1
|
Di Stefano A, Maniscalco M, Balbi B, Ricciardolo FLM. Oxidative and Nitrosative Stress in the Pathogenesis of Obstructive Lung Diseases of Increasing Severity. Curr Med Chem 2021; 27:7149-7158. [PMID: 32496983 DOI: 10.2174/0929867327666200604165451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 11/22/2022]
Abstract
The imbalance between increased oxidative agents and antioxidant defence mechanisms is central in the pathogenesis of obstructive lung diseases such as asthma and COPD. In these patients, there are increased levels of reactive oxygen species. Superoxide anions (O2 -), Hydrogen Peroxide (H2O2) and hydroxyl radicals (•OH) are critical for the formation of further cytotoxic radicals in the bronchi and lung parenchyma. Chronic inflammation, partly induced by oxidative stress, can further increase the oxidant burden through activated phagocytic cells (neutrophils, eosinophils, macrophages), particularly in severer disease states. Antioxidants and anti-inflammatory genes are, in fact, frequently downregulated in diseased patients. Nrf2, which activates the Antioxidant Response Element (ARE) leading to upregulation of GPx, thiol metabolism-associated detoxifying enzymes (GSTs) and stressresponse genes (HO-1) are all downregulated in animal models and patients with asthma and COPD. An exaggerated production of Nitric Oxide (NO) in the presence of oxidative stress can promote the formation of oxidizing reactive nitrogen species, such as peroxynitrite (ONO2 -), leading to nitration and DNA damage, inhibition of mitochondrial respiration, protein dysfunction, and cell damage in the biological systems. Protein nitration also occurs by activation of myeloperoxidase and H2O2, promoting oxidation of nitrite (NO2 -). There is increased nitrotyrosine and myeloperoxidase in the bronchi of COPD patients, particularly in severe disease. The decreased peroxynitrite inhibitory activity found in induced sputum of COPD patients correlates with pulmonary function. Markers of protein nitration - 3- nitrotyrosine, 3-bromotyrosine, and 3-chlorotyrosine - are increased in the bronchoalveolar lavage of severe asthmatics. Targeting the oxidative, nitrosative stress and associated lung inflammation through the use of either denitration mechanisms or new drug delivery strategies for antioxidant administration could improve the treatment of these chronic disabling obstructive lung diseases.
Collapse
Affiliation(s)
- Antonino Di Stefano
- Divisione di Pneumologia e Laboratorio di Immunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri SpA, Societa Benefit, IRCCS, Veruno, Italy
| | - Mauro Maniscalco
- Divisione di Pneumologia, Istituti Clinici Scientifici Maugeri SpA, Societa Benefit, IRCCS, Telese, Italy
| | - Bruno Balbi
- Divisione di Pneumologia e Laboratorio di Immunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri SpA, Societa Benefit, IRCCS, Veruno, Italy
| | - Fabio L M Ricciardolo
- Dipartimento di Scienze Cliniche e Biologiche, AOU, San Luigi, Orbassano, Universita di Torino, Torino, Italy
| |
Collapse
|
2
|
Chemical Changes in Nonthermal Plasma-Treated N-Acetylcysteine (NAC) Solution and Their Contribution to Bacterial Inactivation. Sci Rep 2016; 6:20365. [PMID: 26832829 PMCID: PMC4735827 DOI: 10.1038/srep20365] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/31/2015] [Indexed: 12/28/2022] Open
Abstract
In continuation of our previous reports on the broad-spectrum antimicrobial activity
of atmospheric non-thermal dielectric barrier discharge (DBD) plasma treated
N-Acetylcysteine (NAC) solution against planktonic and biofilm forms of different
multidrug resistant microorganisms, we present here the chemical changes that
mediate inactivation of Escherichia coli. In this study, the mechanism and
products of the chemical reactions in plasma-treated NAC solution are shown.
UV-visible spectrometry, FT-IR, NMR, and colorimetric assays were utilized for
chemical characterization of plasma treated NAC solution. The characterization
results were correlated with the antimicrobial assays using determined chemical
species in solution in order to confirm the major species that are responsible for
antimicrobial inactivation. Our results have revealed that plasma treatment of NAC
solution creates predominantly reactive nitrogen species versus reactive oxygen
species, and the generated peroxynitrite is responsible for significant bacterial
inactivation.
