1
|
Andrews PLR, Golding JF, Sanger GJ. An assessment of the effects of neurokinin 1 receptor antagonism against nausea and vomiting: Relative efficacy, sites of action and lessons for future drug development. Br J Clin Pharmacol 2023; 89:3468-3490. [PMID: 37452618 DOI: 10.1111/bcp.15852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
A broad-spectrum anti-vomiting effect of neurokinin1 receptor antagonists (NK1 RA), shown in pre-clinical animal studies, has been supported by a more limited range of clinical studies in different indications. However, this review suggests that compared with vomiting, the self-reported sensation of nausea is less affected or possibly unaffected (depending on the stimulus) by NK1 receptor antagonism, a common finding for anti-emetics. The stimulus-independent effects of NK1 RAs against vomiting are explicable by actions within the central pattern generator (ventral brainstem) and the nucleus tractus solitarius (NTS; dorsal brainstem), with additional effects on vagal afferent activity for certain stimuli (e.g., highly emetogenic chemotherapy). The central pattern generator and NTS neurones are multifunctional so the notable lack of obvious effects of NK1 RAs on other reflexes mediated by the same neurones suggests that their anti-vomiting action is dependent on the activation state of the pathway leading to vomiting. Nausea requires activation of cerebral pathways by projection of information from the NTS. Although NK1 receptors are present in cerebral nuclei implicated in nausea, and imaging studies show very high receptor occupancy at clinically used doses, the variable or limited ability of NK1 RAs to inhibit nausea emphasizes: (i) our inadequate understanding of the mechanisms of nausea; and (ii) that classification of a drug as an anti-emetic may give a false impression of efficacy against nausea vs. vomiting. We discuss the potential mechanisms for the differential efficacy of NK1 RA and the implications for future development of drugs that can effectively treat nausea, an area of unmet clinical need.
Collapse
Affiliation(s)
- Paul L R Andrews
- Division of Biomedical Sciences, St George's University of London, London, UK
| | | | - Gareth J Sanger
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
TRPV1: A Common Denominator Mediating Antinociceptive and Antiemetic Effects of Cannabinoids. Int J Mol Sci 2022; 23:ijms231710016. [PMID: 36077412 PMCID: PMC9456209 DOI: 10.3390/ijms231710016] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/19/2022] Open
Abstract
The most common medicinal claims for cannabis are relief from chronic pain, stimulation of appetite, and as an antiemetic. However, the mechanisms by which cannabis reduces pain and prevents nausea and vomiting are not fully understood. Among more than 450 constituents in cannabis, the most abundant cannabinoids are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Cannabinoids either directly or indirectly modulate ion channel function. Transient receptor potential vanilloid 1 (TRPV1) is an ion channel responsible for mediating several modalities of pain, and it is expressed in both the peripheral and the central pain pathways. Activation of TRPV1 in sensory neurons mediates nociception in the ascending pain pathway, while activation of TRPV1 in the central descending pain pathway, which involves the rostral ventral medulla (RVM) and the periaqueductal gray (PAG), mediates antinociception. TRPV1 channels are thought to be implicated in neuropathic/spontaneous pain perception in the setting of impaired descending antinociceptive control. Activation of TRPV1 also can cause the release of calcitonin gene-related peptide (CGRP) and other neuropeptides/neurotransmitters from the peripheral and central nerve terminals, including the vagal nerve terminal innervating the gut that forms central synapses at the nucleus tractus solitarius (NTS). One of the adverse effects of chronic cannabis use is the paradoxical cannabis-induced hyperemesis syndrome (HES), which is becoming more common, perhaps due to the wider availability of cannabis-containing products and the chronic use of products containing higher levels of cannabinoids. Although, the mechanism of HES is unknown, the effective treatment options include hot-water hydrotherapy and the topical application of capsaicin, both activate TRPV1 channels and may involve the vagal-NTS and area postrema (AP) nausea and vomiting pathway. In this review, we will delineate the activation of TRPV1 by cannabinoids and their role in the antinociceptive/nociceptive and antiemetic/emetic effects involving the peripheral, spinal, and supraspinal structures.
Collapse
|
3
|
Was H, Borkowska A, Bagues A, Tu L, Liu JYH, Lu Z, Rudd JA, Nurgali K, Abalo R. Mechanisms of Chemotherapy-Induced Neurotoxicity. Front Pharmacol 2022; 13:750507. [PMID: 35418856 PMCID: PMC8996259 DOI: 10.3389/fphar.2022.750507] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Since the first clinical trials conducted after World War II, chemotherapeutic drugs have been extensively used in the clinic as the main cancer treatment either alone or as an adjuvant therapy before and after surgery. Although the use of chemotherapeutic drugs improved the survival of cancer patients, these drugs are notorious for causing many severe side effects that significantly reduce the efficacy of anti-cancer treatment and patients’ quality of life. Many widely used chemotherapy drugs including platinum-based agents, taxanes, vinca alkaloids, proteasome inhibitors, and thalidomide analogs may cause direct and indirect neurotoxicity. In this review we discuss the main effects of chemotherapy on the peripheral and central nervous systems, including neuropathic pain, chemobrain, enteric neuropathy, as well as nausea and emesis. Understanding mechanisms involved in chemotherapy-induced neurotoxicity is crucial for the development of drugs that can protect the nervous system, reduce symptoms experienced by millions of patients, and improve the outcome of the treatment and patients’ quality of life.
Collapse
Affiliation(s)
- Halina Was
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Agata Borkowska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Ana Bagues
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain.,High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), URJC, Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Longlong Tu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Julia Y H Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zengbing Lu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - John A Rudd
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,The Laboratory Animal Services Centre, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,Department of Medicine Western Health, University of Melbourne, Melbourne, VIC, Australia.,Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, Alcorcón, Spain.,Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de la Sociedad Española del Dolor, Madrid, Spain
| |
Collapse
|
4
|
Zhong W, Shahbaz O, Teskey G, Beever A, Kachour N, Venketaraman V, Darmani NA. Mechanisms of Nausea and Vomiting: Current Knowledge and Recent Advances in Intracellular Emetic Signaling Systems. Int J Mol Sci 2021; 22:5797. [PMID: 34071460 PMCID: PMC8198651 DOI: 10.3390/ijms22115797] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Nausea and vomiting are common gastrointestinal complaints that can be triggered by diverse emetic stimuli through central and/or peripheral nervous systems. Both nausea and vomiting are considered as defense mechanisms when threatening toxins/drugs/bacteria/viruses/fungi enter the body either via the enteral (e.g., the gastrointestinal tract) or parenteral routes, including the blood, skin, and respiratory systems. While vomiting is the act of forceful removal of gastrointestinal contents, nausea is believed to be a subjective sensation that is more difficult to study in nonhuman species. In this review, the authors discuss the anatomical structures, neurotransmitters/mediators, and corresponding receptors, as well as intracellular emetic signaling pathways involved in the processes of nausea and vomiting in diverse animal models as well as humans. While blockade of emetic receptors in the prevention of vomiting is fairly well understood, the potential of new classes of antiemetics altering postreceptor signal transduction mechanisms is currently evolving, which is also reviewed. Finally, future directions within the field will be discussed in terms of important questions that remain to be resolved and advances in technology that may help provide potential answers.
Collapse
Affiliation(s)
- Weixia Zhong
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (W.Z.); (G.T.); (V.V.)
| | - Omar Shahbaz
- School of Medicine, Universidad Iberoamericana, Av. Francia 129, Santo Domingo 10203, Dominican Republic;
| | - Garrett Teskey
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (W.Z.); (G.T.); (V.V.)
| | - Abrianna Beever
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (N.K.)
| | - Nala Kachour
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (N.K.)
| | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (W.Z.); (G.T.); (V.V.)
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (N.K.)
| | - Nissar A. Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (W.Z.); (G.T.); (V.V.)
| |
Collapse
|
5
|
Zhong W, Darmani NA. The HCN Channel Blocker ZD7288 Induces Emesis in the Least Shrew ( Cryptotis parva). Front Pharmacol 2021; 12:647021. [PMID: 33995059 PMCID: PMC8117105 DOI: 10.3389/fphar.2021.647021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/12/2021] [Indexed: 12/02/2022] Open
Abstract
Subtypes (1-4) of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are widely expressed in the central and peripheral nervous systems, as well as the cells of smooth muscles in many organs. They mainly serve to regulate cellular excitability in these tissues. The HCN channel blocker ZD7288 has been shown to reduce apomorphine-induced conditioned taste aversion on saccharin preference in rats suggesting potential antinausea/antiemetic effects. Currently, in the least shew model of emesis we find that ZD7288 induces vomiting in a dose-dependent manner, with maximal efficacies of 100% at 1 mg/kg (i.p.) and 83.3% at 10 µg (i.c.v.). HCN channel subtype (1-4) expression was assessed using immunohistochemistry in the least shrew brainstem dorsal vagal complex (DVC) containing the emetic nuclei (area postrema (AP), nucleus tractus solitarius and dorsal motor nucleus of the vagus). Highly enriched HCN1 and HCN4 subtypes are present in the AP. A 1 mg/kg (i.p.) dose of ZD7288 strongly evoked c-Fos expression and ERK1/2 phosphorylation in the shrew brainstem DVC, but not in the in the enteric nervous system in the jejunum, suggesting a central contribution to the evoked vomiting. The ZD7288-evoked c-Fos expression exclusively occurred in tryptophan hydroxylase 2-positive serotonin neurons of the dorsal vagal complex, indicating activation of serotonin neurons may contribute to ZD7288-induced vomiting. To reveal its mechanism(s) of emetic action, we evaluated the efficacy of diverse antiemetics against ZD7288-evoked vomiting including the antagonists/inhibitors of: ERK1/2 (U0126), L-type Ca2+ channel (nifedipine); store-operated Ca2+ entry (MRS 1845); T-type Ca2+ channel (Z944), IP3R (2-APB), RyR receptor (dantrolene); the serotoninergic type 3 receptor (palonosetron); neurokinin 1 receptor (netupitant), dopamine type 2 receptor (sulpride), and the transient receptor potential vanilloid 1 receptor agonist, resiniferatoxin. All tested antiemetics except sulpride attenuated ZD7288-evoked vomiting to varying degrees. In sum, ZD7288 has emetic potential mainly via central mechanisms, a process which involves Ca2+ signaling and several emetic receptors. HCN channel blockers have been reported to have emetic potential in the clinic since they are currently used/investigated as therapeutic candidates for cancer therapy related- or unrelated-heart failure, pain, and cognitive impairment.
