223-258. [PMID: 32894513 DOI: 10.1007/978-3-030-50621-6_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) have seven transmembrane spanning domains and comprise the largest superfamily with ~800 receptors in humans. GPCRs are attractive targets for drug discovery because they transduce intracellular signaling in response to endogenous ligands via heterotrimeric G proteins or arrestins, resulting in a wide variety of physiological and pathophysiological responses. The endogenous ligands for GPCRs are highly chemically diverse and include ions, biogenic amines, nucleotides, peptides, and lipids. In this review, we follow the KonMari method to better understand druggable lipid GPCRs. First, we have a comprehensive tidying up of lipid GPCRs including receptors for prostanoids, leukotrienes, specialized pro-resolving mediators (SPMs), lysophospholipids, sphingosine 1-phosphate (S1P), cannabinoids, platelet-activating factor (PAF), free fatty acids (FFAs), and sterols. This tidying up consolidates 46 lipid GPCRs and declutters several perplexing lipid GPCRs. Then, we further tidy up the lipid GPCR-directed drugs from the literature and databases, which identified 24 clinical drugs targeting 16 unique lipid GPCRs available in the market and 44 drugs under evaluation in more than 100 clinical trials as of 2019. Finally, we introduce drug designs for GPCRs that spark joy, such as positive or negative allosteric modulators (PAM or NAM), biased agonism, functional antagonism like fingolimod, and monoclonal antibodies (MAbs). These strategic drug designs may increase the efficacy and specificity of drugs and reduce side effects. Technological advances will help to discover more endogenous lipid ligands from the vast number of remaining orphan GPCRs and will also lead to the development novel lipid GPCR drugs to treat various diseases.
Collapse
Affiliation(s)
| | - Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
35
|
Fischer DP, Griffiths AL, Lui S, Sabar UJ, Farrar D, O'Donovan PJ, Woodward DF, Marshall KM. Distribution and Function of Prostaglandin E 2 Receptors in Mouse Uterus: Translational Value for Human Reproduction. J Pharmacol Exp Ther 2020; 373:381-390. [PMID: 32205366 DOI: 10.1124/jpet.119.263509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Prostaglandin (PG) E analogs are used clinically to ripen the cervix and induce labor. However, selective receptor agonists may have potential to improve induction response rates or manage unwanted uterine hypercontractility in conditions such as dysmenorrhea and preterm labor. To characterize their therapeutic value, PGE2 analogs were used to investigate the functional E-type prostanoid (EP) receptor population in isolated human uterus. Responsiveness in mouse tissues was also examined to validate its use as a preclinical model. Uterine samples were obtained from mice at dioestrus (n = 12), term gestation (n = 14), and labor (n = 12) and from the lower uterus of women undergoing hysterectomy (n = 12) or Caesarean section (n = 18). Vehicle and agonist effects were assessed using superfusion and immersion techniques. PGE2 evoked predominant excitatory responses in mouse and relaxation in human tissues. Selective EP4 agonists inhibited tissue activity in both nonpregnant species, while the EP2 mimetic CP533536 also attenuated uterine contractions throughout gestation. The uterotonic effects of the EP3/1 agonist sulprostone were more pronounced than the EP1 agonist ONO-D1-004, corresponding to abundant EP3 receptor expression in all samples. The contractile phenotype in mouse compared with human uteri may relate to regional differences as well as high expression of EP3 receptor transcripts. Similarities in nonpregnant and gestational tissues across species suggest that EP3 may represent a valuable translational drug target for preventing uterine hypercontractility by employing a selective antagonist. SIGNIFICANCE STATEMENT: This research validates the use of nonpregnant mice for preclinical drug discovery of uterine EP receptor targets. To determine the utility of novel drugs and delivery systems at term pregnancy and labor, pharmacological agents interacting with EP3 receptors have clear translational value.
Collapse
Affiliation(s)
- Deborah P Fischer
- Division of Pharmacy and Optometry, School of Health Sciences (D.P.F., K.M.M.) and Division of Developmental Biology and Medicine, School of Medical Sciences (S.L.), Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom; School of Pharmacy, University of Bradford, Bradford, West Yorkshire, United Kingdom (A.L.G., U.J.S.); Bradford Institute for Health Research, Bradford Royal Infirmary, Duckworth Lane, Bradford, West Yorkshire, United Kingdom (D.F.); Obstetrics and Gynaecological Oncology, Yorkshire Clinic, Bradford Road, Bingley, West Yorkshire, United Kingdom (P.J.D.); Department of Bioengineering, Imperial College London, London, United Kingdom (D.F.W.); and JeniVision Inc., Irvine, California, USA (D.F.W.).
| | - Anna L Griffiths
- Division of Pharmacy and Optometry, School of Health Sciences (D.P.F., K.M.M.) and Division of Developmental Biology and Medicine, School of Medical Sciences (S.L.), Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom; School of Pharmacy, University of Bradford, Bradford, West Yorkshire, United Kingdom (A.L.G., U.J.S.); Bradford Institute for Health Research, Bradford Royal Infirmary, Duckworth Lane, Bradford, West Yorkshire, United Kingdom (D.F.); Obstetrics and Gynaecological Oncology, Yorkshire Clinic, Bradford Road, Bingley, West Yorkshire, United Kingdom (P.J.D.); Department of Bioengineering, Imperial College London, London, United Kingdom (D.F.W.); and JeniVision Inc., Irvine, California, USA (D.F.W.)