Collapse
|
3
|
Salama SA, Arab HH, Omar HA, Maghrabi IA, Snapka RM. Nicotine mediates hypochlorous acid-induced nuclear protein damage in mammalian cells. Inflammation 2015; 37:785-92. [PMID: 24357417 DOI: 10.1007/s10753-013-9797-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Activated neutrophils secrete hypochlorous acid (HOCl) into the extracellular space of inflamed tissues. Because of short diffusion distance in biological fluids, HOCl-damaging effect is restricted to the extracellular compartment. The current study aimed at investigating the ability of nicotine, a component of tobacco and electronic cigarettes, to mediate HOCl-induced intracellular damage. We report, for the first time, that HOCl reacts with nicotine to produce nicotine chloramine (Nic-Cl). Nic-Cl caused dose-dependent damage to proliferating cell nuclear antigen (PCNA), a nuclear protein, in cultured mammalian lung and kidney cells. Vitamin C, vitamin E analogue (Trolox), glutathione, and N-acetyl-L-cysteine inhibited the Nic-Cl-induced PCNA damage, implicating oxidation in PCNA damage. These findings point out the ability of nicotine to mediate HOCl-induced intracellular damage and suggest antioxidants as protective measures. The results also raise the possibility that Nic-Cl can be created in the inflamed tissues of tobacco and electronic cigarette smokers and may contribute to smoking-related diseases.
Collapse
Affiliation(s)
- Samir A Salama
- Division of Biochemistry and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif, 21974, Kingdom of Saudi Arabia,
| | | | | | | | | |
Collapse
|
4
|
Misztal T, Rusak T, Tomasiak M. Clinically relevant HOCl concentrations reduce clot retraction rate via the inhibition of energy production in platelet mitochondria. Free Radic Res 2014; 48:1443-53. [DOI: 10.3109/10715762.2014.960866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Eggleton P, Nissim A, Ryan BJ, Whiteman M, Winyard PG. Detection and isolation of human serum autoantibodies that recognize oxidatively modified autoantigens. Free Radic Biol Med 2013; 57:79-91. [PMID: 23246567 DOI: 10.1016/j.freeradbiomed.2012.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 10/05/2012] [Accepted: 11/10/2012] [Indexed: 12/13/2022]
Abstract
The breakdown of human immune tolerance to self-proteins occurs by a number of mechanisms, including posttranslational modifications of host molecules by reactive oxygen, nitrogen, or chlorine species. This has led to great interest in detecting serum autoantibodies raised against small quantities of oxidatively modified host proteins in patients with autoimmune inflammatory diseases, such as rheumatoid arthritis. Here, we provide protocols for the preparation and chemical characterization of oxidatively modified protein antigens and procedures for their use in immunoblotting and ELISAs that detect autoantibodies against these antigens in clinical samples. These gel electrophoresis- and plate reader-based immunochemical methods sometimes suffer from low analytical specificity and/or sensitivity when used for serum autoantibody detection. This is often because a single solid-phase protein (antigen) is exposed to a complex mixture of serum proteins that undergo nonspecific binding. Therefore more sensitive/specific techniques are required to detect autoantibodies specifically directed against oxidatively modified proteins. To address this, we describe novel affinity chromatography protocols by which purified autoantibodies are isolated from small volumes (<1 ml) of serum. We have also developed strategies to conjugate submilligram amounts of isolated immunoglobulins and other proteins to fluorophores. This set of methods will help facilitate the discovery of novel diagnostic autoantibodies in patients.