Collapse
Affiliation(s)
| | - N. A. Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
6
|
Darmani NA, Henry DA, Zhong W, Chebolu S. Ultra-low doses of the transient receptor potential vanilloid 1 agonist, resiniferatoxin, prevents vomiting evoked by diverse emetogens in the least shrew (Cryptotis parva). Behav Pharmacol 2020; 31:3-14. [PMID: 31503071 DOI: 10.1097/fbp.0000000000000499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Published studies have shown that the transient receptor potential vanilloid 1 (TRPV1) receptor agonist, resiniferatoxin (RTX), has pro and antiemetic effects. RTX can suppress vomiting evoked by a variety of nonselective emetogens such as copper sulfate and cisplatin in several vomit-competent species. In the least shrew, we have already demonstrated that combinations of ultra-low doses of RTX and low doses of the cannabinoid CB1/2 receptor agonist delta-9-tetrahydrocannabinol (Δ-THC) produce additive antiemetic effects against cisplatin-evoked vomiting. In the current study, we investigated the broad-spectrum antiemetic potential of very low nonemetic doses of RTX against a diverse group of specific emetogens including selective and nonselective agonists of serotonergic 5-hydroxytrptamine (5-HT3) receptor (5-HT and 2-Me-5-HT), dopaminergic D2 receptor (apomorphine and quinpirole), cholinergic M1 receptor (pilocarpine and McN-A-343), as well as the selective substance P neurokinin NK1 receptor agonist GR73632, the selective L-Type calcium channel agonist FPL64176, and the sarcoplasmic endoplasmic reticulum calcium ATPase (SERCA) inhibitor thapsigargin. When administered subcutaneously, ultra-low (0.01 µg/kg) to low (5.0 µg/kg) doses of RTX suppressed vomiting induced by the aforementioned emetogens in a dose-dependent fashion with 50% inhibitory dose values ranging from 0.01 to 1.26 µg/kg. This study is the first to demonstrate that low nanomolar nonemetic doses of RTX have the capacity to completely abolish vomiting caused by diverse receptor specific emetogens in the least shrew model of emesis.
Collapse
Affiliation(s)
- Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | | | | | | |
Collapse
|
7
|
Wooldridge LM, Ji L, Liu Y, Nikas SP, Makriyannis A, Bergman J, Kangas BD. Antiemetic Effects of Cannabinoid Agonists in Nonhuman Primates. J Pharmacol Exp Ther 2020; 374:462-468. [PMID: 32561684 DOI: 10.1124/jpet.120.265710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
Attenuating emesis elicited by both disease and medical treatments of disease remains a critical public health challenge. Although cannabinergic medications have been used in certain treatment-resistant populations, Food and Drug Administration-approved cannabinoid antiemetics are associated with undesirable side effects, including cognitive disruption, that limit their prescription. Previous studies have shown that a metabolically stable analog of the endocannabinoid anandamide, methanandamide (mAEA), may produce lesser cognitive disruption than that associated with the primary psychoactive constituent in cannabis, Δ9-tetrahydrocannabinol (Δ9-THC), raising the possibility that endocannabinoids may offer a therapeutic advantage over currently used medications. The present studies were conducted to evaluate this possibility by comparing the antiemetic effects of Δ9-THC (0.032-0.1 mg/kg) and mAEA (3.2-10.0 mg/kg) against nicotine- and lithium chloride (LiCl)-induced emesis and prodromal hypersalivation in squirrel monkeys. Pretreatment with 0.1 mg/kg Δ9-THC blocked nicotine-induced emesis and reduced hypersalivation in all subjects and blocked LiCl-induced emesis and reduced hypersalivation in three of four subjects. Pretreatment with 10 mg/kg mAEA blocked nicotine-induced emesis in three of four subjects and LiCl-induced emesis in one of four subjects and reduced both nicotine- and LiCl-induced hypersalivation. Antiemetic effects of Δ9-THC and mAEA were reversed by rimonabant pretreatment, providing verification of cannabinoid receptor type 1 mediation. These studies systematically demonstrate for the first time the antiemetic effects of cannabinoid agonists in nonhuman primates. Importantly, although Δ9-THC produced superior antiemetic effects, the milder cognitive effects of mAEA demonstrated in previous studies suggest that it may provide a favorable treatment option under clinical circumstances in which antiemetic efficacy must be balanced against side effect liability. SIGNIFICANCE STATEMENT: Emesis has significant evolutionary value as a defense mechanism against ingested toxins; however, it is also one of the most common adverse symptoms associated with both disease and medical treatments of disease. The development of improved antiemetic pharmacotherapies has been impeded by a paucity of animal models. The present studies systematically demonstrate for the first time the antiemetic effects of the phytocannabinoid Δ9-tetrahydrocannabinol and endocannabinoid analog methanandamide in nonhuman primates.
Collapse
Affiliation(s)
- Lisa M Wooldridge
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (J.B., B.D.K.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (L.M.W., J.B., B.D.K.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., Y.L., S.P.N., A.M.)
| | - Lipin Ji
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (J.B., B.D.K.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (L.M.W., J.B., B.D.K.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., Y.L., S.P.N., A.M.)
| | - Yingpeng Liu
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (J.B., B.D.K.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (L.M.W., J.B., B.D.K.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., Y.L., S.P.N., A.M.)
| | - Spyros P Nikas
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (J.B., B.D.K.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (L.M.W., J.B., B.D.K.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., Y.L., S.P.N., A.M.)
| | - Alexandros Makriyannis
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (J.B., B.D.K.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (L.M.W., J.B., B.D.K.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., Y.L., S.P.N., A.M.)
| | - Jack Bergman
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (J.B., B.D.K.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (L.M.W., J.B., B.D.K.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., Y.L., S.P.N., A.M.)
| | - Brian D Kangas
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (J.B., B.D.K.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (L.M.W., J.B., B.D.K.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., Y.L., S.P.N., A.M.)
| |
Collapse
|
8
|
Fogarty MJ, Sieck GC. Evolution and Functional Differentiation of the Diaphragm Muscle of Mammals. Compr Physiol 2019; 9:715-766. [PMID: 30873594 PMCID: PMC7082849 DOI: 10.1002/cphy.c180012] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Symmorphosis is a concept of economy of biological design, whereby structural properties are matched to functional demands. According to symmorphosis, biological structures are never over designed to exceed functional demands. Based on this concept, the evolution of the diaphragm muscle (DIAm) in mammals is a tale of two structures, a membrane that separates and partitions the primitive coelomic cavity into separate abdominal and thoracic cavities and a muscle that serves as a pump to generate intra-abdominal (Pab ) and intrathoracic (Pth ) pressures. The DIAm partition evolved in reptiles from folds of the pleural and peritoneal membranes that was driven by the biological advantage of separating organs in the larger coelomic cavity into separate thoracic and abdominal cavities, especially with the evolution of aspiration breathing. The DIAm pump evolved from the advantage afforded by more effective generation of both a negative Pth for ventilation of the lungs and a positive Pab for venous return of blood to the heart and expulsive behaviors such as airway clearance, defecation, micturition, and child birth. © 2019 American Physiological Society. Compr Physiol 9:715-766, 2019.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Mayo Clinic, Department of Physiology & Biomedical Engineering, Rochester, Minnesota, USA
| | - Gary C Sieck
- Mayo Clinic, Department of Physiology & Biomedical Engineering, Rochester, Minnesota, USA
| |
Collapse
|
9
|
|
10
|
Tu L, Lu Z, Dieser K, Schmitt C, Chan SW, Ngan MP, Andrews PLR, Nalivaiko E, Rudd JA. Brain Activation by H 1 Antihistamines Challenges Conventional View of Their Mechanism of Action in Motion Sickness: A Behavioral, c-Fos and Physiological Study in Suncus murinus (House Musk Shrew). Front Physiol 2017; 8:412. [PMID: 28659825 PMCID: PMC5470052 DOI: 10.3389/fphys.2017.00412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/30/2017] [Indexed: 12/21/2022] Open
Abstract
Motion sickness occurs under a variety of circumstances and is common in the general population. It is usually associated with changes in gastric motility, and hypothermia, which are argued to be surrogate markers for nausea; there are also reports that respiratory function is affected. As laboratory rodents are incapable of vomiting, Suncus murinus was used to model motion sickness and to investigate changes in gastric myoelectric activity (GMA) and temperature homeostasis using radiotelemetry, whilst also simultaneously investigating changes in respiratory function using whole body plethysmography. The anti-emetic potential of the highly selective histamine H1 receptor antagonists, mepyramine (brain penetrant), and cetirizine (non-brain penetrant), along with the muscarinic receptor antagonist, scopolamine, were investigated in the present study. On isolated ileal segments from Suncus murinus, both mepyramine and cetirizine non-competitively antagonized the contractile action of histamine with pK b values of 7.5 and 8.4, respectively; scopolamine competitively antagonized the contractile action of acetylcholine with pA2 of 9.5. In responding animals, motion (1 Hz, 4 cm horizontal displacement, 10 min) increased the percentage of the power of bradygastria, and decreased the percentage power of normogastria whilst also causing hypothermia. Animals also exhibited an increase in respiratory rate and a reduction in tidal volume. Mepyramine (50 mg/kg, i.p.) and scopolamine (10 mg/kg, i.p.), but not cetirizine (10 mg/kg, i.p.), significantly antagonized motion-induced emesis but did not reverse the motion-induced disruptions of GMA, or hypothermia, or effects on respiration. Burst analysis of plethysmographic-derived waveforms showed mepyramine also had increased the inter-retch+vomit frequency, and emetic episode duration. Immunohistochemistry demonstrated that motion alone did not induce c-fos expression in the brain. Paradoxically, mepyramine increased c-fos in brain areas regulating emesis control, and caused hypothermia; it also appeared to cause sedation and reduced the dominant frequency of slow waves. In conclusion, motion-induced emesis was associated with a disruption of GMA, respiration, and hypothermia. Mepyramine was a more efficacious anti-emetic than cetirizine, suggesting an important role of centrally-located H1 receptors. The ability of mepyramine to elevate c-fos provides a new perspective on how H1 receptors are involved in mechanisms of emesis control.
Collapse
Affiliation(s)
- Longlong Tu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China
| | - Zengbing Lu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China
| | - Karolina Dieser
- Department of Informatics and Microsystem Technology, University of Applied Sciences KaiserslauternZweibrücken, Germany
| | - Christina Schmitt
- Department of Informatics and Microsystem Technology, University of Applied Sciences KaiserslauternZweibrücken, Germany
| | - Sze Wa Chan
- School of Health Sciences, Caritas Institute of Higher EducationHong Kong, China
| | - Man P Ngan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China
| | - Paul L R Andrews
- Division of Biomedical Sciences, St. George's University of LondonLondon, United Kingdom
| | - Eugene Nalivaiko
- School of Biomedical Sciences and Pharmacy, University of NewcastleCallaghan, NSW, Australia
| | - John A Rudd
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China.,Brain and Mind Institute, The Chinese University of Hong KongHong Kong, China
| |
Collapse
|
11
|
Dezieck L, Hafez Z, Conicella A, Blohm E, O'Connor MJ, Schwarz ES, Mullins ME. Resolution of cannabis hyperemesis syndrome with topical capsaicin in the emergency department: a case series. Clin Toxicol (Phila) 2017; 55:908-913. [PMID: 28494183 DOI: 10.1080/15563650.2017.1324166] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cannabinoid hyperemesis syndrome (CHS) is characterized by symptoms of cyclic abdominal pain, nausea, and vomiting in the setting of prolonged cannabis use. The transient receptor potential vanilloid 1 (TRPV1) receptor may be involved in this syndrome. Topical capsaicin is a proposed treatment for CHS; it binds TRPV1 with high specificity, impairing substance P signaling in the area postrema and nucleus tractus solitarius via overstimulation of TRPV1. This may explain its apparent antiemetic effect in this syndrome. PURPOSE We describe a series of thirteen cases of suspected cannabis hyperemesis syndrome treated with capsaicin in the emergency departments of two academic medical centers. METHODS A query of the electronic health record at both centers identified thirteen patients with documented daily cannabis use and symptoms consistent with CHS who were administered topical capsaicin cream for symptom management. RESULTS All 13 patients experienced symptom relief after administration of capsaicin cream. CONCLUSION Topical capsaicin was associated with improvement in symptoms of CHS after other treatments failed.