| | - Sylvia Lui
- Division of Pharmacy and Optometry, School of Health Sciences (D.P.F., K.M.M.) and Division of Developmental Biology and Medicine, School of Medical Sciences (S.L.), Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom; School of Pharmacy, University of Bradford, Bradford, West Yorkshire, United Kingdom (A.L.G., U.J.S.); Bradford Institute for Health Research, Bradford Royal Infirmary, Duckworth Lane, Bradford, West Yorkshire, United Kingdom (D.F.); Obstetrics and Gynaecological Oncology, Yorkshire Clinic, Bradford Road, Bingley, West Yorkshire, United Kingdom (P.J.D.); Department of Bioengineering, Imperial College London, London, United Kingdom (D.F.W.); and JeniVision Inc., Irvine, California, USA (D.F.W.)
| | - Uzmah J Sabar
- Division of Pharmacy and Optometry, School of Health Sciences (D.P.F., K.M.M.) and Division of Developmental Biology and Medicine, School of Medical Sciences (S.L.), Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom; School of Pharmacy, University of Bradford, Bradford, West Yorkshire, United Kingdom (A.L.G., U.J.S.); Bradford Institute for Health Research, Bradford Royal Infirmary, Duckworth Lane, Bradford, West Yorkshire, United Kingdom (D.F.); Obstetrics and Gynaecological Oncology, Yorkshire Clinic, Bradford Road, Bingley, West Yorkshire, United Kingdom (P.J.D.); Department of Bioengineering, Imperial College London, London, United Kingdom (D.F.W.); and JeniVision Inc., Irvine, California, USA (D.F.W.)
| | - Diane Farrar
- Division of Pharmacy and Optometry, School of Health Sciences (D.P.F., K.M.M.) and Division of Developmental Biology and Medicine, School of Medical Sciences (S.L.), Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom; School of Pharmacy, University of Bradford, Bradford, West Yorkshire, United Kingdom (A.L.G., U.J.S.); Bradford Institute for Health Research, Bradford Royal Infirmary, Duckworth Lane, Bradford, West Yorkshire, United Kingdom (D.F.); Obstetrics and Gynaecological Oncology, Yorkshire Clinic, Bradford Road, Bingley, West Yorkshire, United Kingdom (P.J.D.); Department of Bioengineering, Imperial College London, London, United Kingdom (D.F.W.); and JeniVision Inc., Irvine, California, USA (D.F.W.)
| | - Peter J O'Donovan
- Division of Pharmacy and Optometry, School of Health Sciences (D.P.F., K.M.M.) and Division of Developmental Biology and Medicine, School of Medical Sciences (S.L.), Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom; School of Pharmacy, University of Bradford, Bradford, West Yorkshire, United Kingdom (A.L.G., U.J.S.); Bradford Institute for Health Research, Bradford Royal Infirmary, Duckworth Lane, Bradford, West Yorkshire, United Kingdom (D.F.); Obstetrics and Gynaecological Oncology, Yorkshire Clinic, Bradford Road, Bingley, West Yorkshire, United Kingdom (P.J.D.); Department of Bioengineering, Imperial College London, London, United Kingdom (D.F.W.); and JeniVision Inc., Irvine, California, USA (D.F.W.)
| | - David F Woodward
- Division of Pharmacy and Optometry, School of Health Sciences (D.P.F., K.M.M.) and Division of Developmental Biology and Medicine, School of Medical Sciences (S.L.), Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom; School of Pharmacy, University of Bradford, Bradford, West Yorkshire, United Kingdom (A.L.G., U.J.S.); Bradford Institute for Health Research, Bradford Royal Infirmary, Duckworth Lane, Bradford, West Yorkshire, United Kingdom (D.F.); Obstetrics and Gynaecological Oncology, Yorkshire Clinic, Bradford Road, Bingley, West Yorkshire, United Kingdom (P.J.D.); Department of Bioengineering, Imperial College London, London, United Kingdom (D.F.W.); and JeniVision Inc., Irvine, California, USA (D.F.W.)
| | - Kay M Marshall
- Division of Pharmacy and Optometry, School of Health Sciences (D.P.F., K.M.M.) and Division of Developmental Biology and Medicine, School of Medical Sciences (S.L.), Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom; School of Pharmacy, University of Bradford, Bradford, West Yorkshire, United Kingdom (A.L.G., U.J.S.); Bradford Institute for Health Research, Bradford Royal Infirmary, Duckworth Lane, Bradford, West Yorkshire, United Kingdom (D.F.); Obstetrics and Gynaecological Oncology, Yorkshire Clinic, Bradford Road, Bingley, West Yorkshire, United Kingdom (P.J.D.); Department of Bioengineering, Imperial College London, London, United Kingdom (D.F.W.); and JeniVision Inc., Irvine, California, USA (D.F.W.)
| |
Collapse
|
36
|
Lu CD, Ma JK, Luo ZY, Tai QX, Wang P, Guan PP. Transferrin is responsible for mediating the effects of iron ions on the regulation of anterior pharynx-defective-1α/β and Presenilin 1 expression via PGE 2 and PGD 2 at the early stage of Alzheimer's Disease. Aging (Albany NY) 2019; 10:3117-3135. [PMID: 30383537 PMCID: PMC6286844 DOI: 10.18632/aging.101615] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/19/2018] [Indexed: 01/03/2023]
Abstract
Transferrin (Tf) is an important iron-binding protein postulated to play a key role in iron ion (Fe) absorption via the Tf receptor (TfR), which potentially contributes to the pathogenesis of Alzheimer’s disease (AD). However, the role of Tf in AD remains unknown. Using mouse-derived neurons and APP/PS1 transgenic (Tg) mice as model systems, we firstly revealed the mechanisms of APH-1α/1β and presenilin 1 (PS1) upregulation by Fe in prostaglandin (PG) E2- and PGD2-dependent mechanisms. Specifically, Fe stimulated the expression of mPGES-1 and the production of PGE2 and PGD2 via the Tf and TfR system. Highly accumulated PGE2 markedly induced the expression of anterior pharynx-defective-1α and -1β (APH-1α/1β) and PS1 via an EP receptor-dependent mechanism. In contrast, PGD2 suppressed the expression of APH-1α/1β and PS1 via a prostaglandin D2 (DP) receptor-dependent mechanism. As the natural dehydrated product of PGD2, 15d-PGJ2 exerts inhibitory effects on the expression of APH-1α/1β and PS1 in a peroxisome proliferator-activated receptor (PPAR) γ-dependent manner. The expression of APH-1α/1β and PS1 ultimately determined the production and deposition of β-amyloid protein (Aβ), an effect that potentially contributes to the pathogenesis of AD.