Collapse
Affiliation(s)
- Paul Eggleton
- University of Exeter Medical School, St Luke's Campus, Exeter, Devon EX1 2LU, UK
| | | | | | | | | |
Collapse
|
6
|
Abstract
Systemic inflammatory response syndrome is associated with excessive production of nitric oxide (NO·) and superoxide (O2), forming peroxynitrite, which in turn, acts as a terminal mediator of cellular injury by producing cell necrosis and apoptosis. We examined the effect of the peroxynitrite decomposition catalyst, WW-85, in a sheep model of acute lung injury and septic shock. Eighteen sheep were operatively prepared and randomly allocated to the sham, control, or WW-85 group (n = 6 each). After a tracheotomy, acute lung injury was produced in the control and WW-85 groups by insufflation of four sets of 12 breaths of cotton smoke. Then, a 30-mL suspension of live Pseudomonas aeruginosa bacteria (containing 2 - 5 × 10¹¹ colony-forming units) was instilled into the lungs according to an established protocol. The sham group received only the vehicle (30 mL saline). The sheep were studied in awake state for 24 h and ventilated with 100% oxygen. WW-85 was administered 1 h after injury as bolus infusion (0.1 mg/kg), followed by a continuous infusion of 0.02 mg·kg⁻¹·h⁻¹ until the end of the 24-h experimental period. Compared with injured but untreated controls, WW-85-treated animals had significantly improved gas exchange, reductions in airway obstruction, shunt formation, lung myeloperoxidase concentrations, lung malondialdehyde concentrations, lung 3-nitrotyrosine concentrations, and plasma nitrate-to-nitrite levels. Animals treated with WW-85 exhibited less microvascular leakage and improvements in pulmonary function. These results provide evidence that blockade of the nitric oxide-peroxynitrite pathway improves disturbances from septic shock, as demonstrated in a clinically relevant ovine experimental model.
Collapse
|
7
|
Mak AM, Whiteman M, Wong MW. Reaction of the radical pair NO2* and CO3*- with 2-[6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid (APF). J Phys Chem A 2007; 111:8202-10. [PMID: 17672441 DOI: 10.1021/jp073142p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fluorogenic indicator 2-[6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid (APF) is used widely to detect and measure reactive nitrogen and oxygen species such as peroxynitrite, ONOO-, both in vivo and in vitro. We present in this work the results of a combined computational and experimental study to provide insights into the mechanism of the reaction of APF with the radical products of ONOO- reaction with CO2, namely NO2* and CO3*-. The experimental study on the inhibition of APF oxidation by HCO3- suggests that a direct reaction of APF with nitrosoperoxycarbonate, ONOOCO2-, is unlikely. The mechanism of APF action on NO2* and CO3*- was investigated using gas-phase and solvent modeled calculations at the MPW1K/6-311+G(d)//MPW1K/6-31G(d) level of theory. Our computational results suggest that two-electron oxidation of APF takes place in two rapid one-electron oxidation steps, the first being a proton-coupled electron transfer (PCET) between APF and NO2*, followed by addition of CO3*- and subsequent decomposition of the adduct to yield fluorescein.
Collapse
Affiliation(s)
- Adrian Matthew Mak
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | | | | |
Collapse
|
8
|
Olmos A, Giner RM, Recio MC, Ríos JL, Máñez S. Modulation of protein tyrosine nitration and inflammatory mediators by isoprenylhydroquinone glucoside. Eur J Pharm Sci 2007; 30:220-8. [PMID: 17161592 DOI: 10.1016/j.ejps.2006.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 11/02/2006] [Accepted: 11/03/2006] [Indexed: 10/23/2022]
Abstract
The nitration of tyrosine caused by peroxynitrite and other reactive nitrogen species is clearly detrimental for some physiological processes; however, its signalling role is still open to controversy. Among the natural phenolics known for their ability to oppose free tyrosine nitration, isoprenylhydroquinone glucoside is investigated due to its unusual structure, which contains a simple hydroxybenzene alkylated by a hemiterpenoid moiety. This hydroquinone was shown to be an effective inhibitor of peroxynitrite-induced protein tyrosine nitration in 3T3 fibroblasts. When tested on bovine seroalbumin nitration, however, the potency was reduced by half and the effect was almost abolished in the presence of bicarbonate. In contrast, addition of this anion had no effect on the nitrite/hydrogen peroxide/hemin system. Isoprenylhydroquinone glucoside was also active in the microM range on intra- and extracellular protein-bound tyrosine nitration by phorbol 12-myristate 13-acetate-stimulated neutrophils. The effects on nitric oxide synthase expression, interleukin-1beta and tumor necrosis factor-alpha production by lipopolysaccharide-stimulated macrophages were quite moderate. Thus, isoprenylhydroquinone glucoside is an inhibitor of protein nitration in situ, but lacks effect on the generation of either nitric oxide or inflammatory cytokines.