Collapse
Affiliation(s)
- Laurel Dezieck
- a Department of Emergency Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| | - Zachary Hafez
- b Division of Emergency Medicine , Washington University School of Medicine , Saint Louis , MO , USA
| | - Albert Conicella
- a Department of Emergency Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| | - Eike Blohm
- a Department of Emergency Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| | - Mark J O'Connor
- c Department of Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| | - Evan S Schwarz
- b Division of Emergency Medicine , Washington University School of Medicine , Saint Louis , MO , USA
| | - Michael E Mullins
- b Division of Emergency Medicine , Washington University School of Medicine , Saint Louis , MO , USA
| |
Collapse
|
12
|
Ullah I, Subhan F, Lu Z, Chan SW, Rudd JA. Action of Bacopa monnieri to antagonize cisplatin-induced emesis in Suncus murinus (house musk shrew). J Pharmacol Sci 2017; 133:232-239. [PMID: 28363413 DOI: 10.1016/j.jphs.2017.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/27/2017] [Accepted: 03/01/2017] [Indexed: 10/20/2022] Open
Abstract
Bacopa monnieri (BM, family Scrophulariaceae) is used in several traditional systems of medicine for the management of epilepsy, depression, neuropathic pain, sleep disorders and memory deficits. The present study investigated the potential of BM methanol (BM-MetFr) and BM n-butanol fractions (BM-ButFr) to reduce chemotherapy-induced emesis in Suncus murinus (house musk shrew). Cisplatin (30 mg/kg, i.p.) reliably induced retching and/or vomiting over a 2 day period. BM-MetFr (10-40 mg/kg, s.c.) and BM-ButFr (5-20 mg/kg, s.c.) antagonized the retching and/or vomiting response by ∼59.4% (p < 0.05) and 78.9% (p < 0.05), respectively, while the 5-HT3 receptor antagonist, palonosetron (0.5 mg/kg, s.c.), reduced the response by ∼71% (p < 0.05). The free radical scavenger/antioxidant, N-(2-mercaptopropionyl)-glycine (30-300 mg/kg, s.c.) reduced the retching and/or vomiting response occurring on day one non-significantly by 44% (p > 0.05). In conclusion, the n-butanol fractions of BM have anti-emetic activity comparable with palonosetron and MPG. BM may be useful alone or in combination with other anti-emetic drugs for the treatment of chemotherapy-induced emesis in man.
Collapse
Affiliation(s)
- Ihsan Ullah
- Department of Pharmacy, University of Swabi, Swabi, Pakistan; Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Fazal Subhan
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Zengbing Lu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Sze Wa Chan
- School of Health Sciences, Caritas Institute of Higher Education, Tseung Kwan O, N.T., Hong Kong
| | - John A Rudd
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| |
Collapse
|
13
|
Horn C, Zirpel L, Sciullo M, Rosenberg D. Impact of electrical stimulation of the stomach on gastric distension-induced emesis in the musk shrew. Neurogastroenterol Motil 2016; 28:1217-32. [PMID: 27072787 PMCID: PMC4956516 DOI: 10.1111/nmo.12821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/19/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Gastric electrical stimulation (GES) is implicated as a potential therapy for difficult-to-treat nausea and vomiting; however, there is a lack of insight into the mechanisms responsible for these effects. This study tested the relationship between acute GES and emesis in musk shrews, an established emetic model system. METHODS Urethane-anesthetized shrews were used to record emetic responses (monitoring intra-tracheal pressure and esophageal contractions), respiration rate, heart rate variability, blood pressure, and gastrointestinal electromyograms. We investigated the effects of acute GES pulse duration (0.3, 1, 5, and 10 ms), current amplitude (0.5, 1, and 2 mA), pulse frequency (8, 15, 30, and 60 Hz), and electrode placement (antrum, body, and fundus) on emesis induced by gastric stretch, using a balloon. KEY RESULTS There were four outcomes: (i) GES did not modify the effects of gastric stretch-induced emesis; (ii) GES produced emesis, depending on the stimulation parameters, but was less effective than gastric stretch; (iii) other physiological changes were closely associated with emesis and could be related to a sub-threshold activation of the emetic system, including suppression of breathing and rise in blood pressure; and (iv) a control experiment showed that 8-OH-DPAT, a reported 5-HT1A receptor agonist that acts centrally as an antiemetic, blocked gastric stretch-induced emesis. CONCLUSIONS AND INFERENCES These results do not support an antiemetic effect of acute GES on gastric distension-induced emesis within the range of conditions tested, but further evaluation should focus on a broader range of emetic stimuli and GES stimulation parameters.
Collapse
Affiliation(s)
- C.C. Horn
- Biobehavioral Oncology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA,Department of Medicine: Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA,Corresponding Author: Charles C. Horn, PhD, Hillman Cancer Center – Research Pavilion, G.17b, 5117 Centre Avenue, Pittsburgh, PA 15213, Phone: (+00) 1-412-623-1417, Fax: 412-623-1119,
| | - L. Zirpel
- Neuromodulation Global Research, Medtronic
| | - M. Sciullo
- Biobehavioral Oncology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - D. Rosenberg
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Gupta RG, Schafer C, Ramaroson Y, Sciullo MG, Horn CC. Role of the abdominal vagus and hindbrain in inhalational anesthesia-induced vomiting. Auton Neurosci 2016; 202:114-121. [PMID: 27396693 DOI: 10.1016/j.autneu.2016.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 12/28/2022]
Abstract
The incidence of postoperative nausea and vomiting (PONV) can be as high as 80% in patients with risk factors (e.g., females, history of motion sickness). PONV delays postoperative recovery and costs several hundred million dollars annually. Cell-based assays show that halogenated ethers (e.g., isoflurane) activate 5-HT3 receptors, which are found on gastrointestinal vagal afferents and in the hindbrain - key pathways for producing nausea and vomiting. This project evaluated the role of the vagus and activation of the hindbrain in isoflurane-induced emesis in musk shrews, a small animal model with a vomiting reflex, which is lacking in rats and mice. Sham-operated and abdominal vagotomized shrews were exposed to 1 to 3% isoflurane to determine effects on emesis; vagotomy was confirmed by lack of vagal transport of the neuronal tracer Fluoro-Gold. In an additional study, shrews were exposed to isoflurane and hindbrain c-Fos was measured at 90min after exposure using immunohistochemistry. There were no statistically significant effects of vagotomy on isoflurane-induced emesis compared to sham-operated controls. Isoflurane exposure produced a significant increase in c-Fos-positive cells in the nucleus of the solitary tract and vestibular nuclei but not in the area postrema or dorsal motor nucleus. These results indicate that the abdominal vagus plays no role in isoflurane-induced emesis and suggest that isoflurane activates emesis by action on the hindbrain, as shown by c-Fos labeling. Ultimately, knowledge of the mechanisms of inhalational anesthesia-induced PONV could lead to more targeted therapies to control PONV.
Collapse
Affiliation(s)
- Ragini G Gupta
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Claire Schafer
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Michael G Sciullo
- Biobehavioral Oncology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Charles C Horn
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Biobehavioral Oncology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
15
|
Rudd JA, Nalivaiko E, Matsuki N, Wan C, Andrews PL. The involvement of TRPV1 in emesis and anti-emesis. Temperature (Austin) 2015; 2:258-76. [PMID: 27227028 PMCID: PMC4843889 DOI: 10.1080/23328940.2015.1043042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 12/29/2022] Open
Abstract
Diverse transmitter systems (e.g. acetylcholine, dopamine, endocannabinoids, endorphins, glutamate, histamine, 5-hydroxytryptamine, substance P) have been implicated in the pathways by which nausea and vomiting are induced and are targets for anti-emetic drugs (e.g. 5-hydroxytryptamine3 and tachykinin NK1 antagonists). The involvement of TRPV1 in emesis was discovered in the early 1990s and may have been overlooked previously as TRPV1 pharmacology was studied in rodents (mice, rats) lacking an emetic reflex. Acute subcutaneous administration of resiniferatoxin in the ferret, dog and Suncus murinus revealed that it had “broad–spectrum” anti-emetic effects against stimuli acting via both central (vestibular system, area postrema) and peripheral (abdominal vagal afferents) inputs. One of several hypotheses discussed here is that the anti-emetic effect is due to acute depletion of substance P (or another peptide) at a critical site (e.g. nucleus tractus solitarius) in the central emetic pathway. Studies in Suncus murinus revealed a potential for a long lasting (one month) effect against the chemotherapeutic agent cisplatin. Subsequent studies using telemetry in the conscious ferret compared the anti-emetic, hypothermic and hypertensive effects of resiniferatoxin (pungent) and olvanil (non-pungent) and showed that the anti-emetic effect was present (but reduced) with olvanil which although inducing hypothermia it did not have the marked hypertensive effects of resiniferatoxin. The review concludes by discussing general insights into emetic pathways and their pharmacology revealed by these relatively overlooked studies with TRPV1 activators (pungent an non-pungent; high and low lipophilicity) and antagonists and the potential clinical utility of agents targeted at the TRPV1 system.