Collapse
Affiliation(s)
- Chen-Di Lu
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Ji-Kang Ma
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Zheng-Yang Luo
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Qun-Xi Tai
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|
37
|
Golia MT, Poggini S, Alboni S, Garofalo S, Ciano Albanese N, Viglione A, Ajmone-Cat MA, St-Pierre A, Brunello N, Limatola C, Branchi I, Maggi L. Interplay between inflammation and neural plasticity: Both immune activation and suppression impair LTP and BDNF expression. Brain Behav Immun 2019; 81:484-494. [PMID: 31279682 DOI: 10.1016/j.bbi.2019.07.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 01/11/2023] Open
Abstract
An increasing number of studies show that both inflammation and neural plasticity act as key players in the vulnerability and recovery from psychiatric disorders and neurodegenerative diseases. However, the interplay between these two players has been limitedly explored. In fact, while a few studies reported an immune activation, others conveyed an immune suppression, associated with an impairment in neural plasticity. Therefore, we hypothesized that deviations in inflammatory levels in both directions may impair neural plasticity. We tested this hypothesis experimentally, by acute treatment of C57BL/6 adult male mice with different doses of two inflammatory modulators: lipopolysaccharide (LPS), an endotoxin, and ibuprofen (IBU), a nonselective cyclooxygenase inhibitor, which are respectively a pro- and an anti-inflammatory agent. The results showed that LPS and IBU have different effects on behavior and inflammatory response. LPS treatment induced a reduction of body temperature, a decrease of body weight and a reduced food and liquid intake. In addition, it led to increased levels of inflammatory markers expression, both in the total hippocampus and in isolated microglia cells, including Interleukin (IL)-1β, and enhanced the concentration of prostaglandin E2 (PGE2). On the other hand, IBU increased the level of anti-inflammatory markers, decreased tryptophan 2,3-dioxygenase (TDO2), the first step in the kynurenine pathway known to be activated during inflammatory conditions, and PGE2 levels. Though LPS and IBU administration differently affected mediators related with pro- or anti-inflammatory responses, they produced overlapping effects on neural plasticity. Indeed, higher doses of both LPS and IBU induced a statistically significant decrease in the amplitude of long-term potentiation (LTP), in Brain-Derived Neurotrophic Factor (BDNF) expression levels and in the phosphorylation of the AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor subunit GluR1, compared to the control group. Such effect appears to be dose-dependent since only the higher, but not the lower, dose of both compounds led to a plasticity impairment. Overall, the present findings indicate that acute treatment with pro- and anti-inflammatory agents impair neural plasticity in a dose dependent manner.
Collapse
Affiliation(s)
- Maria Teresa Golia
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur-Italy, Sapienza University of Rome, Italy
| | - Silvia Poggini
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Alboni
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Garofalo
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur-Italy, Sapienza University of Rome, Italy
| | - Naomi Ciano Albanese
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Aurelia Viglione
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy; PhD Program in Neuroscience, Scuola Superiore di Pisa, Pisa, Italy
| | | | - Abygaël St-Pierre
- Axe Neurosciences, Centre de recherche du CHU de Québec, Québec, Canada
| | - Nicoletta Brunello
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur-Italy, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Igor Branchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Maggi
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur-Italy, Sapienza University of Rome, Italy.
| |
Collapse
|
38
|
Harner A, Wang Y, Fang X, Merchen TD, Cox PB, Ho S, Kleven D, Thompson T, Nahman NS. Differential Expression of Prostaglandin E2 Receptors in Porcine Kidney Transplants. Transplant Proc 2019; 51:2124-2131. [PMID: 31399188 DOI: 10.1016/j.transproceed.2019.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/07/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Acute rejection of a kidney allograft results from adaptive immune responses and marked inflammation. The eicosanoid prostaglandin E2 (PGE2) modulates the inflammatory response, is generated by cyclooxygenase 2 (COX-2), and binds to 1 of the 4 G protein-coupled E prostanoid cell surface receptors (EP1-4). Receptor activation results in in proinflammatory (EP1 and EP3) or anti-inflammatory (EP2 and EP4) responses. We theorized that expression of the components of the COX-PGE2-EP signaling pathway correlates with acute rejection in a porcine model of allogeneic renal transplantation. METHOD COX-2 enzyme and EP receptor protein expression were quantitated with western blotting and immunohistochemistry from allotransplants (n = 18) and autotransplants (n = 5). Linear regression analysis was used to correlate EP receptor expression with the Banff category of rejection. RESULTS Pigs with advanced rejection demonstrated significant increases in serum PGE2 metabolites, while pigs with less rejection demonstrated higher tissue concentrations of PGE2 metabolites. A significant negative correlation between COX-2 expression and Banff category of rejection (R = -0.877) was shown. Rejection decreased expression of EP2 and EP4. For both receptors, there was a significant negative correlation with the extent of rejection (R = -0.760 and R = -0.891 for EP2 and EP4, respectively). Rejection had no effect on the proinflammatory receptors EP1 and EP3. CONCLUSION Downregulation of COX-2 and the anti-inflammatory EP2 and EP4 receptors is associated with acute rejection in unmatched pig kidney transplants, suggesting that the COX-2-PGE2-EP pathway may modulate inflammation in this model. Enhancing EP2 and/or EP4 activity may offer novel therapeutic approaches to controlling the inflammation of acute allograft rejection.