Collapse
Affiliation(s)
- Ana Olmos
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | | | | | | | | |
Collapse
|
9
|
Hirano T, Yamagata T, Gohda M, Yamagata Y, Ichikawa T, Yanagisawa S, Ueshima K, Akamatsu K, Nakanishi M, Matsunaga K, Minakata Y, Ichinose M. Inhibition of reactive nitrogen species production in COPD airways: comparison of inhaled corticosteroid and oral theophylline. Thorax 2006; 61:761-6. [PMID: 16936236 PMCID: PMC2117093 DOI: 10.1136/thx.200x.058156] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Accepted: 05/01/2006] [Indexed: 11/04/2022]
Abstract
BACKGROUND Reactive nitrogen species (RNS) are thought to be one of the important factors in the pathogenesis of chronic obstructive pulmonary disease (COPD). A study was undertaken to examine the effects of theophylline and fluticasone propionate (FP) on RNS production in subjects with COPD. METHODS Sixteen COPD subjects participated in the study. Theophylline (400 mg/day orally) or FP (400 mug/day inhalation) were administered for 4 weeks in a randomised crossover manner with a washout period of 4 weeks. Induced sputum was collected at the beginning and end of each treatment period. 3-nitrotyrosine (3-NT), which is a footprint of RNS, was quantified by high performance liquid chromatography with an electrochemical detection method as well as by immunohistochemical staining. RESULTS Theophylline significantly reduced the level of 3-NT in the sputum supernatant as well as the number of 3-NT positive cells (both p<0.01). FP also reduced 3-NT formation, but the effect was smaller than that of theophylline. Theophylline also significantly reduced the neutrophil cell counts in the sputum (p<0.01), while FP treatment had no effect on the number of inflammatory cells in the sputum, except eosinophils. CONCLUSIONS Theophylline reduces nitrative stress and neutrophil infiltration in COPD airways to a larger extent than inhaled corticosteroid.
Collapse
Affiliation(s)
- T Hirano
- Third Department of Internal Medicine, Wakayama Medical University School of Medicine, Wakayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Olmos A, Giner RM, Máñez S. Drugs modulating the biological effects of peroxynitrite and related nitrogen species. Med Res Rev 2006; 27:1-64. [PMID: 16752428 DOI: 10.1002/med.20065] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The term "reactive nitrogen species" includes nitrogen monoxide, commonly called nitric oxide, and some other remarkable chemical entities (peroxynitrite, nitrosoperoxycarbonate, etc.) formed mostly from nitrogen monoxide itself in biological environments. Regardless of the specific mechanisms implicated in their effects, however, it is clear that an integrated pharmacological approach to peroxynitrite and related species is only just beginning to take shape. The array of affected chemical and pathological processes is extremely broad. One of the most conspicuous mechanisms observed thus far has been the scavenging of the peroxynitrite anion by molecules endowed with antioxidant activity. This discovery has in turn lent great significance to several naturally occurring and synthetic antioxidants, which usually protect not only against oxidative reactions, but also from nitrating ones, both in vitro and in vivo. This has proven to be beneficial in different tissues, especially within the central nervous system. Taking these results and those of other biochemical investigations into account, many research lines are currently in progress to establish the true potential of reactive nitrogen species deactivators in the therapy of neurological diseases, ischemia-reperfusion damage, renal failure, and lung injury, among others.