Collapse
Key Words
- 12-HPETE, 12-hydroperoxy-eicosatetraenoic acid
- 5-HT, 5-hydroxytryptamine
- 5-HT3, 5-hdroxytryptamine3
- 8-OH-DPAT, (±)-8-Hydroxy-2-dipropylaminotetralin
- AM404
- AM404, N-arachidonoylaminophenol
- AMT, anandamide membrane transporter
- AP, area postrema
- BBB, blood brain barrier
- CB1, cannabinoid1
- CGRP, calcitonin gene-related peptide
- CINV, chemotherapy-induced nausea and vomiting
- CP 99,994
- CTA, conditioned taste aversion
- CVO's, circumventricular organs
- D2, dopamine2
- DRG, dorsal root ganglia
- FAAH, fatty acid amide hydrolase
- H1, histamine1
- LTB4, leukotriene B4
- NADA, N-arachidonoyl-dopamine
- NK1, neurokinin1
- POAH, preoptic anterior hypothalamus
- RTX
- Suncus murinus
- TRPV1
- TRPV1, transient receptor potential vanilloid receptor1
- anti-emetic
- capsaicin
- ferret
- i.v., intravenous
- nausea
- olvanil
- thermoregulation
- vanilloid
- vomiting
Collapse
Affiliation(s)
- John A Rudd
- Brain and Mind Institute; Chinese University of Hong Kong; Shatin; New Territories, Hong Kong SAR; School of Biomedical Sciences; Faculty of Medicine; Chinese University of Hong Kong; Shatin; New Territories, Hong Kong SAR
| | - Eugene Nalivaiko
- School of Biomedical Sciences and Pharmacy; University of Newcastle ; Callaghan, NSW, Australia
| | - Norio Matsuki
- Laboratory of Chemical Pharmacology; Graduate School of Pharmaceutical Sciences; The University of Tokyo ; Tokyo, Japan
| | - Christina Wan
- School of Biomedical Sciences; Faculty of Medicine; Chinese University of Hong Kong ; Shatin; New Territories, Hong Kong SAR
| | - Paul Lr Andrews
- Division of Biomedical Sciences; St George's University of London ; London, UK
| |
Collapse
|
16
|
Cristofori F, Thapar N, Saliakellis E, Kumaraguru N, Elawad M, Kiparissi F, Köglmeier J, Andrews P, Lindley KJ, Borrelli O. Efficacy of the neurokinin-1 receptor antagonist aprepitant in children with cyclical vomiting syndrome. Aliment Pharmacol Ther 2014; 40:309-17. [PMID: 24898244 DOI: 10.1111/apt.12822] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 03/25/2014] [Accepted: 05/13/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Aprepitant (Emend, Merck Sharp & Dohme Ltd, Haarlem, the Netherlands), a neurokinin-1 receptor antagonist, prevents vomiting in a range of conditions. No data are available on its use in children with cyclical vomiting syndrome (CVS). AIM We investigated the efficacy of aprepitant as prophylactic treatment or acute intervention in CVS children refractory to conventional therapies. METHODS Forty-one children (median age: 8 years) fulfilling NASPGHAN criteria treated acutely (RegA) or prophylactically (RegP) with aprepitant were retrospectively reviewed. Primary outcome was the clinical response (decrease in frequency and intensity of CVS episodes). Secondary outcomes were: number of CVS episodes/year, number of hospital admissions/year, CVS episode duration, number of vomits/h, symptom-free interval length (days), and school attendance percentage. The follow-up period was 18-60 months. RESULTS Sixteen children received RegP and 25 RegA. One child on RegP stopped treatment due to severe migraine. At 12-months on intention-to-treat analysis, 13 children on RegP (81%) achieved either complete (3/16, 19%) or partial (10/16, 62%) clinical response. On RegA, 19 children (76%) had either complete (3/25, 12%) or partial (16/25, 64%) response (P = 0.8 vs. RegP). In both RegP and RegA, there was a significant decrease in CVS episodes/year, hospital admission number/year, CVS episode length, number of vomits/h, as well as an increase in symptom-free interval duration and school attendance percentage. Side effects were reported only in RegP (5/16, 31%) including hiccough (3/16, 19%), asthenia/fatigue (2/16, 12.5%), increased appetite (2/16, 12.5%), mild headache (1/16, 6%) and severe migraine (1/16, 6%). CONCLUSION Aprepitant appears effective for both acute and prophylactic management of paediatric cyclical vomiting syndrome refractory to conventional therapies.
Collapse
Affiliation(s)
- F Cristofori
- Department of Gastroenterology, Great Ormond Street Hospital, Institute of Child Health, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Johnston KD, Lu Z, Rudd JA. Looking beyond 5-HT(3) receptors: a review of the wider role of serotonin in the pharmacology of nausea and vomiting. Eur J Pharmacol 2013; 722:13-25. [PMID: 24189639 DOI: 10.1016/j.ejphar.2013.10.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/09/2013] [Accepted: 10/09/2013] [Indexed: 12/18/2022]
Abstract
The concept that 5-hydroxytryptamine (5-HT; serotonin) is involved in the emetic reflex was revealed using drugs that interfere with its synthesis, storage, release and metabolism ahead of the discovery of selective tools to modulate specific subtypes of receptors. This review comprehensively examines the fundamental role of serotonin in emesis control and highlights data indicating association of 5-HT1-4 receptors in the emetic reflex, whilst leaving open the possibility that 5-HT5-7 receptors may also be involved. The fact that each receptor subtype may mediate both emetic and anti-emetic effects is discussed in detail for the first time. These discussions are made in light of known species differences in emesis control, which has sometimes affected the perception of the translational value of data in regard to the development of novel anti-emetic for use in man.
Collapse
Affiliation(s)
- Kevin D Johnston
- Department of Anesthesia, School of Medicine, The University of Leeds, Leeds, West Yorkshire, England
| | - Zengbing Lu
- Emesis Research Group, Neuro-degeneration, Development and Repair, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - John A Rudd
- Emesis Research Group, Neuro-degeneration, Development and Repair, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
18
|
Darmani NA, Chebolu S, Zhong W, Trinh C, McClanahan B, Brar RS. Additive antiemetic efficacy of low-doses of the cannabinoid CB(1/2) receptor agonist Δ(9)-THC with ultralow-doses of the vanilloid TRPV1 receptor agonist resiniferatoxin in the least shrew (Cryptotis parva). Eur J Pharmacol 2013; 722:147-55. [PMID: 24157976 DOI: 10.1016/j.ejphar.2013.08.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 01/30/2023]
Abstract
Previous studies have shown that cannabinoid CB1/2 and vanilloid TRPV1 agonists (delta-9-tetrahydrocannabinol (Δ(9)-THC) and resiniferatoxin (RTX), respectively) can attenuate the emetic effects of chemotherapeutic agents such as cisplatin. In this study we used the least shrew to demonstrate whether combinations of varying doses of Δ(9)-THC with resiniferatoxin can produce additive antiemetic efficacy against cisplatin-induced vomiting. RTX by itself caused vomiting in a bell-shaped dose-dependent manner with maximal vomiting at 18 μg/kg when administered subcutaneously (s.c.) but not intraperitoneally (i.p.). Δ(9)-THC up to 10 mg/kg provides only 80% protection of least shrews from cisplatin-induced emesis with an ID50 of 0.3-1.8 mg/kg. Combinations of 1 or 5 μg/kg RTX with varying doses of Δ(9)-THC completely suppressed both the frequency and the percentage of shrews vomiting with ID50 dose values 5-50 times lower than Δ(9)-THC doses tested alone against cisplatin. A less potent TRPV1 agonist, capsaicin, by itself did not cause emesis (i.p. or s.c.), but it did significantly reduce vomiting induced by cisplatin given after 30 min but not at 2 h. The TRPV1-receptor antagonist, ruthenium red, attenuated cisplatin-induced emesis at 5mg/kg; however, another TRPV1-receptor antagonist, capsazepine, did not. In summary, we present evidence that combination of CB1/2 and TRPV1 agonists have the capacity to completely abolish cisplatin-induced emesis at doses that are ineffective when used individually.
Collapse
Affiliation(s)
- Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA.
| | - Seetha Chebolu
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA
| | - Weixia Zhong
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA
| | - Chung Trinh
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA
| | - Bryan McClanahan
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA
| | - Rajivinder S Brar
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA
| |
Collapse
|
19
|
Horn CC, Kimball BA, Wang H, Kaus J, Dienel S, Nagy A, Gathright GR, Yates BJ, Andrews PLR. Why can't rodents vomit? A comparative behavioral, anatomical, and physiological study. PLoS One 2013; 8:e60537. [PMID: 23593236 PMCID: PMC3622671 DOI: 10.1371/journal.pone.0060537] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/27/2013] [Indexed: 11/29/2022] Open
Abstract
The vomiting (emetic) reflex is documented in numerous mammalian species, including primates and carnivores, yet laboratory rats and mice appear to lack this response. It is unclear whether these rodents do not vomit because of anatomical constraints (e.g., a relatively long abdominal esophagus) or lack of key neural circuits. Moreover, it is unknown whether laboratory rodents are representative of Rodentia with regards to this reflex. Here we conducted behavioral testing of members of all three major groups of Rodentia; mouse-related (rat, mouse, vole, beaver), Ctenohystrica (guinea pig, nutria), and squirrel-related (mountain beaver) species. Prototypical emetic agents, apomorphine (sc), veratrine (sc), and copper sulfate (ig), failed to produce either retching or vomiting in these species (although other behavioral effects, e.g., locomotion, were noted). These rodents also had anatomical constraints, which could limit the efficiency of vomiting should it be attempted, including reduced muscularity of the diaphragm and stomach geometry that is not well structured for moving contents towards the esophagus compared to species that can vomit (cat, ferret, and musk shrew). Lastly, an in situ brainstem preparation was used to make sensitive measures of mouth, esophagus, and shoulder muscular movements, and phrenic nerve activity–key features of emetic episodes. Laboratory mice and rats failed to display any of the common coordinated actions of these indices after typical emetic stimulation (resiniferatoxin and vagal afferent stimulation) compared to musk shrews. Overall the results suggest that the inability to vomit is a general property of Rodentia and that an absent brainstem neurological component is the most likely cause. The implications of these findings for the utility of rodents as models in the area of emesis research are discussed.
Collapse
Affiliation(s)
- Charles C Horn
- Biobehavioral Medicine in Oncology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Vagal and non-vagal pathways as well as several brainstem nuclei participate in vomiting in response to different emetic stimuli. Autonomic pathways involved in nausea are less well understood. Numerous gastrointestinal disorders with prominent nausea and vomiting including gastroparesis, cyclic vomiting syndrome, and motion sickness have associated autonomic nervous system dysfunction. Autonomic disturbances are also seen with non-gastrointestinal diseases with gut manifestations such as migraine headaches, orthostatic intolerance, and familial dysautonomia. Stimulation of emetic pathways involves activation of a range of receptor subtypes. Agents acting on these receptors form the basis for antiemetic therapies. Chemotherapy-induced nausea and vomiting, a prevalent and severe consequence of anticancer treatment, is preventable in many instances by agents acting on the autonomic nervous system. Likewise, non-medication therapies may act in part via modulation of some of these same autonomic pathways.
Collapse
Affiliation(s)
- William L Hasler
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
Post-anesthesia vomiting: impact of isoflurane and morphine on ferrets and musk shrews. Physiol Behav 2012; 106:562-8. [PMID: 22504494 DOI: 10.1016/j.physbeh.2012.03.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 02/28/2012] [Accepted: 03/28/2012] [Indexed: 11/20/2022]
Abstract
Although partially controlled with antiemetic drugs, postoperative nausea and vomiting (PONV) continues to be a problem for many patients. Clinical research suggests that opioid analgesics and volatile anesthetics are the main triggers of PONV. The aim of this study was to develop an animal model for post-anesthesia vomiting for future studies to further determine mechanisms and preclinical drug efficacy. Ferrets (N=34) were initially used because they have served as a gold standard for emesis research. Ferrets were tested with several doses of morphine, inhaled isoflurane, and a positive control injection of cisplatin (a chemotherapy agent) to induce emesis. Musk shrews (a small animal model; N=36) were also tested for emesis with isoflurane exposure. A control injection of cisplatin produced emesis in ferrets (ip, 129.8±22.0 retches; 13.7±2.3 vomits; mean±SEM). Morphine also produced a dose-response on emesis in ferrets, with maximal responses at 0.9 mg/kg (sc, 29.6±12.6 retches; 1.8±0.9, vomits). Isoflurane exposure (2-4% for 10 min to 6h exposure) failed to induce vomiting, was not associated with an increased frequency in emesis when combined with a low dose of morphine (0.1 mg/kg, sc), and failed to produce consistent effects on food and water intake. In contrast to ferrets, musk shrews were very sensitive to isoflurane-induced emesis (0.5 to 3%, 10 min exposure; up to 11.8±2.4 emetic episodes). Overall, these results indicate that ferrets will not be useful for delineating mechanisms responsible for isoflurane-induced emesis; however, musk shrews may prove to be a model for vomiting after inhalation of volatile agents.
