1
|
Kumar R, Chug MK, Brisbois EJ. Long-Term Storage Stability and Nitric Oxide Release Behavior of ( N-Acetyl- S-nitrosopenicillaminyl)- S-nitrosopenicillamine-Incorporated Silicone Rubber Coatings. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30595-30606. [PMID: 35759508 PMCID: PMC9708111 DOI: 10.1021/acsami.2c06712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Physical incorporation of nitric oxide (NO) releasing materials in biomedical grade polymer matrices to fabricate antimicrobial coatings and devices is an economically viable process. However, achieving long-term NO release with a minimum or no leaching of the NO donor from the polymer matrix is still a challenging task. Herein, (N-acetyl-S-nitrosopenicillaminyl)-S-nitrosopenicillamine (SNAP-SNAP), a penicillamine dipeptide NO-releasing molecule, is incorporated into a commercially available biomedical grade silicone rubber (SR) to fabricate a NO-releasing coating (SNAP-SNAP/SR). The storage stabilities of the SNAP-SNAP powder and SNAP-SNAP/SR coating were analyzed at different temperatures. The SNAP-SNAP/SR coatings with varying wt % of SNAP-SNAP showed a tunable and sustained NO release for up to 6 weeks. Further, S-nitroso-N-acetylpenicillamine (SNAP), a well-explored NO-releasing molecule, was incorporated into a biomedical grade silicone polymer to fabricate a NO-releasing coating (SNAP/SR) and a comparative analysis of the NO release and S-nitrosothiol (RSNO) leaching behavior of 10 wt % SNAP-SNAP/SR and 10 wt % SNAP/SR was studied. Interestingly, the 10 wt % SNAP-SNAP/SR coatings exhibited ∼36% higher NO release and 4 times less leaching of NO donors than the 10 wt % SNAP/SR coatings. Further, the 10 wt % SNAP-SNAP/SR coatings exhibited promising antibacterial properties against Staphylococcus aureus and Escherichia coli due to the persistent release of NO. The 10 wt % SNAP-SNAP/SR coatings were also found to be biocompatible against NIH 3T3 mouse fibroblast cells. These results corroborate the sustained stability and NO-releasing properties of the SNAP-SNAP in a silicone polymer matrix and demonstrate the potential for the SNAP-SNAP/SR polymer in the fabrication of long-term indwelling biomedical devices and implants to enhance biocompatibility and resist device-related infections.
Collapse
Affiliation(s)
- Rajnish Kumar
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Manjyot Kaur Chug
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J Brisbois
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
2
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
3
|
Cai YM, Webb JS. Optimization of nitric oxide donors for investigating biofilm dispersal response in Pseudomonas aeruginosa clinical isolates. Appl Microbiol Biotechnol 2020; 104:8859-8869. [PMID: 32865612 PMCID: PMC7502453 DOI: 10.1007/s00253-020-10859-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/13/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023]
Abstract
Pseudomonas aeruginosa biofilms contribute heavily to chronic lung infection in cystic fibrosis patients, leading to morbidity and mortality. Nitric oxide (NO) has been shown to disperse P. aeruginosa biofilms in vitro, ex vivo and in clinical trials as a promising anti-biofilm agent. Traditional NO donors such as sodium nitroprusside (SNP) have been extensively employed in different studies. However, the dosage of SNP in different studies was not consistent, ranging from 500 nM to 500 μM. SNP is light sensitive and produces cyanide, which may lead to data misinterpretation and inaccurate predictions of dispersal responses in clinical settings. New NO donors and NO delivery methods have therefore been explored. Here we assessed 7 NO donors using P. aeruginosa PAO1 and determined that SNP and Spermine NONOate (S150) successfully reduced > 60% biomass within 24 and 2 h, respectively. While neither dosage posed toxicity towards bacterial cells, chemiluminescence assays showed that SNP only released NO upon light exposure in M9 media and S150 delivered much higher performance spontaneously. S150 was then tested on 13 different cystic fibrosis P. aeruginosa (CF-PA) isolates; most CF-PA biofilms were significantly dispersed by 250 μM S150. Our work therefore discovered a commercially available NO donor S150, which disperses CF-PA biofilms efficiently within a short period of time and without releasing cyanide, as an alternative of SNP in clinical trials in the future. KEY POINTS: • S150 performs the best in dispersing P. aeruginosa biofilms among 7 NO donors. • SNP only releases NO in the presence of light, while S150 releases NO spontaneously. • S150 successfully disperses biofilms formed by P. aeruginosa cystic fibrosis clinical isolates.
Collapse
Affiliation(s)
- Yu-Ming Cai
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Jeremy S Webb
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
4
|
Reis AKCA, Stern A, Monteiro HP. S-nitrosothiols and H 2S donors: Potential chemo-therapeutic agents in cancer. Redox Biol 2019; 27:101190. [PMID: 30981679 PMCID: PMC6859576 DOI: 10.1016/j.redox.2019.101190] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023] Open
Abstract
Nitric Oxide (NO) and Hydrogen Sulfide (H2S) are components of an "interactome", which is defined as a redox system involving the interactions of RSS, RNS and ROS. Chemical interaction by these species is common and is characterized by one and two electron oxidation, nitrosylation, nitration and sulfuration/polysulfidation reactions. NO and H2S are gases that penetrate cell membranes, are synthesized by specific enzymes, are ubiquitous, regulate protein activities through post-translational modifications and participate in cell signaling. The two molecules at high concentrations compared to physiological concentrations may result in cellular damage particularly through their interaction with other reactive species. NO and H2S can interact with each other and form a variety of molecular species which may have constructive or destructive behavior depending on the cell type, the cellular environment (ex. oxygen tension, pH, redox state), where the products are produced and in what concentrations. Cross talk exists between NO and H2S, whereby they can influence the generation and signaling behavior of each other. Given the above mentioned properties of NO and H2S and studies in cancer cells and animal models employing NO and H2S donors that generate higher than physiological concentrations of NO and H2S and are effective in killing cancer cells but not normal cells, lend credence to the possibility of the utility of these donors in an approach to the treatment of cancer.
Collapse
Affiliation(s)
- Adriana Karla Cardoso Amorim Reis
- Department of Chemistry, Institute of Environmental, Chemical and Pharmaceutical Sciences - Universidade Federal de São Paulo - Campus Diadema, São Paulo, Brazil
| | - Arnold Stern
- New York University, School of Medicine, New York, NY, USA.
| | - Hugo Pequeno Monteiro
- Department of Biochemistry, Center for Cellular and Molecular Therapy - Universidade Federal de São Paulo - Campus São Paulo, São Paulo, Brazil.
| |
Collapse
|
5
|
Homeyer KH, Goudie MJ, Singha P, Handa H. Liquid-Infused Nitric-Oxide-Releasing Silicone Foley Urinary Catheters for Prevention of Catheter-Associated Urinary Tract Infections. ACS Biomater Sci Eng 2019; 5:2021-2029. [DOI: 10.1021/acsbiomaterials.8b01320] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Katie H. Homeyer
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Marcus J. Goudie
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Priyadarshini Singha
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
6
|
Wo Y, Xu LC, Li Z, Matzger AJ, Meyerhoff ME, Siedlecki CA. Antimicrobial nitric oxide releasing surfaces based on S-nitroso-N-acetylpenicillamine impregnated polymers combined with submicron-textured surface topography. Biomater Sci 2017; 5:1265-1278. [PMID: 28560367 PMCID: PMC6290899 DOI: 10.1039/c7bm00108h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A novel dual functioning antimicrobial CarboSil 20 80A polymer material that combines physical topographical surface modification and nitric oxide (NO) release is prepared and evaluated for its efficacy in reducing bacterial adhesion in vitro. The new biomaterial is created via a soft lithography two-stage replication process to induce submicron textures on its surface, followed by solvent impregnation with the NO donor, S-nitroso-N-acetylpenicillamine (SNAP), to obtain long-term (up to 38 d) NO release. The NO releasing textured polymer surface is evaluated against four bacteria commonly known to cause infections in hospital settings and the results demonstrate that the combined strategy enables a synergistic effect on reducing the bacterial adhesion of Staphylococcus epidermidis and Pseudomonas aeruginosa bacteria.