Collapse
Affiliation(s)
- Andrew Harner
- Department of Surgery Medical College of Georgia at Augusta University, Augusta, Georgia.
| | - Youli Wang
- Department of Medicine Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Xuexiu Fang
- Department of Medicine Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Todd D Merchen
- Department of Surgery Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Philip B Cox
- Department of Medicine Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Sam Ho
- Gift of Hope Organ and Tissue Donor Network, Itaska, Illinois
| | - Daniel Kleven
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Thomas Thompson
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - N Stanley Nahman
- Department of Medicine Medical College of Georgia at Augusta University, Augusta, Georgia; Charlie Norwood VAMC, Augusta, Georgia
| |
Collapse
|
39
|
Audet M, White KL, Breton B, Zarzycka B, Han GW, Lu Y, Gati C, Batyuk A, Popov P, Velasquez J, Manahan D, Hu H, Weierstall U, Liu W, Shui W, Katritch V, Cherezov V, Hanson MA, Stevens RC. Crystal structure of misoprostol bound to the labor inducer prostaglandin E 2 receptor. Nat Chem Biol 2019; 15:11-17. [PMID: 30510194 PMCID: PMC6289721 DOI: 10.1038/s41589-018-0160-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/05/2018] [Indexed: 01/07/2023]
Abstract
Misoprostol is a life-saving drug in many developing countries for women at risk of post-partum hemorrhaging owing to its affordability, stability, ease of administration and clinical efficacy. However, misoprostol lacks receptor and tissue selectivities, and thus its use is accompanied by a number of serious side effects. The development of pharmacological agents combining the advantages of misoprostol with improved selectivity is hindered by the absence of atomic details of misoprostol action in labor induction. Here, we present the 2.5 Å resolution crystal structure of misoprostol free-acid form bound to the myometrium labor-inducing prostaglandin E2 receptor 3 (EP3). The active state structure reveals a completely enclosed binding pocket containing a structured water molecule that coordinates misoprostol's ring structure. Modeling of selective agonists in the EP3 structure reveals rationales for selectivity. These findings will provide the basis for the next generation of uterotonic drugs that will be suitable for administration in low resource settings.
Collapse
Affiliation(s)
- Martin Audet
- Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Kate L. White
- Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Billy Breton
- Domain Therapeutics NA Inc., Frederick-Banting Road, Montreal H4S 1Z9, Canada
| | - Barbara Zarzycka
- Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Gye Won Han
- Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Yan Lu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Cornelius Gati
- Linac Coherent Light Source, SLAC, National Accelerator Laboratory, Menlo Park, California 94025, USA,Stanford University, Department of Structural Biology, Palo Alto, California 94305, USA
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC, National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Petr Popov
- Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA,Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - Jeffrey Velasquez
- Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - David Manahan
- Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Hao Hu
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Uwe Weierstall
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Wei Liu
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Vsevolod Katritch
- Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA,Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - Vadim Cherezov
- Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA,Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | | | - Raymond C. Stevens
- Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA,Correspondence:
| |
Collapse
|
40
|
Chourey S, Ye Q, Reddy CN, Wang R, Cossette C, Gravel S, Slobodchikova I, Vuckovic D, Rokach J, Powell WS. Novel Highly Potent and Metabolically Resistant Oxoeicosanoid (OXE) Receptor Antagonists That Block the Actions of the Granulocyte Chemoattractant 5-Oxo-6,8,11,14-Eicosatetraenoic Acid (5-oxo-ETE). J Med Chem 2018; 61:5934-5948. [PMID: 29972644 DOI: 10.1021/acs.jmedchem.8b00154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is a potent lipid mediator that induces tissue eosinophilia via the selective OXE receptor (OXE-R), which is an attractive therapeutic target in eosinophilic diseases. We previously identified indole OXE-R antagonists that block 5-oxo-ETE-induced primate eosinophil activation. Although these compounds possess good oral absorption, their plasma levels decline rapidly due to extensive oxidation of their hexyl side chain. We have now succeeded in dramatically increasing antagonist potency and resistance to metabolism by replacing the hexyl group with phenylpentyl or phenylhexyl side chains. Compared with our previous lead compound S-230, our most potent antagonist, S-C025, has an IC50 (120 pM) over 80 times lower and a substantially longer plasma half-life. A single major metabolite, which retains antagonist activity (IC50, 690 pM) and has a prolonged lifetime in plasma was observed. These new highly potent OXE-R antagonists may provide a novel strategy for the treatment of eosinophilic disorders like asthma.