Collapse
|
22
|
Horii A, Nakagawa A, Uno A, Kitahara T, Imai T, Nishiike S, Takeda N, Inohara H. Implication of substance P neuronal system in the amygdala as a possible mechanism for hypergravity-induced motion sickness. Brain Res 2012; 1435:91-8. [DOI: 10.1016/j.brainres.2011.11.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 11/15/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
|
23
|
Investigating the effect of emetic compounds on chemotaxis in Dictyostelium identifies a non-sentient model for bitter and hot tastant research. PLoS One 2011; 6:e24439. [PMID: 21931717 PMCID: PMC3169598 DOI: 10.1371/journal.pone.0024439] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 08/10/2011] [Indexed: 01/05/2023] Open
Abstract
Novel chemical entities (NCEs) may be investigated for emetic liability in a range of unpleasant experiments involving retching, vomiting or conditioned taste aversion/food avoidance in sentient animals. We have used a range of compounds with known emetic /aversive properties to examine the possibility of using the social amoeba, Dictyostelium discoideum, for research into identifying and understanding emetic liability, and hence reduce adverse animal experimentation in this area. Twenty eight emetic or taste aversive compounds were employed to investigate the acute (10 min) effect of compounds on Dictyostelium cell behaviour (shape, speed and direction of movement) in a shallow chemotaxic gradient (Dunn chamber). Compound concentrations were chosen based on those previously reported to be emetic or aversive in in vivo studies and results were recorded and quantified by automated image analysis. Dictyostelium cell motility was rapidly and strongly inhibited by four structurally distinct tastants (three bitter tasting compounds--denatonium benzoate, quinine hydrochloride, phenylthiourea, and the pungent constituent of chilli peppers--capsaicin). In addition, stomach irritants (copper chloride and copper sulphate), and a phosphodiesterase IV inhibitor also rapidly blocked movement. A concentration-dependant relationship was established for five of these compounds, showing potency of inhibition as capsaicin (IC(50) = 11.9 ± 4.0 µM) > quinine hydrochloride (IC(50) = 44.3 ± 6.8 µM) > denatonium benzoate (IC(50) = 129 ± 4 µM) > phenylthiourea (IC(50) = 366 ± 5 µM) > copper sulphate (IC(50) = 1433 ± 3 µM). In contrast, 21 compounds within the cytotoxic and receptor agonist/antagonist classes did not affect cell behaviour. Further analysis of bitter and pungent compounds showed that the effect on cell behaviour was reversible and not cytotoxic, suggesting an uncharacterised molecular mechanism of action for these compounds. These results therefore demonstrate that Dictyostelium has potential as a non-sentient model in the analysis of the molecular effects of tastants, although it has limited utility in identification of emetic agents in general.
Collapse
|
24
|
Parker LA, Rock EM, Limebeer CL. Regulation of nausea and vomiting by cannabinoids. Br J Pharmacol 2011; 163:1411-22. [PMID: 21175589 PMCID: PMC3165951 DOI: 10.1111/j.1476-5381.2010.01176.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/11/2010] [Accepted: 11/17/2010] [Indexed: 12/18/2022] Open
Abstract
Considerable evidence demonstrates that manipulation of the endocannabinoid system regulates nausea and vomiting in humans and other animals. The anti-emetic effect of cannabinoids has been shown across a wide variety of animals that are capable of vomiting in response to a toxic challenge. CB(1) agonism suppresses vomiting, which is reversed by CB(1) antagonism, and CB(1) inverse agonism promotes vomiting. Recently, evidence from animal experiments suggests that cannabinoids may be especially useful in treating the more difficult to control symptoms of nausea and anticipatory nausea in chemotherapy patients, which are less well controlled by the currently available conventional pharmaceutical agents. Although rats and mice are incapable of vomiting, they display a distinctive conditioned gaping response when re-exposed to cues (flavours or contexts) paired with a nauseating treatment. Cannabinoid agonists (Δ(9) -THC, HU-210) and the fatty acid amide hydrolase (FAAH) inhibitor, URB-597, suppress conditioned gaping reactions (nausea) in rats as they suppress vomiting in emetic species. Inverse agonists, but not neutral antagonists, of the CB(1) receptor promote nausea, and at subthreshold doses potentiate nausea produced by other toxins (LiCl). The primary non-psychoactive compound in cannabis, cannabidiol (CBD), also suppresses nausea and vomiting within a limited dose range. The anti-nausea/anti-emetic effects of CBD may be mediated by indirect activation of somatodendritic 5-HT(1A) receptors in the dorsal raphe nucleus; activation of these autoreceptors reduces the release of 5-HT in terminal forebrain regions. Preclinical research indicates that cannabinioids, including CBD, may be effective clinically for treating both nausea and vomiting produced by chemotherapy or other therapeutic treatments.
Collapse
Affiliation(s)
- Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario, N1G 2W1, Canada. DA-9789
| | | | | |
Collapse
|
25
|
Horn CC, Henry S, Meyers K, Magnusson MS. Behavioral patterns associated with chemotherapy-induced emesis: a potential signature for nausea in musk shrews. Front Neurosci 2011; 5:88. [PMID: 21808604 PMCID: PMC3139242 DOI: 10.3389/fnins.2011.00088] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/25/2011] [Indexed: 02/05/2023] Open
Abstract
Nausea and vomiting are common symptoms in patients with many diseases, including cancer and its treatments. Although the neurological basis of vomiting is reasonably well known, an understanding of the physiology of nausea is lacking. The primary barrier to mechanistic research on the nausea system is the lack of an animal model. Indeed investigating the effects of anti-nausea drugs in pre-clinical models is difficult because the primary readout is often emesis. It is known that animals show a behavioral profile of sickness, associated with reduced feeding and movement, and possibly these general measures are signs of nausea. Studies attempting to relate the occurrence of additional behaviors to emesis have produced mixed results. Here we applied a statistical method, temporal pattern (t-pattern) analysis, to determine patterns of behavior associated with emesis. Musk shrews were injected with the chemotherapy agent cisplatin (a gold standard in emesis research) to induce acute (<24 h) and delayed (>24 h) emesis. Emesis and other behaviors were coded and tracked from video files. T-pattern analysis revealed hundreds of non-random patterns of behavior associated with emesis, including sniffing, changes in body contraction, and locomotion. There was little evidence that locomotion was inhibited by the occurrence of emesis. Eating, drinking, and other larger body movements including rearing, grooming, and body rotation, were significantly less common in emesis-related behavioral patterns in real versus randomized data. These results lend preliminary evidence for the expression of emesis-related behavioral patterns, including reduced ingestive behavior, grooming, and exploratory behaviors. In summary, this statistical approach to behavioral analysis in a pre-clinical emesis research model could be used to assess the more global effects and limitations of drugs used to control nausea and its potential correlates, including reduced feeding and activity levels.
Collapse
Affiliation(s)
- Charles C Horn
- Biobehavioral Medicine in Oncology Program, University of Pittsburgh Cancer Institute Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
26
|
Tatsushima Y, Egashira N, Matsushita N, Kurobe K, Kawashiri T, Yano T, Oishi R. Pemirolast reduces cisplatin-induced kaolin intake in rats. Eur J Pharmacol 2011; 661:57-62. [DOI: 10.1016/j.ejphar.2011.04.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 02/04/2011] [Accepted: 04/05/2011] [Indexed: 10/18/2022]
|
27
|
Qian Q, Chen W, Guo C, Wu W, Qian W, Li S. Xiao-Ban-Xia-Tang inhibits cisplatin-induced pica by down regulating obestatin in rats. JOURNAL OF ETHNOPHARMACOLOGY 2011; 135:186-193. [PMID: 21396996 DOI: 10.1016/j.jep.2011.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/22/2011] [Accepted: 03/03/2011] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiao-Ban-Xia-Tang (XBXT), a traditional Chinese herbal medicine, has been used in China for more than 2000 years, and proved to be effective in various cases of vomiting in the clinic. OBJECTIVE To investigate the inhibitive effect of XBXT on cisplatin-induced pica behaviour and its effective mechanism on obestatin, CCK and CGRP in the pica model of rat. MATERIALS AND METHODS The inhibitive effect of XBXT was investigated in the pica model of rats induced by cisplatin (3mg kg(-1), i.p.) in 72h observation, the expression of obestatin in the area postrema and ileum was measured by immunohistochemistry and PCR, and the levels of CCK and CGRP in blood were measured by Elisa. RESULTS The weight of kaolin eaten in rats induced by cisplatin was significantly reduced by pretreatment with XBXT in a dose-dependent manner during the 0-24h and 24-72h periods (P<0.05). XBXT exhibited effective dose-dependent (P<0.05) inhibition on the increase of expression levels of obestatin in both the ileum and area postrema, and markedly suppressed the increase levels of CCK and CGRP in blood induced by cisplatin in a dose-dependent manner (P<0.05). CONCLUSIONS XBXT has good activity against cisplatin-induced eating kaolin in rats possibly by inhibiting central or peripheral increase of obestatin, or the levels of CCK and CGRP in blood.
Collapse
Affiliation(s)
- Qiuhai Qian
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, China.
| | | | | | | | | | | |
Collapse
|
28
|
Holzer P. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system. Pharmacol Ther 2011; 131:142-70. [PMID: 21420431 PMCID: PMC3107431 DOI: 10.1016/j.pharmthera.2011.03.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 12/12/2022]
Abstract
Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca²⁺ and Mg²⁺, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
29
|
Huang D, Meyers K, Henry S, De la Torre F, Horn CC. Computerized detection and analysis of cancer chemotherapy-induced emesis in a small animal model, musk shrew. J Neurosci Methods 2011; 197:249-58. [PMID: 21392533 DOI: 10.1016/j.jneumeth.2011.02.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/25/2011] [Accepted: 02/28/2011] [Indexed: 11/17/2022]
Abstract
Vomiting is a common side effect of cancer chemotherapy and many drug treatments and diseases. In animal studies, the measurement of vomiting usually requires direct observation, which is time consuming and often lacks temporal precision. Musk shrews have been used to study the neurobiology of emesis and have a rapid emetic episode (∼1 s for a sequence of retching and expulsion). The aim of the current study was to develop a method to automatically detect and characterize emetic episodes induced by the cancer chemotherapy agent cisplatin. The body contour in each video frame was tracked and normalized to a parameterized shape basis. The tracked shape was projected to a feature space that maximized the shape variations in the consecutive frames during retching. The resulting one dimensional projection was sufficient to detect most emetic episodes in the acute (peak at 2h) and delayed (peak at 54 h) phases after cisplatin treatment. Emetic episodes were relatively invariant in the number of retches (∼6.2), duration (∼1.2s), inter-retch interval (∼198 ms), and amplitude during the 72 h after cisplatin treatment. This approach should open a new vista into emesis research to permit tracking and analysis of emesis in a small animal model and facilitate the development of new antiemetic therapies. These results also yield a better understanding of the brain's central pattern generator for emesis and indicate that the retching response in the musk shrew (at ∼5.4 Hz) is the fastest ever recorded in a free-moving animal.