Collapse
Affiliation(s)
- Yaqi Wo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Li-Chong Xu
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Zi Li
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam J. Matzger
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark E. Meyerhoff
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christopher A. Siedlecki
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
- Department of Bioengineering, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
7
|
Goudie MJ, Brainard BM, Schmiedt CW, Handa H. Characterization and in vivo performance of nitric oxide-releasing extracorporeal circuits in a feline model of thrombogenicity. J Biomed Mater Res A 2016; 105:539-546. [PMID: 27741554 DOI: 10.1002/jbm.a.35932] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/28/2016] [Accepted: 10/11/2016] [Indexed: 12/19/2022]
Abstract
Infection and thrombosis are the two leading complications associated with blood contacting medical devices, and have led to the development of active materials that can delivery antibiotics or antithrombotic agents. Two key characteristics of these materials are the ability to produce controlled delivery, as well as minimal systemic delivery of the agent outside of the device site. Nitric oxide (NO) releasing materials are attractive as NO plays pivotal roles in the body's natural defense against bacterial infection, as well as regulation of platelet adhesion and activation. This work characterizes an NO-releasing extracorporeal circuit (ECC) under flow conditions for the first time, examining the effect of incubation and application of the top coating on leaching of NO donor and NO-release kinetics. Top coated ECCs with incubation delivered ca. 1% of the total NO potential over the 4-h period, whereas uncoated ECCs delivered over 4.5% of the total NO. Incubated ECC loops maintained a flux of 1.83 ± 0.50 × 10-10 mol min-1 cm-2 for the full 4 h duration. The NO-releasing ECC loops significantly increased the time-to-clot as compared to the corresponding control (11 ± 3.6 min control, 132 ± 93.0 min NO-releasing) when evaluated in vivo in a feline animal model. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 539-546, 2017.
Collapse
Affiliation(s)
- Marcus J Goudie
- College of Engineering, University of Georgia, Athens, Georgia
| | - Benjamin M Brainard
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Chad W Schmiedt
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Hitesh Handa
- College of Engineering, University of Georgia, Athens, Georgia
| |
Collapse
|
8
|
Wu W, Perrin-Sarrado C, Ming H, Lartaud I, Maincent P, Hu XM, Sapin-Minet A, Gaucher C. Polymer nanocomposites enhance S-nitrosoglutathione intestinal absorption and promote the formation of releasable nitric oxide stores in rat aorta. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1795-1803. [DOI: 10.1016/j.nano.2016.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 04/08/2016] [Accepted: 05/05/2016] [Indexed: 02/02/2023]
|
9
|
He W, Frost MC. Direct measurement of actual levels of nitric oxide (NO) in cell culture conditions using soluble NO donors. Redox Biol 2016; 9:1-14. [PMID: 27236086 PMCID: PMC4899081 DOI: 10.1016/j.redox.2016.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 01/05/2023] Open
Abstract
Applying soluble nitric oxide (NO) donors is the most widely used method to expose cells of interest to exogenous NO. Because of the complex equilibria that exist between components in culture media, the donor compound and NO itself, it is very challenging to predict the dose and duration of NO cells actually experience. To determine the actual level of NO experienced by cells exposed to soluble NO donors, we developed the CellNO Trap, a device that allows continuous, real-time monitoring of the level of NO adherent cells produce and/or experience in culture without the need to alter cell culturing procedures. Herein, we directly measured the level of NO that cells grown in the CellNO Trap experienced when soluble NO donors were added to solutions in culture wells and we characterized environmental conditions that effected the level of NO in in vitro culture conditions. Specifically, the dose and duration of NO generated by the soluble donors S-nitroso-N-acetylpenicillamine (SNAP), S-nitrosoglutathione (GSNO), S-nitrosocysteine (CysNO) and the diazeniumdiolate diethyltriamine (DETA/NO) were investigated in both phosphate buffered saline (PBS) and cell culture media. Other factors that were studied that potentially affect the ultimate NO level achieved with these donors included pH, presence of transition metals (ion species), redox level, presence of free thiol and relative volume of media. Then murine smooth muscle cell (MOVAS) with different NO donors but with the same effective concentration of available NO were examined and it was demonstrated that the cell proliferation ratio observed does not correlate with the half-lives of NO donors characterized in PBS, but does correlate well with the real-time NO profiles measured under the actual culture conditions. This data demonstrates the dynamic characteristic of the NO and NO donor in different biological systems and clearly illustrates the importance of tracking individual NO profiles under the actual biological conditions.
Collapse
Affiliation(s)
- Weilue He
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals and Materials Building, 1400 Townsend Dr., Houghton, MI 49931-1295, United States
| | - Megan C Frost
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals and Materials Building, 1400 Townsend Dr., Houghton, MI 49931-1295, United States.
| |
Collapse
|
10
|
Wo Y, Brisbois EJ, Bartlett RH, Meyerhoff ME. Recent advances in thromboresistant and antimicrobial polymers for biomedical applications: just say yes to nitric oxide (NO). Biomater Sci 2016; 4:1161-83. [PMID: 27226170 PMCID: PMC4955746 DOI: 10.1039/c6bm00271d] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomedical devices are essential for patient diagnosis and treatment; however, when blood comes in contact with foreign surfaces or homeostasis is disrupted, complications including thrombus formation and bacterial infections can interrupt device functionality, causing false readings and/or shorten device lifetime. Here, we review some of the current approaches for developing antithrombotic and antibacterial materials for biomedical applications. Special emphasis is given to materials that release or generate low levels of nitric oxide (NO). Nitric oxide is an endogenous gas molecule that can inhibit platelet activation as well as bacterial proliferation and adhesion. Various NO delivery vehicles have been developed to improve NO's therapeutic potential. In this review, we provide a summary of the NO releasing and NO generating polymeric materials developed to date, with a focus on the chemistry of different NO donors, the polymer preparation processes, and in vitro and in vivo applications of the two most promising types of NO donors studied thus far, N-diazeniumdiolates (NONOates) and S-nitrosothiols (RSNOs).
Collapse
Affiliation(s)
- Yaqi Wo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
11
|
Afzal A, Sarfraz M, Wu Z, Wang G, Sun J. Integrated scientific data bases review on asulacrine and associated toxicity. Crit Rev Oncol Hematol 2016; 104:78-86. [DOI: 10.1016/j.critrevonc.2016.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/08/2016] [Accepted: 05/25/2016] [Indexed: 12/18/2022] Open
|
12
|
Wo Y, Li Z, Brisbois EJ, Colletta A, Wu J, Major T, Xi C, Bartlett RH, Matzger AJ, Meyerhoff ME. Origin of Long-Term Storage Stability and Nitric Oxide Release Behavior of CarboSil Polymer Doped with S-Nitroso-N-acetyl-D-penicillamine. ACS APPLIED MATERIALS & INTERFACES 2015; 7:22218-27. [PMID: 26393943 PMCID: PMC4613868 DOI: 10.1021/acsami.5b07501] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/22/2015] [Indexed: 05/20/2023]
Abstract
The prolonged and localized delivery of nitric oxide (NO), a potent antithrombotic and antimicrobial agent, has many potential biomedical applications. In this work, the origin of the long-term storage stability and sustained NO release mechanism of S-nitroso-N-acetyl-D-penicillamine (SNAP)-doped CarboSil 20 80A polymer, a biomedical thermoplastic silicone-polycarbonate-urethane, is explored. Long-term (22 days) localized NO release is achieved by utilizing a cross-linked silicone rubber as topcoats, which can greatly reduce the amount of SNAP, NAP, and NAP disulfide leaching from the SNAP-doped CarboSil films, as measured by LC-MS. Raman spectroscopy and powder X-ray diffraction characterization of SNAP-doped CarboSil films demonstrate that a polymer-crystal composite is formed during the solvent evaporation process when SNAP exceeds its solubility in CarboSil (ca. 3.4-4.0 wt %). Further, when exceeding this solubility threshold, SNAP exists in an orthorhombic crystal form within the bulk of the polymer. The proposed mechanism of sustained NO release in SNAP-doped CarboSil is that the solubilized SNAP in the polymer matrix decomposes and releases NO, primarily in the water-rich regions near the polymer/solution interface, and the dissolved SNAP in the bulk polymeric phase becomes unsaturated, resulting in the dissolution of crystalline SNAP within the bulk of the polymer. This is a very slow process that ultimately leads to NO release at the physiological flux levels for >3 weeks. The increased stability of SNAP within CarboSil is attributed to the intermolecular hydrogen bonds between the SNAP molecules that crystallize. This crystallization also plays a key role in maintaining RSNO stability within the CarboSil polymer for >8 months at 37 °C (88.5% remains). Further, intravascular catheters fabricated with this new material are demonstrated to significantly decrease the formation of Staphylococcus aureus biofilm (a leading cause of nosocomial bloodstream infections) (in vitro) over a 7 day period, with 5 log units reduction of viable cell count on catheter surfaces. It is also shown that the NO release catheters can greatly reduce thrombus formation on the catheter surfaces during 7 h implantation in rabbit veins, when compared to the control catheters fabricated without SNAP. These results suggest that the SNAP-doped CarboSil system is a very attractive new composite material for creating long-term NO release medical devices with increased stability and biocompatibility.