Collapse
Affiliation(s)
- Shishir Chourey
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology , 150 West University Boulevard , Melbourne , Florida 32901-6982 , United States
| | - Qiuji Ye
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology , 150 West University Boulevard , Melbourne , Florida 32901-6982 , United States
| | - Chintam Nagendra Reddy
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology , 150 West University Boulevard , Melbourne , Florida 32901-6982 , United States
| | - Rui Wang
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology , 150 West University Boulevard , Melbourne , Florida 32901-6982 , United States
| | - Chantal Cossette
- Meakins-Christie Laboratories, Centre for Translational Biology , McGill University Health Centre , 1001 Decarie Boulevard , Montreal , Quebec H4A 3J1 , Canada
| | - Sylvie Gravel
- Meakins-Christie Laboratories, Centre for Translational Biology , McGill University Health Centre , 1001 Decarie Boulevard , Montreal , Quebec H4A 3J1 , Canada
| | - Irina Slobodchikova
- Department of Chemistry and Biochemistry and PERFORM Centre , Concordia University , 7141 Sherbrooke Street West , Montréal , Quebec H4B 1R6 , Canada
| | - Dajana Vuckovic
- Department of Chemistry and Biochemistry and PERFORM Centre , Concordia University , 7141 Sherbrooke Street West , Montréal , Quebec H4B 1R6 , Canada
| | - Joshua Rokach
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology , 150 West University Boulevard , Melbourne , Florida 32901-6982 , United States
| | - William S Powell
- Meakins-Christie Laboratories, Centre for Translational Biology , McGill University Health Centre , 1001 Decarie Boulevard , Montreal , Quebec H4A 3J1 , Canada
| |
Collapse
|
41
|
Li P, Jiang H, Wu H, Wu D, Li H, Yu J, Lai J. AH6809 decreases production of inflammatory mediators by PGE 2 - EP2 - cAMP signaling pathway in an experimentally induced pure cerebral concussion in rats. Brain Res 2018; 1698:11-28. [PMID: 29792868 DOI: 10.1016/j.brainres.2018.05.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/19/2018] [Accepted: 05/20/2018] [Indexed: 12/31/2022]
Abstract
Increasing evidence suggests that PGE2 metabolic pathway is involved in pathological changes of the secondary brain injury after traumatic brain injury. However, the underlying mechanisms, in particular, the correlation between various key enzymes and the brain injury, has remained to be fully explored. More specifically, it remains to be ascertained whether AH6809 (an EP2 receptor antagonist) would interfere with the downstream of the PGE2, regulate the inflammatory mediators and improve neuronal damage in the hippocampus by PGE2 - EP2 - cAMP signaling pathway. The expression and pathological changes of cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), microsomal prostaglandin-E synthase-1 (mPGES-1), E-prostanoid receptor 2 (EP2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and inducible nitricoxide synthase (iNOS) in the CA1 area of hippocampus were evaluated by immunohistochemistry, Western blot and RT-PCR after pure cerebral concussion (PCC) induced by a metal pendulum closed brain injury in rats followed by AH6809 treatment. The morphology and number of neurons in CA1 region were analyzed by cresyl violet staining. The concentration of prostaglandin E2 (PGE2) and cyclic adenosine monophosphate (cAMP) was assayed by ELISA. Many neurons in hippocampal CA1 area appeared to undergo necrosis and the number of neurons was concomitantly reduced after PCC injury. With the passage of time, the protein and mRNA expression of various key enzymes including COX-1, COX-2 and mPGES-1, EP2 receptor, and inflammatory mediators including TNF-α, IL-1β and iNOS was increased; meanwhile, the concentration of PGE2 and cAMP was enhanced. After PCC injury given AH6809 intervention, injury of neurons in hippocampal CA1 area was attenuated. The protein and mRNA expression of COX-1, COX-2, mPGES-1, EP2, TNF-α, IL-1β and iNOS was decreased, this was coupled with reduction of PGE2 and cAMP. The results suggest that PGE2 metabolic pathway is involved in secondary pathological changes of PCC. AH6809 improves the recovery of injured neurons in the hippocampal CA1 area and downregulates the inflammatory mediators by PGE2 - EP2 - cAMP signaling pathway.
Collapse
Affiliation(s)
- Ping Li
- College of Forensic Science, Xi'an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Science, Xi'an 710061, Shaanxi, PR China; Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming 650500, Yunnan, PR China
| | - Hongyan Jiang
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming 650500, Yunnan, PR China
| | - Haiying Wu
- Department of Emergency and Intensive Care Unit, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, PR China
| | - Deye Wu
- Department of Human Anatomy and Histology/Embryology, Qilu Medical University, 246 West Outer Ring Road, Boshan Economic and Technological Development Zone, Zibo 255213, Shandong, PR China
| | - Hengxi Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming 650500, Yunnan, PR China
| | - Jianyun Yu
- College of Forensic Science and Key Laboratory of Brain Injury, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming 650500, Yunnan, PR China
| | - Jianghua Lai
- College of Forensic Science, Xi'an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Science, Xi'an 710061, Shaanxi, PR China.