Collapse
Affiliation(s)
- Dong Huang
- Carnegie Mellon University, Robotics Institute, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
30
|
Qian Q, Chen W, Yue W, Yang Z, Liu Z, Qian W. Antiemetic effect of Xiao-Ban-Xia-Tang, a Chinese medicinal herb recipe, on cisplatin-induced acute and delayed emesis in minks. JOURNAL OF ETHNOPHARMACOLOGY 2010; 128:590-593. [PMID: 20097280 DOI: 10.1016/j.jep.2010.01.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 01/08/2010] [Accepted: 01/11/2010] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiao-Ban-Xia-Tang (XBXT), a traditional Chinese herbal medicine, has been used in China for more than 2000 years, and proved to be effective on various cases of vomiting in the clinic. OBJECTIVE To investigate the antiemetic effect of XBXT on cisplatin-induced acute and delayed emesis and its effective mechanism on Neurokinin-1 receptor (NK(1)-R) in the new vomiting model of minks. MATERIALS AND METHODS Minks were randomly divided into the normal group, cisplatin group, cisplatin + ondansetron group, cisplatin + low-dose XBXT group and cisplatin + high-dose XBXT group. The antiemetic effect of drugs was investigated in the vomiting model of minks induced by cisplatin (6mgkg(-1), i.p.) in 72h observation, and the expression of NK(1)-R in the area postrema and ileum was measured by Western blot. RESULTS The frequency cisplatin induces retching and vomiting was significantly reduced by pretreatment with XBXT in a dose-dependent manner during the 0-24-h and 24-72-h periods (P<0.05), and XBXT exhibited effective dose-dependent (P<0.05) inhibition on the increase of expression levels of NK1 receptor in both the ileum and area postrema. CONCLUSIONS XBXT has good activity against cisplatin-induced acute and delayed emesis in minks possibly by inhibiting central or peripheral increase of NK(1)-R.
Collapse
Affiliation(s)
- Qiuhai Qian
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, China; Pharmic Department, Medical College of Qingdao University, Qingdao 266021, Shandong, China
| | | | | | | | | | | |
Collapse
|
31
|
Chu KM, Ngan MP, Wai MK, Yeung CK, Andrews PL, Percie du Sert N, Lin G, Rudd JA. Olvanil, a non-pungent vanilloid enhances the gastrointestinal toxicity of cisplatin in the ferret. Toxicol Lett 2010; 192:402-7. [DOI: 10.1016/j.toxlet.2009.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 11/12/2009] [Accepted: 11/16/2009] [Indexed: 10/20/2022]
|
32
|
Chu KM, Ngan MP, Wai MK, Yeung CK, Andrews PLR, Percie du Sert N, Rudd JA. Olvanil: a non-pungent TRPV1 activator has anti-emetic properties in the ferret. Neuropharmacology 2009; 58:383-91. [PMID: 19825380 DOI: 10.1016/j.neuropharm.2009.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/02/2009] [Accepted: 10/02/2009] [Indexed: 01/31/2023]
Abstract
Anti-emetic drugs such as the tachykinin NK(1) receptor antagonists are useful to control emesis induced by diverse challenges. Evidence suggests pungent capsaicin-like TRPV1 activators also have broad inhibitory anti-emetic activity. However, pungent compounds are associated with undesirable effects including adverse actions on the cardiovascular system and on temperature homeostasis. In the present investigations using the ferret, we examine if the non-pungent vanilloid, olvanil, has useful anti-emetic properties without adversely affecting behaviour, blood pressure or temperature control. Olvanil (0.05-5 mg/kg, s.c.) was compared to the pungent vanilloid, resiniferatoxin (RTX; 0.1 mg/kg, s.c.), and to the anandamide reuptake inhibitor, AM404 (10 mg/kg, s.c.), for a potential to inhibit emesis induced by apomorphine (0.25 mg/kg, s.c.), copper sulphate (50 mg/kg, intragastric), and cisplatin (10 mg/kg, i.p.). Changes in blood pressure and temperature were also recorded using radiotelemetry implants. In peripheral administration studies, RTX caused transient hypertension, hypothermia and reduced food and water intake, but also significantly inhibited emesis induced by apomorphine, copper sulphate, or cisplatin. Olvanil did not have a similar adverse profile, and antagonised apomorphine- and cisplatin-induced emesis but not that induced by copper sulphate. AM404 reduced only emesis induced by cisplatin without affecting other parameters measured. Following intracerebral administration only olvanil antagonised cisplatin-induced emesis, but this was associated with transient hypothermia. In conclusion, olvanil demonstrated clear anti-emetic activity in the absence of overt cardiovascular, homeostatic, or behavioural effects associated with the pungent vanilloid, RTX. Our studies indicate that non-pungent vanilloids may have a useful spectrum of anti-emetic properties via central and/or peripheral mechanisms after peripheral administration.
Collapse
Affiliation(s)
- Kit-Man Chu
- Emesis Research Group, Brain-Gut Laboratory, Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Ray AP, Chebolu S, Ramirez J, Darmani NA. Ablation of least shrew central neurokinin NK1 receptors reduces GR73632-induced vomiting. Behav Neurosci 2009; 123:701-6. [PMID: 19485577 DOI: 10.1037/a0015733] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The neurocircuitry mediating the emetic reflex is still incompletely understood, and a key question is the degree to which central and/or peripheral components contribute to the overall vomiting mechanism. Having previously found a significant peripheral component in neurokinin NK-receptor mediated emesis, the authors undertook this study to examine the putative central component. Adult least shrews were injected intracerebroventricularly (icv) with saline or the blood-brain barrier impermeable toxin, stable substance P-saporin (SSP-SAP), which ablates cells expressing NK receptors. After 3 days, shrews were challenged intraperitoneally with the emetogenic NK agonist GR73632 at different doses, and vomiting and scratching behaviors were quantified. Ablation of NK1-bearing cells was verified immunohistochemically. Although SSP-SAP injection reduced emesis at GR73632 doses of 2.5 and 5 mg/kg, no injections completely eliminated emesis. These data demonstrate that there is both a major central nervous system component and a minor peripheral nervous system component to tachykinin-mediated vomiting. Side effects of the current generation of antiemetics could potentially be reduced by improving bioavailability of the drugs in the more potent central nervous system compartment while reducing bioavailability in the less potent peripheral compartment.
Collapse
Affiliation(s)
- Andrew P Ray
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | | | | | | |
Collapse
|
35
|
Qian QH, Yue W, Wang YX, Yang ZH, Liu ZT, Chen WH. Gingerol inhibits cisplatin-induced vomiting by down regulating 5-hydroxytryptamine, dopamine and substance P expression in minks. Arch Pharm Res 2009; 32:565-73. [PMID: 19407975 DOI: 10.1007/s12272-009-1413-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Revised: 03/03/2009] [Accepted: 03/05/2009] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the antiemetic effect of gingerol and its multi-targets effective mechanism on 5-hydroxytryptamine (5-HT), dopamine (DA) and substance P (SP). The antiemetic effect of gingerol was investigated on a vomiting model of mink induced by cisplatin (7.5 mg . kg(-1), i.p.) in 6 h observation. The levels of 5-HT, DA and distribution of substance P in the area postrema and ileum were measured by high performance liquid chromatography (HPLC) and immunohistochemistry respectively. The frequency of cisplatin induced retching and vomiting was significantly reduced by pretreatment with gingerol in a dose-dependent manner (P<0.05). Cisplatin produced a significant increase in 5-HT and DA levels in the area postrema and ileum of minks (P<0.05), and this increase was significantly inhibited by gingerol in a dose-dependent manner (P<0.05). Substance P-immunoreactive was mainly situated in the mucosa and submucosa of ileum as well as in the neurons of area postrema, and gingerol markedly suppressed the increase immunoreactivity of substance P induced by cisplatin in a dose-dependent manner (P<0.05). Gingerol has good activity against cisplatin-induced emesis in minks possibly by inhibiting central or peripheral increase of 5-HT, DA and substance P.
Collapse
Affiliation(s)
- Qiu-Hai Qian
- Pharmic Department, Medical College of Qingdao University, Qingdao, Shandong, 266021, China
| | | | | | | | | | | |
Collapse
|
36
|
De Jonghe BC, Horn CC. Chemotherapy agent cisplatin induces 48-h Fos expression in the brain of a vomiting species, the house musk shrew (Suncus murinus). Am J Physiol Regul Integr Comp Physiol 2009; 296:R902-11. [PMID: 19225146 DOI: 10.1152/ajpregu.90952.2008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cancer chemotherapy drugs, such as cisplatin, potently produce nausea and vomiting. Acute effects of these treatments are partly controlled by antiemetic drugs, but the delayed effects (>24 h), especially nausea, are more difficult to treat. It is unknown what brain pathways produce this delayed sickness. Our prior data show that brain Fos expression is increased for at least 48 h after cisplatin treatment in the rat, a nonvomiting species. Here, we extend these observations by using house musk shrews (Suncus murinus), a species with an emetic response. Compared with saline injection, cisplatin treatment (30 mg/kg ip) induced Fos expression in hindbrain areas known to play a role in the generation of emesis, the dorsal motor nucleus (DMN), the area postrema, and the nucleus of the solitary tract (NTS), for up to 48 h. Cisplatin also stimulated Fos expression in the parabrachial nucleus (PBN) of the midbrain and the central nucleus of the amygdala (CeA) for at least 48 h after treatment. When animals were pretreated with the antiemetic palonosetron, a long-term serotonin type 3 (5-HT(3)) receptor antagonist, cisplatin-induced Fos expression was significantly attenuated in the NTS, DMN, and CeA at 6 h but not at 48 h. These results indicate that cisplatin activates a neural system that includes the dorsal vagal complex and forebrain in the musk shrew, which is partially suppressed by a 5-HT(3) receptor antagonist. Our findings suggest the existence of an extensive neural system that could be targeted to reduce nausea, vomiting, and malaise in cancer patients receiving chemotherapy.
Collapse
|
37
|
Effect of orally administered KF66490, a phosphodiesterase 4 inhibitor, on dermatitis in mouse models. Int Immunopharmacol 2009; 9:55-62. [DOI: 10.1016/j.intimp.2008.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/01/2008] [Accepted: 09/16/2008] [Indexed: 11/19/2022]
|
38
|
Cluny NL, Naylor RJ, Whittle BA, Javid FA. The effects of cannabidiol and tetrahydrocannabinol on motion-induced emesis in Suncus murinus. Basic Clin Pharmacol Toxicol 2008; 103:150-6. [PMID: 18816298 DOI: 10.1111/j.1742-7843.2008.00253.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of cannabinoids on motion-induced emesis is unknown. The present study investigated the action of phytocannabinoids against motion-induced emesis in Suncus murinus. Suncus murinus were injected intraperitoneally with either cannabidiol (CBD) (0.5, 1, 2, 5, 10, 20 and 40 mg/kg), Delta(9)-tetrahydrocannabinol (Delta(9)-THC; 0.5, 3, 5 and 10 mg/kg) or vehicle 45 min. before exposure to a 10-min. horizontal motion stimulus (amplitude 40 mm, frequency 1 Hz). In further investigations, the CB(1) receptor antagonist, N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM 251; 5 mg/kg), was injected 15 min. prior to an injection of Delta(9)-THC (3 mg/kg). The motion stimulus was applied 45 min. later. The number of emetic episodes and latency of onset to the first emetic episode were recorded. Pre-treatment with the above doses of CBD did not modify the emetic response to the motion stimulus as compared to the vehicle-treated controls. Application of the higher doses of Delta(9)-THC induced emesis in its own right, which was inhibited by AM 251. Furthermore, pre-treatment with Delta(9)-THC dose-dependently attenuated motion-induced emesis, an effect that was inhibited by AM 251. AM 251 neither induced an emetic response nor modified motion-induced emesis. The present study indicates that Delta(9)-THC, acting via the CB(1) receptors, is anti-emetic to motion, and that CBD has no effect on motion-induced emesis in Suncus murinus.