Collapse
Affiliation(s)
- Yaqi Wo
- Department
of Chemistry, Departmental of Surgery, University of Michigan Medical Center, and Department of
Environmental Health Sciences, University
of Michigan, Ann Arbor, Michigan 48109, United
States
| | - Zi Li
- Department
of Chemistry, Departmental of Surgery, University of Michigan Medical Center, and Department of
Environmental Health Sciences, University
of Michigan, Ann Arbor, Michigan 48109, United
States
| | - Elizabeth J. Brisbois
- Department
of Chemistry, Departmental of Surgery, University of Michigan Medical Center, and Department of
Environmental Health Sciences, University
of Michigan, Ann Arbor, Michigan 48109, United
States
| | - Alessandro Colletta
- Department
of Chemistry, Departmental of Surgery, University of Michigan Medical Center, and Department of
Environmental Health Sciences, University
of Michigan, Ann Arbor, Michigan 48109, United
States
| | - Jianfeng Wu
- Department
of Chemistry, Departmental of Surgery, University of Michigan Medical Center, and Department of
Environmental Health Sciences, University
of Michigan, Ann Arbor, Michigan 48109, United
States
| | - Terry
C. Major
- Department
of Chemistry, Departmental of Surgery, University of Michigan Medical Center, and Department of
Environmental Health Sciences, University
of Michigan, Ann Arbor, Michigan 48109, United
States
| | - Chuanwu Xi
- Department
of Chemistry, Departmental of Surgery, University of Michigan Medical Center, and Department of
Environmental Health Sciences, University
of Michigan, Ann Arbor, Michigan 48109, United
States
| | - Robert H. Bartlett
- Department
of Chemistry, Departmental of Surgery, University of Michigan Medical Center, and Department of
Environmental Health Sciences, University
of Michigan, Ann Arbor, Michigan 48109, United
States
| | - Adam J. Matzger
- Department
of Chemistry, Departmental of Surgery, University of Michigan Medical Center, and Department of
Environmental Health Sciences, University
of Michigan, Ann Arbor, Michigan 48109, United
States
| | - Mark E. Meyerhoff
- Department
of Chemistry, Departmental of Surgery, University of Michigan Medical Center, and Department of
Environmental Health Sciences, University
of Michigan, Ann Arbor, Michigan 48109, United
States
- E-mail: . Phone: (734) 763-5916
| |
Collapse
|
13
|
Kumari S, Sammut IA, Giles GI. The design of nitric oxide donor drugs: s-nitrosothiol tDodSNO is a superior photoactivated donor in comparison to GSNO and SNAP. Eur J Pharmacol 2014; 737:168-76. [DOI: 10.1016/j.ejphar.2014.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 12/19/2022]
|
14
|
Dahboul F, Perrin-Sarrado C, Boudier A, Lartaud I, Schneider R, Leroy P. S,S′-dinitrosobucillamine, a new nitric oxide donor, induces a better vasorelaxation than other S-nitrosothiols. Eur J Pharmacol 2014; 730:171-9. [DOI: 10.1016/j.ejphar.2014.02.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 02/21/2014] [Accepted: 02/28/2014] [Indexed: 02/05/2023]
|
15
|
Rozmaritsa N, Christ T, Van Wagoner DR, Haase H, Stasch JP, Matschke K, Ravens U. Attenuated response of L-type calcium current to nitric oxide in atrial fibrillation. Cardiovasc Res 2013; 101:533-42. [PMID: 24336332 DOI: 10.1093/cvr/cvt334] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIM Nitric oxide (NO) synthesized by cardiomyocytes plays an important role in the regulation of cardiac function. Here, we studied the impact of NO signalling on calcium influx in human right atrial myocytes and its relation to atrial fibrillation (AF). METHODS AND RESULTS Right atrial appendages (RAAs) were obtained from patients in sinus rhythm (SR) and AF. The biotin-switch technique was used to evaluate endogenous S-nitrosylation of the α1C subunit of L-type calcium channels. Comparing SR to AF, S-nitrosylation of Ca(2+) channels was similar. Direct effects of the NO donor S-nitroso-N-acetyl-penicillamine (SNAP) on L-type calcium current (ICa,L) were studied in cardiomyocytes with standard voltage-clamp techniques. In SR, ICa,L increased with SNAP (100 µM) by 48%, n/N = 117/56, P < 0.001. The SNAP effect on ICa,L involved activation of soluble guanylate cyclase and protein kinase A. Specific inhibition of phosphodiesterase (PDE)3 with cilostamide (1 µM) enhanced ICa,L to a similar extent as SNAP. However, when cAMP was elevated by PDE3 inhibition or β-adrenoceptor stimulation, SNAP reduced ICa,L, pointing to cGMP-cAMP cross-regulation. In AF, the stimulatory effect of SNAP on ICa,L was attenuated, while its inhibitory effect on isoprenaline- or cilostamide-stimulated current was preserved. cGMP elevation with SNAP was comparable between the SR and AF group. Moreover, the expression of PDE3 and soluble guanylate cyclase was not reduced in AF. CONCLUSION NO exerts dual effects on ICa,L in SR with an increase of basal and inhibition of cAMP-stimulated current, and in AF NO inhibits only stimulated ICa,L. We conclude that in AF, cGMP regulation of PDE2 is preserved, but regulation of PDE3 is lost.
Collapse
Affiliation(s)
- Nadiia Rozmaritsa
- Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Long-term nitric oxide release and elevated temperature stability with S-nitroso-N-acetylpenicillamine (SNAP)-doped Elast-eon E2As polymer. Biomaterials 2013; 34:6957-66. [PMID: 23777908 DOI: 10.1016/j.biomaterials.2013.05.063] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/24/2013] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is known to be a potent inhibitor of platelet activation and adhesion. Healthy endothelial cells that line the inner walls of all blood vessels exhibit a NO flux of 0.5-4 × 10(-10) mol cm(-2) min(-1) that helps prevent thrombosis. Materials with a NO flux that is equivalent to this level are expected to exhibit similar anti-thrombotic properties. In this study, five biomedical grade polymers doped with S-nitroso-N-acetylpenicillamine (SNAP) were investigated for their potential to control the release of NO from the SNAP within the polymers, and further control the release of SNAP itself. SNAP in the Elast-eon E2As polymer creates an inexpensive, homogeneous coating that can locally deliver NO (via thermal and photochemical reactions) as well slowly release SNAP. Furthermore, SNAP is surprisingly stable in the E2As polymer, retaining 82% of the initial SNAP after 2 months storage at 37 °C. The E2As polymer containing SNAP was coated on the walls of extracorporeal circulation (ECC) circuits and exposed to 4 h blood flow in a rabbit model of extracorporeal circulation to examine the effects on platelet count, platelet function, clot area, and fibrinogen adsorption. After 4 h, platelet count was preserved at 100 ± 7% of baseline for the SNAP/E2As coated loops, compared to 60 ± 6% for E2As control circuits (n = 4). The SNAP/E2As coating also reduced the thrombus area when compared to the control (2.3 ± 0.6 and 3.4 ± 1.1 pixels/cm(2), respectively). The results suggest that the new SNAP/E2As coating has potential to improve the thromboresistance of intravascular catheters, grafts, and other blood-contacting medical devices, and exhibits excellent storage stability compared to previously reported NO release polymeric materials.