Collapse
Affiliation(s)
- Ana Olmos
- Departament de Farmacologia, Universitat de València, València, Spain
| | | | | |
Collapse
|
11
|
Ricciardolo FLM, Di Stefano A, Sabatini F, Folkerts G. Reactive nitrogen species in the respiratory tract. Eur J Pharmacol 2006; 533:240-52. [PMID: 16464450 DOI: 10.1016/j.ejphar.2005.12.057] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2005] [Indexed: 11/23/2022]
Abstract
Endogenous Nitric Oxide (NO) plays a key role in the physiological regulation of airway functions. In response to various stimuli activated inflammatory cells (e.g., eosinophils and neutrophils) generate oxidants ("oxidative stress") which in conjunction with exaggerated enzymatic release of NO and augmented NO metabolites produce the formation of strong oxidizing reactive nitrogen species, such as peroxynitrite, in various airway diseases including asthma, chronic obstructive pulmonary diseases (COPD), cystic fibrosis and acute respiratory distress syndrome (ARDS). Reactive nitrogen species provoke amplification of inflammatory processes in the airways and lung parenchyma causing DNA damage, inhibition of mitochondrial respiration, protein dysfunction and cell damage ("nitrosative stress"). These effects alter respiratory homeostasis (such as bronchomotor tone and pulmonary surfactant activity) and the long-term persistence of "nitrosative stress" may contribute to the progressive deterioration of pulmonary functions leading to respiratory failure. Recent studies showing that protein nitration can be dynamic and reversible ("denitration mechanisms") open new horizons in the treatment of chronic respiratory diseases affected by the deleterious actions of "nitrosative stress".
Collapse
|
12
|
Whiteman M, Cheung NS, Zhu YZ, Chu SH, Siau JL, Wong BS, Armstrong JS, Moore PK. Hydrogen sulphide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain? Biochem Biophys Res Commun 2005; 326:794-8. [PMID: 15607739 DOI: 10.1016/j.bbrc.2004.11.110] [Citation(s) in RCA: 253] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Indexed: 11/16/2022]
Abstract
Hydrogen sulphide (H(2)S) is a cytotoxic gas that has recently been proposed as a novel neuromodulator. Endogenous levels of H(2)S in the brain range between 50 and 160 microM, and considerably lower H(2)S levels are reported in the brains of Alzheimer's disease (AD) patients. Levels of myeloperoxidase (MPO), an enzyme that catalyses the formation of the oxidant hypochlorous acid (HOCl), are elevated in the prefrontal cortex, hippocampal microglia, and neurons of AD patients where MPO co-localised with beta-amyloid plaques. Recently 3-chlorotyrosine, a bio-marker for MPO activity (and HOCl production), was shown to be elevated threefold in hippocampal proteins from AD patients. Since H(2)S and HOCl are important mediators in brain function and disease, we investigated the effects of H(2)S on HOCl-mediated damage to bio-molecules and to cultured human SH-SY5Y cells. H(2)S significantly inhibited HOCl-mediated inactivation of alpha(1)-antiproteinase and protein oxidation to a comparable extent to reduced glutathione. H(2)S also inhibited HOCl-induced cytotoxicity, intracellular protein oxidation, and lipid peroxidation in SH-SY5Y cells. These data suggest that H(2)S has the potential to act as an inhibitor of HOCl-mediated processes in vivo and that the potential antioxidant action of H(2)S deserves further study, especially since extracellular GSH levels in the brain are very low.
Collapse
Affiliation(s)
- Matthew Whiteman
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Chhokar VS, Sun Y, Bhattacharya SK, Ahokas RA, Myers LK, Xing Z, Smith RA, Gerling IC, Weber KT. Loss of bone minerals and strength in rats with aldosteronism. Am J Physiol Heart Circ Physiol 2004; 287:H2023-6. [PMID: 15475529 DOI: 10.1152/ajpheart.00477.2004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Congestive heart failure (CHF) is a clinical syndrome with origins rooted in a salt-avid state largely mediated by effector hormones of the circulating renin-angiotensin-aldosterone system. Other participating neurohormones include catecholamines, endothelin-1, and arginine vasopressin. CHF is accompanied by a systemic illness of uncertain causality. Features include the appearance of oxidative/nitrosative stress and a wasting of tissues including bone. Herein we hypothesized that inappropriate (relative to dietary Na+) elevations in plasma aldosterone (Aldo) contribute to an altered redox state, augmented excretion of divalent cations, and in turn, a loss of bone minerals and strength. In uninephrectomized rats that received chronic Aldo and 1% NaCl treatment for 4-6 wk, we monitored plasma alpha1-antiproteinase activity, which is an inverse correlate of oxidative/nitrosative stress; plasma concentrations of ionized Mg2+ and Ca2+; urinary Mg2+ and Ca2+ excretion; and bone mineral composition and strength to flexure stress. Compared with controls, we found reductions in plasma alpha1-antiproteinase activity and ionized Mg2+ and Ca2+ together with persistently elevated urinary Mg2+ and Ca2+ excretion, a progressive loss of bone mineral density and content with reduced Mg2+ and Ca2+ concentrations, and a reduction in cortical bone strength. Thus the hypermagnesuria and hypercalciuria that accompany chronic Aldo-1% NaCl treatment contribute to the systemic appearance of oxidative/nitrosative stress and a wasting of bone minerals and strength.