Collapse
Affiliation(s)
- Nina L Cluny
- The School of Pharmacy, University of Bradford, Bradford, West Yorkshire, UK.
| | | | | | | |
Collapse
|
39
|
The pharmacological challenge to tame the transient receptor potential vanilloid-1 (TRPV1) nocisensor. Br J Pharmacol 2008; 155:1145-62. [PMID: 18806809 DOI: 10.1038/bjp.2008.351] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The transient receptor potential vanilloid-1 (TRPV1) cation channel is a receptor that is activated by heat (>42 degrees C), acidosis (pH<6) and a variety of chemicals among which capsaicin is the best known. With these properties, TRPV1 has emerged as a polymodal nocisensor of nociceptive afferent neurones, although some non-neuronal cells and neurones in the brain also express TRPV1. The activity of TRPV1 is controlled by a multitude of regulatory mechanisms that either cause sensitization or desensitization of the channel. As many proalgesic pathways converge on TRPV1 and this nocisensor is upregulated and sensitized by inflammation and injury, TRPV1 is thought to be a central transducer of hyperalgesia and a prime target for the pharmacological control of pain. As a consequence, TRPV1 agonists causing defunctionalization of sensory neurones and a large number of TRPV1 blockers have been developed, some of which are in clinical trials. A major drawback of many TRPV1 antagonists is their potential to cause hyperthermia, and their long-term use may carry further risks because TRPV1 has important physiological functions in the peripheral and central nervous system. The challenge, therefore, is to pharmacologically differentiate between the physiological and pathological implications of TRPV1. There are several possibilities to focus therapy specifically on those TRPV1 channels that contribute to disease processes. These approaches include (i) site-specific TRPV1 antagonists, (ii) modality-specific TRPV1 antagonists, (iii) uncompetitive TRPV1 (open channel) blockers, (iv) drugs interfering with TRPV1 sensitization, (v) drugs interfering with intracellular trafficking of TRPV1 and (vi) TRPV1 agonists for local administration.
Collapse
|
40
|
Chauhan VS, Sterka DG, Gray DL, Bost KL, Marriott I. Neurogenic exacerbation of microglial and astrocyte responses to Neisseria meningitidis and Borrelia burgdorferi. THE JOURNAL OF IMMUNOLOGY 2008; 180:8241-9. [PMID: 18523290 DOI: 10.4049/jimmunol.180.12.8241] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although glial cells are recognized for their roles in maintaining neuronal function, there is growing appreciation of the ability of resident CNS cells to initiate and/or augment inflammation following trauma or infection. The tachykinin, substance P (SP), is well known to augment inflammatory responses at peripheral sites and its presence throughout the CNS raises the possibility that this neuropeptide might serve a similar function within the brain. In support of this hypothesis, we have recently demonstrated the expression of high affinity receptors for SP (Neurokinin-1 (NK-1) receptors) on microglia and shown that this tachykinin can significantly elevate bacterially induced inflammatory prostanoid production by isolated cultures of these cells. In the present study, we demonstrate that endogenous SP/NK-1R interactions are an essential component in the initiation and/or progression of CNS inflammation in vivo following exposure to two clinically relevant bacterial CNS pathogens, Neisseria meningitidis and Borrelia burgdorferi. We show that in vivo elevations in inflammatory cytokine production and decreases in the production of an immunosuppressive cytokine are markedly attenuated in mice genetically deficient in the expression of the NK-1R or in mice treated with a specific NK-1R antagonist. Furthermore, we have used isolated cultures of microglia and astrocytes to demonstrate that SP can augment inflammatory cytokine production by these resident CNS cell types following exposure to either of these bacterial pathogens. Taken together, these studies indicate a potentially important role for neurogenic exacerbation of resident glial immune responses in CNS inflammatory diseases, such as bacterial meningitis.
Collapse
Affiliation(s)
- Vinita S Chauhan
- Department of Biology, University of North Carolina, Charlotte, NC 28223, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
Nausea and vomiting occur in a large number of disease conditions and as side effects of many drug treatments, including use of analgesics and anesthesia in surgery and chemotherapy in cancer treatment. Current anti-emetics provide relief from only some sources of vomiting, with more limited benefits for the control of nausea. Elucidation of forebrain pathways that generate nausea and brainstem circuitry controlling emesis are significant obstacles for the development of effective universal anti-nausea and anti-emetic treatments.
Collapse
Affiliation(s)
- Charles C Horn
- Monell Chemical Senses Center, Philadelphia, PA 19104 USA
| |
Collapse
|
42
|
Hu DL, Zhu G, Mori F, Omoe K, Okada M, Wakabayashi K, Kaneko S, Shinagawa K, Nakane A. Staphylococcal enterotoxin induces emesis through increasing serotonin release in intestine and it is downregulated by cannabinoid receptor 1. Cell Microbiol 2007; 9:2267-77. [PMID: 17517065 DOI: 10.1111/j.1462-5822.2007.00957.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Staphylococcal enterotoxins (SEs) produced by Staphylococcus aureus are the most recognizable bacterial superantigenic toxins causing food poisoning in humans throughout the world. However, it remains unclear how SEs induce emesis and its emetic signal pathway. We investigated a mechanism of SEA-induced emesis using a small emetic animal model, house musk shrew. SEA-induced emesis in the animals was inhibited by a 5-hydroxytryptamine (5-HT) synthesis inhibitor and a 5-HT(3) receptor antagonist. SEA could increase 5-HT release in the small intestine. Pre-treatment with 5,7-dihydroxytryptamine (5,7-DHT) markedly inhibited SEA-induced emesis. SEA-induced emesis was also abolished by surgical vagotomy. Furthermore, cannabinoid (CB) receptor agonists inhibited SEA-induced emesis, and the action was reversed by a CB1 antagonist. Both 5-HT release and CB1 receptor expression were found in the mucosal and myenteric plexus of the intestine. Moreover, a CB1 receptor agonist significantly decreased the 5-HT release in the intestine. These results demonstrate that SEA induces 5-HT release in intestine, rather than in brain, and that the 5-HT(3) receptors on vagal afferent neurons are essential for SEA-stimulated emesis. In addition, SEA-induced emesis is downregulated by the CB system through decreasing 5-HT release in intestine.
Collapse
Affiliation(s)
- Dong-Liang Hu
- Department of Microbiology and Immunology, Hirosaki University School of Medicine, Hirosaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Nagakura Y, Kakimoto S, Matsuoka N. Purinergic P2X receptor activation induces emetic responses in ferrets and Suncus murinus (house musk shrews). Br J Pharmacol 2007; 152:464-70. [PMID: 17700716 PMCID: PMC2050822 DOI: 10.1038/sj.bjp.0707418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Despite the rapid progress made in understanding the significant role played by signalling via extracellular ATP in physiology and pathology, there has been no clear information generated on its involvement in the emetic response. EXPERIMENTAL APPROACH In the present study, the emetogenic potential of extracellular ATP signalling in mammalian species was examined using ferrets and Suncus murinus (house musk shrews). A slowly degradable ATP analogue, alpha,beta-methyleneATP (alpha,beta-meATP), was used to activate the P2X receptors, and either the non-selective P2 receptor antagonist, pyridoxal phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS), or the specific P2X(3) homomer and P2X(2/3) heteromer antagonist, A-317491, were tested against the agonist-induced response. KEY RESULTS Intraperitoneal injection of alpha,beta-meATP produced significant emetic responses in ferrets (1 - 30 mg kg(-1)) and in Suncus murinus (5 - 50 mg kg(-1)). The responses occurred frequently within the first 10 min after administration, much less frequently from 11 to 60 min and no responses occurred later than 60 min. The emetic responses were completely inhibited by intraperitoneal pre-treatment with PPADS (100 mg kg(-1)) or A-317491 (100 mg kg(-1)). Abdominal surgical vagotomy did not reduce the emetic response in Suncus murinus significantly. CONCLUSIONS AND IMPLICATIONS These results for the first time indicate that the activation of P2X receptors evokes emetic responses in mammalian species. The P2X(3) homomer and.or P2X(2/3) heteromer in the area postrema could be responsible for the emetic response. This finding contributes to the elucidation of the roles played by extracellular ATP signalling in various emetic symptoms.
Collapse
Affiliation(s)
- Y Nagakura
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan.
| | | | | |
Collapse
|
44
|
Sharkey KA, Cristino L, Oland LD, Van Sickle MD, Starowicz K, Pittman QJ, Guglielmotti V, Davison JS, Di Marzo V. Arvanil, anandamide and N-arachidonoyl-dopamine (NADA) inhibit emesis through cannabinoid CB1 and vanilloid TRPV1 receptors in the ferret. Eur J Neurosci 2007; 25:2773-82. [PMID: 17459108 DOI: 10.1111/j.1460-9568.2007.05521.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cannabinoid (CB) agonists suppress nausea and vomiting (emesis). Similarly, transient receptor potential vanilloid-1 (TRPV1) receptor agonists are anti-emetic. Arvanil, N-(3-methoxy-4-hydroxy-benzyl)-arachidonamide, is a synthetic 'hybrid' agonist of CB1 and TRPV1 receptors. Anandamide and N-arachidonoyl-dopamine (NADA) are endogenous agonists at both these receptors. We investigated if arvanil, NADA and anandamide were anti-emetic in the ferret and their mechanism of action. All compounds reduced the episodes of emesis in response to morphine 6 glucuronide. These effects were attenuated by AM251, a CB1 antagonist that was pro-emetic per se, and TRPV1 antagonists iodoresiniferatoxin and AMG 9810, which were without pro-emetic effects. Similar sensitivity to arvanil and NADA was found for prodromal signs of emesis. We analysed the distribution of TRPV1 receptors in the ferret brainstem and, for comparison, the co-localization of CB1 and TRPV1 receptors in the mouse brainstem. TRPV1 immunoreactivity was largely restricted to the nucleus of the solitary tract of the ferret, with faint labeling in the dorsal motor nucleus of the vagus and sparse distribution in the area postrema. A similar distribution of TRPV1, and its extensive co-localization with CB1, was observed in the mouse. Our findings suggest that CB1 and TRPV1 receptors in the brainstem play a major role in the control of emesis by agonists of these two receptors. While there appears to be an endogenous 'tone' of CB1 receptors inhibiting emesis, this does not seem to be the case for TRPV1 receptors, indicating that endogenously released endocannabinoids/endovanilloids inhibit emesis preferentially via CB1 receptors.