Collapse
|
17
|
Heikal L, Aaronson PI, Ferro A, Nandi M, Martin GP, Dailey LA. S-nitrosophytochelatins: investigation of the bioactivity of an oligopeptide nitric oxide delivery system. Biomacromolecules 2011; 12:2103-13. [PMID: 21480633 DOI: 10.1021/bm200159h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study investigates the in vitro bioactivity of S-nitrosophytochelatins (SNOPCs), oligopeptide analogues of S-nitrosoglutathione (GSNO), and their mechanisms of nitric oxide (NO) delivery. SNOPCs were more potent than GSNO in inhibiting platelet aggregation and stimulating vasorelaxation. Their potency was related to the number of S-nitrosated moieties per mole compound. Transnitrosation reactions with cell membrane surface components were shown to be the primary mode of NO delivery to intracellular targets for SNOPCs, while delivery via γ-glutamyl transpeptidase was unique to GSNO. Due to rapid NO release, larger SNOPCs elicited a more transitory effect compared to smaller compounds. The duration of effect was influenced by compound molecular weight, NO release kinetics, ability to undergo transnitrosation, and incubation time with tissues. In summary, a new oligopeptide NO delivery system based on SNOPCs was shown to be biologically active and can be used to investigate the mechanisms of NO delivery to intracellular targets.
Collapse
Affiliation(s)
- Lamia Heikal
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | | | | | | | | | | |
Collapse
|
18
|
Sarr M, Sar FB, Gueye L, Kane MO, Wele A, Diallo AS, Schini-Kerth V, Muller B. The vascular endothelium masks the persistent inhibition of rat thoracic arterial tone induced by S-nitrosoglutathione. Cardiovasc J Afr 2011; 22:7-13. [PMID: 21298199 PMCID: PMC3734762 DOI: 10.5830/cvja-2010-008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 03/10/2010] [Indexed: 02/04/2023] Open
Abstract
AIM In endothelium-denuded arteries, the nitric oxide (NO) donor S-nitrosoglutathione (GSNO) induced a persistent hypo-reactivity to vasoconstrictors, and low-molecular weight thiols such as N-acetyl cysteine (NAC) produced a relaxant effect. These effects were attributed to the formation of vascular NO stores. In arteries with a functional endothelium, such long-lasting effects on arterial tone have not been well characterised. In this study, we proposed to examine the possibility of storing exogenous NO when the vascular endothelium is still able to produce its own NO. METHODS For this purpose, changes in isometric tension of isolated arteries were assessed in organ chambers, and nitrosothiol formation was characterised by confocal microscopy. RESULTS In rat aortic rings with endothelium pre-exposed to GSNO, the contractile response to norepinephrine (NE) was not attenuated in comparison with control rings, but NAC induced a relaxant effect. However, an attenuation of the response to NE was observed in GSNO-exposed, intact aortic rings after inhibition of NO synthase by N(ω)-nitro-L-arginine methylester (L-AME) or in GSNO-denuded rings. The relaxing effects of NAC were due to the mobilisation of NO from nitrosothiols after nitrosylation of protein SH residues. Moreover, the hypo-reactivity to NE and the relaxant effect of NAC were abolished by 1H-[1,2,4] oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), an inhibitor of soluble guanylyl cyclase, and partially by the K+-sensitive channel inhibitor tetra-ethyl-ammonium (TEA). CONCLUSION These data show that endothelium-derived NO masked the persistent effect of GSNO in rat thoracic aorta. However, the ability of GSNO to form releasable NO stores without altering the vascular tone can be particularly useful in preventing endothelial dysfunction in which NO formation decreases.
Collapse
Affiliation(s)
- M Sarr
- Laboratoire de Physiologie Pharmaceutique, Faculté de Médecine et de Pharmacie, Dakar, Sénégal.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Schade D, Kotthaus J, Clement B. Modulating the NO generating system from a medicinal chemistry perspective: Current trends and therapeutic options in cardiovascular disease. Pharmacol Ther 2010; 126:279-300. [DOI: 10.1016/j.pharmthera.2010.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 02/10/2010] [Indexed: 01/05/2023]
|
20
|
Kennedy S, Burke SG, Preston AA, McPhaden AR. Nitric Oxide Generation by NO Donors Is Enhanced Following Balloon Injury in the Porcine Coronary Artery. ACTA ACUST UNITED AC 2009; 14:105-13. [PMID: 17497367 DOI: 10.1080/10623320701347039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vasospasm is a complication of cardiological procedures such as balloon angioplasty and may be related to vascular oxidant stress. Although nitric oxide donor drugs are often administered to prevent vasospasm, the response to these drugs in balloon-injured arteries has not been studied. Pig coronary arteries were balloon-injured in vitro and relaxations to nitric oxide (NO)-donating and NO-independent vasodilators studied. Generation of superoxide in response to injury was assayed using dihydroethidium. NO formation on addition of the NO donor drugs was studied using an amperometric sensor. Expression of nitrotyrosine, a peroxynitrite marker, was probed using immunocytochemistry. In vitro injury enhanced sensitivity to the NO donors SNAP and SpermineNONOate but blunted the response to isoprenaline or chromakalim. With both donors, NO formation was significantly enhanced in the presence of an injured vessel. Vascular superoxide generation was also increased throughout the vessel wall and a small increase in nitrotyrosine was detected in the injured vessel media following addition of SNAP. In conclusion, injured vessels were more sensitive to NO donors and this appears to be due to enhanced NO generation by the donor molecule. Increased formation of peroxynitrite within the injured vessel may contribute to the enhanced relaxation in injured vessels.
Collapse
Affiliation(s)
- Simon Kennedy
- Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK.
| | | | | | | |
Collapse
|
21
|
Miller MR, Megson IL. Recent developments in nitric oxide donor drugs. Br J Pharmacol 2007; 151:305-21. [PMID: 17401442 PMCID: PMC2013979 DOI: 10.1038/sj.bjp.0707224] [Citation(s) in RCA: 431] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 02/05/2007] [Accepted: 02/12/2007] [Indexed: 12/16/2022] Open
Abstract
During the 1980s, the free radical, nitric oxide (NO), was discovered to be a crucial signalling molecule, with wide-ranging functions in the cardiovascular, nervous and immune systems. Aside from providing a credible explanation for the actions of organic nitrates and sodium nitroprusside that have long been used in the treatment of angina and hypertensive crises respectively, the discovery generated great hopes for new NO-based treatments for a wide variety of ailments. Decades later, however, we are still awaiting novel licensed agents in this arena, despite an enormous research effort to this end. This review explores some of the most promising recent advances in NO donor drug development and addresses the challenges associated with NO as a therapeutic agent.
Collapse
Affiliation(s)
- M R Miller
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute Edinburgh, UK
| | - I L Megson
- Free Radical Research Facility, Department of Diabetes, UHI Millennium Institute Inverness, UK
| |
Collapse
|
22
|
Sarr M, Chataigneau M, Etienne-Selloum N, Diallo AS, Schott C, Geffard M, Stoclet JC, Schini-Kerth VB, Muller B. Targeted and persistent effects of NO mediated by S-nitrosation of tissue thiols in arteries with endothelial dysfunction. Nitric Oxide 2007; 17:1-9. [PMID: 17566772 DOI: 10.1016/j.niox.2007.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 04/02/2007] [Accepted: 04/13/2007] [Indexed: 10/23/2022]
Abstract
We have previously demonstrated that in endothelium-denuded arteries, S-nitrosation of cysteine residues is a mechanism of formation of releasable nitric oxide (NO) stores, accounting for the long-lasting relaxation induced by S-nitrosating agents like S-nitrosoglutathione (GSNO). Here, we have investigated whether such effects could also be obtained in arteries exhibiting oxidative stress-associated endothelial dysfunction. Rats were implanted or not with a minipump delivering saline or angiotensin II for 14 days. As expected, aorta from angiotensin II-infused rats exhibited increased level of superoxide anions (as evaluated with dihydroethidine as fluorescent probe) and a reduced relaxation to acetylcholine in comparison to saline group. Unlike aortic rings with endothelium from controls, those from angiotensin II-infused rats exhibited persistent hyporesponsiveness to phenylephrine after pre-exposure to GSNO, as well as relaxation upon addition of N-acetylcysteine (NAC, which can displace NO from cysteine-NO residues) or HgCl(2) (which cleaves S-NO bonds). In aorta from angiotensin II-infused rats, GSNO also induced a persistent increase in cysteine-NO residues (as determined using anti-cysteine-NO antiserum), which was blunted by NAC and HgCl(2). These data indicate that (i) the vasorelaxant influence of releasable NO stores is unmasked by endothelial dysfunction (ii) S-nitrosation of cysteine residues remains an effective mechanism of formation of releasable NO stores in arteries exhibited oxidative stress-associated endothelial dysfunction. Thus, formation of releasable NO stores by S-nitrosating agents allows targeted vasculoprotective effects of NO at sites of endothelial dysfunction.