| |
Collapse
|
42
|
Selectively targeting prostanoid E (EP) receptor-mediated cell signalling pathways: Implications for lung health and disease. Pulm Pharmacol Ther 2018; 49:75-87. [DOI: 10.1016/j.pupt.2018.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/05/2018] [Accepted: 01/25/2018] [Indexed: 12/18/2022]
|
43
|
Caselli G, Bonazzi A, Lanza M, Ferrari F, Maggioni D, Ferioli C, Giambelli R, Comi E, Zerbi S, Perrella M, Letari O, Di Luccio E, Colovic M, Persiani S, Zanelli T, Mennuni L, Piepoli T, Rovati LC. Pharmacological characterisation of CR6086, a potent prostaglandin E 2 receptor 4 antagonist, as a new potential disease-modifying anti-rheumatic drug. Arthritis Res Ther 2018; 20:39. [PMID: 29490676 PMCID: PMC5831858 DOI: 10.1186/s13075-018-1537-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/04/2018] [Indexed: 12/22/2022] Open
Abstract
Background Prostaglandin E2 (PGE2) acts via its EP4 receptor as a cytokine amplifier (e.g., interleukin [IL]-6) and induces the differentiation and expansion of inflammatory T-helper (Th) lymphocytes. These mechanisms play a key role in the onset and progression of rheumatoid arthritis (RA). We present the pharmacological characterisation of CR6086, a novel EP4 receptor antagonist, and provide evidence for its potential as a disease-modifying anti-rheumatic drug (DMARD). Methods CR6086 affinity and pharmacodynamics were studied in EP4-expressing HEK293 cells by radioligand binding and cyclic adenosine monophosphate (cAMP) production, respectively. In immune cells, IL-6 and vascular endothelial growth factor (VEGF) expression were analysed by RT-PCR, and IL-23 and IL-17 release were measured by enzyme-linked immunosorbent assay (ELISA). In collagen-induced arthritis (CIA) models, rats or mice were immunised with bovine collagen type II. Drugs were administered orally (etanercept and methotrexate intraperitoneally) starting at disease onset. Arthritis progression was evaluated by oedema, clinical score and histopathology. Anti-collagen II immunoglobulin G antibodies were measured by ELISA. Results CR6086 showed selectivity and high affinity for the human EP4 receptor (Ki = 16.6 nM) and functioned as a pure antagonist (half-maximal inhibitory concentration, 22 nM) on PGE2-stimulated cAMP production. In models of human immune cells in culture, CR6086 reduced key cytokine players of RA (IL-6 and VEGF expression in macrophages, IL-23 release from dendritic cells, IL-17 release from Th17 cells). In the CIA model of RA in rats and mice, CR6086 significantly improved all features of arthritis: severity, histology, inflammation and pain. In rats, CR6086 was better than the selective cyclooxygenase-2 inhibitor rofecoxib and at least as effective as the Janus kinase inhibitor tofacitinib. In mice, CR6086 and the biologic DMARD etanercept were highly effective, whereas the non-steroidal anti-inflammatory drug naproxen was ineffective. Importantly, in a study of CR6086/methotrexate, combined treatment greatly improved the effect of a fully immunosuppressive dose of methotrexate. Conclusions CR6086 is a novel, potent EP4 antagonist showing favourable immunomodulatory properties, striking DMARD effects in rodents, and anti-inflammatory activity targeted to immune-mediated inflammatory diseases and distinct from the general effects of cyclooxygenase inhibitors. These results support the clinical development of CR6086, both as a stand-alone DMARD and as a combination therapy with methotrexate. The proof-of-concept trial in patients with RA is ongoing. Electronic supplementary material The online version of this article (10.1186/s13075-018-1537-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Albino Bonazzi
- Rottapharm Biotech, Via Valosa di Sopra 9, I-20900, Monza, MB, Italy
| | - Marco Lanza
- Rottapharm Biotech, Via Valosa di Sopra 9, I-20900, Monza, MB, Italy
| | - Flora Ferrari
- Rottapharm Biotech, Via Valosa di Sopra 9, I-20900, Monza, MB, Italy
| | - Daniele Maggioni
- Rottapharm Biotech, Via Valosa di Sopra 9, I-20900, Monza, MB, Italy
| | - Cristian Ferioli
- Rottapharm Biotech, Via Valosa di Sopra 9, I-20900, Monza, MB, Italy
| | - Roberto Giambelli
- Rottapharm Biotech, Via Valosa di Sopra 9, I-20900, Monza, MB, Italy
| | - Eleonora Comi
- Rottapharm Biotech, Via Valosa di Sopra 9, I-20900, Monza, MB, Italy
| | - Silvia Zerbi
- Rottapharm Biotech, Via Valosa di Sopra 9, I-20900, Monza, MB, Italy
| | - Marco Perrella
- Rottapharm Biotech, Via Valosa di Sopra 9, I-20900, Monza, MB, Italy
| | - Ornella Letari
- Rottapharm Biotech, Via Valosa di Sopra 9, I-20900, Monza, MB, Italy
| | - Elena Di Luccio
- Rottapharm Biotech, Via Valosa di Sopra 9, I-20900, Monza, MB, Italy
| | - Milena Colovic
- Rottapharm Biotech, Via Valosa di Sopra 9, I-20900, Monza, MB, Italy
| | - Stefano Persiani
- Rottapharm Biotech, Via Valosa di Sopra 9, I-20900, Monza, MB, Italy
| | - Tiziano Zanelli
- Rottapharm Biotech, Via Valosa di Sopra 9, I-20900, Monza, MB, Italy
| | - Laura Mennuni
- Rottapharm Biotech, Via Valosa di Sopra 9, I-20900, Monza, MB, Italy
| | - Tiziana Piepoli
- Rottapharm Biotech, Via Valosa di Sopra 9, I-20900, Monza, MB, Italy
| | | |
Collapse
|
44
|
Zhang Y, Liu Y, Wu L, Fan C, Wang Z, Zhang X, Alachkar A, Liang X, Civelli O. Receptor-specific crosstalk between prostanoid E receptor 3 and bombesin receptor subtype 3. FASEB J 2018; 32:3184-3192. [PMID: 29401613 DOI: 10.1096/fj.201700337rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bombesin receptor subtype 3 (BRS-3) is a GPCR that is expressed in the CNS, peripheral tissues, and tumors. Our understanding of BRS-3's role in physiology and pathophysiology is limited because its natural ligand is unknown. In an attempt to identify this ligand, we screened toad skin ( Bufo bufo gargarizans Cantor) extracts and identified prostaglandins as putative ligands. In BRS-3-transfected human embryonic kidney (HEK) cells, we found that prostaglandins, with prostaglandin E2 (PGE2) being the most potent, fulfill the pharmacologic criteria of affinity, selectivity, and specificity to be considered as agonists to the BRS-3 receptor. However, PGE2 is unable to activate BRS-3 in different cellular environments. We speculated that EP receptors might be the cause of this cellular selectivity, and we found that EP3 is the receptor primarily responsible for the differential PGE2 effect. Consequently, we reconstituted the HEK environment in Chinese hamster ovary (CHO) cells and found that BRS-3 and EP3 interact to potentiate PGE2 signaling. This potentiating effect is receptor specific, and it occurs only when BRS-3 is paired to EP3. Our study represents an example of functional crosstalk between two distantly related GPCRs and may be of clinical importance for BRS-3-targeted therapies.-Zhang, Y., Liu, Y., Wu, L., Fan, C., Wang, Z., Zhang, X., Alachkar, A., Liang, X., Civelli, O. Receptor-specific crosstalk between prostanoid E receptor 3 and bombesin receptor subtype 3.