Collapse
Affiliation(s)
- K A Sharkey
- Hotchkiss Brain Institute, Department of Physiology & Biophysics, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Liu YL, Malik N, Sanger GJ, Friedman MI, Andrews PLR. Pica—A model of nausea? Species differences in response to cisplatin. Physiol Behav 2005; 85:271-7. [PMID: 15939445 DOI: 10.1016/j.physbeh.2005.04.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 03/23/2005] [Accepted: 04/05/2005] [Indexed: 11/29/2022]
Abstract
Rats lack the emetic reflex but exhibit pica in response to stimuli that induce emesis in species with an emetic reflex, hence it has been proposed that pica may be analogous to emesis in species lacking the reflex. In the present study, we investigated whether pica was present in Suncus murinus (with an emetic reflex) as well as in rats and mice (without emetic reflex) to provide a further insight to the validity of pica as a model for nausea/vomiting. Cisplatin (6 mg/kg, i.p.) induced pica in rats, indicated by a significant increase in kaolin consumption at 24 h (but not 48 h) post-treatment whereas we failed to demonstrate this effect in mice (inbred or outbred strain, 6 or 20 mg/kg i.p.) and whilst cisplatin (20 mg/kg, i.p.) induced emesis in Suncus, kaolin intake was not significantly affected. Furthermore, cisplatin significantly increased the weight of gastric contents at 48 h post-injection in rats and mice indicating delayed gastric emptying whereas this effect was not present in Suncus. These results show that Suncus and two strains of mice, unlike rats, do not develop pica in response to cisplatin which suggests that the consumption of kaolin induced by cisplatin may not be associated with whether or not an emetic reflex is present. The differences in ingestive behaviour and gastric response between species with and without an emetic reflex in response to cisplatin treatment as well as the difference between mice and rats, is discussed in relation to the selection of models for the study of nausea and vomiting.
Collapse
Affiliation(s)
- Yong-Ling Liu
- Department of Basic Medical Sciences (Physiology), St. George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK
| | | | | | | | | |
Collapse
|
46
|
Cheng FHM, Andrews PLR, Moreaux B, Ngan MP, Rudd JA, Sam TSW, Wai MK, Wan C. Evaluation of the anti-emetic potential of anti-migraine drugs to prevent resiniferatoxin-induced emesis in Suncus murinus (house musk shrew). Eur J Pharmacol 2005; 508:231-8. [PMID: 15680276 DOI: 10.1016/j.ejphar.2004.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 12/07/2004] [Accepted: 12/10/2004] [Indexed: 11/18/2022]
Abstract
Activation of vanilloid receptors has commonly been used to facilitate neurogenic inflammation and plasma exudation to model components of the pathogenesis of migraine; however, these studies have been performed mainly in species lacking the emetic reflex. In the present studies, therefore, we used Suncus murinus, a species of insectivore capable of emesis, to investigate if the vanilloid receptor agonist resiniferatoxin is capable of modeling the emesis associated with migraine. Resiniferatoxin (100 nmol/kg, s.c.) induced an emetic response that was antagonized significantly (P<0.05) by ruthenium red (1-3 micromol), (2R-trans)-4-[1-[3,5-bis(trifluromethyl)benzoyl]-2-(phenylmethyl)-4-piperidinyl]-N-(2,6-dimethylphenyl)-1-acetamide (S)-hydroxybutanedioate (R116301; 10-100 micromol/kg), and scopolamine (1 micromol/kg), but not by dihydroergotamine (0.3-3 micromol/kg), sumatriptan (1-10 micromol/kg), methysergide (1-10 micromol/kg), tropanyl 3,5-dichlorobenzoate (MDL72222; 3-30 micromol/kg), ondansetron (0.3-3 micromol/kg), metoclopramide (3-30 micromol/kg), domperidone (3-30 micromol/kg), diphenhydramine (1-10 micromol/kg), or indomethacin (3-30 micromol/kg). The failure of a wide range of representative anti-migraine drugs to reduce retching and vomiting limits the use of this model to identify/investigate novel treatments for the emesis (and nausea) associated with migraine attacks in humans. However, the results provide further evidence for the involvement of a novel vanilloid receptor in resiniferatoxin-induced emesis and implicate both tachykinins and acetylcholine in the pathway(s) activated by resiniferatoxin in S. murinus.
Collapse
Affiliation(s)
- Frankie H M Cheng
- Emesis Research Group, Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kan KKW, Jones RL, Ngan MP, Rudd JA, Wai MK. Emetic action of the prostanoid TP receptor agonist, U46619, in Suncus murinus (house musk shrew). Eur J Pharmacol 2004; 482:297-304. [PMID: 14660035 DOI: 10.1016/j.ejphar.2003.09.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The emetic action of the prostanoid TP receptor agonist, 11alpha,9alpha-epoxymethano-15S-hydroxyprosta-5Z,13E-dienoic acid (U46619; 300 microg/kg, i.p.), was investigated in Suncus murinus. The emetic response was reduced by 76% following bilateral abdominal vagotomy (P<0.001) and by reserpine (5 mg/kg, i.p., 24 h pretreatment; P<0.05) but U46619 administered i.c.v. (30-300 ng) was not emetic, suggesting a peripheral mechanism involving monoamines. However, fenfluramine (5 mg/kg, repeated treatment) and para-chlorophenylalanine (100-400 mg/kg) and ondansetron (0.3-3 mg/kg) were inactive (P>0.05) to reduce U46619-induced emesis precluding a role of 5-HT and 5-HT(3) receptors in the mechanism. Similarly, phentolamine (0.3-3 mg/kg), propranolol (3 mg/kg), and their combination, and metoclopramide (0.3-3 mg/kg), domperidone (0.3-3 mg/kg), droperidol (0.3-3 mg/kg), scopolamine (0.3-3 mg/kg) and promethazine (0.3-3 mg/kg) were inactive (P>0.05) to reduce the retching and vomiting response. However, the tachykinin NK(1) receptor antagonist, (+)-2S,3S(-3-(2-methoxy-5-trifluoromethoxybenzyl)amino-2-phenylpiperidine) (CP-122,721; 1-10 mg/kg) antagonized emesis (P<0.01). In conclusion, U46619-induced emesis appears to be mediated via a predominant peripheral mechanism sensitive to reserpine and is not likely to involve adrenoceptors, dopamine, 5-HT(3), muscarinic or histamine (H(1)) receptors. The action of CP-122,721 to reduce U46619-induced emesis extends the spectrum of anti-emetic action tachykinin NK(1) receptor antagonists to mechanisms involving TP receptors.
Collapse
Affiliation(s)
- Kelvin K W Kan
- Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
48
|
Kwiatkowska M, Parker LA, Burton P, Mechoulam R. A comparative analysis of the potential of cannabinoids and ondansetron to suppress cisplatin-induced emesis in the Suncus murinus (house musk shrew). Psychopharmacology (Berl) 2004; 174:254-9. [PMID: 14740147 DOI: 10.1007/s00213-003-1739-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RATIONALE The 5-HT3 antagonist, ondansetron (OND), and the cannabinoid, delta9-tetrahydrocannabinol (delta9-THC), have been shown to interfere with emesis; however, their relative and/or combined effectiveness in suppressing vomiting produced by the chemotherapeutic agent, cisplatin, is unknown. OBJECTIVE To evaluate the potential of: 1) a broad range of doses of delta9-THC and OND to prevent cisplatin-induced vomiting and retching in the Suncus murinus (house musk shrew), 2) combined treatment with ineffective individual doses of delta9-THC and OND to prevent cisplatin-induced vomiting and retching, 3) the CB1 receptor antagonist, SR141716, to reverse the antiemetic effects of OND, and 4) cannabidiol (CBD), the principal non-psychoactive component of marijuana, to reverse cisplatin-induced vomiting in the shrew. METHODS Shrews were injected with various doses of OND (0.02-6.0 mg/kg), delta9-THC (1.25-10 mg/kg) and a combination of ineffective doses of each (0.02 mg/kg OND+1.25 mg/kg delta9-THC) prior to being injected with cisplatin (20 mg/kg) which induces vomiting. Shrews were also injected with CBD (5 mg/kg and 40 mg/kg) prior to an injection of cisplatin. RESULTS OND and delta9-THC both dose-dependently suppressed cisplatin-induced vomiting and retching. Furthermore, a combined pretreatment of doses of the two drugs that were ineffective alone completely suppressed vomiting and retching. CBD produced a biphasic effect, suppressing vomiting at 5 mg/kg and potentiating it at 40 mg/kg. CONCLUSIONS A low dose of the non-intoxicating cannabinoid CBD may be an effective anti-emetic treatment and combined doses of OND and delta9-THC that are ineffective alone suppresses cisplatin-induced emetic reactions in shrews.
Collapse
Affiliation(s)
- Magdalena Kwiatkowska
- Department of Psychology, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | | | | | | |
Collapse
|
49
|
Nakayama H, Yamakuni H, Nakayama A, Maeda Y, Imazumi K, Matsuo M, Mutoh S. Diphenidol Has No Actual Broad Antiemetic Activity in Dogs and Ferrets. J Pharmacol Sci 2004; 96:301-6. [PMID: 15528840 DOI: 10.1254/jphs.fpj04035x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Previous studies showed that diphenidol was effective on emetogens-induced pica, eating of non-nutritive substances, in rats, a model analogous to emesis in other species. We evaluated the actual antiemetic activity of diphenidol against four emetic stimuli in the dog and ferret, animals that possess an emetic reflex. In dogs, emetic responses to apomorphine were significantly prevented by diphenidol (3.2 mg/kg, i.v.), whereas diphenidol (3.2 mg/kg, i.v. x 2) showed a weak inhibition to the vomiting evoked by cisplatin. In ferrets, diphenidol (10 mg/kg, i.p.) exhibited a weak antiemetic activity on the emesis induced by copper sulfate and had no activity on emesis by loperamide. On the other hand, CP-122,721, a NK1-receptor antagonist, significantly reduced the emetic episodes to all four stimuli. These results suggest that the prediction of antiemetic activity of compounds in animals lacking an emetic reflex does not always correspond with actual antiemetic activity.
Collapse
Affiliation(s)
- Hiroe Nakayama
- Department of Urology, Medicinal Biology Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Van Sickle MD, Oland LD, Mackie K, Davison JS, Sharkey KA. Delta9-tetrahydrocannabinol selectively acts on CB1 receptors in specific regions of dorsal vagal complex to inhibit emesis in ferrets. Am J Physiol Gastrointest Liver Physiol 2003; 285:G566-76. [PMID: 12791597 DOI: 10.1152/ajpgi.00113.2003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The aim of this study was to investigate the efficacy, receptor specificity, and site of action of Delta9-tetrahydrocannabinol (THC) as an antiemetic in the ferret. THC (0.05-1 mg/kg ip) dose-dependently inhibited the emetic actions of cisplatin. The ED50 for retching was approximately 0.1 mg/kg and for vomiting was 0.05 mg/kg. A specific cannabinoid (CB)1 receptor antagonist SR-141716A (5 mg/kg ip) reversed the effect of THC, whereas the CB2 receptor antagonist SR-144528 (5 mg/kg ip) was ineffective. THC applied to the surface of the brain stem was sufficient to inhibit emesis induced by intragastric hypertonic saline. The site of action of THC in the brain stem was further assessed using Fos immunohistochemistry. Fos expression induced by cisplatin in the dorsal motor nucleus of the vagus (DMNX) and the medial subnucleus of the nucleus of the solitary tract (NTS), but not other subnuclei of the NTS, was significantly reduced by THC rostral to obex. At the level of the obex, THC reduced Fos expression in the area postrema and the dorsal subnucleus of the NTS. The highest density of CB1 receptor immunoreactivity was found in the DMNX and the medial subnucleus of the NTS. Lower densities were observed in the area postrema and dorsal subnucleus of the NTS. Caudal to obex, there was moderate density of staining in the commissural subnucleus of the NTS. These results show that THC selectively acts at CB1 receptors to reduce neuronal activation in response to emetic stimuli in specific regions of the dorsal vagal complex.
Collapse
Affiliation(s)
- Marja D Van Sickle
- Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | |
Collapse
|