Collapse
Affiliation(s)
- Mamadou Sarr
- Pharmacologie & Physico-Chimie, UMR CNRS 7175 LC1, BP 60024, F-67401 Illkirch
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Marcoli M, Maura G, Cervetto C, Giacomini C, Oliveri D, Candiani S, Pestarino M. Nitric oxide-evoked cGMP production in Purkinje cells in rat cerebellum: an immunocytochemical and pharmacological study. Neurochem Int 2006; 49:683-90. [PMID: 16904241 DOI: 10.1016/j.neuint.2006.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 05/18/2006] [Accepted: 06/12/2006] [Indexed: 10/24/2022]
Abstract
The cerebellar cells that account for glutamate-dependent cyclic GMP (cGMP) production, involving activation of the ionotropic glutamate receptors/nitric oxide synthase/soluble guanylyl cyclase pathway, are not fully established. In the present paper we have searched for the localisation of the cGMP response to the nitric oxide (NO) donor S-nitroso-penicillamine (SNAP 1muM), expected to generate local NO concentrations in the low nanomolar physiological range and evoking a cGMP response dependent on glutamate release and on the consequent activation of ionotropic glutamate NMDA/non-NMDA receptors, in cerebellar slices from adult rat. We have found that low concentration of exogenous NO evoked cGMP accumulation in Purkinje cells in an ionotropic glutamate receptor-dependent and tetrodotoxin-sensitive manner. Such immunocytochemical localisation appears consistent with functional evidence for physiologically relevant glutamate-dependent cGMP production in Purkinje cells in rat cerebellar cortex.
Collapse
Affiliation(s)
- Manuela Marcoli
- Dipartimento di Medicina Sperimentale, Sezione di Farmacologia e Tossicologia, Università di Genova, 16148 Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
. DM, . DR, . PB. Therapeutic Uses of Nitric Oxide-donating Drugs in the Treatment of Cardiovascular Diseases. INT J PHARMACOL 2006. [DOI: 10.3923/ijp.2006.366.373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Marcoli M, Cervetto C, Paluzzi P, Guarnieri S, Raiteri M, Maura G. Nitric oxide-evoked glutamate release and cGMP production in cerebellar slices: control by presynaptic 5-HT1D receptors. Neurochem Int 2006; 49:12-9. [PMID: 16469416 DOI: 10.1016/j.neuint.2005.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 12/05/2005] [Accepted: 12/19/2005] [Indexed: 11/22/2022]
Abstract
We previously reported that pre- and postsynaptic 5-hydroxytryptamine (5-HT) receptors effectively control glutamatergic transmission in adult rat cerebellum. To investigate where 5-HT acts in the glutamate ionotropic receptors/nitric oxide/guanosine 3',5'-cyclic monophosphate (cGMP) pathway, in the present study 5-HT modulation of the cGMP response to the nitric oxide donor S-nitroso-penicillamine (SNAP) was studied in adult rat cerebellar slices. While cGMP elevation produced by high-micromolar SNAP was insensitive to 5-HT, 1 microM SNAP, expected to release nitric oxide in the low-nanomolar concentration range, elicited cGMP production and endogenous glutamate release both of which could be prevented by activating presynaptic 5-HT1D receptors. Released nitric oxide appeared responsible for cGMP production and glutamate release evoked by 1 microM SNAP, as both the effects were mimicked by the structurally unrelated nitric oxide donor 2-(N,N-diethylamino)-diazenolate-2-oxide (0.1 microM). Dependency of the 1 microM SNAP-evoked release of glutamate on external Ca2+, sensitivity to presynaptic release-regulating receptors and dependency on ionotropic glutamate receptor functioning, suggest that nitric oxide stimulates exocytotic-like, activity-dependent glutamate release. Activation of ionotropic glutamate receptors/nitric oxide synthase/guanylyl cyclase pathway by endogenously released glutamate was involved in the cGMP response to 1 microM SNAP, as blockade of NMDA/non-NMDA receptors, nitric oxide synthase or guanylyl cyclase, abolished the cGMP response. To conclude, in adult rat cerebellar slices low-nanomolar exogenous nitric oxide could facilitate glutamate exocytotic-like release possibly from parallel fibers that subsequently activated the glutamate ionotropic receptors/nitric oxide/cGMP pathway. Presynaptic 5-HT1D receptors could regulate the nitric oxide-evoked release of glutamate and subsequent cGMP production.
Collapse
Affiliation(s)
- Manuela Marcoli
- Department of Experimental Medicine, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, Genoa, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Crane MS, Rossi AG, Megson IL. A potential role for extracellular nitric oxide generation in cGMP-independent inhibition of human platelet aggregation: biochemical and pharmacological considerations. Br J Pharmacol 2005; 144:849-59. [PMID: 15685209 PMCID: PMC1576067 DOI: 10.1038/sj.bjp.0706110] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
1. Nitric oxide (NO) is a potent inhibitor of platelet activation, that inhibits the agonist-induced increase in cytosolic Ca2+ concentration through both cGMP-dependent and independent pathways. However, the NO-related (NOx) species responsible for cGMP-independent signalling in platelets is unclear. We tested the hypothesis that extracellular NO, but not NO+ or peroxynitrite, generated in the extracellular compartment is responsible for cGMP-independent inhibition of platelet activation via inhibition of Ca2+ signalling. 2. Concentration-response curves for diethylamine diazeniumdiolate (DEA/NO; a spontaneous NO generator), S-nitroso-N-valerylpenicillamine (SNVP; an S-nitrosothiol) and 3-morpholinosydnonomine (SIN-1; a peroxynitrite generator) were generated in platelet-rich plasma (PRP) and washed platelets (WP) in the presence and absence of a supramaximal concentration of the soluble guanylate cyclase inhibitor, ODQ (20 microM). All three NOx donors displayed cGMP-independent inhibition of platelet aggregation in PRP, but only DEA/NO exhibited cGMP-independent inhibition of aggregation in WP. 3. Analysis of NO generation using an isolated NO-electrode revealed that cGMP-independent effects coincided with the generation of substantial levels of extracellular NO (>40 nM) from the NOx donors. 4. Reconstitution of WP with plasma factors indicated that the copper-containing plasma protein, caeruloplasmin (CP), catalysed the release of NO from SNVP, while Cu/Zn superoxide dismutase (SOD) unmasked NO generated from SIN-1. The increased generation of extracellular NO correlated with a switch to cGMP-independent effects with both NOx donors. 5. Analysis of Fura-2 loaded WP revealed that only DEA/NO inhibited Ca2+ signalling in platelets via a cGMP-independent mechanism. However, preincubation of SNVP and SIN-1 with CP and SOD, respectively, induced cGMP-independent inhibition of intraplatelet Ca2+ trafficking by the NOx donors. 6. Taken together, our data suggest that extracellular NO (>40 nM) is required for cGMP-independent inhibition of platelet activation. Plasma constituents may play an important pharmacological role in activating cGMP-independent signalling by S-nitrosothiols or peroxynitrite generators.