Collapse
Affiliation(s)
- Vikram S Chhokar
- Division of Cardiovascular Diseases, Univ. of Tennessee Health Science Center, 920 Madison Ave., Third Floor, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sugiura H, Ichinose M, Tomaki M, Ogawa H, Koarai A, Kitamuro T, Komaki Y, Akita T, Nishino H, Okamoto S, Akaike T, Hattori T. Quantitative assessment of protein-bound tyrosine nitration in airway secretions from patients with inflammatory airway disease. Free Radic Res 2004; 38:49-57. [PMID: 15061653 DOI: 10.1080/10715760310001633817] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Because reactive nitrogen species (RNS) have potent inflammatory activity, they may be involved in the inflammatory process in pulmonary diseases. We recently reported increased numbers of 3-nitrotyrosine immunopositive cells, which are evidences of RNS production, in the sputum of patients with chronic obstructive pulmonary disease (COPD) and patients with asthma compared with healthy subjects. In the present study, we attempted to quantify this protein nitration in the airways by means of high-performance liquid chromatography (HPLC) used together with an electrochemical detection system that we developed. Sputum samples were obtained from 15 stable COPD patients, 9 asthmatic patients and 7 healthy subjects by using hypertonic saline inhalation. The values for the molar ratio of protein-bound 3-nitrotyrosine/tyrosine in patients with asthma (4.31 +/- 1.13 x 10(-6), p < 0.05) and patients with COPD (3.04 +/- 0.36 x 10(-6), p < 0.01) were significantly higher than those in healthy subjects (1.37 +/- 0.19 x 10(-6)). The levels of protein-bound 3-nitrotyrosine in the airways were not significantly different in asthmatic patients and COPD patients. A significant negative correlation was found between values for protein-bound 3-nitrotyrosine/tyrosine and % FEV1 values in patients with COPD (r = -0.53, p < 0.05) but not in patients with asthma. These results suggest that our HPLC-electrochemical method is useful for quantifying RNS production in human airways. More importantly, they show that increased RNS production in the airways seems to contribute in a critical way to the pathogenesis of COPD, and that the effects of RNS in airways may differ in asthma and COPD.
Collapse
Affiliation(s)
- Hisatoshi Sugiura
- Division of Respiratory and Infectious Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sugiura H, Ichinose M, Yamagata S, Koarai A, Shirato K, Hattori T. Correlation between change in pulmonary function and suppression of reactive nitrogen species production following steroid treatment in COPD. Thorax 2003; 58:299-305. [PMID: 12668791 PMCID: PMC1746645 DOI: 10.1136/thorax.58.4.299] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Reactive nitrogen species (RNS) have a number of inflammatory actions and the production of these molecules has been reported to be increased in the airways of patients with chronic obstructive pulmonary disease (COPD), which suggests that they may be involved in the inflammatory and obstructive process in COPD. METHODS The relationship between the reduction in RNS and the improvement in pulmonary function was studied in 18 patients with COPD following steroid treatment (800 micro g beclomethasone dipropionate inhalation for 4 weeks). Twelve patients were treated with inhaled steroids and the others received placebo treatment. Forced expiratory volume in 1 second (FEV(1)) and airway responsiveness to histamine were measured before and after treatment. Induced sputum cells were stained with anti-nitrotyrosine antibody, a footprint of RNS, and RNS formation was assessed by measuring nitrotyrosine immunoreactivity. The immunoreactivity of inducible nitric oxide synthase (iNOS) in induced sputum and exhaled NO levels were also measured. RESULTS Treatment with steroids resulted in a significant reduction in both nitrotyrosine and iNOS immunoreactivity in sputum cells compared with pretreatment levels (both p<0.01). The reduction rates in both parameters were significantly related (p<0.05). The reduction in nitrotyrosine and iNOS immunoreactivity was correlated with the improvement in FEV(1) (p<0.05) and airway responsiveness to histamine (p<0.01). None of the parameters was significantly changed by placebo administration. CONCLUSIONS These results suggest that RNS may be involved in the reversible component of inflammation in COPD that is suppressed by steroids. Further studies using specific inhibitors for RNS are needed to clarify their effects on the long term progression of COPD.