Collapse
Affiliation(s)
- Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yanfang Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Lehao Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Fan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Wang
- Department of Pharmacology, University of California, Irvine, Irvine, California, USA
| | - Xiuli Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Amal Alachkar
- Department of Pharmacology, University of California, Irvine, Irvine, California, USA
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Olivier Civelli
- Department of Pharmacology, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
45
|
Ahn JH, Lee KT, Choi YS, Choi JH. Iloprost, a prostacyclin analog, inhibits the invasion of ovarian cancer cells by downregulating matrix metallopeptidase-2 (MMP-2) through the IP-dependent pathway. Prostaglandins Other Lipid Mediat 2018; 134:47-56. [DOI: 10.1016/j.prostaglandins.2017.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/16/2022]
|
46
|
Yang L, Wei Y, Luo Y, Yang Q, Li H, Hu C, Yang Y, Yang J. Effect of PGE 2-EP s pathway on primary cultured rat neuron injury caused by aluminum. Oncotarget 2017; 8:92004-92017. [PMID: 29190893 PMCID: PMC5696159 DOI: 10.18632/oncotarget.21122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/03/2017] [Indexed: 01/01/2023] Open
Abstract
To observe the characteristic changes of PGE2-EPs pathway and divergent functions of PGE2 receptor subtypes on neuronal injury. The primary cultured rat hippocampus neuron injury model was established via aluminum maltolate (100 μM). The aluminum-overload neurons were treated with the agonists of EP1 (17-phenyl trinor Prostaglandin E2 ethyl amide), EP2 (Butaprost), EP3 (Sulprostone) and EP4 (CAY10598) and antagonists of EP1 (SC-19220), EP2 (AH6809) and EP4 (L-161982) at different concentrations, respectively. The neuronal viability, lactate dehydrogenase leakage rate and PGE2 content were detected by MTT assay, lactate dehydrogenase assay kit and enzyme-linked immunosorbent assay, respectively. The mRNA and protein expressions of mPGES-1 and EPs were determined by RT-PCR and western blot, respectively. The pathomorphology was identified by hematoxylin-eosin staining. In the model group, neuronal viability significantly decreased, while lactate dehydrogenase leakage rate and PGE2 content increased. The mPGES-1, EP1, EP2 and EP4 mRNA expression, and the mPGES-1, EP1 and EP2 protein expression increased, while EP3 level decreased. EP3 agonist exerted protective function in neuronal viability and lactate dehydrogenase leakage rate, while EP1 agonist, EP2 and EP4 antagonist exerted an opposite effect. In conclusion, aluminum-overload caused an imbalance of PGE2-EP1-4 pathway and activation of EP receptor may provide a viable therapeutic target in neuronal injury.
Collapse
Affiliation(s)
- Lu Yang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Yuling Wei
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Ying Luo
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Qunfang Yang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Huan Li
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Congli Hu
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Yang Yang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Junqing Yang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| |
Collapse
|
47
|
Schaid MD, Wisinski JA, Kimple ME. The EP3 Receptor/G z Signaling Axis as a Therapeutic Target for Diabetes and Cardiovascular Disease. AAPS J 2017; 19:1276-1283. [PMID: 28584908 PMCID: PMC7934137 DOI: 10.1208/s12248-017-0097-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/05/2017] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular disease is a common co-morbidity found with obesity-linked type 2 diabetes. Current pharmaceuticals for these two diseases treat each of them separately. Yet, diabetes and cardiovascular disease share molecular signaling pathways that are increasingly being understood to contribute to disease pathophysiology, particularly in pre-clinical models. This review will focus on one such signaling pathway: that mediated by the G protein-coupled receptor, Prostaglandin E2 Receptor 3 (EP3), and its associated G protein in the insulin-secreting beta-cell and potentially the platelet, Gz. The EP3/Gz signaling axis may hold promise as a dual target for type 2 diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Michael D Schaid
- Interdisciplinary Graduate Program in Nutritional Sciences, College of Agriculture and Life Sciences, University of Wisconsin-Madison, 4148 UW Medical Foundation Centennial Building, 1685 Highland Ave, Madison, Wisconsin, 53705, USA
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Jaclyn A Wisinski
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
- Department of Medicine, Division of Endocrinology, School of Medicine and Public Health, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Michelle E Kimple
- Interdisciplinary Graduate Program in Nutritional Sciences, College of Agriculture and Life Sciences, University of Wisconsin-Madison, 4148 UW Medical Foundation Centennial Building, 1685 Highland Ave, Madison, Wisconsin, 53705, USA.
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA.