Collapse
Affiliation(s)
- Michael S Crane
- Centre for Cardiovascular Science, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD
| | - Adriano G Rossi
- Centre for Inflammation Research, University of Edinburgh, George Square, Edinburgh EH8 9XD
| | - Ian L Megson
- Centre for Cardiovascular Science, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD
- Author for correspondence:
| |
Collapse
|
27
|
Jones CP, Paula Neto HA, Assreuy J, Vargaftig BB, Gaspar Elsas MI, Elsas PX. Prostaglandin E2 and dexamethasone regulate eosinophil differentiation and survival through a nitric oxide- and CD95-dependent pathway. Nitric Oxide 2005; 11:184-93. [PMID: 15491851 DOI: 10.1016/j.niox.2004.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 07/24/2004] [Indexed: 02/08/2023]
Abstract
Apoptosis, involving both CD95/CD95L interactions and their modulation by nitric oxide (NO), is central to regulation of mature eosinophil numbers. However, its role in regulating eosinophil production from bone-marrow precursors is unknown. We examined the effects of prostaglandin E2 (PGE2) and dexamethasone on eosinophil differentiation and survival in murine bone-marrow cultures, and their relationship to: NO production as well as CD95/CD95L-dependent apoptosis. Bone-marrow cultures were established with IL-5, alone or in association with PGE2, dexamethasone or both. PGE2 (10(-7)M) inhibited eosinophil differentiation by selectively inducing apoptosis in developing eosinophils. Dexamethasone (10(-7)M) protected developing eosinophils from PGE2-induced apoptosis. Since dexamethasone prevents induction of nitric oxide synthase (NOS), we evaluated the role of NO in the effects of both PGE2 and dexamethasone. NO donors (SNAP and SNP) down-modulated eosinophil precursor responses to IL-5. SNAP induced apoptosis through a dexamethasone-resistant mechanism. The NOS inhibitors, Nomega-nitro-L-arginine and aminoguanidine, blocked the effects of PGE2 on developing eosinophils. PGE2 was ineffective in bone-marrow from knockout mice lacking inducible NOS. PGE2 up-regulated CD95 and CD95L expression in developing eosinophils. Neither PGE2 nor SNAP were effective in cultures from CD95L-deficient gld mice. These data suggest that PGE2 induces apoptosis in developing eosinophils through inducible NOS, leading to NO-dependent activation of the CD95L/CD95 pathway, while dexamethasone antagonizes the effects of PGE2 on the same targets.
Collapse
Affiliation(s)
- Carla P Jones
- Department of Immunology, Professor Paulo de Góes Institute of Microbiology, Federal University of Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Wach MJ, Kers JA, Krasnoff SB, Loria R, Gibson DM. Nitric oxide synthase inhibitors and nitric oxide donors modulate the biosynthesis of thaxtomin A, a nitrated phytotoxin produced by Streptomyces spp. Nitric Oxide 2005; 12:46-53. [PMID: 15631947 DOI: 10.1016/j.niox.2004.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 11/03/2004] [Accepted: 11/13/2004] [Indexed: 10/26/2022]
Abstract
Evidence for the involvement of a bacterial nitric oxide synthase (NOS) in the biosynthesis of a phytotoxin is presented. Several species of Streptomyces bacteria produce secondary metabolites with unusual nitrogen groups, such as thaxtomin A (ThxA), which contains a nitroindole moiety. ThxA is a phytotoxin made by three pathogenic Streptomyces species that cause common scab of potato. All three species possess a gene homologous to the oxygenase domain of murine inducible NOS, and this gene, nos, is essential for normal levels of ThxA production. We grew Streptomyces turgidiscabies in the presence of several known NOS inhibitors and a nitric oxide (NO) scavenger to determine their effect on ThxA production. The NO scavenger (CPTIO) and four NOS inhibitors (NAME, NMMA, AG, and 7-NI) reduced ThxA production without affecting bacterial growth. A strain of S. turgidiscabies from which the nos gene had been deleted was grown in the presence of three NO donors (DEANO, SIN, and SNAP), and all three partially restored ThxA production. Our data suggest that bacterial nitric oxide synthases may, at least in part, produce NO for biosynthetic purposes, rather than for cellular signaling, as they do in mammals.
Collapse
Affiliation(s)
- Michael J Wach
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
30
|
Miller MR, Okubo K, Roseberry MJ, Webb DJ, Megson IL. Extracellular nitric oxide release mediates soluble guanylate cyclase-independent vasodilator action of spermine NONOate: comparison with other nitric oxide donors in isolated rat femoral arteries. J Cardiovasc Pharmacol 2004; 43:440-51. [PMID: 15076229 DOI: 10.1097/00005344-200403000-00016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nitric oxide (NO) and NO donors exhibit actions that are not entirely mediated by soluble guanylate cyclase (sGC). The site of NO release may influence the involvement of sGC-independent effects. Here we use spermine NONOate (SPER/NO) to release NO extracellularly, compared with other NO donors. Isolated rat femoral arteries were perfused luminally and perfusion pressure monitored. Vessels were contracted with phenylephrine (2-14 microM) in the presence of an NO synthase inhibitor (N(omega)-nitro-L-arginine methyl ester; 20 microM). Vasodilator responses to NO donors were assessed before and after perfusion of an sGC inhibitor (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one; ODQ; 20 microM), NO scavengers (hemoglobin; Hb & hydroquinone; HQ), and a superoxide generator (duroquinone; DQ). ODQ (20 microM) abolished the vasodilator responses to glyceryl trinitrate (10(-8) - 10(-3) M), and sodium nitroprusside (10(-8) - 10(-4) M), which release NO intracellularly. ODQ (20 microM) attenuated, but failed to abolish, the vasodilator responses to SPER/NO (10(-6) - 10(-3) M). ODQ abolished responses to S-nitrosoglutathione and S-nitroso-N-valeryl-D-penicillamine (10(-8) - 10(-4) M), but a small residual vasodilatation remained in response to 10(-3) M. In the presence of ODQ, the remaining vasodilatation to SPER/NO was all but abolished by scavengers of extracellular NO (Hb; 10 microM, HQ; 100 microM). Superoxide generation (DQ; 100 microM) also attenuated ODQ-resistant vasodilatation. The data suggest that, in rat femoral arteries, NO donors that are capable of releasing extracellular NO cause vasodilatation that is only partially mediated by sGC. Lack of augmentation of sGC-independent effects by superoxide suggests that they are not mediated by peroxynitrite.
Collapse
Affiliation(s)
- M R Miller
- Centre for Cardiovascular Science, Hugh Robson Building, University of Edinburgh, Edinburgh, Scotland, UK
| | | | | | | | | |
Collapse
|
31
|
Alencar JL, Lobysheva I, Chalupsky K, Geffard M, Nepveu F, Stoclet JC, Muller B. S-nitrosating nitric oxide donors induce long-lasting inhibition of contraction in isolated arteries. J Pharmacol Exp Ther 2003; 307:152-9. [PMID: 12954813 DOI: 10.1124/jpet.103.052605] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability of various nitric oxide (NO) donors to induce long-lasting inhibition of contraction in isolated arteries was compared. All the studied compounds elicited a relaxant effect in rat aortic rings precontracted with norepinephrine (NE). Almost maximal relaxation was obtained with 1 microM of each compound. The S-nitrosating agents S-nitrosoglutathione (GSNO), S-nitroso-N-acetylpenicillamine, S-nitroso-N-acetylcysteine, and sodium nitroprusside (1 microM) produced a decrease of the maximal effect of NE that persisted after removal of the drug. This hyporesponsiveness to NE was associated with a relaxant effect of N-acetylcysteine, a low-molecular weight thiol that can displace NO from cysteine-NO bonds. Such modifications of contraction were not observed in aortic rings previously exposed to 1 microM S-nitrosocysteine, glyceryl trinitrate, 3-morpholinosydnonimine, or 2-(N,N-diethylamino)-diazenolate-2-oxide (DEA-NO). The same differential effects of GSNO and DEA-NO on contraction were also observed in porcine coronary arteries. Rat aortic rings previously exposed to 100 microM GSNO, but not to 100 microM DEA-NO, displayed a persistent increase in NO content (determined by NO spin trapping) and cysteine-NO residues (determined by immunostaining with an anti-cysteine-NO antiserum). The GSNO-induced increase in cysteine-NO residues in aortic tissue was prevented by the thiolmodifying agent p-hydroxymercuribenzoic acid. This study shows that in isolated arteries, the effects of S-nitrosating agents differed from those of other NO-donating agents. S- Nitrosating agents induced a persistent inhibition of contraction, which was attributed to the formation of releasable NO stores by S-nitrosation of tissue thiols. These differential effects of NO donors may be important for orientating their therapeutic indications.