Collapse
Affiliation(s)
- H Sugiura
- Division of Respiratory and Infectious Diseases, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Rose P, Widder S, Looft J, Pickenhagen W, Ong CN, Whiteman M. Inhibition of peroxynitrite-mediated cellular toxicity, tyrosine nitration, and alpha1-antiproteinase inactivation by 3-mercapto-2-methylpentan-1-ol, a novel compound isolated from Allium cepa. Biochem Biophys Res Commun 2003; 302:397-402. [PMID: 12604361 DOI: 10.1016/s0006-291x(03)00193-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peroxynitrite formation in vivo is implicated in numerous human diseases and there is considerable interest in the use of antioxidants and natural products such as thiols as "peroxynitrite scavengers". We therefore investigated the effects of a recently identified constituent of onions, 3-mercapto-2-methylpentan-1-ol (3-MP), for its ability to inhibit peroxynitrite-mediated processes in vitro and using cultured human cells and compared its effectiveness against glutathione. 3-MP significantly inhibited peroxynitrite-mediated tyrosine nitration and inactivation of alpha(1)-antiproteinase to a greater extent than glutathione at each concentration tested (15-500 microM). 3-MP also inhibited peroxynitrite-induced cytotoxicity, intracellular tyrosine nitration, and intracellular reactive oxygen species generation in human HepG2 cells in culture to a greater extent than glutathione. These data suggest that 3-MP has the potential to act as an inhibitor of ONOO(-)-mediated processes in vivo and that the antioxidant action of 3-MP deserves further study.
Collapse
Affiliation(s)
- Peter Rose
- Department of Community, Occupational and Family Medicine, Faculty of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
17
|
Zhang C, Patel R, Eiserich JP, Zhou F, Kelpke S, Ma W, Parks DA, Darley-Usmar V, White CR. Endothelial dysfunction is induced by proinflammatory oxidant hypochlorous acid. Am J Physiol Heart Circ Physiol 2001; 281:H1469-75. [PMID: 11557534 DOI: 10.1152/ajpheart.2001.281.4.h1469] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The myeloperoxidase (MPO)-derived oxidant hypochlorous acid (HOCl) plays a role in tissue injury under inflammatory conditions. The present study tests the hypothesis that HOCl decreases nitric oxide (NO) bioavailability in the vasculature of Sprague-Dawley rats. Aortic ring segments were pretreated with HOCl (1-50 microM) followed by extensive washing. Endothelium-dependent relaxation was then assessed by cumulative addition of acetylcholine (ACh) or the calcium ionophore A23187. HOCl treatment significantly impaired both ACh- and A23187-mediated relaxation. In contrast, endothelium-independent relaxation induced by sodium nitroprusside was unaffected. The inhibitory effect of HOCl on ACh-induced relaxation was reversed by exposure of ring segments to L-arginine but not D-arginine. In cellular studies, HOCl did not alter endothelial NO synthase (NOS III) protein or activity, but inhibited formation of the NO metabolites nitrate (NO3(-) and nitrite (NO2(-). The reduction in total NO metabolite production in bovine aortic endothelial cells was also reversed by addition of L-arginine. These data suggest that HOCl induces endothelial dysfunction via modification of L-arginine.