- Department of Medicine, Division of Endocrinology, School of Medicine and Public Health, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.
| |
Collapse
|
48
|
Santos AC, Temp FR, Marafiga JR, Pillat MM, Hessel AT, Ribeiro LR, Miyazato LG, Oliveira MS, Mello CF. EP2 receptor agonist ONO-AE1-259-01 attenuates pentylenetetrazole- and pilocarpine-induced seizures but causes hippocampal neurotoxicity. Epilepsy Behav 2017. [PMID: 28645087 DOI: 10.1016/j.yebeh.2017.03.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epilepsy is a common and devastating neurological disease affecting more than 50 million people worldwide. Accumulating experimental and clinical evidence suggests that inflammatory pathways contribute to the development of seizures in various forms of epilepsy. In this context, while the activation of the PGE2 EP2 receptor causes early neuroprotective and late neurotoxic effects, the role of EP2 receptor in seizures remains unclear. We investigated whether the systemic administration of the highly selective EP2 agonist ONO-AE1-259-01 prevented acute pentylenetetrazole (PTZ)- and pilocarpine-induced seizures. The effect of ONO-AE1-259-01 on cell death in the hippocampal formation of adult male mice seven days after pilocarpine-induced status epilepticus (SE) was also evaluated. ONO-AE1-259-01 (10μg/kg, s.c.) attenuated PTZ- and pilocarpine-induced seizures, evidenced by the increased latency to seizures, decreased number and duration of seizures episodes and decreased mean amplitude of electrographic seizures. ONO-AE1-259-01 and pilocarpine alone significantly increased the number of pyknotic cells per se in all hippocampal subfields. The EP2 agonist also additively increased pilocarpine-induced pyknosis in the pyramidal cell layer of CA1 but reduced pilocarpine-induced pyknosis in the granule cell layer of the dentate gyrus (DG). Although the systemic administration of ONO-AE1-259-01 caused a significant anticonvulsant effect in our assays, this EP2 agonist caused extensive cell death. These findings limit the likelihood of EP2 receptor agonists being considered as novel potential anticonvulsant drugs.
Collapse
Affiliation(s)
- Aline Carré Santos
- Pharmacology Graduate Program, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil; Department of Physiology and Pharmacology, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil
| | - Fernanda Rossatto Temp
- Pharmacology Graduate Program, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil; Department of Physiology and Pharmacology, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil
| | - Joseane Righes Marafiga
- Pharmacology Graduate Program, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil; Department of Physiology and Pharmacology, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil
| | - Micheli Mainardi Pillat
- Pharmacology Graduate Program, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil; Department of Physiology and Pharmacology, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil
| | - Amanda Titzel Hessel
- Department of Physiology and Pharmacology, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil
| | - Leandro Rodrigo Ribeiro
- Pharmacology Graduate Program, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil; Department of Physiology and Pharmacology, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil
| | - Lígia Gomes Miyazato
- Pharmacology Graduate Program, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil; Department of Physiology and Pharmacology, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil
| | - Mauro Schneider Oliveira
- Pharmacology Graduate Program, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil; Department of Physiology and Pharmacology, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil
| | - Carlos Fernando Mello
- Pharmacology Graduate Program, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil; Department of Physiology and Pharmacology, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
49
|
Discovery of novel pyrazolo[1,5-a]pyridine-based EP 1 receptor antagonists by scaffold hopping: Design, synthesis, and structure-activity relationships. Bioorg Med Chem Lett 2017; 27:4044-4050. [PMID: 28784294 DOI: 10.1016/j.bmcl.2017.07.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/09/2017] [Accepted: 07/20/2017] [Indexed: 11/22/2022]
Abstract
A scaffold-hopping strategy towards a new pyrazolo[1,5-a]pyridine based core using molecular hybridization of two structurally distinct EP1 antagonists, followed by structure-activity relationship-guided optimization, resulted in the identification of potent EP1 antagonists exemplified by 4c, 4f, and 4j, which were shown to reduce pathological intravesical pressure in rats when administered at 1mg/kg iv.
Collapse
|
50
|
Gonzalez AA, Salinas-Parra N, Leach D, Navar LG, Prieto MC. PGE 2 upregulates renin through E-prostanoid receptor 1 via PKC/cAMP/CREB pathway in M-1 cells. Am J Physiol Renal Physiol 2017; 313:F1038-F1049. [PMID: 28701311 DOI: 10.1152/ajprenal.00194.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/23/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
During the early phase of ANG II-dependent hypertension, tubular PGE2 is increased. Renin synthesis and secretion in the collecting duct (CD) are upregulated by ANG II, contributing to further intratubular ANG II formation. However, what happens first and whether the triggering mechanism is independent of tubular ANG II remain unknown. PGE2 stimulates renin synthesis in juxtaglomerular cells via E-prostanoid (EP) receptors through the cAMP/cAMP-responsive element-binding (CREB) pathway. EP receptors are also expressed in the CD. Here, we tested the hypothesis that renin is upregulated by PGE2 in CD cells. The M-1 CD cell line expressed EP1, EP3, and EP4 but not EP2. Dose-response experiments, in the presence of ANG II type 1 receptor blockade with candesartan, demonstrated that 10-6 M PGE2 maximally increases renin mRNA (approximately 4-fold) and prorenin/renin protein levels (approximately 2-fold). This response was prevented by micromolar doses of SC-19220 (EP1 antagonist), attenuated by the EP4 antagonist, L-161982, and exacerbated by the highly selective EP3 antagonist, L-798106 (~10-fold increase). To evaluate further the signaling pathway involved, we used the PKC inhibitor calphostin C and transfections with PKCα dominant negative. Both strategies blunted the PGE2-induced increases in cAMP levels, CREB phosphorylation, and augmentation of renin. Knockdown of the EP1 receptor and CREB also prevented renin upregulation. These results indicate that PGE2 increases CD renin expression through the EP1 receptor via the PKC/cAMP/CREB pathway. Therefore, we conclude that during the early stages of ANG II-dependent hypertension, there is augmentation of PGE2 that stimulates renin in the CD, resulting in increased tubular ANG II formation and further stimulation of renin.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile;
| | - Nicolas Salinas-Parra
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Dan Leach
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana; and
| | - L Gabriel Navar
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana; and.,Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Minolfa C Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana; and.,Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|