Collapse
Affiliation(s)
- Jacicarlos L Alencar
- Université Louis Pasteur, Faculté de Pharmacie, Pharmacologie and Physico-Chimie, Unité Mixte Recherche Centre National de la Recherche Scientifique, Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Tichenor SD, Malmquist NA, Buxton ILO. Dissociation of cGMP accumulation and relaxation in myometrial smooth muscle: effects of S-nitroso-N-acetylpenicillamine and 3-morpholinosyndonimine. Cell Signal 2003; 15:763-72. [PMID: 12781869 DOI: 10.1016/s0898-6568(03)00006-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In guinea pig, primate and man, nitric oxide (NO)-induced regulation of myometrial smooth muscle contraction is distinct from other smooth muscles because cyclic guanosine 3',5'-cyclic monophosphate (cGMP) accumulation is neither necessary nor sufficient to relax the tissue. To further our understanding of the mechanism of action of NO in myometrium, we employed the NO donors, S-nitroso-N-acetylpenicillamine (SNAP), and 3-morpholinosyndonimine (SIN-1) proposed to relax airway smooth muscle by disparate mechanisms involving elevation in intracellular calcium ([Ca(2+)](i)) or cGMP accumulation, respectively. Treatment of guinea pig myometrial smooth muscle with either NO donor at concentrations thought to produce maximal relaxation of smooth muscles resulted in significant elevations in cGMP that were accompanied by phosphorylation of the cGMP-dependent protein kinase substrate vasodilator-stimulated phosphoprotein (VASP), shown here for the first time to be present and phosphorylated in myometrium. Stimulation of myometrial strips with oxytocin (OT, 1 microM) produced an immediate increase in contractile force that persisted in the continued presence of the agonist. Addition of SNAP (100 microM) in the presence of OT relaxed the tissue completely as might be expected of an NO donor. SIN-1 failed to relax the myometrium at any concentration tested up to 300 microM. In Fura-2 loaded myometrial cells prepared from guinea pig, addition of SNAP (100 microM) in the absence of other agonists caused a significant, reproducible elevation of intracellular calcium while SIN-1 employed under the same conditions did not. Our data further support the notion that NO action in myometrium is distinct from that in other smooth muscles and underscores the possibility that discrete regional changes in [Ca(2+)](i), rather than cGMP, signal NO-induced relaxation of the muscle.
Collapse
Affiliation(s)
- Stephen D Tichenor
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557-0270, USA
| | | | | |
Collapse
|
33
|
Alencar JL, Lobysheva I, Geffard M, Sarr M, Schott C, Schini-Kerth VB, Nepveu F, Stoclet JC, Muller B. Role of S-nitrosation of cysteine residues in long-lasting inhibitory effect of nitric oxide on arterial tone. Mol Pharmacol 2003; 63:1148-58. [PMID: 12695543 DOI: 10.1124/mol.63.5.1148] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
S-Nitrosation of cysteine residues plays an important role in nitric oxide (NO) signaling and transport. The aim of the present study was to investigate the role of S-nitrosothiols as a storage form of NO, which may account for the long-lasting effects in the vasculature. Rat aorta exposed to S-nitrosoglutathione (GSNO) displayed, even after washout of the drug, a persistent increase in cysteine-NO residues (detected by immunostaining using an antiserum that selectively recognized S-nitrosoproteins) and in NO content (detected by NO spin-trapping), a persistent attenuation of the effect of vasoconstrictors, and a relaxant response upon addition of low molecular weight (LMW) thiols. Rat mesenteric and porcine coronary artery exposed in vitro to GSNO, as well as aorta and mesenteric arteries removed from rats treated in vivo with GSNO, displayed similar modifications of contraction. In isolated aorta exposed to GSNO, the decrease of the contractile response and the relaxant effect of LMW thiols were both blunted by NO scavengers (oxyhemoglobin or 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) or by a cyclic GMP-dependent protein kinase inhibitor (Rp-8-bromoguanosine-3',5'-cyclic monophosphorothioate). In these arteries, mercuric chloride (which cleaves the cysteine-NO bond) exerted a transient relaxation, completely abolished the one of LMW thiols, and blunted the increase in cysteine-NO residues and NO content. Together, these data support the idea that S-nitrosation of cysteine residues is involved in long-lasting effects of NO on arterial tone. They suggest that S-nitrosation of tissue thiols is a mechanism of formation of local NO stores from which biologically active NO can subsequently be released.
Collapse
Affiliation(s)
- Jacicarlos L Alencar
- Faculté de Pharmacie, Pharmacologie & Physico-Chimie, Université Louis Pasteur, Centre National de la Recherche Scientifique Unité Mixte Recherche 7034, 67401 Illkirch, France
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cena C, Lolli ML, Lazzarato L, Guaita E, Morini G, Coruzzi G, McElroy SP, Megson IL, Fruttero R, Gasco A. Antiinflammatory, gastrosparing, and antiplatelet properties of new NO-donor esters of aspirin. J Med Chem 2003; 46:747-54. [PMID: 12593655 DOI: 10.1021/jm020969t] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new series of NSAIDs in which aspirin is joined by an ester linkage to furoxan moieties, with different ability to release NO, were synthesized and tested for NO-releasing, antiinflammatory, antiaggregatory, and ulcerogenic properties. Related furazan derivatives, aspirin, its propyl ester, and its gamma-nitrooxypropyl ester were taken as references. All the products described present an antiinflammatory trend, maximized in derivatives 12, 16, and 17, they are devoid of acute gastrotoxicity, principally due to their ester nature, and show an antiplatelet activity primarily determined by their ability to release NO. They do not behave as aspirin prodrugs in human serum.
Collapse
Affiliation(s)
- Clara Cena
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Vanin AF, Muller B, Alencar JL, Lobysheva II, Nepveu F, Stoclet JC. Evidence that intrinsic iron but not intrinsic copper determines S-nitrosocysteine decomposition in buffer solution. Nitric Oxide 2002; 7:194-209. [PMID: 12381416 DOI: 10.1016/s1089-8603(02)00108-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present experiments were designed to analyze the influence of copper and iron ions on the process of decomposition of S-nitrosocysteine (cysNO), the most labile species among S-nitrosothiols (RSNO). CysNO fate in buffer solution was evaluated by optical and electron paramagnetic resonance (EPR) spectroscopy, and the consequences on its vasorelaxant effect were studied on noradrenaline-precontracted rat aortic rings. The main results are the following: (i) copper or iron ions, especially in the presence of the reducing agent ascorbate, accelerated the decomposition of cysNO and markedly attenuated the amplitude and duration of the relaxant effect of cysNO; (ii) by contrast, the iron and copper chelators bathophenantroline disulfonic acid (BPDS) and bathocuproine disulfonic acid (BCS) exerted a stabilizing effect on cysNO, prolonged its vasorelaxant effect, and abolished the influence of ascorbate; (iii) in the presence of ascorbate, BPDS displayed a selective inhibitory effect toward the influence of iron ions (but not toward copper ions) on cysNO decomposition and vasorelaxant effect, while BCS prevented the effects of both copper and iron ions; (iv) L-cysteine enhanced stability and prolonged the relaxant effect of cysNO; (v) the process of iron-induced decomposition of cysNO was associated with the formation of EPR-detectable dinitrosyl-iron complexes (DNIC) either with non-thiol- or thiol-containing ligands (depending on the presence of L-cysteine), both of which exhibiting vasorelaxant properties. From these data, it is concluded that the amount of intrinsic copper was probably too low to produce a destabilizing effect even on the most labile RSNO, cysNO, and that only intrinsic iron, through the formation of DNIC, was responsible for the process of cysNO decomposition and thus influenced its vasorelaxant properties.
Collapse
Affiliation(s)
- Anatoly F Vanin
- Institute of Chemical Physics, Russian Academy of Sciences, Kosygin Str. 4, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Nitric oxide synthesised in endothelial cells that line blood vessels has a wide range of functions that are vital for maintaining a healthy cardiovascular system. Reduced nitric oxide availability is implicated in the initiation and progression of many cardiovascular diseases and delivery of supplementary nitric oxide to help prevent disease progression is an attractive therapeutic option. Nitric oxide donor drugs represent a useful means of systemic nitric oxide delivery and organic nitrates have been used for many years as effective therapies for symptomatic relief from angina. However, nitrates have limitations and a number of alternative nitric oxide donor classes have emerged since the discovery that nitric oxide is a crucial biological mediator. This review focuses on novel advances and possible future directions in nitric oxide donor drug development.