Collapse
Affiliation(s)
- C Zhang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Feihl F, Waeber B, Liaudet L. Is nitric oxide overproduction the target of choice for the management of septic shock? Pharmacol Ther 2001; 91:179-213. [PMID: 11744067 DOI: 10.1016/s0163-7258(01)00155-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sepsis is a heterogeneous class of syndromes caused by a systemic inflammatory response to infection. Septic shock, a severe form of sepsis, is associated with the development of progressive damage in multiple organs, and is a leading cause of patient mortality in intensive care units. Despite important advances in understanding its pathophysiology, therapy remains largely symptomatic and supportive. A decade ago, the overproduction of nitric oxide (NO) had been discovered as a potentially important event in this condition. As a result, great hopes arose that the pharmacological inhibition of NO synthesis could be developed into an efficient, mechanism-based therapeutic approach. Since then, an extraordinary effort by the scientific community has brought a deeper insight regarding the feasibility of this goal. Here we present in summary form the present state of knowledge of the biological chemistry and physiology of NO. We then proceed to a systematic review of experimental and clinical data, indicating an up-regulation of NO production in septic shock; information on the role of NO in septic shock, as provided by experiments in transgenic mice that lack the ability to up-regulate NO production; effects of pharmacological inhibitors of NO production in various experimental models of septic shock; and relevant clinical experience. The accrued evidence suggests that the contribution of NO to the pathophysiology of septic shock is highly heterogeneous and, therefore, difficult to target therapeutically without appropriate monitoring tools, which do not exist at present.
Collapse
Affiliation(s)
- F Feihl
- Division of Pathophysiology and Medical Teaching, Department of Internal Medicine, University Hospital, PPA, BH19-317, CHUV, CH 1011 Lausanne, Switzerland.
| | | | | |
Collapse
|
19
|
Zhang C, Reiter C, Eiserich JP, Boersma B, Parks DA, Beckman JS, Barnes S, Kirk M, Baldus S, Darley-Usmar VM, White CR. L-arginine chlorination products inhibit endothelial nitric oxide production. J Biol Chem 2001; 276:27159-65. [PMID: 11375389 DOI: 10.1074/jbc.m100191200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The myeloperoxidase-derived oxidant hypochlorous acid (HOCl) is thought to contribute to endothelial dysfunction, but the mechanisms underlying this inhibitory effect are unknown. The present study tested the hypothesis that HOCl and L-arginine (L-Arg) react to form novel compounds that adversely affect endothelial function by inhibiting nitric oxide (NO) formation. Using spectrophotometric techniques, we found that HOCl and L-Arg react rapidly (k = 7.1 x 10(5) m(-1) s(-1)) to form two major products that were identified by mass spectrometry as monochlorinated and dichlorinated adducts of L-Arg. Pretreatment of bovine aortic endothelial cells with the chlorinated L-Arg metabolites (Cl-l-Arg) inhibited the -induced formation of the NO metabolites nitrate (NO(3)(-)) and nitrite (NO(2)(-)) in a concentration-dependent manner. Preincubation of rat aortic ring segments with Cl-L-Arg resulted in concentration-dependent inhibition of acetylcholine-induced relaxation. In contrast, blood vessels relaxed normally to the endothelium-independent vasodilator sodium nitroprusside. In vivo administration of Cl-L-Arg to anesthetized rats increased carotid artery vascular resistance. A greater than 10-fold excess of L-Arg was required to reverse the inhibitory effects of Cl-L-Arg in vivo and in vitro. Reaction of HOCl with D-arginine (D-Arg) did not result in the formation of inhibitory products. These results suggest that HOCl reacts with L-Arg to form chlorinated products that act as nitric-oxide synthase inhibitors.
Collapse
Affiliation(s)
- C Zhang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ploner F, Tugtekin I, Matejovic M, Theisen M, Stehr A, Szabo C, Brückner UB, Radermacher P. Effects of mercaptoethylguanidine during long-term hyperdynamic porcine endotoxemia. Crit Care 2000. [PMCID: PMC3332975 DOI: 10.1186/cc771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|