Collapse
Affiliation(s)
- Ian L Megson
- Centre for Cardiovascular Science, Division of Biomedical & Clinical Laboratory Sciences, University of Edinburgh, Edinburgh, Scotland, UK.
| | | |
Collapse
|
37
|
Wang PG, Xian M, Tang X, Wu X, Wen Z, Cai T, Janczuk AJ. Nitric oxide donors: chemical activities and biological applications. Chem Rev 2002; 102:1091-134. [PMID: 11942788 DOI: 10.1021/cr000040l] [Citation(s) in RCA: 972] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Peng George Wang
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Miller MR, Roseberry MJ, Mazzei FA, Butler AR, Webb DJ, Megson IL. Novel S-nitrosothiols do not engender vascular tolerance and remain effective in glyceryltrinitrate-tolerant rat femoral arteries. Eur J Pharmacol 2000; 408:335-43. [PMID: 11090652 DOI: 10.1016/s0014-2999(00)00777-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Organic nitrates, such as glyceryltrinitrate, are nitric oxide (NO) donor drugs that engender tolerance with long-term use. Here, we tested the hypothesis that our novel S-nitrosothiols, N-(S-nitroso-N-acetylpenicillamine)-2-amino-2-deoxy-1,3,4,6, tetra-O-acetyl-beta-D-glucopyranose (RIG200) and S-nitroso-N-valeryl-D-penicillamine (D-SNVP), do not induce vascular tolerance ex vivo. Femoral arteries from adult male Wistar rats were preconstricted with phenylephrine and perfused with the NO synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME). Perfusion pressure was measured during 20 h treatment with supramaximal concentrations of NO donor (10 microM). Perfusion with glyceryltrinitrate caused a vasodilatation, which recovered over 2-20 h. In contrast, the S-nitrosothiols caused vasodilatations that were maintained throughout the 20 h perfusion period. Responses to S-nitrosothiols were partially reversed by the NO scavenger ferrohaemoglobin and fully reversed by the soluble guanylate cyclase inhibitor [1H-[1,2,4] oxadiazole [4,3-a]quinoxaline-1-one (ODQ). Glyceryltrinitrate-tolerant vessels were fully responsive to bolus injections of S-nitrosothiols. Resistance to tolerance is an attractive property of our novel compounds, particularly in view of their sustained activity in arteries with damaged endothelium.
Collapse
Affiliation(s)
- M R Miller
- Clinical Pharmacology Unit, University of Edinburgh, Department of Biomedical Sciences, Western General Hospital, EH4 2LH, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
39
|
Sogo N, Campanella C, Webb DJ, Megson IL. S-nitrosothiols cause prolonged, nitric oxide-mediated relaxation in human saphenous vein and internal mammary artery: therapeutic potential in bypass surgery. Br J Pharmacol 2000; 131:1236-44. [PMID: 11082133 PMCID: PMC1572448 DOI: 10.1038/sj.bjp.0703700] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Reduced endothelial nitric oxide (NO) production in conduit vessels for coronary artery bypass grafting (CABG) has been implicated in post-operative complications, including spasm. 2. The brief effects of existing NO donors limits their applicability to improving patency of graft vessels. RIG200 is a novel S-nitrosothiol that might have advantages over conventional drugs because it has sustained effects in areas of endothelial damage. 3. Here we tested the hypothesis that RIG200 and S-nitrosoglutathione (GSNO) have prolonged, NO-mediated effects in human saphenous vein (SV) and internal mammary artery (IMA), compared with glyceryl trinitrate (GTN) and sodium nitroprusside (SNP). 4. 84 SV and 80 IMA rings from 64 patients undergoing CABG were studied in vitro. Rings were precontracted with phenylephrine (EC(80) concentration) and the functional integrity of the endothelium tested with acetylcholine (10 microM). 5. Relaxation of precontracted SV and IMA rings to GTN and SNP (0.01 - 10 microM) generally recovered fully on washout. In contrast, responses to RIG200 and GSNO were sustained during washout (30 min). Sustained relaxation was reversed by the NO scavenger, ferrohaemoglobin (10 microM) but not by the NO synthase inhibitor, N(omega)-nitro-L-arginine methyl ester (100 and 250 microM in SV and IMA respectively). 6. Pretreatment (30 min) of SV with both S-nitrosothiols (10 microM) inhibited phenylephrine-induced contraction for >180 min, compared with <90 min for GTN. In IMA, contractility was suppressed to 49+/-4% (GSNO) and 26+/-4% (RIG200) of baseline after 240 min washout. 7. Pretreatment of bypass conduits with S-nitrosothiols might improve their patency in the early post-operative period.
Collapse
Affiliation(s)
- Naoki Sogo
- Clinical Pharmacology Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2LH
| | - Ciro Campanella
- Cardiac Surgery, Royal Infirmary of Edinburgh, Edinburgh EH3 9YW
| | - David J Webb
- Clinical Pharmacology Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2LH
| | - Ian L Megson
- Clinical Pharmacology Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2LH
- Author for correspondence:
| |
Collapse
|
40
|
Miller MR, Megson IL, Roseberry MJ, Mazzei FA, Butler AR, Webb DJ. Novel S-nitrosothiols do not engender vascular tolerance and remain effective in glyceryl trinitrate-tolerant rat femoral arteries. Eur J Pharmacol 2000; 403:111-9. [PMID: 10969151 DOI: 10.1016/s0014-2999(00)00572-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Organic nitrates, such as glyceryl trinitrate, are nitric oxide (NO) donor drugs that engender tolerance with long-term use. Here, we tested the hypothesis that our novel S-nitrosothiols, N-(S-nitroso-N-acetylpenicillamine)-2-amino-2-deoxy-1,3,4,6, tetra-O-acetyl-beta-D-glucopyranose (RIG200) and S-nitroso-N-valeryl-D-penicillamine (D-SNVP), do not induce vascular tolerance ex vivo. Femoral arteries from adult male Wistar rats were preconstricted with phenylephrine and perfused with the NO synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME). Perfusion pressure was measured during 20-h treatment with supramaximal concentrations of NO donor (10 microM). Perfusion with glyceryltrinitrate caused a vasodilatation, which recovered over 2-20 h. In contrast, the S-nitrosothiols caused vasodilatations that were maintained throughout the 20-h perfusion period. Responses to S-nitrosothiols were partially reversed by the NO scavenger ferrohaemoglobin and fully reversed by the soluble guanylate cyclase inhibitor [1H-[1,2,4] oxadiazole [4,3-a]quinoxaline-1-one (ODQ). Glyceryltrinitrate-tolerant vessels were fully responsive to bolus injections of S-nitrosothiols. Resistance to tolerance is an attractive property of our novel compounds, particularly in view of their sustained activity in arteries with damaged endothelium.
Collapse
Affiliation(s)
- M R Miller
- Clinical Pharmacology Unit, University of Edinburgh, Western General Hospital, EH4 2LH, Scotland, Edinburgh, UK.
| | | | | | | | | | | |
Collapse
|
41
|
Choi IY, Lee SJ, Ju C, Nam W, Kim HC, Ko KH, Kim WK. Protection by a manganese porphyrin of endogenous peroxynitrite-induced death of glial cells via inhibition of mitochondrial transmembrane potential decrease. Glia 2000; 31:155-64. [PMID: 10878602 DOI: 10.1002/1098-1136(200008)31:2<155::aid-glia70>3.0.co;2-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the cerebral ischemic penumbra, progressive metabolic deterioration eventually leads to death of glial cells. The exact mechanism for the death of glial cells is unclear. Here we report that under glucose-deprived conditions immunostimulated glial cells rapidly underwent death via production of large amounts of peroxynitrite. The cell-permeable Mn(III)tetrakis(N-methyl-4'-pyridyl)porphyrin (MnTMPyP) caused a concentration-dependent attenuation of the increased death in glucose-deprived immunostimulated glial cells. The structurally related compound H(2)TMPyP, which lacks metals, did not attenuate this augmented cell death. MnTMPyP prevented the elevation in nitrotyrosine immunoreactivity (a marker of ONOO(-)) in glucose-deprived immunostimulated glial cells. In glucose-deprived glial cells, MnTMPyP also completely blocked the augmented death and nitrotyrosine immunoreactivity induced by the ONOO(-)-producing reagent 3-morpholinosydnonimine (SIN-1). The mitochondrial transmembrane potential (MTP), as measured using the dye JC-1, was rapidly decreased in immunostimulated or SIN-1-treated glial cells deprived of glucose. MnTMPyP, but not H(2)TMPyP, blocked the depolarization of MTP in those glial cells. The present data, at least in part, provide evidence for how glial cells die in the postischemic and/or recurrent ischemic brain.
Collapse
Affiliation(s)
- I Y Choi
- Department of Chemistry, College of Natural Sciences, Ewha Women's University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|